156 research outputs found

    Overlay networks for smart grids

    Get PDF

    Hybrid Multicasting Using Automatic Multicast Tunnels (AMT)

    Get PDF
    Native Multicast plays an important role in distributing and managing delivery of some of the most popular Internet applications, such as IPTV and media delivery. However, due to patchy support and the existence of multiple approaches for Native Multicast, the support for Native Multicast is fragmented into isolated areas termed Multicast Islands. This renders Native Multicast unfit to be used as an Internet wide application. Instead, Application Layer Multicast, which does not have such network requirements but is more expensive in terms of bandwidth and overhead, can be used to connect the native multicast islands. This thesis proposes Opportunistic Native Multicast (ONM) which employs Application LayerMulticast (ALM), on top of a DHT-based P2P overlay network, and AutomaticMulticast Tunnelling (AMT) to connect these islands. ALM will be used for discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic going between islands' Primary Nodes (PNs). AMT was used for its added benefits such as security and being better at traffic shaping and Quality Of Service (QoS). While different approaches for connecting multicast islands exists, the system proposed in the thesis was designed with the following characteristics in mind: scalability, availability, interoperability, self-adaptation and efficiency. Importantly, by utilising AMT tunnels, this approach has unique properties that improve network security and management

    A Peer-to-Peer Network Framework Utilising the Public Mobile Telephone Network

    Get PDF
    P2P (Peer-to-Peer) technologies are well established and have now become accepted as a mainstream networking approach. However, the explosion of participating users has not been replicated within the mobile networking domain. Until recently the lack of suitable hardware and wireless network infrastructure to support P2P activities was perceived as contributing to the problem. This has changed with ready availability of handsets having ample processing resources utilising an almost ubiquitous mobile telephone network. Coupled with this has been a proliferation of software applications written for the more capable `smartphone' handsets. P2P systems have not naturally integrated and evolved into the mobile telephone ecosystem in a way that `client-server' operating techniques have. However as the number of clients for a particular mobile application increase, providing the `server side' data storage infrastructure becomes more onerous. P2P systems offer mobile telephone applications a way to circumvent this data storage issue by dispersing it across a network of the participating users handsets. The main goal of this work was to produce a P2P Application Framework that supports developers in creating mobile telephone applications that use distributed storage. Effort was assigned to determining appropriate design requirements for a mobile handset based P2P system. Some of these requirements are related to the limitations of the host hardware, such as power consumption. Others relate to the network upon which the handsets operate, such as connectivity. The thesis reviews current P2P technologies to assess which was viable to form the technology foundations for the framework. The aim was not to re-invent a P2P system design, rather to adopt an existing one for mobile operation. Built upon the foundations of a prototype application, the P2P framework resulting from modifications and enhancements grants access via a simple API (Applications Programmer Interface) to a subset of Nokia `smartphone' devices. Unhindered operation across all mobile telephone networks is possible through a proprietary application implementing NAT (Network Address Translation) traversal techniques. Recognising that handsets operate with limited resources, further optimisation of the P2P framework was also investigated. Energy consumption was a parameter chosen for further examination because of its impact on handset participation time. This work has proven that operating applications in conjunction with a P2P data storage framework, connected via the mobile telephone network, is technically feasible. It also shows that opportunity remains for further research to realise the full potential of this data storage technique

    Large-Scale Distributed Coalition Formation

    Get PDF
    The CyberCraft project is an effort to construct a large scale Distributed Multi-Agent System (DMAS) to provide autonomous Cyberspace defense and mission assurance for the DoD. It employs a small but flexible agent structure that is dynamically reconfigurable to accommodate new tasks and policies. This document describes research into developing protocols and algorithms to ensure continued mission execution in a system of one million or more agents, focusing on protocols for coalition formation and Command and Control. It begins by building large-scale routing algorithms for a Hierarchical Peer to Peer structured overlay network, called Resource-Clustered Chord (RC-Chord). RC-Chord introduces the ability to efficiently locate agents by resources that agents possess. Combined with a task model defined for CyberCraft, this technology feeds into an algorithm that constructs task coalitions in a large-scale DMAS. Experiments reveal the flexibility and effectiveness of these concepts for achieving maximum work throughput in a simulated CyberCraft environment

    Novel Analytical Modelling-based Simulation of Worm Propagation in Unstructured Peer-to-Peer Networks

    No full text
    Millions of users world-wide are sharing content using Peer-to-Peer (P2P) networks, such as Skype and Bit Torrent. While such new innovations undoubtedly bring benefits, there are nevertheless some associated threats. One of the main hazards is that P2P worms can penetrate the network, even from a single node and then spread rapidly. Understanding the propagation process of such worms has always been a challenge for researchers. Different techniques, such as simulations and analytical models, have been adopted in the literature. While simulations provide results for specific input parameter values, analytical models are rather more general and potentially cover the whole spectrum of given parameter values. Many attempts have been made to model the worm propagation process in P2P networks. However, the reported analytical models to-date have failed to cover the whole spectrum of all relevant parameters and have therefore resulted in high false-positives. This consequently affects the immunization and mitigation strategies that are adopted to cope with an outbreak of worms. The first key contribution of this thesis is the development of a susceptible, exposed, infectious, and Recovered (SEIR) analytical model for the worm propagation process in a P2P network, taking into account different factors such as the configuration diversity of nodes, user behaviour and the infection time-lag. These factors have not been considered in an integrated form previously and have been either ignored or partially addressed in state-of-the-art analytical models. Our proposed SEIR analytical model holistically integrates, for the first time, these key factors in order to capture a more realistic representation of the whole worm propagation process. The second key contribution is the extension of the proposed SEIR model to the mobile M-SEIR model by investigating and incorporating the role of node mobility, the size of the worm and the bandwidth of wireless links in the worm propagation process in mobile P2P networks. The model was designed to be flexible and applicable to both wired and wireless nodes. The third contribution is the exploitation of a promising modelling paradigm, Agent-based Modelling (ABM), in the P2P worm modelling context. Specifically, to exploit the synergies between ABM and P2P, an integrated ABM-Based worm propagation model has been built and trialled in this research for the first time. The introduced model combines the implementation of common, complex P2P protocols, such as Gnutella and GIA, along with the aforementioned analytical models. Moreover, a comparative evaluation between ABM and conventional modelling tools has been carried out, to demonstrate the key benefits of ease of real-time analysis and visualisation. As a fourth contribution, the research was further extended by utilizing the proposed SEIR model to examine and evaluate a real-world data set on one of the most recent worms, namely, the Conficker worm. Verification of the model was achieved using ABM and conventional tools and by then comparing the results on the same data set with those derived from developed benchmark models. Finally, the research concludes that the worm propagation process is to a great extent affected by different factors such as configuration diversity, user-behaviour, the infection time lag and the mobility of nodes. It was found that the infection propagation values derived from state-of-the-art mathematical models are hypothetical and do not actually reflect real-world values. In summary, our comparative research study has shown that infection propagation can be reduced due to the natural immunity against worms that can be provided by a holistic exploitation of the range of factors proposed in this work

    A Novel Approach to Load Balancing in P2P Overlay Networks for Edge Systems

    Get PDF
    Edge computing aims at addressing some limitations of cloud computing by bringing computation towards the edge of the system, i.e., closer to the client. There is a panoply of devices that can be integrated into future edge computing platforms, from local datacenters and ISP points of presence, to 5G towers, and even, multiple user devices like smartphones, laptops, and IoT devices. For all of these devices to communicate fruitfully, we need to build systems that enable the seamless interaction and cooperation among these diverse devices. However, creating and maintaining these systems is not trivial since there are numerous types of devices with different capacities. This resource heterogeneity has to be taken into account so that different types of machines contribute to the management of the distributed infrastructure differently, and the operation of the overall system becomes more efficient. In this work, we addressed the challenges identified above by exploring unstructured overlay networks, that have been shown to be possible to manage efficiently and in a fully decentralized way, while being highly robust to failures. To that end, we devised a solution that adapts the number of neighbors of each device (i.e., how many other devices that device knows) according to the capacity of that device and the distribution of capacities of the other devices in the network, as to ensure that the load is fairly distributed between them and, as a consequence, improve the operation of other services atop the unstructured overlay network, for instance, reducing the latencies experienced when broadcasting information. This solution can be easily integrated into most existing peer-to-peer distributed systems, requiring just a slight adaptation to their membership protocol. To show the correction and benefits of our proposal, we evaluated it by comparing it with state of the art decentralized solutions to manage unstructured overlay networks, combining both simulation (to observe the performance of the solution at large scale) and prototype deployments in realistic distributed infrastructures.A computação de periferia visa abordar algumas limitações da computação em nuvem, trazendo a computação para mais perto do cliente. Há uma enorme variedade de dispositivos que podem ser integrados em futuras plataformas de computação de periferia, de data centers locais e pontos de presença de ISPs a torres 5G e até mesmo dispositivos de cliente, como smartphones, laptops e dispositivos IoT. Para que todos esses dispositivos comuniquem de forma proveitosa entre si, precisamos construir sistemas que possibilitem a interação e cooperação eficaz entre eles. No entanto, criar e manter esses sistemas não é trivial, uma vez que existem vários tipos de dispositivos com diferentes capacidades. Essa heterogeneidade de recursos deve ser levada em consideração para que diferentes tipos de máquinas contribuam para o gerenciamento da infraestrutura distribuída de forma distinta e a operação do sistema se torne mais eficiente. Neste trabalho, enfrentámos os desafios identificados acima explorando redes sobrepostas não estruturadas, que se têm mostrado possíveis de gerenciar de forma eficiente e totalmente descentralizada, sendo altamente resistentes a falhas. Para tal, concebemos uma solução que adapta o número de vizinhos de cada dispositivo (ou seja, quantos outros dispositivos aquele dispositivo conhece) de acordo com a sua capacidade e a capacidade dos demais dispositivos da rede, de forma a garantir que a carga seja proporcionalmente distribuída entre eles e, como consequência, reduzindo as latências experienciadas por esses dispositivos. Esta solução pode ser facilmente integrada num sistema distribuído entre-pares existente, exigindo apenas uma ligeira adaptação ao seu protocolo de filiação. Avaliámos a nossa solução comparando-a com outras soluções descentralizadas de última geração, combinando simulação (para observar o desempenho da soluç

    P2P Group Management Systems: A Conceptual Analysis

    Get PDF
    Peer-to-Peer (P2P) networks are becoming eminent platforms for both distributed computing and interpersonal communication. Their role in contemporary multimedia content delivery and communication systems is strong, as witnessed by many popular applications and services. Groups in P2P systems can originate from the relations between humans, or they can be defined with purely technical criteria such as proximity. In this article, we present a conceptual analysis of P2P group management systems. We illustrate how groups are formed using different P2P system architectures, and analyze the advantages and disadvantages of using each P2P system architecture for implementing P2P group management. The evaluation criteria in the analysis are performance, robustness, fairness, suitability for battery-powered devices, scalability, and security. The outcome of the analysis facilitates the selection of an appropriate P2P system architecture for implementing P2P group management in both further research and prototype development

    Prospects of peer-to-peer SIP for mobile operators

    Get PDF
    Tämän diplomityön tarkoituksena on esitellä kehitteillä oleva Peer-to-Peer Session Initiation Protocol (P2PSIP), jonka avulla käyttäjät voivat itsenäisesti ja helposti luoda keskenään puhe- ja muita multimediayhteyksiä vertaisverkko-tekniikan avulla. Lisäksi tarkoituksena on arvioida P2PSIP protokollan vaikutuksia ja mahdollisuuksia mobiilioperaattoreille, joille sitä voidaan pitää uhkana. Tästä huolimatta, P2PSIP:n ei ole kuitenkaan tarkoitus korvata nykyisiä puhelinverkkoja. Työn alussa esittelemme SIP:n ja vertaisverkkojen (Peer-to-Peer) periaatteet, joihin P2PSIP-protokollan on suunniteltu perustuvan. SIP mahdollistaa multimedia-istuntojen luomisen, sulkemisen ja muokkaamisen verkossa, mutta sen monipuolinen käyttö vaatii keskitettyjen palvelimien käyttöä. Vertaisverkon avulla käyttäjät voivat suorittaa keskitettyjen palvelimien tehtävät keskenään hajautetusti. Tällöin voidaan ylläpitää laajojakin verkkoja tehokkaasti ilman palvelimista aiheutuvia ylläpito-kustannuksia. Mobiilioperaattorit ovat haasteellisen tilanteen edessä, koska teleliikennemaailma on muuttumassa yhä avoimemmaksi. Tällöin operaattoreiden asiakkaille aukeaa mahdollisuuksia käyttää kilpailevia Internet-palveluja (kuten Skype) helpommin ja tulevaisuudessa myös itse muodostamaan kommunikointiverkkoja P2PSIP:n avulla. Tutkimukset osoittavat, että näistä uhista huolimatta myös operaattorit pystyvät näkemään P2PSIP:n mahdollisuutena mukautumisessa nopeasti muuttuvan teleliikennemaailman haasteisiin. Nämä mahdollisuudet sisältävät operaattorin oman verkon optimoinnin lisäksi vaihtoehtoisten ja monipuolisempien palveluiden tarjoamisen asiakkailleen edullisesti. Täytyy kuitenkin muistaa, että näiden mahdollisuuksien toteuttamisten vaikutusten ei tulisi olla ristiriidassa operaattorin muiden palveluiden kanssa. Lisäksi tulisi muistaa, että tällä hetkellä keskeneräisen P2PSIP-standardin lopullinen luonne ja ominaisuudet voivat muuttaa sen vaikutuksia.The purpose of this thesis is to present the Peer-to-Peer Session Initiation Protocol (P2PSIP) being developed. In addition, the purpose of this thesis is to evaluate the impacts and prospects of P2PSIP to mobile operators, to whom it can be regarded as a threat. In P2PSIP, users can independently and easily establish voice and other multimedia connections using peer-to-peer (P2P) networking. However, P2PSIP is not meant to replace the existing telephony networks of the operators. We start by introducing the principles of SIP and P2P networking that the P2PSIP is intended to use. SIP enables to establish, terminate and modify multimedia sessions, but its versatile exploitation requires using centralized servers. By using P2P networking, users can decentralize the functions of centralized servers by performing them among themselves. This enables to maintain large and robust networks without maintenance costs resulted of running such centralized servers. Telecommunications market is transforming to a more open environment, where mobile operators and other service providers are challenged to adapt to the upcoming changes. Subscribers have easier access to rivalling Internet-services (such as Skype) and in future they can form their own communication communities by using P2PSIP. The results show that despite of these threats, telecom operators can find potential from P2PSIP in concurrence in adaptation to the challenges of the rapidly changing telecom environment. These potential roles include optimization of the network of the operator, but as well roles to provide alternative and more versatile services to their subscribers at low cost. However, the usage of P2PSIP should not conflict with the other services of the operator. Also, as P2PSIP is still under development, its final nature and features may change its impacts and prospects

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing
    corecore