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Abstract

The CyberCraft project is an effort to construct a large scale Distributed Multi-

Agent System (DMAS) to provide autonomous Cyberspace defense and mission as-

surance for the United States Department of Defense (DoD). It employs a small but

flexible agent structure that is dynamically reconfigurable to accommodate new tasks

and policies. This document describes research into developing protocols and algo-

rithms to ensure continued mission execution in a system of one million or more agents,

focusing on protocols for coalition formation and Command and Control (C2). It be-

gins by building large-scale routing algorithms for a Hierarchical Peer-to-Peer (HP2P)

structured overlay network, called Resource Clustered Chord (RC-Chord). RC-Chord

introduces the ability to efficiently locate agents by resources that agents possess.

Combined with a task model defined for CyberCraft, this technology feeds into an

algorithm that constructs task coalitions in a large-scale DMAS. Experiments re-

veal the flexibility and effectiveness of these concepts for achieving maximum work

throughput in a simulated CyberCraft environment.

iv
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Large-Scale Distributed Coalition Formation

I. Introduction

Recent threats to the electronic infrastructures of governments around the world

have prompted the United States Department of Defense (DoD) to pursue new

technologies to combat cyberterrorism in the Global War on Terrorism (GWoT).

In particular, the DoD seeks to find new methods to defend its Defense Indus-

trial Base (DIB), which includes all elements necessary or utilized by organizations

within the DoD. This includes, but is not limited to, portions of the Internet (on

top of which military medium and high encryption systems exist), DoD intranets

and any external systems with whom they interact, Supervisory Control and Data

Acquisition (SCADA) systems in power, water, waste water, wireless and radio sys-

tems used by military bases and military aircraft, and a host of other subsystems nec-

essary to maintain the function of the United States, both at home and in deployed

locations worldwide. These systems combine to form the electronics and communi-

cations infrastructure used by the DoD, are therefore subject to attack, and must be

defended appropriately.

One of the focused research areas involved in the overall effort to defend the

DoD’s electronic infrastructure is the development of a Distributed Multi-Agent System

(DMAS) composed of autonomous lightweight software and hardware agents used to

secure and sustain military networks and attached (including wireless) electronic sys-

tems. The goals of the CyberCraft project include:

• monitor systems and respond to runtime variations in near real time;

• enforce current policies;

• provide feedback to human operators on mission relevant status;

• support varying levels of autonomy, depending on situation and commander’s

intent;
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• be dynamically configurable during runtime.

The CyberCraft project is undergoing research in the military and defense con-

tractor industries. It is centered around a lightweight agent, the CyberCraft plat-

form, that receives and executes CyberCraft payloads. The payloads are modules

that execute persistently in agent process space, such as system and network sen-

sors and communications modules. The internal framework of the agent combines a

three-layer architecture with a multi-staged information flow model, with each stage

capable of storing multiple dynamic modules. The three-layer architecture provides

a tiered framework for coarse and fine grained planning. The staged information

flow paradigm enables a simple framework for communication of information along

a path from sensors to global state, to decision and learning components, eventually

leveraging hardware and software actuators to affect the environment. Combining

these strategies allows payloads to access and develop sophisticated plans and actions

within an object oriented framework, simplifying development of third-party payloads.

Standard modules support communications capabilities for coordinating with other

agents, and actuator modules that report relevant data to human operators.

To operate at the scale that the DoD requires, CyberCraft must function in

networks of one million or more agents. One focus area of this project is to develop

a communications architecture that can support such a large-scale deployment. Sev-

eral topologies exist that scale to hundreds of thousands of clients, although little

research exists discussing the protocols and algorithms that work well in large-scale

environments. The algorithms supporting this architecture must be able to create

groups of CyberCraft delineated by mission or geographic location. Therefore, the

primary goals of this research are to develop the high level design of the communica-

tions architecture, protocol suite, and a strategy for high level command and control

of payloads in a network of CyberCraft agents. This includes the development of

a large-scale testbed, leveraging the Hierarchical Peer-to-Peer (HP2P) architecture,

development of large-scale agent coalition formation techniques, and the integration

of these protocols to support a large-scale coalition formation algorithm.
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1.1 Definition of Command and Control

Command refers to the ability to assign a task or mission to a set of workers,

to include the allocation and deconfliction of resources and schedules. This process is

complicated by limited visibility and the perpetual deficit of available resources in a

large system. To accomplish this task requires additional thought in scheduling tasks

and resources based on priorities and availability, and ensure workers understand the

timetable for their resources and task processing.

Control is defined as monitoring of the progress of the tasks and workers for

the above command set. In a large-scale distributed system, the challenge is tied to

scope, distance, and the costs of communications therein. Controllers that monitor

status of a large number of workers or tasks incur a high cost of communications;

greater network distance is likewise penalized. The end result is a requirement that

controllers have scope of monitoring defined by a multi-variable optimization. This

process must occur at the time of task allocation, so as to ensure that the entirety of

the mission(s) can be successfully monitored.

1.2 Command, Control, and Coordination in Military Networks

The CyberCraft DMAS will be used to defend existing and future military

Command, Control, and Communication (C3) systems. Beyond the Command and

Control (C2) aspects of large-scale systems, this research must also provide a mech-

anism to support coordination of agents. This coordination revolves around building

teams of agents capable of receiving and executing tasks at runtime. These teams

are necessary to pursue individual mission objectives, and do so by harnessing the

distributed processing power of individual agents sequestered into teams. Payloads

are then distributed to the agent coalitions. These payloads contain the algorithms

necessary to achieve the mission objectives.

In addition, military networks carry with them requirements that separate them

from business networks in the private sector. Namely, they:
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• operate under tighter security constraints;

• require fault tolerance and self healing;

• may affect human life.

The last attribute of military C3 systems distinguishes them from most other

non-medical civilian systems. The capability to affect human life is critical to the mis-

sion of the military, and carries an extraordinary responsibility. Although CyberCraft

will not have the ability to directly affect human life, they may do so inadvertently

through inefficient communications, consuming too much network or processor re-

sources, or failing to protect critical mission systems.

These requirements serve to create a separation between normal business class

networks on which a typical DMAS might operate, and the military networks on

which the CyberCraft will operate. The considerations found in much of the existing

literature on Peer-to-Peer (P2P) (and variant) systems deal with distributed data

storage [86] and federated search [63, 64] and do not entirely meet the requirements

of the CyberCraft. Specifically, these approaches aim to enable information retrieval,

whereas the CyberCraft project requires facilities to search for individual nodes. The

distinction is small, but the methods for achieving these differing objectives are quite

different. While many structured overlay systems provide communications mecha-

nisms for large-scale systems, the majority presently lack security considerations. In

addition, the task allocation and coordination techniques currently available do not

scale well enough to support the intended CyberCraft deployment.

Each CyberCraft agent configuration must meet restrictions on the function it

performs, and must also meet a code review to establish trustability. The nature

and implementation of its processing are to be scrutinized, as well as the resources

it utilizes on its host. Thus, creating a small, open source CyberCraft framework,

for which trust can be verified via verification and validation by the community, is

essential to ensure that CyberCraft will meet requirements to join military networks.
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1.2.1 Agent Communications Security. The basis of CyberCraft agent com-

munications security relies upon basic encryption methods. This approach forms a

foundation for secure communications, but is extended in production environments

by incorporating security modules and additional trust models. This system can be

further enhanced for higher security networks by using IP Security (IPSec) to secure

lower layers of the communication model, as well as any number of hardware solutions.

Agents in this system communicate directly with one another using Public Key

Infrastructure (PKI) algorithms. The DoD is a registered certificate authority, and

so the agents in this system inherit directly from the root DoD authority chain. The

entirety of the application layer data communication is encrypted, and also uses digital

signatures to add an extra redundancy in security and checksums.

Deliberate trust chain models are used to enhance security of the data propa-

gated through the network. This is an active field of research at the Air Force Institute

of Technology (AFIT), and many such models are being examined for this application.

In addition, key chain management forms a basis for establishing and maintaining a

secure network, as well as supporting fault tolerance by allowing agents to reconnect

to different parts of the network under certain failure conditions. These topics are

outside of the scope of this research effort and are discussed further in future research

sections.

1.2.2 Maintenance. Given a constant Mean Time Between Failure (MTBF)

[89], the frequency of failures increases with increasing number of nodes in a network.

It is therefore important to design into the CyberCraft network architecture a means

by which CyberCraft can smoothly transition into and out of the network. Incor-

porating this functionality into the fundamental design of the architecture will help

to ensure that an often overlooked capability operates with impunity in the running

system, leading to fewer delays and cascading failures or the introduction of erroneous

data. This helps to achieve the end goal of a trusted system.
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Much of the existing research into fault tolerance in large scale multi-agent sys-

tems is custom tailored to the particulars of the architecture, protocols, and purpose

of the applications they support [64,100]. However, scenarios such as rapid joining and

parting of agents into and out of the network and leader election have been addressed

in previous work [14, 16, 20, 24, 59, 60, 76], and can be adapted to the CyberCraft

project.

1.3 Research Focus

The intended initial application of the CyberCraft project is to provide sup-

plementary and autonomous network defense capabilities to DoD networks. This

document focuses on building capabilities to support an example network defense

scenario. This process should then support the deployment of the package, the con-

struction of groups, analysis of the data, choosing and initiating a response, and more

importantly, the C2 capabilities necessary to accomplish these tasks.

This document contributes to the body of existing research of large-scale C2 by

addressing the following shortfalls:

• Leveraging existing structured overlay techniques to develop a new strategy

which supports the HP2P topology. This structured overlay strategy will be used

to provide reliable and scalable communications in a mission oriented system.

• Establishing a task model for CyberCraft agent payloads that facilitates prior-

itized task execution.

• Constructing a mechanism for building coalitions of agents to accomplish mis-

sions within large-scale HP2P systems.

1.3.1 Structured HP2P Overlay. As Chapter II describes, technologies cur-

rently exist to support large-scale P2P communications overlays. An overlay is the

superposition of a logical topology onto a physical topology. A structured overlay

implies a level of organization to the formation of the nodes in that network, and
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in the case of P2P overlays, it refers to the addressability of nodes in the overlay.

Structured P2P overlays support addressing and as little as O(logN) search times in

the network [40, 43, 59, 67, 69, 76, 78, 86, 106], where N is the number of nodes in the

network. Current P2P overlays support hundreds of thousands to millions of nodes.

The CyberCraft project and the coalition formation problem benefit from a

layering of organizational structures. CyberCraft nodes will be physically separated,

which implies an organization which reflects the physical location of the nodes. Re-

lating network closeness to physical closeness is a simple method of performance op-

timization. This benefit is compounded by the sometimes less reliable or bandwidth

constrained communications links such as satellite channels which the military uses

to communicate with elements of its networks.

CyberCraft nodes may also be logically organized by mission area. There is

no limit to the number and types of missions that CyberCraft may pursue, and the

CyberCraft networks can benefit from an organizational structure that is defined

by mission or mission area. This helps nodes to communicate relevant data with

each other more easily, and concentrates nodes in the network that are focused on a

particular area.

The field of multi-agent systems is just beginning to explore the subject of HP2P

structured technologies in earnest. Current techniques vary in their applicability to an

HP2P network, but elements such as ring geometric routing and identifier addressing

can be used in an HP2P system. This document’s novel contribution to this area

of research centers around constructing self-organized clusters of mission oriented

agents in a system which provides routing complexity guarantees in stable HP2P

environments.

1.3.2 Constructing Mission Coalitions. Once reliable large-scale communi-

cations are achieved, this document next addresses the challenge of finding groups

of nodes that will together work toward a single objective. This assumes that the

objective can be accomplished more efficiently by a group of nodes rather than indi-
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vidual nodes – that is, they operate in an environment in which the sum of the whole

is greater than the sum of the parts. Described in more detail in Chapter II, the

coalition formation problem is formalized with O(2N) asymptotic complexity, where

N is the number of agents in the system. Using a relaxation of the definition of the

coalition formation problem, tied with a set of suitable heuristics, the HP2P structure

is directly used as a tool to aid in the formation of task coalitions of agents. The HP2P

structure lends itself to an organizational grouping, which can be based on mission,

goal, location, or other stratification. The creation of a structured HP2P overlay is

shown to aid in building tractable online solutions to the coalition formation problem.

This research objective will fully describe the techniques for building a group

of agents to accomplish a mission. A mission is defined by a measurable objective,

includes a list of necessary resources (bandwidth, processing, power, etc), and may

intersect both the cyber and physical domains. Necessary resources for these missions

may include capabilities such as a node with high visibility and connectivity, a group of

nodes to analyze possible attacks, and a web (or other) server for internal monitoring

of the system by operator personnel.

The challenge for this goal is substantial: establishing a coalition of agents to

satisfy task requirements in an environment of one million or more agents. The group

construction takes place in a large-scale HP2P system. As subsequent discussions

will support, the construction of groups in large-scale DMAS is NP-hard [23, 34],

and current solutions do not scale to the size of existing P2P structured overlay

networks [35, 81, 82, 95]. This document presents methods to ease the constraints on

the system based on runtime characteristics and practical optimizations to improve

the algorithm execution time, and develops a new coalition formation algorithm that

fills the research gap of large-scale agent coalition formation.

1.4 Assumptions

This research assumes an otherwise reliable means of communications, such as

Transmission Control Protocol (TCP), in addition to the network assets necessary to
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facilitate machine to machine communications. Available bandwidth and processing

power on machines will be considered as part of the research project, and are therefore

not assumed to be infinite or available. However, this effort does assume the existence

of at least enough processing power and bandwidth to receive, process, and transmit

background and query messages. This is necessary to support the large-scale P2P

communication overlays described in Chapter II, as well as to determine if a particular

agent is capable of participating in a coalition.

The agents considered are assumed to be cooperative and trustworthy. They can

therefore be expected to place value on optimizing global profit over individual profit,

and will provide honest best cost estimates for coalition formation cost functions.

1.5 Document Layout

Chapter II describes the current technologies available for structured overlay

systems, which are necessary for building addressable communications in a large-scale

P2P system. It also introduces the HP2P architecture and the coalition formation

and task allocation problems. Chapter III describes the design methodology of the

solutions to the large-scale C2 and coalition formation problems presented here. The

Resource Clustered Chord (RC-Chord) HP2P structured overlay experiments and

results are described in Chapter IV. Testing and analysis of the large-scale coalition

formation algorithm, called Distributed Likelihood of Execution (DLOE), is described

in Chapter V. Future work and conclusions are presented in Chapter VI.
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II. Related Work

This chapter presents a discussion on the current body of research for large-scale

Peer-to-Peer (P2P) communications and agent task allocation and coalition

formation algorithms. Each of these areas is a necessary and fundamental part of the

CyberCraft project and of this research effort. In particular, the issues associated

with the scale of the CyberCraft network are at the center of the challenges in this

effort, and require a thorough examination before embarking upon building useful

and scalable solutions.

This discussion begins by presenting several of the fundamental network topolo-

gies and their properties. P2P network structures are then introduced, and presented

as solutions to the scaling restrictions on earlier networking technologies. Armed

with this understanding, the P2P architectures are built upon to provide coherent

and complete communications solutions for large-scale systems through a survey of

existing techniques, including their properties and applicability to the CyberCraft

project. The young body of research into Hierarchical Peer-to-Peer (HP2P) structured

overlays is presented to demonstrate the properties of HP2P systems for large-scale

coordination and communication.

Toward building an understanding of the large-scale Command and Control (C2)

facilities used by the Distributed Likelihood of Execution (DLOE) algorithm, this

chapter concludes with a discussion of the task allocation and coalition formation

problems. This includes an introduction to the classifications of robot systems as

pertains to solving the coalition formation problem.

2.1 Topologies

With a goal of one million or more CyberCraft agents residing on the same

network, issues of scale become a dominating factor in the design of a suitable com-

munications architecture and protocol suite to satisfy the CyberCraft project require-

ments. There are few networks in existence today that accommodate so many nodes.

Three of them, the Internet, GNUTella, and KaZaA, are organized differently, re-
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sulting in different characteristics and performance1. The Internet follows a topology

governed by several power-law relationships, GNUTella employs a P2P architecture,

and KaZaA uses an HP2P architecture.

Many of the existing multi-agent architectures fall into one of five categories:

hub-based, P2P, power-law, multi-layer, and hybrid. The original sources and motiva-

tions for each architecture vary greatly, as do their applications. What has developed

in recent years is a technology evolution between the creators and proprietors of ma-

licious networks of agents (often referred to as botnets [30]) that exist to perpetrate

activities such as Denial of Service (DoS), spamming, identity theft, and a great many

other legal and illegal activities, and the authorities who seek to halt the malicious

and illegal activities that both harm the economic and social infrastructures of na-

tions worldwide, as well as consume enormous amounts of network resources. This

competition has sparked further advances in large scale communications systems.

Research into large scale Distributed Multi-Agent Systems (DMASs) is still in

its infancy [92]. Here, scalability refers to the increase in the number of agent nodes

in a network with relation to the overhead associated with maintaining and utilizing

that network. Much of the previous work addresses agent networks of up to several

hundred agents, with several systems reaching a thousand or more agents.

Most modern operating systems do not support more than a few thousand si-

multaneous connections. It is possible to create a spanning tree of such servers to

support several hundred thousand clients, but the burden on those machines becomes

large, and fault recovery is difficult. The current solution to this problem is to build

networks based on a P2P topology. These systems come in several flavors, and at-

tempt to distribute the computational and network loads. Moreover, they are resilient

against faults, and minimize processing load at each node.

1It is believed that several malware botnets (discussed later in this document) have eclipsed
100,000 nodes, but verifying this is difficult.
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The first P2P systems were unstructured, or lacking discrete organizational

rules. They relied upon broadcast mechanisms to locate data items, and were char-

acteristically bandwidth intensive. These systems suffer from scalability constraints,

although persistent efforts to improve their technology has resulted in continued rele-

vance. Systems such as Gnutella [7] and Freenet [21] continue to evolve, incorporating

lower network diameter, caching, and other techniques to improve scalability and flex-

ibility.

Successive generations of P2P networks introduced more structure to the system,

initially focusing on content storage, and subsequently on node organization. Content

structured systems are concerned with the efficient representation and retrieval of

information, and provide structured protocols to identify and locate data items. These

systems are often called libraries, and index data by unique key, subject area, or range

queries. This technology serves as the reinforcing means for unstructured systems to

continue their life cycles, as well as leading into a more general class of P2P networks

called P2P structured overlays.

Structured overlay designs improve structured content storage systems through

a less drastic but important mutation: the nodes themselves are now uniquely iden-

tified, instead of simply the data they store. The underlying structure is based on a

Distributed Hash Table (DHT), which is a dictionary based approach to storing and

retrieving information. The nodes in communications structured P2P systems can be

located through this process, thus making the network itself a DHT, regardless of the

data stored in the network. We will therefore use the terms communications struc-

tured P2P system and DHT interchangeably, as they differ only in application. Early

structured overlays were flat, using a single layer of peers, however recent examina-

tion of these technologies has extended to include hierarchical formations of structured

overlays to increase scalability and flexibility. This generation of P2P systems, both

flat and hierarchical, is the focus area of this document.

12



Whether hierarchical or flat, the research team envisions the continued pursuit

of P2P systems as foundations for large-scale distributed application development.

Generalized P2P application frameworks provide the necessary network foundations

upon which to pursue this goal. Much in the way that early routing and network

communications were decoupled to form large networks of heterogeneous applications,

such as the Internet, modern P2P systems are moving toward providing large-scale

networking functions upon which to build generic systems. This (mostly) transparent

layer provides a network Application Programming Interface (API) for application

software to use, and the scope, method, and purpose of those applications are un-

bounded. This design decouples the implementation of communications from the

application that uses it, allowing more flexibility and sustainability. Such P2P com-

munications overlays can thus be interchanged with minimal effort to provide differing

capabilities to the application layer.

This chapter examines P2P technologies as the organizational component in

large-scale DMAS applications. A primary trait of these Multi-Agent System (MAS)

is the need for C2. C2, in an electronic system, includes the methods used to organize

and communicate with nodes in a distributed system. The ability to conduct useful

C2 is highly dependent on the structures and protocols used to organize and maintain

these systems. Inefficient routing protocols, for example, result in lower performance

for application level C2. As a first step toward developing a large-scale C2 capable

P2P overlay, this paper examines current methods for organizing networks to establish

reliable large-scale communications using P2P systems.

Section 2.2 presents a brief definition of C2, followed by three brief case studies

to highlight several of the key features necessary for large-scale C2. The discussion

then introduces P2P systems, followed by the survey taxonomy and analysis criteria.

The analysis begins with a discussion of the early generations of P2P networks in

Section 2.7, including unstructured and content retrieval P2P systems. The focus area

of this chapter is the discussion of communications structured P2P systems beginning

in Section 2.9, continuing with flat and hierarchical structured P2P systems. The
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discussion of current large-scale peer-based large-scale structured overlays concludes

with a presentation of the design trade-offs between the varying P2P approaches.

To further motivate the need for reliable large-scale communications, this chapter

concludes with an introduction to large-scale coordination in Section 2.14, including

a discussion of the coalition formation and task allocation problems.

2.2 Command and Control

Command refers to the ability to issue runtime orders to a subset of all nodes

in a network. Specifically, it:

• Provides the capability to assign tasks or missions to one or more agents.

• Schedules tasks to run in a manner that avoids contention and deadlock, and

optimizes performance.

• Permits the allocation of resources.

• Autonomously deconflicts resources at runtime, which may involve distributed

agreement.

Command, in general, involves many of the same functions as are found in the

coalition formation problem [34]. The coalition formation problem is considered to

be NP-complete, and so building a large-scale solution requires new thinking about

an old problem.

The ability to control a set of agents involves capturing their runtime state, and

proactively and reactively responding to changing conditions, to include the introduc-

tion of new requirements or constraints. At its essence, control refers to:

• Monitoring the progress of tasks at runtime.

• Identifying and resolving runtime conflicts.

• Feeding updated system state into the task scheduler.
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Control solutions are built upon reliable and efficient communications mecha-

nisms, and are intended to maximize efficiency of the runtime system by discovering

and correcting runtime difficulties. The combination of efficient and reliable network

structures and communications mechanisms creates an environment in which this can

succeed.

2.3 DMAS Case Studies

Of the many applications of DMASs, we have chosen three that serve to moti-

vate the need for a comprehensive C2 policy framework. These applications rely on

scalable, flexible, and reliable communications mechanisms. We believe that P2P ar-

chitectures will meet these requirements. These projects are not meant to enumerate

all scenarios in which C2 is necessary, but only to provide through example a basic

understanding of why a scalable C2 strategy is necessary.

2.3.1 Electric Elves. The Electric Elves project [19] is an initiative to create

digital advocates for the intentions of human members of an organization. The Elves

coordinate amongst each other to schedule meetings and presentations, order lunch,

make and cancel appointments, monitor project status, and provide information about

the person they represent (such as location or preference). The project is built upon

a heterogeneous DMAS, where each agent is capable of representing the interests and

goals of an organizational member (whether human or otherwise). It is a novel team-

based system, combining adversarial and cooperative strategies, that must adapt to

changing scenarios, and whose members must constantly interact with other Elves to

coordinate an optimal self-interested schedule.

The project spans heterogeneous MASs, distributed cooperative and adversarial

coordination, multi-objective optimization, adjustable autonomy, and human interac-

tion. The authors of Electric Elves intend their application to scale up to large-scale

organizations, where the agents run continuously for weeks or months to optimize the

daily schedules of its members. Such an initiative accentuates the need for distributed
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C2. In particular, this project requires the scheduling of tasks, runtime allocation and

deconfliction of resources (physical in this case), and monitoring the progress of tasks

to identify and resolve conflicts.

2.3.2 Virtual Environments. Virtual Environments (VEs) [85] refer to sys-

tems in which actors interact with one another and the environment in the pursuit of

some set of goals. This evolving field is gaining momentum in many application areas,

including large-scale online gaming, education, design in the engineering industries,

interactive communications, and many others [12]. In many scenarios, humans enter

into a VE to consume or provide services to other actors and the environment. The

other actors may themselves be representations of humans or of software or hardware

agents. The agents serve many purposes, to include providing fundamental services

for the users of the environment. The agents must coordinate with each other to

achieve varying goals, and the environment information for each agent may be in-

complete. In particular, online games may involve many thousands of agents who

dynamically form teams to interact with players in different parts of the VE.

These environments provide a challenging domain in which agents must oper-

ate, and highlight the need for a comprehensive C2 strategy. Agents in a VE must

coordinate in real-time to form adversarial or cooperative teams and coordinate and

schedule services. The introduction of human actors creates a myriad of unknown sce-

narios to which the agents must respond. In terms of C2, VEs provide a compelling

opportunity: these systems may be centralized, decentralized, or dynamically choose

the better alternative for a given scenario. Such heterogeneity requires a robust and

well designed C2 architecture to respond to the evolving landscapes found in VEs.

2.3.3 Network Routing. One of the earlier applications for DMASs is mod-

ifying network routes to reduce bottlenecks tied to increased traffic or hardware or

software failures [87]. These systems use networks of agents to monitor network traf-

fic conditions at key points, and modify the routes in realtime to correct problems

or provide differing levels of service. The agents must coordinate these actions so
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as to avoid livelock2. The agents must coordinate their efforts to maximize overall

system performance, which can be challenging in high traffic situations, where the

communications between agents may be delayed.

This application requires a great deal of cooperative teaming to maximize system

efficiency. Due to traffic conditions, the agents must communicate with a robust

language, and use a reliable communications framework. The agents perform realtime

monitoring of the system, and must cooperatively schedule the use of resources. In

addition, this application requires a suitable security strategy, and poor decisions may

have a noticeable impact to many users.

Independently, these applications define the need for specific and challenging

capabilities in distributed systems. However, collectively, they define a subset of the

principles of C2. Key among the current and emerging requirements for such ap-

plications is scalability. P2P overlays provide the scalable communications needed.

P2P overlays do not currently provide the explicit control semantics to employ coali-

tion formation, task allocation and scheduling, or resource distribution algorithms in

support of these applications as they increase in scale and complexity. While this

genericity provides flexibility, it is necessary to consider the set of C2 principles that

build upon large-scale P2P overlays to construct more sophisticated and feature rich

applications.

2.4 Large Scale Peer-to-Peer Communications Overlays

A communications overlay is the set of protocols and algorithms necessary to

build and maintain a topology of nodes in such a way as to guarantee a set of per-

formance parameters. This model can then be used as a basis for communications

by applications. In the context of existing P2P technologies, these overlay structures

2Livelock in a dynamic routing management system can occur when one agent modifies a route
to redirect traffic to another section of the network. If the agent responsible for the targeted portion
of the network is unaware of the change, it may reverse the effect by redirecting traffic back through
the previous route. This process can occur very quickly with software agents, thus leading to a
deadlock of live nodes.

17



describe the formation of nodes into a system of peers capable of identifying and

locating remote nodes without foreknowledge of their exact location or even their

existence. Such a consideration is necessary in many systems where the scale of the

system is large enough to preclude the possibility of global knowledge. First genera-

tion systems solved this problem by query broadcast, but this solution failed to scale.

Newer systems have developed more advanced techniques for locating remote nodes,

and the utility of such systems has brought about the emergence of P2P networking

to the domain of mainstream applications.

Large-scale systems refer to those that support several hundred thousand or

more simultaneous nodes. Such systems are in use today by corporations, the mili-

tary, criminal elements, research institutions, and others. Each field of applications

has differing requirements, and short of creating new technologies, application design-

ers must choose an existing approach (or combination of approaches) to fulfill their

requirements. This serves as the motivation for our discussion of the current body of

research into P2P overlay technologies.

2.4.1 Peer-to-Peer Networks. This analysis examines the use of P2P net-

works to accomplish distributed C2. Systems based on hierarchical or client/server

paradigms fail immediately due to lack of scalability, and are omitted from this pre-

sentation. Although much of the related work presented here refers to P2P systems,

the protocols themselves are functional on HP2P systems.

A P2P network is one in which nodes interconnect to each other, typically with

out-degree greater than one. This means that a node may connect to multiple other

nodes. There is no distinction between service and client nodes. Rather, nodes are

considered equal, and any of them may provide services to the network, to include

routing services. An example P2P network is shown in Figure 2.1

A HP2P architecture, as shown in Figure 2.2, places additional organizational

constraints on a P2P network – it segments nodes into clusters (groups). Each cluster

is a smaller P2P network itself, connected to the rest of the network through one or
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Figure 2.1: An example P2P network with eight nodes. The arrows represent a set
of transactions at a given time, but the links are considered to be bidirectional.

more super peers. Super peers act as routing hubs, and provide convenient points for

additional application specific processing. Groups of super peers can be connected to

create clusters of (super) peers, to which a subset are promoted to higher level super

peers. This layered (hierarchical) structure can be applied repeatedly to achieve design

goals [23,100].

2.4.2 Small World. Stanley Milgram’s small-world phenomenon [70] is

based on the sociological observation that most people can be creatively linked by a

short chain of acquaintances. Early experiments demonstrated that letters could be

routed to arbitrary destinations by traveling through the hands of kind volunteers,

with the restriction that each person along the chain was already on a first-name

basis with the next individual (thus preventing ambitious individuals from traveling

cross country to reach the destination). This result and the idea of the small-world

phenomenon was applied to computer networking by John Kleinberg [54]. It has

continued to serve as inspiration to many P2P networking protocols, by authors’

recognition that digital messages could be likewise transmitted between members of

a computer network without requiring extensive network planning or global view of
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Figure 2.2: An example two-layer HP2P network [1]. Each of the five virtual nodes
in the network is a separate P2P network, connected by two super peers to other
virtual nodes. As in a simple P2P system, each peer (cluster) is able to connect to
other peers (clusters).

the network. This is a founding principle of P2P design, and many of the approaches

here employ this idea in their designs and discussions.

2.5 A Taxonomy of Command and Control Principles in Large-Scale

Multi-Agent Systems

This taxonomy is adapted from the work of Cao [17] and Dudek [27] who an-

alyzed the characteristics of multi-robot systems. In addition, this paper builds on

the work of Lua, et. al. [65], who provide an early survey of P2P structured and

unstructured systems. We extend their work to include more recent developments in

the field of P2P overlays with a focus on application to large-scale C2.

Note that the characteristic of differentiation is not considered here (homoge-

neous versus heterogeneous systems). This is because the systems described are used

to generate and maintain overlay networks, on top of which a given application may

reside. In particular, systems such as Pastry [78] and Tapestry [106] have a built-in

API to provide explicit support for applications. These applications use the P2P

system as a middleware to provide replication, networking, data storage, etc. The
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P2P system is independent of the application residing on it, and therefore the system

differentiation is instead a property of the application rather than the P2P system.

2.5.1 Topology. It is necessary to distinguish between two classes of P2P

networks: structured versus unstructured. Structured P2P networks enforce a rigid

set of rules on the topology and location of nodes and perhaps data in the system.

The advantage of this design is that it provides more efficient routing. Unfortunately,

structured networks may lack resilience in networks where nodes are transient [40]. It

is possible to loosen the location constraints – rather than enforcing absolute structure,

the system can provide ”hints” about where nodes and data are placed.

An unstructured P2P topology is one in which node and data locations are not

enforced. Nodes are free to join the network based on an unrestrictive set of rules.

This design is useful for situations where the frequency of nodes joining and leaving

the network is high. However, searching generally consists of flooding the network,

which does not scale well. In general, pure flooding approaches do not assign unique

identifiers to nodes. This greatly complicates attempts to provide routing protocols in

unstructured networks. These networks tend to be more focused on content storage

and retrieval rather than providing a communications substrate for large scale systems.

Unstructured systems such as Gnutella [29], Freenet [21], and BitTorrent3 [22], are still

in use and provide a unique set of properties useful for content distribution. However,

this study focuses on structured systems to provide solutions to large scale multi-agent

application requirements, and only discusses the properties of unstructured systems

as a means of comparing or unique ideas.

The qualitative measures of a model’s topology are given by one of the following

three definitions:

3Arguments persist about the true nature of BitTorrent’s topology. For the purposes of this
document, we consider BitTorrent to be a combination of structured and unstructured ideas.

21



Table 2.1: Structured Overlay Topologies By Organization Rigidity

Structure Overlay Approaches

Strongly Structured Koorde
Structured Accordion, Bamboo, Butterfly, CAN, DKS, Mercury,

Pastry, P-Grid, SkipNet, Tapestry, Viceroy
Loosely Structured Chord, Freenet, Kademlia, Kelips, One-Hop, Symphony,

Two-Hop

• Strongly Structured - The topology of the network is rigidly enforced, and is

inherently inflexible. This is an undesirable trait for a high churn network, as

maintenance actions dominate processing and bandwidth consumption.

• Structured - An approach which requires nodes in a network to be identified

and ordered in a manner that is consistent with query protocols. This topol-

ogy has weaker requirements than a strongly structured overlay, and typically

requires only that keys for nodes be uniformly distributed across the network.

• Loosely Structured - Requires that nodes be identified uniquely in the net-

work, but few, if any, other constraints are imposed. This increases flexibility

for nodes joining the network, at the expense of higher maintenance costs.

Large-scale systems are generally expected to have a high churn rate [16].

Strongly structured systems offer the benefit of more strictly assigned node loca-

tions, but at the expense of flexibility. More loosely structured solutions exploit their

polymorphic nature to adapt to changing network conditions, but at the expense of

higher maintenance costs. Table 2.1 introduces the overlay networks discussed in this

paper, categorized by their topological strictness.

2.5.2 Routing Geometry. Many of the innovative ideas that separate the

approaches to P2P communications lie in the method of building routes between

nodes. The routing methods are delineated by the geometry formed by combining the

node addressing with the routing scheme for each overlay. Many of these approaches

can then be visualized as a fundamental computer science data structure. This is a
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convenient metric for describing a system’s function, and for analyzing its performance

[40,61].

• Hypercube - A geometric structure, derived from a square, with dimension

(typically) greater than two. These structures are used to represent planes in

which segments of a P2P network reside. For example, routing may rely upon

a Cartesian coordinate system, where moving from source to destination can be

visualized as moving between quadrants along planes in the n-dimensional node

identifier space.

• Ring - A circular structure used to store references to nodes in neighbor or

routing tables. Finding the next hop in the route usually involves finding the

nearest identifier in the ring using a similarity measure (such as modulo arith-

metic). References around the ring generally divide the identifier space evenly

to provide best ”guesses” about which direction to choose.

• Skip List - Arrays of linked lists that point to nodes in the network node

identifier space based on level. The nearest level nodes are close in the identifier

space, whereas higher (or semantically lower) level nodes point further into the

identifier space. Choosing a level for the next jump generally depends on the

distance to the destination identifier.

• Butterfly - A network of log N stages, where N is the number of nodes in

the network, and nodes at stage i interpret the ith bit of the routing address

to choose the routing node in the next stage. This differs from a standard

search tree in that nodes each have two inbound and two outbound links, and

a butterfly network generally does not have a single root node.

• Linear - Neighbors and next hop routing nodes are stored in a linear structure,

such as an array.

• Tree - Refers to a standard tree data structure. The branching factor or node

outdegree (logarithmic base) is specified where appropriate.
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• Adaptive Linear - An improvement on flat linear routing introduced by Freenet

[21] in which key nearness is used as an initial attempt to locate content. Upon

successful queries, the involved nodes record the key and destination node in-

formation about the query for later transactions.

• de Bruijn Graph - A directed graph whose nodes are addressed by ordered

proper prefix. The graph has bm vertices, where b is the address base, and m is

the width of the address.

2.5.3 Query Path Length. A critical feature of all overlay protocols is the

expected number of hops to route a message from source to destination. Basic analysis

shows that most overlay structures achieve O(logN) optimal path length, where N is

the total number of nodes in the system. When considering different overlay strategies,

it is important to examine this measure in the context of the other features an overlay

provides. For example, Kademlia supports O(logN) path length, but does so even in

environments with high rates of hardware and software failures, or those with high

churn rate. The One-Hop protocol supports O(1) path lengths, but at the expense of

maintaining O(N) neighbors. A low path length is desirable for performance reasons,

but achieving high performance typically incurs a compromise in one or more other

features [96].

2.5.4 Node Memory. A primary tradeoff space in large scale P2P systems is

the compromise between query path length and the amount of memory used at each

node. These two attributes are generally inversely proportional, and the methods

of compromise, and their applications, form a primary differentiating factor for the

techniques discussed in this paper.

Note that Table 2.2 includes ranges for the query path length and node memory

for several overlays. This indicates that the approach either has several different

techniques to choose from based on design considerations, or autonomously varies its

strategy based on runtime parameters.
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2.5.5 Node Addressing. Addressing refers to the assignment of an identi-

fier to each node in a system. In most systems, the address of each node is unique.

However, some systems assign nodes randomly, whereas others use a distributed al-

gorithm to ensure uniqueness and other properties. The addressing directly supports

the algorithms used to locate nodes in the network. Note that most systems use a

form of hashed addressing for identifying content [49], and this subject it outside of

the scope of our discussion. For that reason, we consider only requirements for node

addressing here.

• Consistent Hashing - Creates unique addresses based on the hash value of one

or more properties of the node. These properties generally include host name

or IP address, as well as a salt. This is a distributed algorithm that all nodes in

the system follow to generate addresses that ensure some global property, such

as uniform distribution of addresses.

• Uniformly Distributed - The property of node identifiers being distributed

across the network according to a uniform random distribution. Routing algo-

rithms use this property to ensure that each node’s routing table has a diverse

sampling of the identifier subspaces that exist in the overall identifier space,

which is useful for choosing the next hop in a route without full knowledge of

the network. Uniform distribution is a property, whereas consistent hashing is

a mechanism to ensure that property. Systems that identify consistent hashing

as part of the protocol are considered to have stronger semantics, although re-

quiring only uniform distribution of identifiers is more flexible (it permits the

use of different algorithms).

• Pseudo-Random/Signature - Node identifiers are pseudo-random, each gen-

erated using an independent random number generator. This salt is combined

with other elements of the node’s properties to generate a (hopefully) unique

identifier for that node.
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• Cartesian Zones - Nodes are identified by Cartesian coordinates, and sepa-

rated into zones in a multi-dimensional Cartesian coordinate space. Routing

generally takes place by identifying the source and destination coordinates, and

routing from zone to zone along a line connecting the two end points.

• Ordered Proper Prefix - A method of addressing used to support determinis-

tic routing of messages. Each node is assigned a unique identifier within a fixed

width space. The nodes are connected to each other in such as way that mov-

ing from node to node follows an ordered prefix of the final destination node’s

identifier. This is similar to how search is conducted in a trie [45].

• Skip List - An approach that divides nodes into routing zones based on the

levels used in skip lists. Each node is uniquely identified, and stored in one or

more skip lists. Level jumps in the skip lists differentiate identifier subspaces,

and are used to expedite routing queries.

• Unique - A loose constraint, requiring only that nodes in a system are identified

uniquely.

2.5.6 Scalability. Large-scale systems are those that may reach or exceed

several hundred thousand to a million nodes. This size requirement inflicts a toll on

both the topology design as well as C2 techniques used to interface with the agents. It

may be reasonable to employ a supervised cooperation design at the level of a single

cluster in a HP2P network, where the super peer is responsible for coordinating its

cluster’s agents. However, a more resilient and scalable solution would be necessary to

support the C2 of the cluster super peers themselves. Therefore, we generally desire

a decentralized command approach over a supervised strategy.

Isoefficiency [56] is defined as the rate at which the problem size must increase

with respect to the number of processing elements to keep the efficiency fixed. Here,

we will use the term scalability to refer to an adaptation of isoefficiency: the rate

at which efficiency decreases as the size of the network increases. For the purposes

of C2, the efficiency of node discovery and single and group messaging is considered.
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In addition, the amount of memory storage per node is included in this analysis.

Most systems discussed use an amount of memory per node that is logarithmic in the

number of nodes in the system. We explicitly describe cases where memory usage is

unique or otherwise differs notably from comparable norms.

Scalability is qualitatively described here as High, Medium, and Low, where

High scalability refers to systems that are most resilient to increases in size. As a goal

of this paper, we desire highly scalable architectures upon which application level

solutions can be developed.

• Highly Scalable - The amount of work necessary to manage and use the system

increases linearly (or better) with the size of the system.

• Moderately Scalable - Work required to use and manage the system increases

in a small but non-linear fashion (with a positive acceleration) with respect to

the size of the system. These approaches support systems up to a point, but

fail on medium sized networks (tens of thousands of nodes, for example).

• Poorly Scalable - The system fails to function beyond tens or hundreds of

nodes. This failure can manifest itself as lost packets, misunderstood communi-

cations as a result of high latency, or failure of one or more nodes due to large

amounts of bandwidth or number of connections imposed upon them.

2.5.7 Bandwidth Consumption. The amount of bandwidth available to

a multi-agent system is generally far greater than for a system of robots, but the

use of that bandwidth can still incur a cost to the functioning of the system and its

missions. C2 strategies must therefore be careful to ensure no unnecessary bandwidth

is consumed, as it can have a significant impact in a large-scale system. Many of the

P2P strategies considered here sacrifice bandwidth consumption to achieve better

message routing constraints (and some vice versa). Bandwidth will be described as

High, Medium, and Low, with High bandwidth systems requiring the most bandwidth
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for search or maintenance activities. Low bandwidth systems are most desirable, but

must be considered alongside search efficiency.

This metric is, in general, related to scalability. However, while it is true that

scalable solutions tend to have low bandwidth consumption for maintenance functions,

it is not necessarily true that poorly scalable solutions use large amounts of bandwidth.

The distinction lies primarily in the topology organization. Therefore, we present this

metric to help distinguish the reasons for scalability, and as an additional means for

evaluating scalable solutions. We prefer low bandwidth consumption, even though

it may need to be compromised to gain stronger guarantees on routing complexity.

It may therefore be necessary to accept a medium bandwidth system, although very

rarely will a high bandwidth system be justified for a large scale system.

• High - The system uses large amounts of bandwidth to maintain and organize

its structure.

• Medium - A qualitatively modest amount of bandwidth is necessary to operate

the network routing and support structures.

• Low - Given the properties of the system, little bandwidth is used to maintain

its structure.

2.5.8 Reconfigurability. Deployed P2P networks tend to have a high churn

rate [10], where agents may join and part unexpectedly, and with high frequency. A

high churn rate is a result of events such as users turning off their machines unexpect-

edly, unreliable communications links, etc. Large-scale C2 systems must therefore

be resilient to the loss of productive agents and must be able to restructure task

allocations to ensure mission progress.

As relates to distributed C2, the group architecture, whatever its form, must

support efficient search and broadcast. This is most commonly observed in agent

systems organized into structured or loosely structured topologies. Reconfigurability

directly affects, and is affected by, the properties necessary to maintain a system’s
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routing and search complexities. This in turn affects the level of bandwidth consump-

tion for maintenance activities. Reconfigurability is also, in general, directly related

to bandwidth consumption and strictness of topology. As it impacts and is affected

by many other properties, and is a derived metric, reconfigurability is omitted from

Table 2.2, and instead is discussed inline, where appropriate.

2.6 Peer-to-Peer Communications Characteristics

The following sections discuss the available structured P2P and HP2P overlay

protocols currently available. The emphasis is on distinguishing the unique approaches

of the above design taxonomy, and how they impact the properties of a large-scale

P2P system. The discussion is structured in parallel to the stages of P2P evolution

presented above, beginning with an introduction to message broadcast in unstructured

large-scale P2P systems. Although the focus of this discussion is the technology

behind structured P2P systems, it is instructive to first briefly introduce the founding

ideas and techniques used to build the first popular unstructured P2P systems. In

particular, many of the problems found in early systems are cleverly solved in the

design phase of subsequent systems, and many of the early solutions are retained and

applied to similar problems in later systems.

2.7 Unstructured Peer-to-Peer Systems

A defining feature of the first generation of large-scale P2P networks is the

method of broadcast. Systems such as Gnutella [7] use a full (one-to-all) broadcast

at each step of a message query, whereas nodes in a Freenet [21] network select only

a subset of neighbors to which to send message queries. One result of the research

efforts for the first generation of P2P systems is the need for efficient and duplicate free

broadcast. A primary difficulty is that P2P networks can become large enough that

maintaining a global view of the network becomes impossible due to limited system

resources. Nodes in these networks may have little or no information about the roles

or locations of other nodes in the network, yet they may still need to communicate. It
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is therefore necessary to develop routing protocols for large-scale P2P networks that

permit one-to-one and one-to-many communications.

Perhaps the most obvious approach to message broadcast for P2P networks is

the flood-fill algorithm. Message flooding involves a node sending a query to all of its

neighbors, who in turn send to all of their neighbors, repeating until all nodes have

(hopefully) been queried. This system is inefficient, creating many duplicate messages,

requiring a duplication ratio of about 80% to achieve a 90% success rate [90]. Still,

some systems such as Gnutella [77,102] have gained popularity even while using this

approach.

An improvement to the basic flooding protocol is the Modified Breadth First

Search (MBFS) [48], a gossip algorithm [24]. This is a slight improvement over blind

flooding, and uses a probabilistic approach. When a node receives a query, rather

than forwarding it to all of its neighbors (assuming it does not have the information

locally), it sends the message only to a randomly chosen portion of its neighbors.

While this reduces total network traffic for a given search, it is still probabilistic and

provides no guarantees that all nodes will be visited, or of duplication constraints. A

slight improvement to the MBFS is the Random Walk [66]. This approach chooses at

most K neighbors at each hop, but incorporates a Time To Live (TTL) parameter.

This introduces the constraint that at most K ∗ TTL messages will be sent to the

system, but does not guarantee that a message will reach all nodes.

A further refinement of the flooding approach is called Efa [91]. In this approach,

each node maintains information about its neighbors up to several (two) hops away.

The algorithm then employs several set operations to determine possible overlapping

lines of communication that might occur in a broadcast to any of its neighbors. While

this approach achieves improvement over the standard message broadcast, the core

of its design relies upon a heuristic decision engine that ”anticipates” the actions of

other nodes, without actually establishing a coordination agreement ahead of time.

In this respect, the algorithm must guess if another node will send a message forward,
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and that other node is likewise anticipating about the first node. There exists no

determinism or guarantee of delivery to all nodes.

CAP [55] takes a step toward solving this broadcast problem by incorporating

several structural rules, and extends the Gnutella protocol to incorporate locality

sensitive clustering. The idea is that nodes that share lower common latency are

to be matched and organized into clusters, so as to minimize overall search times.

The organization is performed by a centralized cluster server that is responsible for

matching nodes to clusters, extending the idea of early Napster [80] implementations.

In creating clusters, the authors assign additional responsibilities to certain nodes in

each cluster, calling them delegate nodes. These delegate nodes are later named super

peers or super nodes, and appear in the popular file sharing system KaZaa [57].

SCAMP [32] incorporates a membership service into unstructured P2P systems.

It provides nodes with a partial view of the network using a probabilistic subscription

protocol. Broadcast is handled by each node forwarding a message to log N + c of its

neighbors, where N is the number of nodes in the network, and c is a small constant.

This establishes a high probability (-e−c) of all nodes in the system receiving the

message.

BAR [58] extends the gossip based broadcast mechanism to include a determin-

istic routing function. Instead of using probabilistic neighbor selection in message

forwarding, BAR uses a pseudo-random number generator combined with unique sig-

natures to choose neighbors. This scheme also provides rudimentary security through

Public Key Infrastructure (PKI) encryption.

Freenet [21] acts as an anonymous distributed file system by sharing the per-

sistent storage mechanisms of its users’ machines. It is a hybrid approach in that it

uses flooding to locate data items, however it does optimize searches by replicating

popular data along frequently searched paths. Thus, Freenet could be considered

either unstructured or content structured.
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In the Freenet protocol, each file is given multiple hashed keys, used to lo-

cate and asymmetrically encrypt the file. This encryption is the source of Freenet’s

anonymity: due to the difficulty of examining the raw data, each user in the system

can maintain plausible deniability about the documents being stored locally. Freenet

makes extensive use of caching. When a file is retrieved from a remote node, a copy

of that file is then stored on the local machine, as well as at the nodes along the

route between the source and destination nodes. This replication then improves the

performance of queries for commonly sought files. It will also remove all files that

the network considers uninteresting due to attrition: storage areas become filled, and

least recently used data is purged.

Search is conducted based on the hash values of content and description strings,

and follows semantics similar to Transmission Control Protocol (TCP). Each search

request is sent to the neighbor node with nearest key, specifying TTL and a (pseudo)

unique identifer for the message. If the message is found before the TTL expires, then

the file is returned, and the source node’s routing table is updated with the destination

node’s information. This is another method in which Freenet adapts itself to the

changing landscape of the identifier space: high quality neighbors are remembered

for later transactions. In addition, nodes do not have a specific addressing scheme.

Instead, nodes are known for the content they provide.

The hybrid approach of BitTorrent [13, 22] incorporates security and fairness

into its file sharing protocol. BitTorrent adopts some elements of Napster’s shar-

ing model: it builds a separate unstructured P2P network for each data item being

shared, but stores information about which nodes are participating in that torrent

network in one or more repositories. This reduces the total size of its networks,

resulting in improved performance. Unlike Napster, BitTorrent tracker files, which

record information about a particular sharing network, can be posted anywhere (such

as on websites), and do not require a single centralized server. In addition, BitTorrent

provides remarkable robustness. Earlier file sharing protocols suffered from data in-

tegrity issues: a malicious user could announce its possession of a particular file, and
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instead provide poorly formed blocks of data in its place. Through the replication

of data across a P2P file sharing network, this would eventually contaminate a high

percentage of downloads of that file. BitTorrent addresses this problem by assigning

checksums to each block and the file as a whole, allowing peers to identify poorly

formed blocks.

2.8 Content Structured Information Storage Systems

The second generation of P2P systems is built around the ability to store a

library of information across a network. This data set consists of elements that are

identifiable by a unique key. Search in such systems is concerned with locating a

particular data element given a query which consists of the key itself, or in resolving

one or more ”clues” (range queries, subject area, etc) to a small set of data. Unlike

previous P2P systems, which relied upon searches for files by filename or perhaps a

short subject description, content retrieval systems rely on more sophisticated data

representation models. These models are most often adapted from database theory,

and are outside the scope of this paper.

These approaches use both flat and hierarchical P2P systems as a means to

store information. A key, although subtle, distinction between these systems and

those in the next section is that content structured systems modify network structure

to organize the content stored by nodes, whereas communications structured systems

do not impose constraints on the data stored by nodes, but rather emphasize the

efficiency of locating nodes in the network. More generally, content overlays search

for content, whereas communications overlays search for nodes.

An early use of P2P systems is to represent digital libraries, and to build search

mechanisms for locating content in these systems. An inherent problem in such sys-

tems is the differing semantics and organizational structures used to represent and

index the heterogeneous data sets stored in large digital libraries [2]. To this end,

many techniques borrowed from database theory are applied to distributed systems.

In particular, content similarity, data representation, resource ranking and selection,
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and query semantics are discussed thoroughly in this body of research [9]. Lu and

Callan [63,64] explore this topic very well, and use their acquired knowledge to develop

robust and sophisticated content search networks for large-scale federated search in

P2P systems. Their efforts are formally based on language models and data repre-

sentation, and provide insight into the different methods for storing data of various

classifications.

Zhang et al. [103] observe that the uninformative search strategies of unstruc-

tured P2P systems perform poorly for even simple queries. To this end, they introduce

a topology reorganization that attempts to group context-similar data elements. They

later extend this idea to include a multi-level hierarchical structure that groups agents

into levels, and again by groups, by content similarity. Their search algorithms im-

prove greatly on basic flooding approaches by assuming a cooperative system. In

such an environment, agents cooperate to forward search queries intelligently based

on content organization rules. Much in the way a HP2P system operates, they intro-

duce the ideas of super nodes and peer nodes (group mediators and group processors,

respectively), with super peers absorbing much of the decision making and manage-

ment functions, while peer nodes are primarily concerned with responding to query

requests [104,105].

P-Grid [5, 6] (Peer-Grid) is a hybrid content storage and retrieval overlay that

uses a virtual balanced tree (trie) to maintain a searchable structure of data items

identified by unique keys. The tree structure itself is logical rather than physical,

where nodes record locations of data items stored on other nodes, but do not form a

physical topology in the shape of a tree. Each node is responsible for a subset of the

data stored in the network, indexed by a specific data key prefix. The key space is

segmented and reordered according to a self-organizing algorithm with the objective

of achieving runtime search load balancing. The path to a key follows a trie search

algorithm, where a jump from node to node proceeds along the bits of the key being

searched, moving downward in the tree shown in Figure 2.3. Nodes at each level in

the virtual tree store the location of a node corresponding to data keys that are in

35



Figure 2.3: An example P-Grid tree structure [5]. This tree holds eight data items,
shown in the bottom level. Searches begin from the top level, and progress downward,
with one bit resolved at each level. Backward and cross-level links are maintained to
reduce search time for locating distant (key-wise) data items.

different segments of the key space for that level. Storage per node is O(log D), where

D is the number of data items in the tree, and expected query length is O(log N).

Rather than developing a single solution to the representation, organization,

and search for a heterogeneous data set, Bao et el. [11] capitalize on the diversity

of data sets and available federated search techniques to build the Heterogeneous

Search (HES) system. The HES technique is built upon the idea that the data stored

in large-scale P2P systems is semantically random4. HES incorporates multiple con-

tent storage and retrieval algorithms into a single agent structure, and uses a prob-

abilistic, rather than deterministic, algorithm to choose a search technique to satisfy

inbound search requests. The exact probabilistic module selector algorithm is itself

interchangeable, and hinges upon either a learning algorithm or database language

analysis of incoming queries to optimize runtime algorithm selection.

4Note: It may not be the case that the dataset itself is semantically random. Instead, the
probability of existence of a data item in a network, the probability of a search query from a source
reaching the node that stores the desired data item, and the differing semantics used to store and
query items may cause searches to appear as probabilistic to an outside observer.
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2.9 Communications Structured Peer-to-Peer Systems

Evolving out of the content retrieval systems is the more generic ability to lo-

cate nodes by key, rather than the data they store. This initial leap was a small

one, although modern systems have proven to be quite sophisticated in regards to

network organization and searching. In addition, the organizational constraints nec-

essary to ensure reliable performance results also provide the opportunity to introduce

improved feature sets. Many such systems incorporate one-to-one discovery and mes-

sage routing, and some also provide direct support for maintenance, fault tolerance,

and security.

This section introduces the structured overlay protocols, intended to be instruc-

tive and representative of the concepts available in the current body of research. This

discussion includes both pure P2P systems, as well as HP2P systems that are develop-

ing more recently, offering many of the same advantages, in addition to an improved

feature set. The results of this analysis are summarized in Table 2.2. This table

organizes the below P2P strategies based on our taxonomy of large-scale multi-agent

systems. The HP2P strategies are not included in this table because many of them

are in early development, and thus lacking in formal rigor. Performance evaluations

for these systems are included inline, where available.

2.10 Flat Peer-to-Peer Communications Systems

This section describes those communications structured P2P systems that pro-

vide a unique advantage or design technique over other approaches. Most commonly

these differences in overlay strategies are a result of fundamental design differences,

such as routing geometry, but also include performance variations, such as expected

hop-length for node location queries under certain conditions. Two of the most cited

and extended approaches are Chord and Pastry, and we provide a separate discussion

of each of these seminal approaches and their offspring.
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2.10.1 Chord. The Chord protocol [15, 86] uses consistent hashing [49] to

locate nodes in a loosely structured P2P network. Consistent hashing in Chord uses

a standard hashing technique (such as SHA-1 [52]) to create two hash values for a

node. The node’s identifier is the hash image of the node’s location (IP address, port

number, etc). The key identifier is produced by hashing a key that describes the node,

such as the subject of the documents it stores or the node’s task information.

The identifiers are ordered in a circle of size modulo 2m, where m is the length

of the hashed identifiers, in bits. A key k is inserted into this ring by finding the first

node that matches the key, or the node that directly follows it in the idenfitifier space.

(This process is essentially a hash table with collision detection [23].) This node is

called the successor of k, and denoted successor(k). To insert a key into a ring of

nodes, the key k is assigned to the node at position k mod 2m. If there is no node at

that position, the key is inserted at the first successor node of k.

As an example, consider the Chord ring shown in Figure 2.4. This figure shows

three nodes in a ring with m = 3. This yields a ring of size 23 = 8, with nodes

numbered on the set [0,2m - 1] = [0,7]. Nodes are currently present at positions 0,

1, 3. An element with key k = 1 is stored at node 1 mod 23 = 1. However, when

inserting key k = 2, a node is not found at position 2 mod 23 = 2. For k = 2, the

first successor node of position 2, which is node 3, is assigned as the successor of this

new node at 2. Inserting key k = 6 again hits a location with no node, and the first

successor node in the ring is at position 0.

Using the Chord consistent hashing protocol, it can be proved that no node will

store more than O(logN) keys in a steady state system [86].

Chord nodes also store a routing table describing the nodes they know about

in terms of successors of keys they have seen. The finger table at a node n contains

at most m entries, and the ith entry contains the identity, s, of the first node that

succeeds n by at least 2i−1. The node s is called the ith finger of node n. The finger

tables are used to lookup keys in the network by querying nodes known to store keys
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Figure 2.4: An example Chord ring with three nodes: 0, 1, 3 [86]. The locations
with a filled circle indicate the presence of an agent.

close to the desired key. The number of nodes in a steady state system to be examined

is, with high probability, constrained by O(logN) [86].

The restriction that these relationships hold under steady state is a product of

the population and stability of the finger and identifier tables at nodes in a network.

In a steady state network, the nodes have suitable knowledge about their neighbors

within a given range (a few hops typically) to successfully route messages according

to the logarithmic time predictions. However, in a network with a high frequency of

transient nodes, the message queries may take longer, although they are still predicted

to succeed. In addition, the structure of the finger tables can be exploited to provide

duplicate-free broadcast.

An extension to the Chord protocol is called Recursive Partitioning Search

(RPS) [90]. The purpose of this protocol is to extend Chord by improving the per-

formance of lookup delays in duplicate-free broadcasts. That is, a Chord network

performs O(N) calculations in finding successor nodes for broadcast routing. How-

ever, RPS improves this processing time to O(logN). It operates by partitioning

nodes into overlapping regions. Nodes performing search, to include broadcasts, are

permitted to query only nodes within their own regions. In addition, the size of the

permissible search region is reduced at each hop. When a message is sent to a fol-

lowing region, a tag is included which specifies a seed that is used to describe the
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allowable search regions. A simple algorithm is applied to the tag which guarantees

the uniqueness of the next region to visit. In this way, under the Chord steady state

constraints, a duplicate-free broadcast is achieved. However, the key space must be

uniformly distributed across the network for the algorithm to function correctly.

The RPS and HP2P both organize the network of nodes into different segments.

These zones may be organized based on application or locality. HP2P networks also

incorporate the idea of a super peer, which is responsible for gateway activities for

each cluster (zone). In this way, RPS implicitly addresses some of the necessary search

and routing considerations found in a HP2P.

Another extension to Chord is Accordion [59]. Accordion incorporates a variable

routing table size. Based on a tunable bandwidth limitation parameter, the protocol

maintains routing information about a set of nodes whose cardinality is inversely

proportional to the distance from the reference node. That is, it will store information

about more nodes that are closer than farther away, with distance determined by the

bandwidth tuning parameter. This allows system designers and maintainers, or the

nodes themselves, to modify the tuning parameter to store more or less information

about the network in each node as the system progresses. In addition to varying

the amount of memory used to store routing tables, this approach also adapts to

changing network traffic conditions. Based on bandwidth utilization, nodes may self-

tune themselves to reduce the size of routing table, which also reduces the bandwidth

used to perform table maintenance. Accordion will also perform parallel routing

lookups [60] to reduce average lookup times, while still staying under the bandwidth

limitation.

A variation of Chord, called Koorde [47], uses a de Bruijn graph to represent a

DHT. A de Bruijn graph of base n values and m bits of resolution will have a node

identified by each possible combination of the nm bits. For example, Figure 2.5 shows

the de Bruijn graph when n = 2 (base 2) and m = 3. The graph has 23 total nodes,

each with two incoming and two outgoing edges. The outbound edges of this graph

40



Figure 2.5: An example de Bruijn graph for n = 2 bits, m = 3, with 23 possible
symbols [93]. Each node has exactly n incoming and n outgoing edges.

point at the two nodes whose identifiers are obtained by performing two left shifts

of the bits identifying the source node: once shifting in a one, and once shifting in a

zero. Koorde exploits this ordered connectivity to reduce the state of each node in a

network. It is possible in such a graph to, given a key k, deterministically find the

proper route to the destination by following the sequence afforded by the de Bruijn

properties. Aside from the smaller routing tables, the rest of the protocol follows

Chord. However, this approach requires a highly ordered and rigorously maintained

organization, which has high maintenance cost. By maintenance alone this approach

does not scale. In addition, the maximum size of the network must be pre-determined

so the key space can be configured.

The One-Hop routing scheme [41] uses the Chord protocol as a foundation to

support messages from source to destination to travel only one hop, in a steady state

system. Each node in the system maintains location knowledge of each other node

in the system. The routing tables are stored as in Chord. The challenge of this

approach is network churn: nodes joining and leaving the network require updates.

The structure itself is resilient as per Chord, however both cases require a broadcast

to occur. This broadcast uses the assumption that all keys are uniformly distributed

across the nodes of the network. The overlay structure is then divided into a set of k

zones. Since there is a uniform distribution of keys, these zones will be probabilistically

equal in size. The node at the mid-point of each key zone is forwarded a message
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about the new (or past) node, and that message is distributed as in a balanced tree,

splitting the distance in each sub-zone at each hop. This approach yields efficient

broadcast, however is not scalable due to bandwidth consumption.

The Two-Hop scheme builds upon the One-Hop scheme, but relies more on

zone leaders. For each of the k zones, a (slice) leader is chosen. Each zone is then

partitioned into units, again evenly partitioned across the sub-key space. Every slice

leader submits the information for a unit of its nodes to another slice leader. That

other slice leader then disseminates the unit’s information to its entire slice. In this

way, each node has routing information about a unit from each other slice. In order

to send a message, the source node need only locate the node with closest key in

the remote unit, and forward that message. In the worst case, the message will

make a second hop once in the remote unit. This amount of cross-information may

be undesirable for secure applications, and the assumption of randomly distributed

keys may be unrealistic for the CyberCraft some networks. However, the authors did

recognize the need to have ”super peers” to facilitate the bandwidth requirements for

this scheme, which is one step toward a HP2P configuration.

2.10.2 Pastry. Pastry [78] is a self-organized overlay network, intended to

support applications. Machines with one of these applications also hosts a Pastry

node, which is part of the Pastry network. Pastry provides a large-scale communi-

cations API for applications to use. Each node in a Pastry network has a nodeId.

Requests are routed to the node that is numerically closest to the desired key, with

O(logN) expected hop counts, where N is the number of nodes in the Pastry net-

work. The nodeId space is distributed randomly, as each new node is given a random

nodeId. As a result, with high probability, Pastry nodes with similar nodeId’s are

distributed uniformly throughout the network. Each node maintains a list of the k

nearest nodes, by nodeId. Using this, applications can replicate information or pro-

cessing across these k nodes, which provides fault tolerance to failures because the

nodes are distributed. Pastry also incorporates a small number of long-haul links for

42



each node. These links are built according to a proximity heuristic which attempts

to minimize network diameter [18]. Message routing in Pastry is very similar to the

Chord protocol. Both systems maintain a ring of adjacent nodes, with logarithmic

(base 2) addressing.

Bamboo [76] extends Pastry to address three key performance issues: reactive

versus periodic recovery from failures, calculation of message timeouts during lookups,

and choice of nearby over distant neighbors. Each of these attributes is given tun-

able features in Bamboo. Reactive recovery refers to the reaction of a node when it

determines that one of its neighbors has failed. In this case, the node broadcasts its

updated routing and neighbor sets to all of its k - 1 neighbors. The problem occurs

when either (a) all nodes detect the failure at the same time and forward their full

tables to each other (an O(k2) event), or (b) the keep alive messages were delayed

due congestion, and the node didn’t fail at all. Case (b) can further congest and

even overload the network, thus causing additional nodes to appear to have failed.

The authors call this a positive feedback cycle. The alternative to reactive recovery

is periodic recovery. This approach is more patient, and relies upon periodic updates

of differences to a node’s table to be sent to its neighbors. Loss or acquisition of a

neighbor doesn’t change the operation of this approach, and it is thus less prone to

congestion and is more resilient. However, it is also slower to notify the system of the

change, which can delay updates of routing tables, thus resulting in a higher message

query failure rate.

Bamboo supports two types of timeout calculations: TCP-style and virtual co-

ordinates. In the TCP-style timeout calculation scheme, each nodes maintains an

exponentially weighted mean and variance of response time for each neighbor. This

allows nodes to have a rough idea of expected base timeouts for issuing searches to

different portions of the network. The alternative scheme relies upon virtual coor-

dinates. Virtual coordinate timeouts use machine learning to assign to each node

a coordinate in a virtual metric space such that the latency between two nodes is

represented as a line between them in the virtual coordinate space. Bamboo uses the
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virtual coordinate system found in Chord, called Vivaldi [25]. Vivaldi maintains an

exponentially weighted average of past round trip times between nodes, and uses that

to create reasonable timeout values.

Bamboo’s final improvement over Pastry is to incorporate a smarter table popu-

lation scheme. In global sampling, a node fills a slot with prefix p in its neighbor table

by using the search capabilities of the DHT to its advantage. It performs a search for

a random key with prefix p, and recording the first result. In a steady state system,

repeated sampling will result in high quality neighbors. For local tuning [76], a source

node contacts another node in its routing table at level l, and asks it for its level l

neighbors. The idea is that some of these nodes may have lower latency than some of

the source node’s existing neighbors, and will have a similar search key prefix. The

results are compared, and the source node’s tables are updated if any closer nodes are

found. The neighbors’ inverse neighbors protocol samples those nodes who have the

same neighbors as the source node. For example, two nodes may reside on the same

network segment and be initially isolated from the rest of the network and unaware

of each other. However, they may have the same neighbor in common. Querying that

neighbor for its neighbors will help the two near nodes to discover each other. The

final technique introduced into Bamboo is similar to Tapestry’s nearest neighbor al-

gorithm, and roughly combines the previous approaches. It begins with sampling the

neighbors of nodes at level l. Then only the k nearest (lowest latency) nodes are kept

from that set. The level l is decremented by one, and another sample is performed on

the remaining k nodes. This process continues until l < 0, with consideration paid at

each step to possible new neighbors.

Incorporating attributes from both Pastry and Chord, Kademlia [69,94] seeks to

improve routing efficiency and knowledge sharing. It uses the symmetric properties of

bitwise XOR operations to determine the distance to a target node. Kademlia stores

information about other nodes in k-buckets, where k is the number of bits of address

resolution. Each bucket may store multiple pointers to nodes, and all of the entries in a

given bucket are examined when choosing a query’s next hop. With a separate bucket
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for each bit of address resolution, the XOR distance between source and destination

nodes is compared bit by bit with the bucket list indices. Progressing in this linear

fashion effectively reduces the number of node segments under consideration by half

at each step. Each bucket contains multiple entries, increasing the breadth of nodes

under consideration for each network segment and increasing search accuracy and

fault tolerance. Messages also store additional meta information, and intermediate

nodes along a route peek at that information to maintain more consistent routing

tables.

Tapestry [106] provides an API similar to Pastry, but stores its routing tables

differently. A node’s neighbors are stored by prefix, and a prefix search is conducted

similar to how a trie operates [45]. Like Pastry and Chord, the message is forwarded

to the node with the closest identifier after conducting a local search. The underlying

assumption that makes it unsuitable for a HP2P is that nodes are free to connect

anywhere in the network they choose. Doing so permits them to maintain routing

tables that index prefixes that may be part of distant clusters. Although this provides

reasonable search complexity, the information separation aspect of a HP2P is lost.

2.10.3 Other Design Paradigms. Viceroy [67] addresses two specific chal-

lenges found in large scale P2P distributed storage and search systems: the distri-

bution of data to provide predictable performance bounds, and the maintenance of

routing table in a high churn network. Viceroy’s routing tables operate similarly to

the Chord protocol, except that the outdegree for any node is constant. This constant

outdegree is meant to aid in the maintenance of routing tables, which the authors be-

lieve is a more common (and higher priority) activity than searches in a high churn

network. It is built on a butterfly topology, where nodes maintain links to other nodes

at varying distance and level, so as to provide expected performance bounds. Forward

and backward links facilitate routing table maintenance for nodes that join or leave

the network.
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Mercury [13] is a multi-attribute search DHT. Its routing protocols are derived

from Chord. It introduces the idea of attribute hubs, which are solely responsible

for a single attribute (although one physical hub may support multiple logical hubs).

Mercury supports multi-attribute searches by dividing the key space into zones or-

ganized by primary attribute. Hubs are arranged in a ring according to contiguous

values of attributes. This reduces the difficulty in search to simply finding a hub

which stores the attribute. From there, the hub forwards the query to all of its leaf

nodes which might match the remaining portions of the multi-attribute search. In

this way, Mercury is a hybrid system, closer to a distributed P2P relational database

than a DHT. This approach could be well suited for running in a HP2P architecture,

since the idea of hubs in a P2P system lends itself to the thoughts of super peers

HP2P architecture. Mercury is able to achieve O(log2N/k) hops for lookups, where

k is the number of neighbors per node.

Content Addressable Network (CAN) [75] is a design for peer-to-peer indexing

based on the idea of a DHT. The hashtable space is divided amongst the N CAN nodes

using a deterministic hashing function, forming N zones based on a d dimensional

Cartesian coordinate system. A query for a key K is hashed, and the location P

determined by the value of that hash function refers to the zone in which K resides,

if it exists. To facilitate nearness between adjacent zones in the search space, nodes

dynamically reconfigure themselves to be connected to their zone neighbors. Routing

is performed by moving messages to their destination zones. In terms of a Cartesian

coordinate system, a line between source and destination is formed, and the message

travels along that line by moving from zone to zone. Inserting a new node into a CAN

network requires splitting an existing zone, but not modifying the original size of the

space. Increasing the size of the space, and maintaining routing tables, is moderately

expensive in this configuration.

Borrowing from the idea of skip lists [45], SkipNet [43] nodes store information

about predecessor and successor nodes in a skip list. Nodes maintain points to neigh-

boring nodes in the same subject area (i.e., similar hashed key identifiers), as well as
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pointers that skip over a number of levels of records. Nodes at level h from a source

node are 2h nodes to the left or right of the source node. The nodes are organized

into a hierarchy of rings. The root ring contains pointers to sub-rings (with overlap),

with each successive level splitting the ring into two roughly equal parts. Search is

as efficient as Chord (O(logN)), as the hierarchical ring structure essentially works

like a search tree. Also, because of the highly organized and ordered nature of the

skip lists, SkipNet also supports range queries. SkipNet nodes tend to store signifi-

cantly more routing information than Chord nodes. As a result, search performance

is comparable, but maintenance actions are also more costly in SkipNet.

The Distributed K-ary System (DKS) [8, 36, 37] builds structured peer-to-peer

overlays using k-ary trees. The identifier space is recursively partitioned into intervals,

and modeled as successive levels of a tree. This tree is then used to navigate the

identifier space when searching for identifiers. Solutions exist to provide replication

free broadcast and multicast, and updates are handled with a combination of change

on use and correct on change semantics. This system is elegant and simple in its

representation, however it does not scale due to higher level nodes holding more

knowledge of the identifier space, with level zero maintaining a copy of the entire

identifier space. Additionally, the system must be initialized with a maximum node

value, and we have found no discussion of rebuilding the network with larger maximum

values at runtime.

Kelips [42] segments the network into O(
√

N) affinity groups. Nodes in each

group maintain a small constant number of links to other nodes in the same and

foreign affinity groups. The number of affinity groups (
√

N) helps to ensure that each

group maintains at least one link to each other group. Groups are divided by a uniform

partitioning of the key space (using consistent hashing), and with O(
√

N) memory

space per node, O(1) lookups are achievable in a steady state system. Nodes use

epidemic/gossip protocols to perform maintenance actions, with a fixed bandwidth

limitation to prevent flooding. The system has been shown to be resilient in the face

of failed nodes in networks of moderate size (100,000 nodes).
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The Symphony protocol extends the small world principle by recognizing that

increasing the number of long distance links, k, can lead to improved performance.

The authors show that by choosing the k long distance links along a Probability

Distribution Function (pdf) of pn(x) = 1/(xln N), with x ∈ [ 1
N

, 1], and 0 otherwise,

that the average query length of searches scales with O( 1
k

log2N) hops. This pdf is a

harmonic function, by which the name Symphony is inspired. Symphony distributes

nodes uniformly around a ring structure, and provides subtle optimizations such as

look ahead (piggy-backing control information on pings), fault tolerance algorithms,

runtime parameter tuning, and load balancing.

2.11 Hierarchical Peer-to-Peer Overlays

HP2P overlay structures combine flat P2P systems together to form a hierarchy

of P2P systems. Two-layer HP2P systems provide a top-level topology for indexing

into second layer P2P networks. HP2P systems can also be organized into arbitrarily

many layers to provide further scaling and organization. Each cluster, or group, in

a HP2P network is a separate P2P network, and contains one or more super peers.

A super peer is a node in a cluster that is given additional responsibilities, such as

decision authority, message routing to other clusters, or maintaining replicated copies

of distributed data structures. Super peers are normally chosen by their superior

reliability or performance characteristics. The super peers from two or more clusters

interconnect to form another P2P network, and this process may be repeated many

times to form a hierarchy of P2P networks.

Garces-Erice et al. [33] demonstrate that even adding a single P2P layer to an

existing P2P architecture can improve the lookup path of searches by a factor of log

N / log I, where N is the total number of peers in the system and I is the number of

clusters. Their system consists of two layers: a ”top-level Chord” ring of super peers

in a modified Chord overlay, and a second layer of multiple heterogeneous structured

P2P overlays. The authors specifically cite four advantages of this approach:
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• Provides transparency: data may move around and nodes may join or leave

the network in each cluster, but the overall system is unaffected because each

cluster is independently managed. This leads to improved reliability and search

consistency.

• Significantly improves the average path length due to the hierarchical organiza-

tion.

• Consumes less bandwidth than traditional P2P structured overlays under stable

conditions. This occurs in HP2P networks whose clusters are formed based on

network locality (such as TSO [99] and Brocade [107]). In these situations,

clusters spend more time performing intra-cluster communications, leading to

fewer long haul messages.

• Better supports heterogeneity. Each cluster in a HP2P network is a separate

and fully functioning P2P overlay, such as Chord or Pastry: only super peers

need speak the same language.

The Canon project [31] extends this work by providing methodology for merging

structured P2P overlays (Chord, Symphony, CAN, and Kademlia) into hierarchical

structures. The methods employed also support deterministic bounds on the degree

for nodes in Crescendo, Canon’s adaptation of Chord, on the order of O(logN).

Zöls et al. continue the trend of migration from existing structured P2P systems

(Chord in this case) to hierarchical systems by analyzing the cost metrics for systems

with limited bandwidth [44,108], such as mobile devices, and constructing hierarchical

networks to conform to dynamic constraints. Their system, Chordella, dynamically

adjusts the number of super peers based on available resources so as to create a

cost-optimal value. Chordella also improves upon Freenet’s caching algorithm by

dynamically choosing which nodes along a path at which to store cached copies of

content.

Fiat and Saia [28] have built a HP2P structured overlay based on a butterfly

network [41], shown in Figure 2.6. They apply the butterfly topology to build a
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Figure 2.6: An example butterfly network [28]. There exist O(logN) levels, where
each level is considered a super peer level. Leaf nodes connect to a random sampling
of nodes at each super peer level to provide redundancy and fault tolerance.

censorship resistant P2P overlay structure. They refer to the nodes at each level

above the leaf node level as super peers. Data items are stored at the leaf nodes,

and the geometry of the system yields O(logN) provable search times. The butterfly

loses some reconfigurability and fault tolerance, compared to other P2P approaches

presented here, because the interconnectivity between nodes at higher levels reduces

logarithmically to a small number (two). Therefore, loss of a node at the top level

reduces 50% of the routing redundancy for that segment of the network. The pure

butterfly network approach requires O(log2N) messages for a query, but the multi-

butterfly aproach [26] can reduce this to O(logN).

For DMAS and C2 applications, HP2P systems provide the important oppor-

tunity for separation of function. This is a critical property in C2 systems, where

security of missions must be strictly maintained and monitored. A separation of

function supports this scenario by imposing quantifiable and observable boundaries

for mission oriented systems, while at the same time permitting the necessary com-

munications channels for non-mission related data transfer (management, coalition

formation, etc). It also provides practical restrictions on the size of the coalition

formation problem for large-scale P2P systems.
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Current HP2P overlays combine existing technologies to enable distributed com-

munications. However, the body of work into HP2P overlays has yet to establish its

own uniqueness, wherein approaches are tailored to the specific advantages of HP2P

architectures.

2.12 Design Tradeoffs

When examining Table 2.2, perhaps the most obvious distinction is the tradeoff

between route hop length and node memory usage. In general, increasing the amount

of node memory increases performance because nodes have more knowledge about the

global state, and can make better decisions for routing queries. Unfortunately, these

systems tend to have lesser scalability as large systems will use more memory, which

may be a limiting design factor. In addition, maintaining each node’s memory state

requires higher bandwidth consumption as the amount of global state stored per node

is increased. Systems such as Accordion offer a nice compromise by permitting the

designer and maintainer to specify runtime limits for memory and bandwidth, and

allowing the network to tune itself based on bandwidth utilization.

The overlay routing geometry does not appear to directly affect the scalability

of the system. The performance of systems with similar routing geometries varies

based on an overlay’s goals and implementation. For example, DKS and Kademlia

both use trees for routing, but in different manners, and their resulting performance

differs as a result.

However, the strictness of the overlay rules does seem to affect the scalability.

Systems such as Koorde impose a rigid set of rules for the locations of nodes and suffer

a penalty for maintenance actions and reorganizing in high churn or expanding sys-

tems. Armed with knowledge of previous systems, approaches such as Viceroy harness

the strengths of several approaches to create a more resilient and better performing

system than their predecessors. In addition, more loosely structured solutions exploit

their polymorphic nature to adapt to changing network conditions, but at the expense

of higher maintenance costs.
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Although scalability is qualitatively defined, there appears to be a relationship

between query path length and scalability. Systems that offer much lower query path

length, such as Kelips and One-Hop, also suffer in scalability. This is tied to the means

necessary to acquire a significant advantage in query path length: increased memory

usage and associated maintenance bandwidth. While these systems are designed for

performance in smaller systems, large-scale systems will suffer an indirect negative

impact at the expense of route length. Although the route length is not the cause of

the lack of scalability, there exists a correlation between the two.

In communications structured P2P overlay networks, all nodes are identified

through some unique identifier. Some of the approaches discussed here use a dis-

tributed algorithm to ensure uniqueness of the node identifiers, while others rely on

the uniqueness of a node’s properties combined with a hashing algorithm to generate

the identifier. Whichever method is used, and so long as the addresses are generated

dynamically, does not appear to directly affect the performance attributes of the sys-

tem. In addition, several systems offer the advantage of allowing hashing mechanisms

to be substituted, which increases their flexibility.

The (network) physical distances between nodes must be considered before

choosing an approach. Many of the approaches described here rely upon a num-

ber of local neighbor links and long haul links to establish smaller network diameters

for improved search efficiency. While this works well in a local system with high

bandwidth links, reliability can suffer when connecting large groups of peers across

long distances [68]. This happens when many long haul links attempt to span the

network by using lower bandwidth links. This self-organization property is addressed

in more detail in many HP2P systems [109,110], but less so in flat P2P systems.

HP2P overlays provide additional opportunities for heterogeneity and auton-

omy by allowing subordinate organizations to independently manage and organize

their networks according to their own missions [33]. This is especially important for

enterprise systems that consist of many separate units, missions, and available com-

52



puting architectures – one solution will not suffice for all scenarios. Network churn

(and associated maintenance) is localized to clusters, and in general does not affect

the large-scale system functionality.

2.13 Applicability to HP2P and CyberCraft

While most overlay structures are currently developed as pure P2P systems,

certain applications may require a more segmented approach [50]. For example, mil-

itary systems require additional security, which is an area that many of the current

overlay structures have yet to examine. One possibility to facilitating this objective

is to adapt existing approaches to HP2P structures. This topology explicitly pro-

vides an environment which is more suited to security constraints than existing P2P

technologies.

A primary focus of many of the P2P overlays is to provide guarantees on the

length of routes and node memory. Both of these elements are important for the

CyberCraft application, but some methods of achieving these goals do not directly

support the HP2P structure. For example, Pastry achieves its properties by evenly

distributing communications links across the network. That is, a single node will

attempt to connect to neighbors that are evenly distributed throughout the network.

That node’s neighbors attempt to do the same, with the end result that a maximum

coverage is achieved, thus minimizing expected route length between nodes. This

approach works wonderfully for a pure P2P network, however it will not work as well

for a HP2P.

One of the purposes for using a HP2P architecture for the CyberCraft appli-

cation is to minimize the amount of traffic crossing long haul links, which may be

unreliable and slow, such as satellite communications or other wireless technologies.

Systems such as Pastry rely on a uniform distribution of links, where each node

is expected to maintain communications links with nodes evenly spread across the

network. This reduces the average hop length by providing a nearness property for
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remote nodes, but does not consider the quality of communications links available.

These long haul links may be costly and unreliable.

The HP2P architecture addresses this challenge by partitioning nodes into clus-

ters that are expected to conduct most of their communications at the cluster level,

and communicating with remote links sparingly, and predominantly through cluster

leaders (super peers) which are chosen based on routing availability (bandwidth and

processing). Link quality can be determined at runtime, however the creation of

clusters is a function of the mission objectives and self-organization properties.

Once a clustering algorithm is developed, the techniques for choosing routing

paths described above can be applied. The ring (or other) technologies seek to obtain

optimal routing neighbors based on identity similarities. This technique can continue

to be used in a HP2P, so long as additional restrictions can be applied about which

neighbors can be chosen. These restrictions will be based on architecture and runtime

clustering, and must reflect the characteristics of the system as designed and deployed

for the intended application(s).

In addition, the issue of security in a large-scale system of peers is complicated

by key storage and knowledge, rooted in the difficulty in establishing a foundation

of trust. Trust chaining in a system of peers suffers from the idea that any node

could be weaker, in terms of trust, than other nodes, and therefore the entire chain of

communication after that node has a lower trust level. This problem exists in epidemic

proportions in a system which relies on communications with long hop lengths and

few authoritative sources.

The problem of task allocation and coordination in large-scale systems with

partial visibility is still an active area of research. The difficulty of such a problem is

compounded by constrained visibility of nodes in the network, greatly complicating

allocation of resources and coordination of nodes in the system. This problem can

be modeled as a non-stochastic Decentralized Partially Observable Markov Decision

Process with Communication (Dec-POMDP-Com) [38, 98], which is PSPACE com-
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plete [23, 34]. This model prevents solutions that scale to the size of existing P2P

structured overlay networks [35,81,82,95], let alone the potential scale of CyberCraft.

Beyond simply sharing of data between nodes, new methods for distributing tasks

must be developed to maintain the momentum of the usefulness of large-scale P2P

systems.

Based on the observation that Viceroy has capitalized on the intersection of

multiple routing geometries, what other gains can be made by combining techniques?

Innovative ideas and adaptations of previous work contribute to the body of structured

overlay research, with considerable success in improving runtime performance and

providing additional design choices for system designers and application developers.

I believe that a continued effort along this path will continue to yield improvements

to the usefulness of structured P2P overlay networks in fielded systems.

The HP2P topology provides several advantages to such a system. Given a

geographic organization of the network, the clusters of agents will roughly represent

different physical areas, and should therefore have greater capacity to communicate

with each other. Communications between clusters occur through super peers. While

the super peers may change at runtime, we can assume that the agents of a cluster

or group of clusters will autonomously choose the best candidate for that job. We

can further assume that those chosen super peers will prosecute their responsibilities

in earnest, without greedy semantics; that is, the agents are trustable. Building

these properties into a multi-agent system may require an agent trust model, and

is a subject of ongoing research. This situation aids in the realization of a fielded

CyberCraft network: its size is also its greatest strength. Despite the complexity of

the analytical solutions to the task allocation and coalition formation problems, it

may be possible to build a distributed algorithm that can decompose the tasks and

solve these problems in parallel, using the great number of CyberCraft as advantage.

However, it may not be the case that all CyberCraft will be geographically

oriented. Under certain conditions, mission oriented coalitions must be formed to ac-
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complish higher priority tasks (this is similar to how the U.S. military uses Centralized

and Specified Commands). Should a high priority task be created, such as analysis

of a possible realtime attack, it may be necessary to sequester additional computing

resources via other agents. A large enough task may span far beyond the originat-

ing node’s cluster, and even span continents, involving slow or unstable connections

(satellites). The structure of a network in this case, except as it is used to route

communications efficiently, is neither an advantage nor disadvantage. In addition,

the question of task allocation becomes more difficult, as multiple high priority tasks

may be competing for resources. Such contention can lead to failure of multiple tasks

that must have realtime processing capabilities. For example, standard timesharing

or loose realtime constraints may be insufficient: it is unacceptable that a security

monitoring task be suspended to perform one of many other tasks, regardless of their

priorities. The question becomes one of describing tasks in a way that assures fairness

and progress, while also maintaining realtime requirements.

2.14 Large-Scale Coordination

Once reliable large-scale communications are established for a mission oriented

system, the missions themselves must be deployed for agents to accomplish. Missions

may be single-agent or multi-agent, and each agent may be single- or multi-task.

A single agent mission is one that can be accomplished by a single agent, and a

multi-agent mission requires multiple agents. A single-task robot can only perform

one task (mission) maximum, whereas a multi-task robot can perform multiple tasks

simultaneously. The CyberCraft is expected to be a multi-robot, multi-task system.

Early techniques for distributed problem solving revolve around centralized algo-

rithms where a single agent is responsible for distributing equal shares of the workload

to slave agents. However, like the progression of network architectures, this central-

ized approach does not scale and requires new ideas to accommodate systems with

large numbers of players. Decentralized algorithms to solve problems are under active

research as more and more large-scale systems become available to solve more com-
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plex problems. An initial challenge of these algorithms is the effective recruitment of

processing agents to a team of agents to solve a problem. These teams are referred to

as coalitions, and form a sub-field of distributed problem solving necessary to employ

more useful problem solving algorithms.

Coalitions may be formed for a variety of reasons, and methods for their for-

mation are a subset of the Multi-Robot Task Allocation (MRTA) problem known as

multi-robot, multi-task assignment [34]. It involves the grouping of agents to pro-

duce benefits to the system, and may involve the use of game theory reward-based

incentives. Distributed Problem Solving (DPS) need not require incentives for agents,

but does seek to increase total utility of a system. The end goal of both is to create

coalitions that increase the value of some function over that which can be achieved

with individual agents.

Many of the existing algorithms for forming coalitions are based on economic

incentives. Given a system of rational agents, whether cooperative or competitive,

they only merge to form coalitions when the effect of joining is more productive (or

profitable) than working individually. There currently exists a void in research efforts

for building coalitions in large-scale systems, and so the existing techniques will not

directly apply in the CyberCraft environment. However, it may be possible to adapt

and combine existing ideas to form a basis for a new approach which can be useful in

a large-scale system.

2.14.1 Coalition Formation. Shehory and Kraus [82] describe two methods

for coalition formation using reward incentives. In a negotiation based formation, all

single agent coalitions begin by interacting with other agents to determine if forming

a joint coalition can yield a higher payout than remaining alone. In the case that two

agents both determine profit can be increased by forming a coalition with each other,

they negotiate a sharing of the additional payout yielded by forming the coalition.

This payout can be different for the two agents, and they need not share it equally.

Rather, the agents will negotiate a fair split of the profits, based on greedy or other
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semantics. In the negotiation algorithm, this process occurs between all pairs of

agents, and each agent attempts to form a coalition with its most profitable partner.

Once a multi-agent coalition is formed, one of its agents is chosen as a represen-

tative. The representative’s duties include negotiating for further coalition forming

on behalf of the coalition it represents, and assuming risks (rewards) for the accuracy

of utility calculations [53]. This formation process is repeated for coalitions of ever

increasing size, and in a super-additive environment, ends with the formation of a

single grand coalition. The overall purpose of this algorithm is to maximize the profit

achieved at each step, yielding a likewise highest profit grand coalition. Each step of

the process, repeated at most n− 1 times, requires O(n2) communications operations

and O(n2logn) computations, where n is the total number of agents in the system.

The complexity of the general algorithm is then O(n3) communication operations,

and O(n3logn) computations.

The second algorithm builds upon the Shapley formula [95]. This is a centralized

algorithm in which a single agent collects information about the resources and other

relevant information from all other agents in the system. The agent will then calculate

the Shapley value, which involves finding the payout values of all 2n pairs of agents.

These payouts are organized into a prioritized data structure, and all agents are then

informed of the new coalition schedules. This centralized algorithm requires O(n)

communications (it contacts each agent twice), and O(2n) computations.

The Contract Net Protocol (CNP) [84] is a popular contract system to allocate

tasks, or portions of tasks, to one or more agents. Given a system of agents, any agents

with a surplus of work to perform may start an inverted blind auction (contract

proposal) for which other agents with a surplus of resources can bid. The bidder

with the most attractive offer (lowest payout) is awarded the contract. Agents form

networks of auctions, and may join and part them at will. This concept can be

applied in a HP2P structure, where agents are naturally organized into clusters. This

method is extended to build upon more modern communications facilities, such as
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ordered delivery of TCP and higher assumed bandwidth, easing constraints in the

original protocol [79]. The CNP is useful in heterogeneous and homogeneous systems

in which agents do not have full information about other agents. Rather, the agents

submit themselves as candidates for processing a certain task, based on availability

and capabilities, without revealing their full state information.

The previous accounts lead to the observation that the formation of coalitions

in a system of agents can be viewed as a Set Covering Problem (SCP) or a Set

Partitioning Problem (SPP) [34], both of which are NP-hard [23,39,72]. As such, an

algorithm to find optimal solutions requires at least exponential time.

Shehory and Kraus [81] address this challenge by constructing a heuristic that

constrains the maximum size of any coalition. The objective is to reduce the total

communications cost for a multi-agent system when forming coalitions. In addition,

the calculation of the coalition value functions used to decide which agents should

merge to form coalitions is distributed. For a system with maximum coalition size

k, the computational complexity is of order O(tnk−1), where t is the number of tasks

being evaluated. The communications complexity is O(n). Because it employs a

heuristic, this is an anytime algorithm, meaning that if halted before termination it

should still form coalitions.

Xu, et al. [97] use a token-based scheme to support more scalable DMAS coor-

dination. They use tokens to represent anything that needs to be shared, to include

tasks, resources, and information. This approach simplifies the challenge of locking

shared resources, especially in a system with partial visibility. However, tokens can

migrate to remote parts of the network, and so fairness can be difficult to guarantee

in large-scale systems. Should a majority of these tokens move to one section of the

system, then other parts of the system become starved for resources. The authors

considered systems of up to 400 Unmanned Aerial Vehicle (UAV)’s. However, for

large-scale systems of up to one million agents, passing tokens that represent resource

locks across the network may incur performance penalties due to excessive commu-
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nications in accessing those resources. Introducing a heuristic, or capitalizing on the

properties of a structure such as the HP2P overlay, reduces these effects by localizing

the tokens.

Abdallah and Lesser [3, 4] capitalize on the organization of agents to construct

task coalitions that maximize global utility. Their solution builds a hierarchy of man-

ager and leaf agents that delegates coalition formation authority to lower levels of

the hierarchy to satisfy task requirements. The algorithm uses distributed learning

to modify the organization at runtime, based on task allocation patterns, to improve

global utility over time. Their Distributed Learned Policy (DLP) algorithm was suc-

cessfully verified on systems of 103 agents.

2.14.2 Communication and Coordination in a DMAS Agents coordinating

toward a global utility function must communicate to share information. However,

perfect information sharing is unreasonable for even smaller systems because commu-

nications incur a cost. Agents must therefore attempt to evaluate the effectiveness of

a communicating before initiating a transaction with one or more other agents. This

is a decentralized decision process because agents do not have global state knowledge.

The decision to communicate can be modeled as a Dec-POMDP-Com, possibly aided

by heuristics, where agents attempt to evaluate the state of other agents. This inter-

pretation of another agent’s state can be used to build an informed decision about

whether or not to communicate to retrieve or push updated state information. With-

out explicit communication between the agents, they can attempt to interpret state

changes in the environment to decode another agent’s state and action pairs. This

is accomplished with a Markov decision process, and is used to develop an agent’s

plans and decide when to communicate, if necessary. ItX is therefore informative

to understand the classical framework for Markov decision processes for multi-agent

communications.

Using the definition from Xuan et al. [98], for a Markov decision process in

a multi-agent system we define α = {X, Y } to be the set of agents, and Mx =
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(Sx, Ax, px(sx
j |sx

i , a
x)) is the Markov decision state for agent x, where S is the local

state space, A is the local action space, and p is the probability of moving from state sx
i

to state sx
j by taking action ax. For a decentralized Markov decision process involving

a pair of agents x and y, we define the global reward function rxy = (sx
i , s

y
j , a

x
k, a

y
l ) to

be the reward given to the system for the joint action (ax
k, a

y
l ) taken when the agents

x and y are in states sx
i and sy

j , respectfully. The cost of communication is defined

as cx
t = (sx, mx), where m is the content of the communication, and t represents a

particular time. For a decision not to communicate, m is null (or zero), otherwise

m represents the type of message, where each message type may incur a different

cost. The cost function is similarly defined for agent y, since we are considering joint

actions in a decentralized system.

Xuan et al. [98] compare two heuristic approaches to policy definitions for the

Dec-POMDP-Com coordination framework. The so called ”No news is good news”

(NN) approach adopts a policy of optimistic progress: communications are only per-

formed when current plan execution fails or progress is not as expected. This policy

is based on a heuristic function f(sx
t , s

y
t ) that builds short term goals, and a progress

function gx
l (sx

t , ŝ
x, t) that determines if the current plan has made sufficient progress

toward the goal state ŝx at time t. attempts to determine if sufficient progress has

been made toward the goal to consider the current plan on track (successful). Their

second policy is the ”silent commitment” (SC) that performs an initial division of

labor, and performs no further communications before a pre-scheduled rendezvous

point. For the duration of the processing, no communications occur and so the cost

c = 0.

The goal of each of these heuristics is to create a model that is tractable and

can be computed locally at each agent. The SC reduces communications cost at

the expense of increased uncertainty, whereas NN pays communications costs to de-

crease uncertainty. The authors incorporate qualities of both approaches into a hybrid

heuristic that attempts to measure the uncertainty of progress toward the goal, and

communicates when that cost exceeds the cost of communications. It is based on

61



building short term local goals and observing communications from other agents: if

no communications are occurring, the agent assumes that remote agents are progress-

ing toward their goals, which reduces local uncertainty as well. Agents continually

evaluate new short term goals, and will change plans and communicate only when

uncertainty in the current plan may incur a cost greater than the cost of communi-

cating. The authors found that NN performs better when uncertainty is higher, since

it will transition to a communicative stage. Under such circumstances, the hybrid

approach adopts the NN’s policy of periodic communications and will perform sim-

ilarly. In the case of low uncertainty, all three approaches perform closely and with

understandable success. Due to the continued evaluation of new plans, the hybrid

heuristic does consume more processing power.

Goldman and Zilberstein [38] extend this formal model to establish separate

action and communication policies, granting more dexterity to heuristics in choosing

when and how to communicate. They perform additional testing to demonstrate

further optimizations to the existing solution paths, demonstrating the effectiveness

of policy separation and goal decomposition.

The Communicative Multi-agent Team Decision Problem (COM-MTDP) [73]

combines and extends many existing theories about Dec-POMDP-Com’s and eco-

nomic incentive algorithms for multi-agent teamwork. The key benefits of this model

are an analytic representation of both the complexity and optimality of team perfor-

mance for various classes of problem domains. This approach borrows and extends

the theory of economic team theory. It incorporates more rigorously defined notions

of communications, reward functions, and observability to generalize and incorporate

existing theories into a single larger and more descriptive model. This model provides

a framework for evaluating the complexity and optimality of multi-agent coordination

strategies.

The coalition formation problem can also be considered as a variant of the

task allocation problem. It is therefore instructive to examine the properties and
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approaches to solving the task allocation problem in this context, as doing so may re-

veal additional ideas useful in creating large-scale solutions to the coalition formation

problem.

2.14.3 Task Allocation. The MRTA problem can be stated as follows [35].

Given are m robots, each capable of executing one or more tasks, and n possibly

weighted tasks, each requiring one or more robots. Also given for each robot is a

nonnegative efficiency rating estimating its performance for each task (if a robot is

incapable of executing a task, then the robot is assigned a rating of zero for that task).

The goal is to assign robots to tasks to maximize overall expected performance, taking

into account the priorities of the tasks and the efficiency ratings of the robots.

Given that the MRTA problem is also NP-hard [34], it is possible to view it

as many different types of problems. As with the transformation of the coalition

formation problem to a set covering or set partitioning problem, the MRTA problem

can also be transformed to other NP-hard problems. MRTA can be further divided

into categories [34], depending on the form of task and agent system:

• Single-task robots, single-robot tasks, instantaneous assignment: Each robot is

capable of performing a single task at once, the tasks assigned are intended for a

single robot to complete, and the task requires no future planning (all variables

are solidified upon task assignment).

• Single-task robots, single-robot tasks, time-extended: Same as previous, except

the tasks require a planning step to build task schedules to minimize total cost

(execution time).

• Single-task robots, multi-robot tasks, instantaneous assignment: Each robot is

capable of a single simultaneous task, tasks require multiple robots to complete,

and task scheduling is complete at time of task assignment.

63



• Single-task robots, multi-robot tasks, time-extended assignment: A more diffi-

cult system where tasks require multiple robots to complete, where task assign-

ment includes scheduling.

• Multi-task robots, multi-robot tasks, instantaneous assignment: The addition

of multi-task robots eases the burdens of assigning tasks.

• Multi-task robots, multi-robot tasks, time extended assignment: The most flex-

ible option, and the intended application domain of the CyberCraft.

Theocharopoulou, et al. [88] examine task allocation and distributed task schedul-

ing in a large-scale system to solve the Distributed Constraint Satisfaction Problem

(DCSP) [101]. They determined that the only feasible means of mitigating the an-

alytic complexity of the problem in large-scale systems is by means of heuristics or

relaxation of constraints. They create a “gateway” protocol which is used to recruit

members of a coalition. Each gateway node is then used for further communications

with other nodes outside of its group. In this respect, they are moving toward a HP2P

structure for coalition formation. Although their approach is promising, they examine

only systems with less than 150 agents and less than 10 tasks. This work is lever-

aged here and incorporated into an approach that explicitly supports and exploits the

properties of a HP2P system for large-scale coalition formation.

The CyberCraft project is an instantiation of the multi-robot multi-task envi-

ronment, in which agents are capable of performing tasks requiring either one or more

agents, and with each agent capable of performing one or more simultaneous tasks.

CyberCraft tasks will be introduced at runtime (online assignment), and the form and

goals of those tasks may not be known ahead of time. Application of this paradigm

to multi-agent systems is not yet fully understood, and to large-scale multi-agent sys-

tems remains an open problem. Indeed, finding an optimal allocation of tasks in this

system is challenging due to the complexity of the fundamental problem.
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III. Methodology

This chapter describes the design of the Resource Clustered Chord (RC-Chord)

structured Hierarchical Peer-to-Peer (HP2P) overlay and the Distributed Like-

lihood of Execution (DLOE) coalition formation algorithm. These two systems are

used in conjunction to develop a solution to the large-scale distributed cooperative

task allocation and coalition formation problem.

The primary contributions of this work to the field of Peer-to-Peer (P2P) net-

working and distributed systems are the creation of the first scalable HP2P structured

overlay system that organizes agents by the resources they posses, the definition of

a CyberCraft task model, and a large-scale cooperative coalition formation strategy.

This discussion includes the goals of each approach, and focuses on the design methods

used to achieve those goals.

The chapter begins by introducing the RC-Chord HP2P structured overlay in

Section 3.1. It continues by describing the RC-Chord design paradigm in Section 3.1.2,

and concludes the RC-Chord discussion in Section 3.1.7 by describing RC-Chord’s

wealth of tuning parameters and their effects. Section 3.2 introduces the methodology

of the the DLOE coalition formation algorithm. This includes a definition of the

CyberCraft task model in Section ??, and of the task scheduling model in Section ??.

The chapter concludes with a summary of the techniques described here, as well

as how they combine to form a comprehensive solution to the cooperative coalition

formation problem.

3.1 RC-Chord

The aptly named RC-Chord extends the Chord structured overlay technology

by incorporating the HP2P organizational structure. It also adds the capability to

search for agents by the resource(s) they own. The primary objectives of RC-Chord

include:
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• Leverage existing structured overlay techniques to develop a new strategy which

supports the HP2P topology. This structured overlay strategy provides reliable

and scalable communications in mission oriented systems.

• Scale to one million or more agents.

• Support agent location by address or resource identifier.

• Incorporate a search mechanism to support the construction of coalitions of

agents to accomplish missions within large-scale HP2P systems.

Existing P2P solutions support systems of the required scale, however they do

so at higher cost and with limited facilities for global algorithms. HP2P systems

incorporate the ability to organize by criteria, which can have significant impact

on the performance and maintenance characteristics of the system. In particular,

the HP2P design construct incorporates separate clusters of self-sufficient P2P sys-

tems, thus greatly reducing the maintenance and search bandwidth requirements for

cross-boundary links [33]. This localization also provides a logical grouping that com-

manders can more easily understand and supports localized ownership by system

administrators.

As described in Chapter II, research into large-scale HP2P structured overlays is

currently a developing field. RC-Chord extends this body of research by incorporating

with each agent one or more resources or capabilities. These agent capabilities serve

as a criteria for the creation of HP2P clusters, which are described here.

3.1.1 HP2P Structured Overlay. Existing techniques for P2P structured

overlays are adapted and extended to support a new HP2P structured overlay, called

RC-Chord. This technique uses many of the design tools associated with Chord [86], as

described in Chapter II. Chord provides a protocol that is mature and well accepted

and adopted by the community, and achieves commonly accepted runtime perfor-

mance constraints for large-scale structured overlay systems (O(logN) path length).

However, Chord and many other strategies rely on a uniform distribution of node keys
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throughout the network. This is generally achieved through assignment of random

identifiers to nodes, salted with location dependent information, and those nodes are

then connected in some optimal manner so as to minimize the average distance be-

tween any two agents in the system. In a system where communication links vary

greatly in performance and reliability (such as satellite channels), these long distance

links may not be optimal or even feasible. Instead, the communication links across

these channels should be allocated carefully and sparingly so as to minimize the bur-

den on them, and also to maximize locality of information and mission objectives.

Beyond the initial adaptation of Chord to support resource location in RC-

Chord, the next advantages of RC-Chord are the construction and organization of

Chord instances into a HP2P architecture. Each cluster within a HP2P network

acts as a pure P2P network. These clusters are then connected together to form a

hierarchy of smaller networks, where each sub-network is viewed as an individual node

in a larger network. The hierarchy is created by organizing clusters together into a

tiered or level based approach, so as to construct an n-ary tree of P2P networks. This

process repeats indefinitely to achieve the desired organization structure, stratified by

performance and topological goals.

3.1.2 Top-Level Design. RC-Chord scales to many levels, with each level

composed of one or more clusters. Each cluster is a stand-alone instance of Chord,

and connects to a neighbor cluster in the next higher level of the hierarchy through

a set of super peers. These super-peers are so named because they generally exhibit

additional capabilities, particularly by supporting the increased burden of communi-

cations and processing associated with being a gateway node between two clusters.

Each cluster may have zero or more sub-clusters attached to it, and up to one higher

level cluster. The organization of clusters into a HP2P structure resembles a standard

computer science tree, with a single root and c ∈ [0, b] children, with branching factor

b determined by the ratio of peers to super peers.
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RC-Chord associates each node with one or more resources. A resource is defined

as a capability or asset that an agent possesses. These include, but are not limited to,

processor capabilities, hardware resources, data sets, payloads, and others. RC-Chord

supports searching for agents by global identifier or resource. The hierarchy grows

and shrinks dynamically to accommodate network churn and abundant resources. An

abundant resource is a resource that many, if not all, agents possess, such as processor

time.

RC-Chord extends the ideas present in Multi-Level Chord (ML-Chord) to ac-

commodate large-scale systems (greater than one million nodes). ML-Chord intro-

duced the importance of resources in large-scale networks, and used a two-layer HP2P

system to organize the network to provide the property that agents could be located

by resource. Unfortunately, approaches such as ML-Chord do not scale for systems of

abundant resources, because the layer associated with processor time may consist of

all agents in the system (one million or more), and this presents a significant bottle-

neck for system performance due to maintenance overhead. Operating on such a large

cluster would also amplify the difficulty of building coalitions that include members

of an abundant resource. Under such a system, the NP-complete coalition formation

problem becomes intractable. RC-Chord adds the ability to extend the hierarchy to

an arbitrary number of layers, and to support abundant resources directly. The in-

troduction of more than two layers in the hierarchy also reduces the scope of control

of the higher layer of the hierarchy, wherein the super-cluster was originally directly

responsible for all processing in the network.

Figure 3.1 shows an example RC-Chord instance with seven clusters. Three re-

sources are present, with all three represented in the super-cluster. When a resource’s

agent population high-threshold limit is exceeded at the super-cluster, a new cluster

for that resource is created at the second level. Once a cluster at the second level is

filled, nodes joining the system with that resource are attached to a new cluster at the

next level of the hierarchy. Figure 3.1 shows a single level two cluster for each of the

system’s three resources. Nodes possessing resource three have continued to join the
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Figure 3.1: An example RC-Chord instance with three levels. The super-cluster
exists as the sole level one cluster. Its nodes serve as super peers for level two clusters,
with a single level-two cluster for each resource. Clusters at level two begin the formal
sub-graph for each resource type, and may extend into additional levels based on
number of nodes for each resource.

system, and new clusters for that resource were created at level three. This process

repeats, with sub-graphs of each resource growing outward from the super-cluster, to

accommodate new agents joining the system.

The number of sub-clusters that each cluster can maintain depends on the ratio

of super peers to peers. This ratio is determined through experimentation and analysis

of application requirements, and directly affects the overlay’s properties. With more

super peers per cluster, nodes will see a reduced average latency and improved re-

silience through higher numbers of inter-cluster communications links. However, due

to performance considerations, an agent may only be a super peer of a single cluster,

and increasing the ratio of super peers to peers increases the number of clusters in

systems of equivalent numbers of agents.
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The top level cluster in the RC-Chord hierarchy is the super-cluster. The super-

cluster is an entry point for locating a resource in the system, and resides in layer

one of the hierarchy. The first layer is composed of the single super-cluster, however

subsequent layers have a geometrically increasing number of clusters. The super-

cluster is the only cluster in the system that contains agents of different resource

sub-graphs. The super-cluster joins all resource networks together for the purposes

of simplifying resource location algorithms.

Presently, the number of resources available to the network remains fixed during

runtime, and the number of nodes dedicated to each resource in the super-cluster is

evenly distributed [86]. Each node in the super-cluster is responsible for a single

resource and serves as a super peer of the layer two cluster for that resource. The

number of nodes in the super-cluster for each resource is configurable, thus providing

performance tuning capabilities.

Beginning with the second layer, each cluster along the path from the super-

cluster to a leaf node is responsible for the same resource. When a cluster becomes

full or exceeds an upper population threshold due to the introduction of new agents

into the system, a new cluster of that resource is formed. This new cluster is either

placed at the same level, or a new level of clusters is created. The reverse scenario

also applies for systems that experience a disproportionately large number of agents

leaving the network: underpopulated clusters are combined to form larger clusters,

and underpopulated levels are merged to form more populated levels.

Similar to nodes, each cluster receives an identifier that is locality-unique. The

identifier minimizes the width of global node addresses and creates a fullness attribute

that is used for agent addressing. Should an agent leave the network, an agent from

a lower layer cluster is promoted to fill the previous agent’s position and assumes its

responsibilities. Much like a balanced tree, this promotion propagates down the tree to

the lowest level. This strategy maintains a full address space in each cluster, reducing
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agent lookup failures, and enforcing the Chord requirements of uniform distribution

of addresses.

3.1.3 Application Design. RC-Chord makes extensive use of the facilities

provided by the Chord protocol. It can be creatively tuned to yield specific perfor-

mance metrics and organizational hierarchies. Among the more important parame-

ters, RC-Chord includes the following coarse-grain variables:

• Nn The number of expected nodes

• Nr The number of resources

• m The width of a node address, in bits

• Psp The number of peers to super peers (peer to super peer ratio).

Strictly speaking, the number of nodes, Nn, is not a design parameter as the

system is built to scale to undetermined numbers. Among its strengthes, RC-Chord

networks maintain the relative expansion of clusters per level no matter how large

the system becomes. However, the expected size of the system is an important pa-

rameter in choosing the particular hierarchical structure that RC-Chord adopts, as

experimental results demonstrate.

The maximum number of agents in each cluster is 2m nodes. A single cluster

exists at level one (C1 = 1), and the number of clusters at level two is C2 = Nr. For

each successive cluster, the number of clusters per level, Cl, is:

Cl = Ci−1 ∗ 2m/Psp (3.1)

Given a uniform distribution of resources to nodes, the total size of the network

up to level l is given by:

N = 2m ∗
l∑

i=1

Ci (3.2)
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Figure 3.2: Global node address for a node at level four. Beginning from the left
at the super-cluster, each stage in the address represents the ID of the cluster at
the next level. The final segment of the address is the cluster-local identifier for the
target agent. The combination of these cluster ID’s and agent ID together form a
global agent address.

As shown, the clustering hierarchy is tightly tied to the address width, m, and

the peer to super peer ratio, Psp. Decreasing m yields smaller and better performing

clusters, but increasing the number of clusters and layers in the hierarchy, for a fixed

number of nodes in the system. Increasing the super peer ratio increases the number

of super peers to leaf peers, increasing the available bandwidth between clusters, but

also increasing the number of clusters in the system. Both of these parameters provide

useful tuning opportunities for runtime performance and bandwidth consumption.

3.1.4 Addressing in RC-Chord Addressing in RC-Chord operates similarly

to Chord: each agent has a unique address inside of an m-bit identifier space. The

distinction in RC-Chord is that each Chord cluster maintains its own unique identifier

space, and the global identifier for each node is determined by its path from the super-

cluster. Using the fullness property, the width of a global identifier can be reduced

by representing the path from the super-cluster to the target node as a sequence of

cluster identifiers, followed finally by the agent’s cluster-specific identifier.

Figure 3.2 shows the global address for an agent located in level four. Starting

with the super-cluster, the addressing proceeds left to right. Each segment of the

address before the final segment represents the unique cluster identifier for the next

cluster in the path to the target agent. The final segment of the address is the agent’s

locality-unique address for its own cluster.
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Based on the peer to super peer ratio, the total number of sub-clusters for each

Chord cluster is below 2m. For example, a cluster with m = 12 and Psp = 50 has

roughly 81 super peers connecting it to its next higher cluster. That means the higher

level cluster has 81 agents dedicated to serving that sub-cluster. Since agents in this

system may serve as super peer for at most one cluster, this means the set of 81

agents in the higher cluster may not serve as super peers for any other cluster. Each

cluster therefore has a branching factor of 50 sub-clusters. Addressing 50 sub-clusters

requires six bits of binary address space. Therefore, each cluster ID in this system

needs only six bits of address space, and so the first three segments of the address

shown in Figure 3.2 consume 18 bits. The agent’s final address segment uniquely

identifies it within its own cluster, and so requires 12 bits. This leads to a total

address width for this address of 30 bits. Compared to full addressing used in typical

Chord networks, this is a savings of 36 - 30 = 6 bits, or enough address width for

another level of the hierarchy.

3.1.5 Searching for a resource. RC-Chord provides the facilities to locate

the sub-graph associated with a resource, but does not explicitly maintain any form

of storage mechanisms for tracking quantities of the available resource. Searching for

a resource begins by forwarding a request from the source agent to the super-cluster.

This process is expected to consume (l−1)∗O(log(2m)), or (l−1)∗O(m), hops, where

l is the level number of the source node, and m is the node address width. Since the

super-cluster has membership for each possible resource, only O(log(2m)) = O(m)

more steps are required to locate a super-peer of the necessary sub-tree. This yields

an expected minimum resource search time of l∗O(m) hops. This process depends on

a reliable mechanism for mapping resource identifier to the set of nodes responsible

for that sub-tree.

Once the proper resource sub-graph is located, the search algorithm may choose

to descend as far into that tree as it desires. Increasing the depth of the search

examines larger portions of the network, and may improve searches for agents with the
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Figure 3.3: Example agent mapping for a cluster with m bits of address width, and
n resources. The 2m address entries are divided into Rn intervals. Each interval has
one entry for each of the n resources. The initial interval for resource three is shown
as R3(0), being the first entry for resource three in interval three.

desired characteristics. The exact algorithm used to decide which level/cluster/agent

to choose relies on the application. RC-Chord provides the entry point into the proper

resource sub-graph from which to initiate these searches, and the communications

mechanisms with which to perform that search efficiently and reliably.

3.1.6 Resource to ID Mapping. Given a resource r, the protocol maps the

set of nodes responsible for r within the super-cluster. RC-Chord’s node address

mapping for each cluster attempts to evenly distribute the addresses of new nodes

into the address space. This is done using an algorithm that aids in later searches

by assigning node addresses in a known order. Miss mitigation occurs along a known

path that is most likely to result in the earliest possible address hit, while at the same

time uniformly distributing node addresses.

RC-Chord uses a mapping of the form δ = Rn ∗ n, where Rn is the resource

number, and n is the nth node in the cluster of resource Rn, and begins with n0 = Rn.

Figure 3.3 illustrates this process. The mapping divides the 2m entries in each cluster’s

address space into Rn evenly sized intervals. Each interval has an address identifier

for each of the Rn different resources, with the resource in the same relative location

for each interval. The index variable n chooses which of the intervals to examine for

each resource. To help eliminate clustering of nodes into each interval, the initial

value n0 = Rn specifies the starting interval for each resource. Since the resources
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are uniquely identified, and assuming a stochastic entry pattern for nodes by resource

type, this constrains the first node of each resource type to start in a different interval.

The kth subsequent node for a resource lands into address interval (n0 + k)modRN .

The impact of this scheme is to enforce the Chord protocol’s uniform distribution

requirement, from which the Chord performance guarantees are built.

This resource to identifier mapping also provides the property of reversibility.

Given a node address in the super-cluster, it is possible to determine the resource

that the node represents at the super-cluster with modulo arithmetic. This is useful

for an alternate global addressing scheme which maintains node addresses at each

cluster, versus cluster identifiers. Should a node depart, a miss occurs, and a reverse

mapping is performed to identify the resource with which that node was associated.

The forward mapping is then applied, and a new node for that resource is identified

to complete the message transfer.

3.1.7 RC-Chord Parameters. This section describes the key RC-Chord

parameters. These variables are meant to tune the performance of an RC-Chord

instance. The following section introduces those variables within the simulator that

directly affect the performance of RC-Chord during experiments, but that are not

directly tied to real RC-Chord instances.

The identifier length, m, is the number of bits used to store agent identifiers.

This variable is an integral part of the Chord protocol. It specifies the address width

of agents within each cluster, and therefore also dictates the maximum number of

agents that can exist in any Chord instance (2m). When the Chord clusters in the

RC-Chord are full as a result of meeting the 2m nodes in a cluster, additional clusters

are constructed. For systems of many nodes, setting a low value of m can result in a

great many clusters being formed, which also uses a significant amount of simulator

memory. For RC-Chord testing, this variable is moved between 10 and 20 ([8,20]) to

examine its effect, and for coalition formation testing of systems of one million nodes,

it is left at 12 (4096 agents per cluster).
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The variable num resources is the number of resources recognized by the sys-

tem. Each agent in the system may have any number of resources on [1,num resources].

As part of testing a baseline Chord instance, num resources is set to one, and m is

set large enough that all nodes in the system fit into a single cluster. This ensures

that only the super-cluster is created, and that all nodes within that cluster are equal

and free to communicate without restriction (i.e., no semantics associated with cross-

ing resource, cluster, or super-peer boundaries). However, in order to exercise the

full body of software developed for this system, multiple resources are made available

during additional testing (typically five).

The peer to superpeer ratio establishes the number of peers for every super

peer in normal clusters, which serves as the mean for a distribution that decides when

to promote a new node to a super peer. That is, for each peer to superpeer ratio

nodes, make one super peer. This ratio is observed universally within RC-Chord, and

across all time boundaries (startup versus churn, etc). For simulation purposes, agents

that act as super peers also act as a normal peer in the next higher cluster. This is

done for simplicity reasons, and for maintaining the cluster fullness property more

easily. As such, specifying large values of the peer to superpeer ratio can increase

the number of clusters in the system because those super peers are each a member of

two different clusters.

It is important to choose values for m that make sense with the simulation or

real network being constructed. The number of sub-clusters from the super-cluster

is calculated as 2m / num resources. Thus if num resources >= 2m, then the

configuration becomes invalid. For clusters other than the super-cluster, the number of

sub-clusters is calculated as 2m/peer to super peer ratio. As with the super-cluster,

choosing improper values for these variables can yield an improper configuration.

max super peers is the maximum number of super peers per cluster. This is a

safety variable that helps to reduce any chance of creating the improper configurations

described above, by establishing a hard limit on the number of super peers per cluster.
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The goal of this variable is to reduce the chance of errors in the system configuration,

and to ensure reasonable performance under abnormal situations such as high churn

and network failures.

maxresource per node specifies the maximum amount of resource allocated per

node. Likewise, minresource per node specifies the minimum amount of each re-

source that a node may possess. Both parameters are tunable to the coalition forma-

tion workload and task requirements. These variables provide a simple and effective

method to tune the simulations to different environments.

k is the number of pointers in the Chord finger table. This variable is tuned to

the address width of the network, and is useful in achieving address location flexibility.

Larger values of k increase the number of entries in the Chord finger table, thus

providing greater resolution in agent searches, and also storing more node references.

Both of these characteristics can improve the constant factor lookup performance of

the Chord protocol. However, with higher k comes increased memory consumption.

In practice, k is generally kept at or near m.

r is the maximum size of the successor list. This list maintains references to

the r most interesting or most used nodes that an agent may know. In practice, the

successor list is actually used more than the finger table, as it includes the same nodes

as in the finger table, plus additional nodes up to the limit r. The successor list is

sorted, so searches can sometimes be more efficient using the successor list, however

the finger table must always be populated as best as possible to maintain the Chord

protocol guarantees of O(logN) lookup time. In this respect, the finger table acts as

the absolute authority of what nodes are considered important, whereas the successor

list is consulted more frequently for normal search duties.

The size of the successor list, r, is generally a small multiple of m. This is done

to maintain the logarithmic memory expectation for Chord agents, and to reduce the

runtime space used during simulations. During churn situations, the successor list can

77



become full very quickly, and for larger values of r, storing and using the successor

list dominates both memory and processor time.

3.1.8 Simulation Variables. This section briefly describes those variables

that are of primary importance to the simulator, and not intrinsic values that can be

easily controlled in RC-Chord.

size is the target number of agents for the network. This number of agents will

be created initially within the simulations, but this number may not necessarily be

maintained in churn situations. The size variable is used to allocate memory internally

to speed processing in certain instances and to identify file naming conventions within

the logging and data instrumentation subsystems.

num messages is the maximum number of simultaneous messages in the system.

This is included to reduce the total memory used during simulations. The traffic

generator is tuned to stay at or near this maximum, if possible, to ensure that as

much work is being performed within the agent lookup system as possible, while

staying below process memory limits.

churn is the static churn rate measured in percent. For example, a churn rate of

0.1 is 0.1%, or a 0.001 multiplier of the current network size. Obtaining real statistics

about just how much churn is reasonable can be difficult. However, for simulations,

setting this variable much above 5.0 generates large workloads on the system. Also,

for a system of one million agents, a churn amount of 50,000 agents per step may be

impractical for some applications.

churnstep is the second tuning parameter for the static churn subsystem. This

is the simulation time step duration used to incur the above static churn amount. For

each churnstep time units, churn percent of the agents in the system will be removed,

replaced with an equal amount of new agents. The new agents will not have the same

properties as those that just left, and RC-Chord applies its self-organization protocols

to place the new agents into proper locations within the hierarchy.
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businesschurn represents the ability of the simulation to perform network churn

at times, and with appropriate magnitude, to model a standard business system

where users log on in the morning, and log off in the afternoon. The business churn

subsystem follows a mixture of several distributions that model a typical day in the

churn of a business class network: large in-flux of nodes to the network around 0800,

and departures around 1700.

When using business churn, the churnstep value should be set in accordance

with the established realtime step ratio. This ratio is calculated at runtime, and

establishes a mapping between the scheduled simulation length and a 24-hour business

churn time model. The business churn subsystem dominates scaling of the simulation,

wherein one time step usually represents one second. Care must be taken when

configuring the business and static churn models together, to avoid unwanted bursts

of agents joining and parting the system, and to create the desired effect for the

application design being investigated.

maxhopcount is the number of hops a message takes before the system decides

the message will not reach its destination. This simulation variable is used to prevent

infinite loops of messages spinning back and forth between agents. It does happen

that, during times of high churn, the system is not stable enough to resolve all nodes

[86]. During these times, messages may become trapped in infinite loops. To properly

capture this phenomenon for data analysis, the maxhopcount variable is used to

specify how many hops should pass before stopping the message’s transactions. This

variable is usually set to a small multiple of m because the expected lookup time for

a node in a Chord system is logarithmic in the address width, m.

threads specifies the number of threads to run during the simulation. Only cer-

tain parts of the simulation are multi-threaded, and so the threads only execute those

portions of the simulation. These areas include cluster maintenance, task allocation

by coalition formation algorithms, and task execution steps.
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The transport delays specify the number of steps between message passing. For

each message that is submitted to the simulator framework, a step duration is chosen

from a uniform distribution on [mindelay,maxdelay] milliseconds. This duration must

pass before the message is delivered to the target. Depending on the resolution of

the simulation time system, these delays can be on any order of magnitude, but are

generally in the low tens of milliseconds for Local Area Network (LAN) simulations,

or hundreds of milliseconds for Wide Area Network (WAN) simulations.

3.2 Coalition Formation Methodology

The following discussion introduces the Distributed Likelihood of Execution

(DLOE) algorithm, which is used to solve the cooperative coalition formation problem.

The algorithm is built upon the RC-Chord structured HP2P overlay. It leverages RC-

Chord’s properties to construct coalitions based on speed of coalition formation and

projected efficiency of task execution. These objectives require an understanding of

how RC-Chord is organized and what properties it provides, as well as understanding

the task and scheduling models used to define and execute tasks.

3.2.1 Coalition Formation Problem Definition. Coalition formation focuses

on the construction of teams of agents to execute tasks, with the goal of employing

the capabilities and assets of under-utilized agents to achieve larger and more sophis-

ticated tasks. A task is defined as a function, with a desired end state, that requires

one or more agents and resources to complete.

Forming optimal coalitions requires input from each agent in the system, and is

anNP-complete problem [83]. As defined by Abdallah and Lesser [3], consider the set

of tasks T = 〈T1, T2, ..., Tq〉. Each task Ti is defined as Ti = 〈ui, rri1, ..., rrim〉, where

ui is the utility gained for accomplishing task Ti and rrik is the amount of resource

k required by task Ti. The set of agents is defined as I = {I1, I2, ..., In}, where each

agent Ii = 〈cri1, cri2, ..., crim〉, and crik is the amount of resource k possessed by agent

i.
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The coalition formation problem is then defined as the allocation of the subset

of tasks S ⊆ T to agents that maximizes the global utility, U ,

U =
∑

i|Ti∈S

ui. (3.3)

The task allocation algorithms are charged to build a set of coalitions C =

{C1, ..., C|S|}, where Ci ∈ I is the coalition assigned to task Ti, such that each task

coalition provides enough resources of each type to satisfy that task’s requirements.

∀Ti ∈ S, ∀k :
∑
Ij∈Ci

crj,k ≥ rri,k. (3.4)

A constraint on the problem is that each agent is capable of only executing a

single task:

∀i 6= j : Ci

⋂
Cj = ∅. (3.5)

This classical form of the coalition formation problem assumes single-task robots

[34], “all or none” resource allocation, and exponential time coalition formation due

to task group enumeration [74]. These properties will be modified and extended to

define the cooperative coalition formation problem examined here.

3.2.2 Cooperative Coalition Formation. The objective of the coalition for-

mation problem is to maximize the global utility across all task coalitions. The co-

operative coalition formation problem extends this definition by assigning a different

meaning to global utility.

Achieving global knowledge, and thus global coordination, in a large-scale sys-

tem is thought to be intractable [51]. As such, the scale of the target systems motivates

a new global objective: ensure that each agent is doing something, rather than ensur-

ing each agent is doing something useful. This objective is based upon the observation
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that global coordination is difficult or impossible to achieve, and so a measure such

as global utility may be impossible to accommodate. Therefore, each agent should

minimize its time spent negotiating coalitions, and instead focus on contributing as

much useful work to the system as possible. Agents that are part of multiple task

coalitions are then capable of making local task scheduling decisions so as to maximize

global utility. Clearly, agents in cooperative systems must be considered trustworthy

enough to choose decision paths that benefit the system before themselves.

Agents seek to accomplish the greatest amount of work over time. Work is

defined as the number of units of processing performed per unit time over the entire

system, and each agent is capable of executing at most one unit of work per unit time.

This concept is based on the observation that maximizing work throughput reduces

mean task duration, and leads to a definition of the task model.

3.2.3 Task Model. Tasks used in experimentation are designed to accom-

modate the diversity of real time tasks expected to be executed within a large-scale

agent network. In particular, each task has a quantity of work to complete, a list of

required resource types, and a required total quantity of each resource.

Tasks are redefined as Ti = 〈wi, pi, si, rri1, ..., rrim〉, where wi is the number of

units of work necessary to complete task Ti, pi is the task priority, and si is the task

synchrony.

Each task, Ti, specifies an amount of work, wi, that must be performed to

complete the task. Experiments performed in this body of work seek to validate the

model and task execution process. Each task is assigned an amount of work that

follows a uniform distribution, according to the test matrix in Section 5.1.2. The

work executed per unit time is compared to the workload generated, and serves as

the primary forcing function for the system. Each agent of a task coalition is capable

of contributing one unit of work per unit time, and the work for a task may be

distributed across multiple agents.
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Task priority, pi, provides a mechanism for runtime tuning, as well as scheduling

fidelity. Task priorities for this model fit within a range of [1,10], with 10 being the

highest priority. These simulations place most task priorities at the median priority in

the middle of the priority range. A second, lower probability, task priority distribution

generates high priority tasks. This is meant to reflect the applied nature of this

research, namely the application to corporate Command and Control (C2) and defense

systems. In such systems, a standard workload of median priority tasks is executed

during standard operations. However, occasionally high priority tasks will surge into

the system, caused by threats, attacks, or other stimulus. These higher priority tasks

are required to execute more quickly than standard tasks to achieve real time mission

objectives.

Not all tasks are completely parallel [56], and such distributed processing tasks

require periodic barrier synchronization points. These synchronization points halt

processing on all agents that have reached the barrier while any other agent has not

yet arrived. These synchronization points are sometimes created artificially to verify

accuracy, integrity, security, or logging. However, most often barriers are caused by

bottlenecks in the distributed algorithm or data set. Coalitions will likely execute

some algorithms which experience these bottlenecks, and therefore the task model

must accommodate them. As such, each task is assigned a task synchrony value, si,

that specifies the number of steps each agent can perform before reaching a barrier.

Simulations exercise this property, varying the synchrony amongst several low val-

ues. The low values represent more frequent synchronization points, and will yield

lower overall distributed performance, and thus serve as more interesting data points.

Purely parallel algorithms, or those without synchronization points, are also examined

to construct baseline statistics for comparisons. In these experiments, task synchrony

is said to be disabled.

An example of a task that requires no synchronization is scanning a hard disk.

Multiple agents can be assigned to this task, and each can function independently by

scanning a portion of the disk. However, any processing that requires the disk to be
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fully scanned requires a synchronization point, as the tasks performing the scans may

not all complete at the same time.

To accommodate the allocation of an agent’s resources to multiple coalitions,

the following extension is made to Abdallah and Lesser’s model:

∀Ij ∈ I, ∀k :
∑
Ti∈S

cri
jk ≤ |crjk|. (3.6)

In Equation 3.6, cri
jk is the portion of agent j’s supply of resource k that is

allocated to coalition i, which is not to exceed the agent’s total supply of resource

k, defined by |crjk|. This limits the amount of total resources that an agent may

obligate. That is, each agent may only obligate up to the maximum amount of each

resource k that it possesses, but may split the allocation between multiple coalitions.

This allows each agent flexibility to participate in multiple coalitions simultaneously.

It also increases the satisfiability of agent coalition formation by allowing partial

amounts of resources, where applicable, to participate in multiple coalitions. This

alleviates the “all or none” approach to resource allocation, by allowing tasks to

receive only the amount of each resource they need.

To maximize performance, each agent is permitted to contribute only one re-

source (or partial resource) to a task. This eliminates the possibility of contention in

task scheduling, ensures minimum time between barriers, and is a reasonable assump-

tion for a large-scale system. During simulations, tasks choose which of the available

resource types to include as requirements. The number of resources, and the quantity

of each, follow a uniform distribution. This allocation design seeks to create diversity

in task allocation decision making, and to exercise resource location algorithms within

the overlay.

The cooperative coalition formation problem is defined as the allocation of the

subset of tasks S ⊆ T to agents that maximizes:
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W (t) =
∑
i∈Ii

wi(t). (3.7)

Note that the global work throughput, W , is not resolved with the formation of

task coalitions. Rather, W is time-dependent, and increases with the number of agents

that are able to execute a unit of work per time. Coalition formation algorithms must

therefore focus on the allocation of tasks to agents such that the number of agents per

task is globally balanced. This balance reduces the workload on some agents, instead

placing it on under-loaded agents, and increases the total system work throughput.

To maximize work throughput, and to accommodate tasks with multiple priori-

ties, agents must be capable of processing multiple tasks simultaneously (via internal

scheduling). The work throughput is thus dependent on how tasks are executed on

each agent.

3.2.4 Scheduling. Each agent is capable of receiving and processing multiple

tasks. Each task has a quantity of work that must be executed to complete the task’s

processing. For simplicity, each agent may only execute a single unit of work per unit

time. Agents may choose which task to execute from those tasks they possess. In

the event that an agent must choose which among a list of active tasks to execute, it

uses a simple priority based scheduling algorithm. Scheduling follows a simple lottery

scheme designed to facilitate execution of arbitrary priority distributions. Under this

approach, each task is given a number of tickets proportional to its priority. Thus

higher priority tasks receive more tickets, and have a higher likelihood of being se-

lected to receive processor time. The sum of these tickets per agent is called the

agent’s Total Priority Points (TPP). Once all tickets are created, a ticket is chosen at

random, and the task to which that ticket belongs is executed for one time step. This

simple scheduling algorithm ensures fairness and progress, while implicitly deconflict-

ing between two optimization parameters: number of tasks on the agent, and their

priorities. Incorporating more sophisticated scheduling is an area for future work.
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Figure 3.4 shows the task priority distribution for simulated tasks. Tasks prior-

ities are assigned based on this bi-modal distribution. The dominant distribution has

a mean of 3.5, and represents the creation of tasks during normal operations. Because

this system is meant to follow the roles of corporate operations, to include network

defense, a second distribution models the low probability occurrence of high priority

events. Such high priority events represent real world situations that may require a

sudden burst of additional computing power. Tasks assigned into this category are

centered around priority eight, and represent a small percentage of all tasks.
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Figure 3.4: Simulation task priority distribution. This is a bi-modal mixture model
of two Gaussian distributions, one for standard operating missions, and a second for
low probability, high priority missions.

When allocating agents to a new task, the DLOE algorithm examines the task

priority of the new task, pn, and compares it to task priorities of the agents it investi-

gates. With knowledge of the task scheduling algorithm on each agent, the coalition

formation algorithm attempts to maximize the likelihood that the new task will re-

ceive processor time on each agent. The algorithm assigns points to each task, Ti,

resident on a target agent, Ij, based on the priorities of those tasks:

priority points =
∑
Ti∈Ij

priority(Ti) (3.8)

The value of each agent’s priority points is compared, and the agent with the

lowest value is assigned the new task. This ensures minimum competition for pro-
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cessing time for the new task on the target agent, thus maximizing its likelihood to

execute, and reducing the task’s total execution duration.

3.2.5 Coalition Formation in a Large-Scale Environment. The goal of build-

ing a solution to the large-scale cooperative coalition formation problem is to facilitate

the usefulness of distributed processing in the CyberCraft project. The CyberCraft

network is expected to have one million, or more, agents cooperating together to

achieve a set of mission objectives. A second goal is to develop a suitable process

to create coalitions of cooperative agents in a large-scale Distributed Multi-Agent

System (DMAS). The approach centers around two elements: relaxation of the for-

mal coalition formation problem, and development of a suitable heuristic to construct

coalitions of CyberCraft.

Much of the existing research into coalition formation does not scale beyond at

most a few hundred agents. The theoretical complexity of O(2N) is an artifact of the

definition of the problem: the number of steps it takes to find the optimal configuration

for N agents into c coalitions, where c > 1. This problem is NP-hard, and assumes

an all-to-all coordination mechanism to form coalitions. An underlying assumption

in this problem formulation is that agents are self-interested, and therefore the only

method to guarantee that an agent receives its best coalition partner(s) is to evaluate

all possible coalition formations. However, the CyberCraft project introduces an

important restriction which will be exploited in the creation of a large-scale coalition

formation algorithm: the agents are cooperative. This cooperation specifies that all

nodes are more interested in finding a suitable large-scale solution that benefits the

group as a whole. Because such large-scale systems implicitly prohibit the possibility

of global knowledge, the agents must seek to satisfy the greatest common utility gain

with what little information they have. Since tasks arrive at runtime, an agent cannot

possibly predict what tasks are to come, and therefore must also restrict its decision

making to the little information it has at any point in time. These restrictions aid in

the creation of a large-scale coalition formation algorithm.
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With this cooperation among agents, it becomes possible to introduce a heuris-

tic which forms the basis of an agent’s decision making. Like search in a large tree,

each decision point is based on limited data, but can still yield near optimal solutions.

The size of the CyberCraft target network precludes the possibility of globally optimal

solutions, but agents can instead optimize the solution to the cluster level. Given ap-

propriate tuning parameters, clusters can be formed such that internal (intra-cluster)

broadcast, or maintaining a shared database, can yield near optimal local coalitions.

As each cluster can be viewed as a node to a higher level cluster, this pattern can

be reproduced at increasingly higher levels, yielding near optimal global coalition

formations.

This solution can be viewed as building upon the task allocation problem: given

a task T which requires p processing units and r resources, build a coalition of available

and willing agents that will solve T in the shortest possible time. This contribution

provides a mechanism for large-scale systems to organize themselves into working

structures that can achieve one or more simultaneous tasks, although perhaps not

optimally.

3.2.6 Distributed Likelihood of Execution (LOE) This solution to the dis-

tributed task allocation or coalition formation problem is called DLOE. The DLOE

algorithm attempts to achieve maximum work throughput by forming coalitions for

work tasks. Since the algorithm is distributed and designed to operate in large-scale

systems, it does not use global knowledge.

Each node in the system periodically passes its resource amounts and TPP

(Section ??) to one of its cluster’s super peers. This information is collected and the

TPP is tracked according to resource amount. For example, in a system that permits

resource amounts [1,1000], the resource interval is split n times. For each of these n

equally divided intervals, the count of TPP for the cluster is tracked1. Along with

1It is possible to divide these intervals based on runtime usage patterns. This idea is discussed
in Chapter VI.
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the number of nodes in the cluster, again divided by resource interval, this vector

of TPP per resource interval is all that is passed upward between clusters. This

information continues an upward ascent through the levels of the HP2P network until

it reaches the super-cluster. The DLOE algorithm uses this information to build an

approximate picture of the TPP for each sub-graph. When searching for agents to

satisfy resource requirements for coalition formation, the algorithm employs a simple

heuristic to determine whether or not to continue searching for more optimal solutions.

The data collection and dissemination accounts for a small amount of overhead.

Given 10 intervals on a 64-bit architecture, the information passed from a cluster to its

next higher level cluster consumes approximately 160 bytes. A system of one million

agents, with 1000 agents per cluster, will have roughly 1000 clusters. This entire

periodic maintenance process therefore consumes approximately 160kB per update

period for a large-scale system. Cluster super peers store the TPP data for members

of their cluster, updating as new information becomes available. This results in a

maximum of num intervals ∗ 2m entries stored per super peer, or 82KB of memory

on a 64-bit machine with 10 resource intervals and a maximum of 1024 agents per

cluster.

3.2.7 Distributed LOE The DLOE algorithm attempts to achieve maximum

work throughput by forming coalitions for work tasks. Since the algorithm is dis-

tributed and designed to operate in large-scale systems, it does not use global knowl-

edge.

3.2.8 DLOE Algorithm Design. Tasks may be introduced to the system by

any agent, at any time. When an agent introduces a task to the system, the primary

objective for building a task coalition is to locate agents that can satisfy the task’s

requirements. For resources inside of the source agent’s cluster, Algorithm 1 is applied

directly. However, to satisfy requests for other resource types, the task information

is forwarded to the super-cluster, where the distributed agent location algorithm is

then executed.
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Algorithm 1 receives a task to be allocated, along with the resource types and

quantities to allocate, and the cluster [identifier] of the agent that produced the task.

The algorithm is shown as recursive, although the actual distributed implementation

can be either iterative or recursive. The entry point into the search is the super-

cluster, which can be reached by any agents in the system in O(logm(N)), where m is

the Chord address width per cluster. The objective of the search is to locate agents

capable of satisfying resource requirements for the new task.

Algorithm 1 build coalition(T ,R = {r1, r2, ..., rn})
for i=1 to length(R) do

C ← C
⋃

chooseNodeRecursive(this cluster, ri)
end for

Algorithm 2 is the core process for choosing from which cluster to allocate

a node. Note that all nodes in the system that satisfy the resource requirements

are capable of receiving another task. However, the goal of this algorithm is to

allocate tasks to agents such that those tasks have the best opportunity to execute.

Determining the task’s Likelihood of Execution (LOE) is a function of the task’s

priority and the priorities and quantities of tasks located on the agents being surveyed.

LOE is calculated as follows. The algorithm begins by calculating the cluster’s

TPP. This process is executed on a super peer, and therefore the agent has access

to such information. The total priority points feed into the agent’s task scheduling

system described in Section 3.2.4. Minimizing the total number of competitors (each

of whom has one or more lottery tickets) will minimize the competition’s likelihood of

winning a processor time unit. The algorithm examines the LOE for the task against

all agents in the current cluster. This value is computed at the super peer without

further inter-agent communications, and is compared to the LOE for the sum of all

sub-clusters from the current cluster. A lower LOE value is more desirable, as lower

values indicate less competition in the task scheduling algorithm. If the LOE of the

current RC-Chord cluster is higher than that of one or all of its sub-clusters, then the

algorithm moves to the best sub-cluster from the current point. At that next cluster,
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Algorithm 2 chooseNodeRecursive(cluster, ri)

clusterTPP = cluster.localTPP + cluster.numNodes
subNodes = cluster.subNodes(ri)
subTPP = max(int)
if subNumNodes > 0.0 then

subTPP = cluster.subTPP (ri)
end if
if clusterTPP ≤ subTPP then

bestAgent = choodeAgentLocal(cluster, ri)
end if
cluster[]subClusters = getSubClusters()
subBestTPPSoFar = max(int)
clustersubBestSoFar = nil
for i = 0 : subClusters.length do

subTest = subClusters[i]
subTPP = subTest.totalTPP (ri)
subNodes = subTest.nodes(ri)
subLOE = subTPP/subNodes
if subLOE < subBestTPPSoFar then

subBestTPPSoFar = subLOE
subBestSoFar = subTest

end if
end for
return chooseNodeRecursive(subBestSoFar, ri)
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the algorithm repeats, continuing until the LOE of the current cluster is better than

any of its sub-clusters. If no sub-clusters exist, then the algorithm has reached the

lowest level of the RC-Chord hierarchy, and a node from the current cluster is chosen.

Once the task coalition is formed, agents contribute units of work to the task

based on their internal scheduling system. Upon reaching a task synchronization

barrier, an agent halts processing on that task until all other agents assigned to the

task reach that barrier. During that time, the agent removes the task from the ready

queue, and instead executes work for other task coalitions of which it is a member.

Once the synchronization barrier has been met by all other agents, the task becomes

ready to execute by all agents agents in the task coalition.

Implicit in the decision making of the DLOE algorithm is that all holders of

a resource are considered equal in quality, although perhaps not quantity. Likewise,

agents contribute equal work units to each task they host. These assumptions estab-

lish a balance among agents, and reduce the search space of the DLOE algorithm.

Contrary to most coalition formation algorithms, the agents under this problem

definition have no decision authority about which task coalitions they join. Rather,

the distributed algorithm decides the task allocation strategy that best benefits the

system work throughput. The DLOE algorithm borrows from the military command

paradigm: centralized authority, decentralized execution. The algorithm itself is dis-

tributed, however the authority it carries is centralized in the sense that agents are

less autonomous than other approaches. The objective of this paradigm is to mini-

mize negotiations resulting in coalition formation, thus reducing the overhead of the

algorithm, and yielding higher system work throughput.

Each node in the system periodically passes its resource amounts and TPP

to one of its cluster’s super peers. This information is collected and the TPP is

tracked according to resource amount. For example, in a system that permits re-

source amounts [0,1000], the resource interval is split n times. For each of these n

equally divided intervals, the count of TPP for the cluster is tracked. Along with
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the number of nodes in the cluster, again divided by resource interval, this vector

of TPP per resource interval is all that is passed upward between clusters. This in-

formation continues an upward ascent through the levels of the HP2P network until

it reaches the super-cluster. The DLOE algorithm uses this information to build an

approximate picture of the TPP for each sub-graph. When searching for agents to

satisfy resource requirements for coalition formation, the DLOE heuristic chooses the

route that minimizes the expected scheduling contention by examining the TPP at

each step. Finding the node with minimum TPP will yield the highest likelihood of

execution for the new task and minimize its expected task duration.

The data collection and dissemination accounts for a small amount of overhead.

Given 10 intervals on a 64-bit architecture, the information passed from a cluster to its

next higher level cluster consumes approximately 160 bytes. A system of one million

agents, with 1000 agents per cluster, will have roughly 1000 clusters. This entire

periodic maintenance process therefore consumes approximately 160kB per update

period for a large-scale system. Cluster super peers store the TPP data for members

of their cluster, updating as new information becomes available. This results in a

maximum of num intervals ∗ 2m entries stored per super peer, or 82KB of memory

on a 64-bit machine with 10 resource intervals and a maximum of 1024 agents per

cluster.

3.2.9 DLOE Configuration Variables. The DLOE algorithm relies heavily

upon the function of RC-Chord. As such, the tuning parameters used to configure

RC-Chord directly impact the effectiveness of the DLOE algorithm. In addition, the

DLOE algorithm also includes two other tuning parameters: number of intervals

and level update interval.

The number of intervals variable specifies how many intervals to generate for

the range of resources available to the system. RC-Chord defines how many re-

sources the system possesses, and the DLOE divides this range into smaller inter-

vals to improve task formation quality. An agent’s TPP characteristics are placed
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into a vector of TPP for its cluster. The range of resource amounts is divided by

number of intervals to determine how many elements the vector tracks. The amount

of a resource that an agent possesses is used as an index into the TPP vector, and

that value is incremented by the amount of the resource for that agent. Increasing

number of intervals increases the fidelity of the LOE subsystem, at the expense of

slightly increased memory and bandwidth consumption.

The level update interval variable specifies how often, in simulation time steps,

that the above TPP and number of nodes vectors are collected and transmitted up

the RC-Chord hierarchy. Specifying lower values for level update interval causes the

system to maintain LOE data that is closer to realtime, at the expense of increased

bandwidth consumption. This value is used to tune the system based on expected

workload.

3.2.10 Summary. The RC-Chord HP2P structured overlay system provides

reliable large-scale communications for use in C2 applications. The ability to locate

agents by resource is a critical component in the development and execution of the

DLOE cooperative coalition formation algorithm. This algorithm seeks to locate the

best agents in the system to join new task coalitions. The objective of the combined

system is to maximize work throughput across the system, paying special regard to

the task model, which identifies the priority of each task to be executed.
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IV. RC-Chord Experiments and Analysis

This chapter describes the experimental objectives, configuration, and results

of testing Resource Clustered Chord (RC-Chord). The analysis begins with

a validation against the baseline Chord system, and moves forward to examine the

effects of scale on RC-Chord’s runtime properties. The chapter ends with a summary

of the design methodology and experimental results.

4.1 Experimental Setup

These experiments profile and verify the expected results of RC-Chord. An

RC-Chord implementation has been created to operate within the Peersim [46] Peer-

to-Peer (P2P) simulator. The baseline system for validation is an RC-Chord instance

with one resource, and an identifier width, m, large enough to allow all nodes in

the system to reside in a single cluster. This scenario replicates the baseline Chord

protocol, and is used to validate experimental results. The testing assumes a reliable

communications mechanism.

4.1.1 Response Variables. The response variables in these experiments are

the mean message hop length of messages between any two nodes and the agent

lookup success rate. The mean hop length is determined based on messaging from

each agent to each other agent in the network. This one-to-all broadcast includes

destinations that are both inside and outside of the source node’s cluster. This is

a primary measure of the efficiency of the protocol. Because RC-Chord relies upon

the Chord protocol, and because it incorporates a layered approach, the mean hop

length for RC-Chord should not differ from that of Chord by more than a constant

factor proportional to the number of layers in the Hierarchical Peer-to-Peer (HP2P)

structure.

During network churn, agents that are new to the system will not be reachable

immediately. Likewise, agents will not know about recently departed agents until the

notification of the departure is propagated outward. These scenarios create possibil-
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Table 4.1: Simulation Process Variables

Variable Range

Address Width (bits) 10, 11, 12 13, 14, 15, 16, 17, 18, 19, 20
Network Size (agents) 1000, 2000, 4000, 8000, 16000, 32000, 64000,

128000, 256000, 500000, 1000000
Static Churn Rate (percent) 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0

Business Churn True, False

ities for agent lookup or message delivery failures, and the rate of these failures is

proportional to the churn rate. This response variable presents a useful indication of

the quality and delays of the protocol during periods of high churn or failures.

4.1.2 Process Variables. The RC-Chord experiments exercise several process

variables. These variables, shown in Table 4.1, are chosen to configure the system

according to the baseline Chord protocol.

The primary process variables are the Chord identifier address width, the num-

ber of agents in the system, and the churn rate. The Chord address width, m, is

initially set to the minimum size required to place all agents of a 1000 node system

into a single cluster (m=10). This is one of the baseline Chord experiments, used to

validate the approach against a known system. The value of m increases to 20, which

is the minimum size required to place all agents in a system of one million agents

into a single cluster. In cases where m is too small to allow all agents to reside in a

single cluster, the RC-Chord protocol will distribute the agents into multiple clusters

at multiple levels.

The number of agents in the system varies between 1000 and one million agents.

CyberCraft requires the capability to support one million or more agents simultane-

ously, and so the larger systems are examined in more detail than the smaller systems.

However, trend data across this spectrum of network sizes serves to establish an un-

derstanding of the scalability of the system, and how RC-Chord’s properties vary with

scale.
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The static churn rate will vary from 0% to 1.0%, with churn performed every

60 simulated seconds. For a system of one million agents, this represents a churn of

up to 10,000 agents leaving, and 10,000 agents joining the system every minute. This

churn rate far exceeds the expected instability to be found in a business class system

such as CyberCraft, but serves to further validate RC-Chord’s resilience under high

flux or failure conditions.

Experiments employ a business class churn model in addition to the static churn

rate. An agent’s session time, or length of time an agent is connected to the net-

work before leaving, is patterned as a mixture model of two Laplace/Pareto distribu-

tions [16, 59]. This model represents the standard business practice of logging into a

computer at the beginning of the day, and logging off at the end of the work day. For

the purposes of these experiments, the entry time of 0800 is used, and the departure

time is 1700. This model follows a bi-modal Laplace distribution centered around the

above times, with a mean variance of 30 minutes to accommodate those who arrive or

depart either before or after the median times. The magnitude of the maximum busi-

ness churn is also 1.0%, and occurs at the median of each business churn distribution.

Figure 4.1 shows the business churn model distribution. The system is initialized

with one million nodes at time step zero, or noon simulated time. The departure of

agents begins at approximately 1630, lasting until 1730. The time lapse scale shows

the arrival of agents the next morning.

4.1.3 Control Variables. The control variables for the RC-Chord simula-

tions establish consistent parameters between experiments. With the exception of

the baseline experiments, the number of resources in the system is held at five. The

presence of more than one resource stimulates the creation of multiple branches of

the P2P hierarchy, thus exercising the RC-Chord cluster construction and destruction

protocols. Baseline Chord systems use a single resource, so the agents are allocated

in a single cluster, and are otherwise equal peers.
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Figure 4.1: Time lapse illustration of the business model churn distribution. This
stimulus consists of two Laplace distributions. The first distribution describes for the
departure of agents from the network at the end of the business day, and the second
models the arrival of new agents to the system at the beginning of the work day.

A peer to super peer ratio of 512 is used to exercise the super peer promotion

and inter-cluster communications portions of the RC-Chord protocol. The length of

the Chord successor list is restricted to 2m to maintain the Chord logarithmic node

memory usage. Message transport delays are kept to the interval [0,10] milliseconds.

This represents a Local Area Network (LAN) deployment, which will not necessarily

meet all target environments. Evaluating systems which use different values of this

control variable is an area of future work.

Message delivery attempts are halted after a message has reached 5m hops. This

number is high enough to give the system ample opportunity to perform maintenance

on newly departed or arrived agents, and eliminates any messages from entering an

infinite cycle. A message delivery or agent lookup failure occurs when an agent is

authoritatively determined to not be present in the system, or the hop limit is reached.

Minor maintenance occurs at most every 10 seconds. During a maintenance

period, if an agent has detected a change in the system, it sends each of its neighbors
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a message with those updates. This information is used to update each agent’s internal

tables. Each agent is connected to approximately logN neighbors. Since each agent

sends update messages to each of its neighbors, this maintenance traffic requires at

most O(N logN) messages every maintenance period, under the unusual circumstance

that each agent detects a change in the system in a single period.

4.2 Results and Analysis

Testing against a baseline Chord instance is used to validate the RC-Chord

simulations. These experiments configure RC-Chord such that all agents in the system

reside in a single cluster. Once validated, the test matrix in Table 4.1 is followed to

exercise the RC-Chord protocol.

4.2.1 Chord Baseline Validation. The validation of RC-Chord against a

baseline Chord system demonstrates the correctness of the underlying protocol and

implementation of RC-Chord. To validate against Chord, RC-Chord is configured to

use a single resource, large m value (32), and no churn. This forces all agents in the

system to form a single cluster in which all agents are peers. With this configuration,

a set of standard experiments generates data used to validate the model.

Figure 4.2 shows the mean hop length with first standard deviation for the

baseline test case. The logarithmic upper bound is the expected upper bound of the

baseline Chord protocol. The mean hop lengths for these systems reside far below

the upper bound, with no outliers.

In addition, all agent lookup queries are successful. Under a stable Chord sys-

tem, the Chord finger tables should all point to suitable neighbors to resolve all agents

in the system. Since every agent in the baseline RC-Chord experiments is resolved,

with 100% message delivery over the course of the experiments, this portion of the

baseline validation also passes.

The baseline agent lookup failure rates for RC-Chord systems, with business

churn disabled, are shown in Figure 4.3. These baseline systems set m = 32, so all
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Figure 4.2: Chord baseline validation for mean hop length. The plot of O(logN)
is the expected upper bound for the mean hop length in a pure Chord system. The
results obtained via experiments sit below the upper bound, partially validating the
RC-Chord protocol.

agents are in a single cluster, and vary the level of static churn. A static churn rate of

0% yields 100% agent lookup success rate. The data demonstrate that higher churn

rates negatively affect the ability of the system to resolve agents. The magnitudes of

these results are consistent with other approaches [62], and help to validate the Chord

agent lookup failure model.

These experiments with RC-Chord in baseline configuration demonstrate the

accuracy and effectiveness of the model, as measured against the standard Chord

protocol. The results successfully validate the basic RC-Chord protocol and imple-

mentation, building a foundation upon which to conduct further testing.

4.2.2 RC-Chord Experimental Results. Figure 4.4 shows agent lookup costs

for networks of size varying from 1k to one million agents, in a system with 5 resources,

business churn enabled, and 1.0% static churn. Overall the trends are similar, with

an increase in hop length in lower address widths. Once the address width for each

test reaches logarithmic size in the number of agents, the hop length stabilizes to the

results closer to those obtained by a pure Chord system. This decrease in hop length
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Figure 4.3: Agent lookup failure rates for systems with varying levels of static
churn. Business churn is disabled for these experiments. The system size varies from
1000 to one million agents, and m = 32.

occurs because the address widths below logarithmic size in N force the creation of

new clusters at lower levels. Even though an address width of O(log(N)) forces a

small percentage of nodes into a lower level cluster, it is not until a significant portion

of nodes are forced to lower levels that the overall hop length for the experimental

sample will begin to increase.

The effects of the business churn model alone are shown in Table 4.2. This

table describes the mean hop length results for systems with 0% static churn, varying

m ∈ [10, 20], and varying the network size from 1000 to one million agents.

For any experiments in which more than one cluster must be formed, i.e., for

all experiments in which 2m ≥ logN , the mean hop length and standard deviation is

higher than the baseline Chord systems. This occurs because the RC-Chord protocol

forces the creation of one or more clusters at different levels. Once established, each

cluster of at most 2m agents communicates internally as a stand-alone Chord instance.

To perform inter-cluster communications, messages are routed first to a super peer,

then across the cluster boundary into the next cluster along the target route. This
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Figure 4.4: Global agent lookups for a system of agents varying in size from 1000 to
one million agents. In these experiments, the business class churn model is enabled,
and static churn is set to 1.0% per 60 simulation seconds. The X-Axis shows values
of the address width, m, and the Y-Axis shows mean number of hops per lookup.

process repeats until the target is located. As such, the total hop length can reach as

high as O(llogN), where l is the number of levels in the system. The maximum hop

length occurs when an agent from a cluster in the lowest level must communicate with

another agent in the lowest level of a different resource sub-graph. Those messages

follow the route from source to super-cluster, and from super-cluster to target.

The full effects of churn rate and address width on mean hop length can be seen

in Table 4.3, which shows results of experiments of one million agents. The lower-left

entry of m = 20 and 0% churn rate is close to the baseline Chord protocol, with

a slightly higher mean hop length caused by the business churn model. The higher

standard deviation at lower values of m is tied to the HP2P organization at those

levels. Lesser address width results in more clusters of smaller size, and more levels

in the hierarchy. Intra-cluster communications still maintain the O(logN) mean hop

length, however more inter-cluster communications occur as a result of the increased

number of clusters. These inter-cluster communications require messages to jump

cluster boundaries, entering into a new cluster, where the intra-cluster O(logN) mean

hop length expectation exists. With l levels in the hierarchy, the longest path in the

system is O(2llogN). However, since only a small percentage of communications follow
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Table 4.3: Mean hop length (standard deviation) based on address width, m, and
churn rate for a network of one million agents. Business and static churns are enabled.

Static Churn Rate (%)

m 0.0 0.1 0.2 0.3 0.4 0.5 1.0
10 13.5 (3.14) 13.7 (3.24) 14.1 (3.02) 14.2 (3.36) 13.5 (3.02) 13.6 (2.94) 13.3 (3.40)
11 15.0 (3.37) 15.8 (3.45) 14.6 (3.53) 14.8 (3.48) 14.4 (3.96) 14.4 (3.50) 15.3 (3.93)
12 14.7 (3.84) 14.6 (4.10) 15.2 (3.94) 14.6 (4.05) 14.7 (4.01) 13.8 (4.00) 14.3 (4.23)
13 13.8 (4.16) 14.5 (4.49) 14.8 (4.47) 13.9 (4.26) 13.8 (4.47) 13.9 (4.37) 15.0 (4.50)
14 12.0 (3.37) 11.9 (3.21) 12.0 (3.47) 12.4 (3.49) 11.1 (3.55) 11.5 (3.34) 11.5 (3.41)
15 11.0 (3.61) 11.4 (3.64) 11.0 (3.57) 10.2 (3.41) 11.3 (3.63) 11.0 (3.56) 10.7 (4.01)
16 10.2 (3.91) 10.0 (3.70) 10.1 (3.76) 10.3 (4.00) 9.2 (2.80) 10.0 (3.71) 10.0 (3.82)
17 8.9 (2.76) 8.7 (2.72) 8.7 (2.79) 9.4 (2.81) 8.5 (2.04) 8.8 (2.91) 9.0 (3.01)
18 9.2 (2.35) 9.1 (2.43) 9.1 (2.35) 9.1 (2.39) 8.6 (2.09) 9.2 (2.39) 9.3 (2.48)
19 9.6 (2.37) 9.7 (2.38) 9.6 (2.39) 9.7 (2.48) 9.6 (2.53) 9.7 (2.45) 9.8 (2.49)
20 9.9 (2.25) 9.9 (2.25) 9.9 (2.26) 9.9 (2.24) 9.9 (2.25) 9.9 (2.26) 9.9 (2.28)

this path, with most ending at target agents much closer, the hop length standard

deviation increases in these situations.

Note that the churn rate provides only a small impact on the mean hop length.

This is because the system provides substantial enough routing redundancy to allow

dynamic re-routing in failure conditions. This basic stability in the underlying and

derivative protocols is a primary objective of this research, and results in reliable

performance even in churn conditions.

Table 4.4 shows the agent lookup failure rates for systems of one million agents.

Unlike the mean hop length above, the lookup failure rates are significantly impacted

by the presence of network churn. Larger address identifier widths generally see lower

lookup failure rates due to larger clusters, as shown in Figure 4.5, and the reduced

number of inter-cluster links. With more agents in a single cluster, more paths around

failed nodes exist, resulting in higher overall agent lookup success rates.

4.3 Summary

The RC-Chord HP2P overlay separates the agents in a network into multiple

clusters. Clusters are placed in a downward forming tree, whose branching factor

is proportional to the peer to super peer ratio. Each sub-graph from the top level

104



Table 4.4: Agent lookup failure rates (%) based on address width, m, and churn
rate for a network of one million agents. Business and static churns are enabled.

Static Churn Rate (%)

m 0.0 0.1 0.2 0.3 0.4 0.5 1.0
10 0.07 0.78 1.58 2.57 3.54 4.75 7.14
11 0.07 0.96 1.54 2.50 3.13 3.94 7.16
12 0.17 0.75 1.49 2.26 3.39 3.87 9.95
13 0.09 0.78 1.32 1.72 2.20 2.89 6.65
14 0.08 0.42 0.88 1.34 2.34 3.96 4.99
15 0.02 0.77 1.47 2.11 2.73 3.40 6.46
16 0.27 0.70 1.37 3.19 1.49 2.98 5.69
17 0.00 1.71 1.64 1.82 0.00 4.33 6.20
18 0.00 0.54 1.16 1.74 0.00 3.31 6.36
19 0.00 0.69 1.04 1.88 2.77 2.67 5.45
20 0.00 0.97 0.94 1.49 2.01 2.68 5.01

cluster, or super-cluster, represents an individual resource present in the system – all

agents within each sub-graph contain the same resource type. Agents may join one

cluster for each resource they possess, and are permitted to join a second cluster per

resource when accepting duties of cluster super peer.

Baseline experiments validate the expected performance of RC-Chord against

the Chord protocol. By varying the size of the network, the address identifier width,

and the churn rate, experiments demonstrate the scalability and stability of RC-Chord

for large systems. Even in high churn systems, the mean hop length remains stable,

and agent lookup miss rates are comparable to those in previous research. Overall,

experiments reveal that RC-Chord protocol achieves its objectives to provide reliable

and scalable communications in a system of one million agents.
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Figure 4.5: Number of clusters for systems of one millions agents of differing address
width. The reduction in the number of clusters with increasing m contributes to higher
agent lookup success rates in high churn systems.
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V. Coalition Formation Experiments and Analysis

This chapter describes the experiments used to validate the correctness and ben-

efit of the Distributed Likelihood of Execution (DLOE) coalition formation

algorithm. All experiments are designed to replicate the expected CyberCraft envi-

ronment, to include the capabilities of its agents. Due to the size of the CyberCraft

network, simulations are performed to examine the runtime characteristics of the

DLOE algorithm, compared to baseline and optimal algorithms.

5.1 Experimental Setup

Experiments demonstrate the effectiveness of the DLOE algorithm for large-

scale Distributed Multi-Agent System (DMAS) coalition formation. The Peersim

simulator [46], a Java based simulator engine designed for network and agent simula-

tions, provides the environment for experiments. A complete Chord protocol has been

implemented, on top of which Resource Clustered Chord (RC-Chord) algorithms and

state have been included. The coalition formation algorithms used in the simulations

are built upon the RC-Chord overlay, and experiments evaluate systems of one million

simulated nodes.

Experiments last 10,000 time units each, which is suitable time for data trends

to become stable. At each time step, tasks are allocated according to the desired load

for the simulation. Tasks complete when their required number of work units have

been executed by the task’s agents. Because each agent completes at most one unit

of work per unit of time, if it has a task present to execute, the maximum theoretical

workload that a fully loaded system of one millions agents can accomplish is one

million units of work per time step.

Agents are cooperative, and seek to maximize global system throughput. Agents

will also answer queries honestly, and execute tasks according to the semantics de-

scribed above (such as task priorities). Agents may only join a task once, since joining

more than once introduces contention for processing power.
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5.1.1 Coalition Formation Algorithms. These experiments use three coali-

tion formation algorithms:

• Centralized Random Policy (CRP): An agent is chosen at random. If that

agent meets the resource task’s resource requirements, then it is added to the

task coalition [4].

• Centralized Likelihood of Execution (CLOE): Tasks are allocated to agents so

as to maximize the probability of the task receiving processor time slots. This

centralized algorithm uses global knowledge.

• DLOE: Similar to the CLOE algorithm, except that global knowledge is re-

moved and the algorithm is distributed.

The CRP [4] and CLOE serve as baseline algorithms, with CRP providing a

uniform distribution of tasks to nodes, and CLOE attempting to optimize a task’s

Likelihood of Execution (LOE) with global knowledge. The CLOE algorithm is an

adaptation of the Contract Net Protocol (CNP), modified to operate in an environ-

ment where agents are required to volunteer. The advantage of global knowledge for

CLOE is that no ratio averaging is used in the decision process. Instead, the algorithm

can locate the agent in the system with lowest Total Priority Points (TPP) by exam-

ining every node at each coalition formation iteration. With this global knowledge,

the CLOE algorithm serves as an optimal baseline. The CRP algorithm randomly

chooses nodes to include in a task coalition. However, this process can fail as the

targeted agent may not have the proper resource type, or may have an insufficient

quantity of the resource. As such, CRP consumes additional bandwidth, and is the

only algorithm that can miss.

5.1.2 Process Variables. Table 5.1 describes the process variables in these

simulations. The objective of testing under these conditions is to exercise the critical

parts of the coalition formation algorithms, and examine the resulting effectiveness

metrics.
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Table 5.1: Simulation Process Variables

Variable Range

Algorithm CRP, CLOE, DLOE
Task Synchrony -1, 1, 2, 3, 4, 5, 10, 15

Load (tps) 500, 1000, 1500
CLOE Update Interval 0, 5, 10, 25, 50

Tasks are allocated uniformly across each simulation time line, with task pri-

orities following the probabilities shown in Figure 3.4. The loading parameters are

recorded as tasks created per time step (tps), and experiments demonstrate that they

serve as the highest fidelity process variable for evaluating the algorithms. The incom-

ing task work load, or work generated, is measured in units of work per unit time, with

each task requiring between 750 and 1000 units of total work to complete. Given the

optimal work throughput of the system at one million units of work per unit time, the

values of 500, 1000, and 1500 represent, respectfully, under-loaded, critically-loaded,

and over-loaded systems. The objective of these values is to measure the effectiveness

of each algorithm under consideration in these critical scenarios.

The DLOE level heuristic algorithm has one additional critical process variable:

the update interval. The update interval is the duration, in simulation time steps,

between updates of DLOE shared resource data (Section 3.2.7). For this algorithm,

the update interval is varied among 0, 1, 2, 3, 4, 5, 10, 15. Unless otherwise noted,

the level heuristic update interval is kept at five.

During churn conditions, agents may join and part without warning. Since work

completed by agents is attributed to the task, the loss of an agent does not cause a

task to lose its work completed. Coalitions that lose an agent due to churn reallocate

a new agent to fill the departed agent’s role. Because the impact of churn on coalition

formation is small, and because the introduction of churn would extend testing to

nearly a year, the RC-Chord churn rates are set to zero.
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Table 5.2: Simulation Control Variables

Variable Range

Size 1000000 agents
m 12

Task Resource Required Uniform [750,1000]
Agent Resource Available Uniform [400,1000]

Number of Resources 5

5.1.3 Control Variables. All experiments simulate a system of one million

nodes. Each Chord cluster is given 12 bits of address space, allowing for 4096 nodes

per cluster, and a minimum of 244 clusters for a system of one million agents. Each

task requires between 750 and 1000 units of a resource. This creates the scenario

where some agents will be unable to satisfy the resource requirements of some tasks,

and thus those tasks will need to split the resource requirement among several agents.

Each agent is assigned a single resource from a range of five different resources,

with the resource quantities evenly distributed between 400 and 1000 units. This

introduces sufficient diversity in the system to validate the model by forcing decision

making in coalition formation algorithms, generating multiple resource sub-graphs

in the topology construction phase, and exercising task generation by varying the

number of required resources required per task.

5.1.4 Response Variables. The objective of these experiments is to evaluate

the effectiveness of the DLOE heuristic algorithm against the baseline uniform (CRP)

and optimal (CLOE) algorithms. Primary measures of this effectiveness are the agent

solicitation miss rate, the sustained workload performance of the system as a whole,

and the global balanced utilization of resources.

The CRP algorithm chooses nodes to solicit randomly, with global knowledge.

Because some agents will not be able to satisfy the resource requirement, either be-

cause of insufficient quantity of that resource or incorrect type of resource, this algo-

rithm will tend to miss, or query agents that cannot satisfy its request. These misses

become important in a real system because of network bandwidth consumption and
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time delays. The CLOE algorithm uses global knowledge to carefully choose which

agents to recruit into its coalitions, and therefore does not miss. The DLOE algorithm

tracks agent availability by resource quantity intervals, and therefore also does not

miss.

Workload performance is used to evaluate overall effectiveness because, as ex-

periments show, poor task allocation can result in lower work executed per unit time.

The CRP algorithm suffers the most from this, as scheduling restrictions are not con-

sidered as part of its decision process. The DLOE algorithm attempts to provide as

much of the quality of the CLOE algorithm with respect to workload, but with partial

information.

The lack of global information is a result of the scale of the system in which

these algorithms operate. With the CLOE algorithm as a model, the DLOE algorithm

maintains a shared knowledge of the likelihood of execution at each cluster and level.

This information is shared periodically, creating a small amount of bandwidth over-

head, and a reduced accuracy of LOE compared to the CLOE algorithm due to delays

in updates. However, as experiments demonstrate, this delay is small compared to

the scale of the system, and performance measures are favorable.

5.1.5 Noise Variables. The primary noise variable for the coalition for-

mation experiment is tied to resource allocation. Each task is assigned a number of

resources and an amount of each, both chosen from a uniform distribution. Agents are

also assigned a resource type and amount from a uniform distribution. This variance

is mitigated by using the same distribution between experiments.

5.1.6 Experiment Methodology. An RC-Chord instance of one million agents

is created, following the attributes listed above. Each experiment lasts 15,000 time

units. At each time unit, one or more tasks are created, depending on the desired

workload, and the coalition formation algorithm constructs a team to satisfy the task.
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Table 5.3: Impact of Task Synchrony on Work Throughput. Shown are work
throughput mean and standard deviation for critically-loaded systems of varying task
synchrony.

Synchrony Level DLOE CLOE CRP

None 8728.37 (+/- 338.089) 8731.47 (+/- 338.109) 8571.92 (+/- 470.946)
1 8677.34 (+/- 378.728) 8729.38 (+/- 338.036) 6463.49 (+/- 486.299)
2 8678.93 (+/- 370.951) 8731.89 (+/- 338.389) 6503.07 (+/- 489.375)
3 8680.1 (+/- 371.482) 8730.37 (+/- 338.122) 6475.25 (+/- 481.184)
4 8681.89 (+/- 369.162) 8730.69 (+/- 338.194) 6449.54 (+/- 487.638)
5 8683.82 (+/- 366.644) 8731.82 (+/- 338.198) 6405.1 (+/- 475.077)
10 8686.63 (+/- 366.649) 8733.16 (+/- 338.77) 6507.06 (+/- 478.693)
15 8687.2 (+/- 363.776) 8731.08 (+/- 338.208) 6477.08 (+/- 464.304)

In addition, each agent performs one unit of work on a task chosen according to the

priority scheduling algorithm described in Chapter III.

Each of the process variables is then modified, according to Table ??, resulting

in approximately 240 individual tests. From these experiments, the data which fully

describe the response variables are extracted. These experiments are somewhat ex-

haustive, and focused to determine the effectiveness of coalition formation in many

of the situations that can be expected to occur in a real CyberCraft system.

5.2 Results and Analysis

This analysis seeks to evaluate the effectiveness of the DLOE algorithm by

comparing its results to the CRP and CLOE algorithms. The CRP algorithm serves

as a baseline, and the CLOE algorithm forms a work optimal algorithm. When

appropriate, Analysis of Variance (ANOVA) [71] is shown to characterize statistical

similarities between experimental data.

5.2.1 CRP Algorithm. The CRP algorithm proves the worst in coalition

formation. This is seen through the poor work throughput reported in Table 5.3,

showing the results of running all three algorithms in a critically-loaded system, and

varying the task synchrony between one and 15 (synchrony enabled). In all cases,
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Figure 5.1: A critically-loaded system with task synchrony disabled using the CRP
algorithm to allocate task coalitions. The work executed is slow to reach the work
generated due to poor task allocation. Once the system becomes saturated enough
with tasks, the number of agents executing one or more tasks becomes high, the work
executed per unit time improves, and the rate of growth of number of tasks plateaus.

the CRP performs noticeably worse than the other algorithms (ANOVA p = 0) and

yields higher standard deviation. The coalitions formed by this algorithm experience

significant delays due to poorly allocated tasks, and the higher standard deviation

shows less stability in the algorithm.

Figure 5.1 reflects the CRP algorithm operating in a critically-loaded system

with task synchrony disabled. The incoming workload remains Even without barrier

synchronization, the work executed over time for the CRP algorithm’s task coalitions

is slow to reach a stable limit. Only after a high percentage of agents receive a task to

execute does the work executed over time reach the work generated per time. If the

task synchrony is enabled for this algorithm in a critically-loaded system, the number

of active tasks increases linearly without bound, caused by the work throughput re-

maining below the work generated. The only experiments in which the work executed

meets the work generated for the CRP algorithm are the under-loaded systemS with

synchrony enabled, or this critically-loaded system with synchrony disabled.

The hit rate data in Figure 5.2 is roughly the same for all experiments using

the CRP algorithm. The hit rate measures the percent of agent query requests by the

CRP algorithm that result in finding an agent with sufficient quantity of the correct

resource type for the task request. Since the algorithm randomly chooses nodes to
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Figure 5.2: The agent query hit rate for the CRP algorithm. The data are equivalent
for all experiments performed. The low hit rate is caused by the number of resources
present in the system (five), and by the algorithm querying nodes that have insufficient
quantity of the required resource to satisfy task requirements.

interrogate about joining coalitions, the hit rate is low, resulting in wasted search time.

All experiments used five possible resources, with one resource allocated per node,

and this accounts for the majority of the misses. In addition, not all agents possess

sufficient quantity of the necessary resource to satisfy the request, which accounts for

the remainder of the misses. The CLOE algorithm uses global knowledge, and does

not miss. The DLOE algorithm uses a heuristic based on the small tables of resource

levels, and also does not miss.

5.2.2 CLOE Algorithm. The CLOE algorithm performs well because it has

global system knowledge. Using this knowledge allows it to achieve a zero miss rate

on node queries, as well as choosing the best nodes to allocate to coalitions. This is

generally accomplished by choosing the nodes that most minimally meet the resource

requirements, combined with the least amount of competition for task scheduling. The

algorithm achieves a stable number of tasks almost immediately for all under-loaded

and critically-loaded systems.

The critically-loaded data in Table 5.3 are identical for the CLOE algorithm un-

der any synchrony, and the DLOE algorithm with synchrony disabled. None of the al-

gorithms achieve a balance between work load generated and executed for over-loaded

systems, and the number of tasks increases linearly over time in those experiments.
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Figure 5.3: Critically-loaded DLOE system with task synchrony enabled. The work
executed is roughly equal to the work generated, and this results in a stable number
of tasks over time.

5.2.3 DLOE Algorithm. A critically-loaded system is shown in Figure 5.3

in which the DLOE algorithm allocates tasks to agents with barrier synchronization

points enabled. The results are characterized by a stable number of tasks over time,

where the amount of work executed is the same as the amount of work generated.

The data show a slight dip in work executed at the time when the first tasks are

being completed. With a mean of 875 units of work per task, this initial pause in the

growth of the number of tasks occurs at slightly before time step 1000. Once this time

threshold is reached, the number of tasks is held steady and the work executed per

time drops slightly. The steady state for this system reflects a very close correlation

between the work execution and work generation rates because the number of active

tasks continues to climb. Once the work execution rate reaches its maximum, the

number of tasks levels off, and the system establishes its steady state.

5.2.4 Comparison Analysis. Figure 5.4 shows the work throughput of the

three algorithms on the over-loaded scenario with task synchrony disabled. Both the

CLOE and DLOE approach the practical maximum of 10,000 units of work per unit

time, which matches the test scenario work creation rate. The CRP algorithm is

unable to reach this milestone, as it will always allocate more tasks to agents with

higher resource amounts than those with lower amounts. This is one of the benefits of

both the CLOE and DLOE algorithms: they try to allocate tasks that most minimally
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Figure 5.4: Comparison of the three algorithms in an over-loaded system with
synchrony disabled. The work throughput of the CLOE and DLOE is comparable,
whereas the CRP algorithm performs noticeably worse.

meet task resource requirements. Without any heuristic, the CRP algorithm simply

accepts the first agent that can satisfy a task’s requirements, regardless of the excess

resource amounts possessed by the agent.

Figure 5.5 shows the number of tasks allocated per agent for the three algorithms

in a critically-loaded system with synchrony disabled. Agents in the systems with the

CLOE and DLOE algorithms have a lower number of tasks per agent as a result of

the higher overall work throughput. Since tasks complete more quickly, the agents

are able to satisfy the incoming workload more easily, and thus have fewer tasks. The

CRP algorithm has a lower work execution rate, and therefore maintains more tasks

per agent. This continues until a saturation point is reached wherein the randomness

of the CRP coalition formation algorithm eventually provides enough tasks to agents

with lower amounts of resources to meet the incoming workload.

Table 5.4 shows the impact of the update interval on the mean LOE per level.

The results show that the LOE between levels for each experiment is similar, yielding

a balanced distribution of tasks to agents in the network, even without global knowl-

edge. Also, the update intervals chosen appear to have little impact on the overall

effectiveness of the algorithm, as the mean LOE for each experiment is also statisti-

cally insignificant. The remaining rows of the table will be filled in when the

one million node experiments complete.
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Figure 5.5: Comparison of the three algorithms in a critically-loaded system with
synchrony disabled. The number of tasks per agent for the CRP algorithm eventually
stabilizes at a significantly higher value than the CLOE or DLOE algorithms.

Table 5.4: Effects of Update Interval on LOE

Update Interval (time steps)

Level Number 0 1 2 3 4 5 10 15

Level 0 3.879326 3.878423 3.887911 3.875039 3.880180 3.873442 3.882252 3.875218
Level 1 3.846253 3.849077 3.849792 3.847944 3.848183 3.840900 3.846466 3.844249
Level 2 3.849562 3.848065 3.852423 3.841447 3.850868 3.839840 3.842462 3.842085
Level 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Level 4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Under significant loading, the task duration for the DLOE and CLOE algo-

rithms resembles Figure 5.6 for all levels of task synchrony. For under-loaded sys-

tems, task durations remain relatively uniform. The task duration for under-loaded

and critically-loaded systems is roughly flat. This occurs because agents in those

systems are able to meet the incoming workload, and so the scheduler is rarely forced

to choose which task to execute based solely on priority.

A notable exception to this trend is the CRP algorithm, which poorly places

its tasks in all cases, leading to a high standard deviation for the number of tasks

per agent. This trend is shown in Figure 5.7. Under the CRP algorithm, many

agents are overloaded, while others have zero load. This leads to bottlenecks at those

higher loaded agents, creating a net reduction in the work executed per unit time,

and therefore forcing critically-loaded systems to become unable to meet the incoming

task workload.
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Figure 5.6: Task duration versus priority for critically-loaded and over-loaded sys-
tems using the CLOE and DLOE formation algorithms. The duration of tasks reduces
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Figure 5.7: Task duration versus priority for a critically loaded system using the
CRP coalition formation algorithm. The poor assignment of coalitions to tasks yields
bottlenecks in systems with task synchrony, causing delays in processing and elimi-
nating the effectiveness of the task scheduling algorithm.

For systems in which the work execution rate cannot meet the work generation

rate, the task scheduler tends to grant more processor time to higher priority tasks.

As a result, those higher priority tasks complete with lower mean duration than

the lower priority tasks. For under-loaded and critically-loaded CLOE and DLOE

systems, sufficient processing power exists to satisfy the incoming work load, and so

existing tasks tend to complete before scheduling contention forces a difference in

duration between tasks with different priorities.

Figure 5.8 shows the statistical comparison of the work throughput versus task

synchrony for critically-loaded experiments where synchrony is disabled, and Fig-

ure 5.9 shows the same scenario with task synchrony enabled. The difference in

performance for both cases between the CRP algorithm and the other two is sta-
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Figure 5.9: ANOVA for work throughput versus task synchrony in critically-loaded
experiments where synchrony is enabled. The CLOE and DLOE algorithms produce
coalitions that perform similarly, whereas the CRP algorithm produces coalitions with
significantly lower throughput.

tistically significant, as the CRP performs far worse than the other two algorithms.

Both the CLOE and DLOE algorithms have similar median work throughput, but the

CLOE algorithm maintains a slightly lower standard deviation with fewer outliers.

The result of these experiments demonstrates that task synchrony plays an

important part in the overall performance of coalitions generated using these different

algorithms. The CRP algorithm, in particular, suffers from poor performance as a

result of its coalition formation process. In addition, the CRP algorithm suffers

from the highest miss rate of the algorithms considered, reaching over 80% in some

experiments.
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The CLOE demonstrates the best overall sustained task execution rate, as well

as the lowest standard deviation. The DLOE algorithm is statistically similar in mean

work throughput, with slightly higher variance. Both systems successfully tackle the

challenge of task synchrony, and allow the task scheduler to make good decisions that

reduce the durations of tasks with higher priorities during high workloads.

5.3 Summary

The result of these experiments demonstrates that task synchrony plays an

important part in the overall performance of coalitions generated using these different

algorithms. The CRP algorithm, in particular, suffers from poor performance as a

result of its coalition formation process. In addition, the CRP algorithm suffers

from the highest miss rate of the algorithms considered, reaching over 80% in some

experiments.

The CLOE demonstrates the best overall sustained task execution rate, as well

as the lowest standard deviation. The DLOE algorithm is statistically similar in mean

work throughput, with slightly higher variance. Both systems successfully tackle the

challenge of task synchrony, and allow the task scheduler to make good decisions that

reduce the durations of tasks with higher priorities during high workloads.
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VI. Conclusions and Future Work

The sum of this research effort has yielded a great deal of knowledge and usable

technologies. However, this newly acquired knowledge represents perhaps a

small fraction of the total value gained. For each challenge conquered, multiple hurdles

were overcome, each bearing its own lessons. These lessons include observations of

areas for future work. These items for future work identify areas whose scope or

direction did not fit into the allotted time and tools for this research effort. Improving

each of these areas will help to generate new ideas and knowledge that are useful in

the larger community of research.

6.1 RC-Chord

The number of resources is currently fixed at configuration time. This significant

hurdle can be overcome through the introduction of a suitable mapping strategy,

combined with modification of the cluster creation, modification, and destruction

algorithms, to accommodate unlimited numbers of resources at runtime. The impact

of this change is a more configurable runtime system, which is especially important

in large-scale systems, which tend to be online for long periods of time.

Super peers exist in two simultaneous clusters, one in which they are super

peers, and the other in which they are normal leaf peers. This scenario is present to

simplify simulator development, but real systems should permit peers to exist in only

a single cluster at a time. This will reduce the total number of clusters needed to

satisfy the system’s size, at the expense of slightly more complicated cluster formation

and destruction algorithms.

Security has yet to achieve a sufficient enough presence in large-scale systems

to permit their use on military systems. The CyberCraft agents themselves support

Public Key Infrastructure (PKI) inter-agent encrypted communications. However,

the system design is still lacking a comprehensive security solution that addresses

locality, military classification levels, and failure and recovery scenarios.
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The current churn models use a uniform distribution to choose which agents to

part from the system. This model can be improved to use separate distributions to

distinguish the patterns of normal peers versus super peers. The effect of this change

is to improve flexibility to adapt the simulations to a wider variety of research areas.

The message transport delays vary on the range [0,10] milliseconds. This uni-

form distribution is suitable for local area systems, but does not necessarily represent

the different network configurations present in real world systems. The distribution

from which the transport delays are drawn should correspond to a specific instance

of a target application environment, and studying this behavior before system de-

ployment will provide a better understanding of the network’s characteristics in those

situations.

6.2 Coalition Formation

Several areas of suggested improvement have become apparent during the de-

sign and development process for RC-Chord and DLOE. First, the number and

spacing of the resource intervals for the DLOE algorithm are currently static, and

only configurable before runtime. These numbers can be tuned over time through ob-

servation, however even under those circumstances workload or priority flux cannot

necessarily be accommodated, and performance will suffer. A better solution is to

provide dynamic reallocation of these variables at runtime, based on observed run-

time characteristics. Many learning algorithms could serve this role and significantly

improve performance for systems whose runtime performance either varies or follows

unexpected patterns.

The number of agents allocated per task can currently only follow a uniform

distribution. However, this does not necessarily represent real world systems. Given

specific instances of active systems, this parameter could be tuned to optimize per-

formance for the particular task characteristics and task creation rate.
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As this document was not meant to dive into the depths of task scheduling the-

ory, a simplistic approach is used that supports the DLOE algorithm’s measurement

criteria. However, more sophisticated and capable scheduling algorithms should be

considered to supplement improvements in the DLOE algorithm. Given the many

permutations of scheduling algorithms and measurement criteria, this represents a

fertile research area.

Work contributed by different agents should ideally contribute to different pools

of work within the task. This is of particular importance when evaluating synchronic-

ity in the task scheduling subsystem. In the event that a single resource requirement

within a task is satisfied by multiple agents, the system should also consider how

to allocate the work executed by those agents on behalf of the task. This scenario

makes sense for resources that can be split evenly, and where work performed using

that resource can be likewise divided in some reasonable manner. For example, in

the event that the resource is processor time, splitting the resource between multiple

slower machines whose sum processing capability satisfies the resource requirement

may be reasonable, if the data set supports it. In such an ideal case, the amount

of work performed toward this task by agents sharing this resource may indeed be

the sum of time spent by each agent during simple processing. For simplicity this

consideration was not explored in this model, but future systems may benefit from

such a functionality.

Due to scoping, one of the most flexible features of the Hierarchical Peer-to-

Peer (HP2P) structure is not under test: the organization of clusters by separate

criteria. Constructing clusters by location, as an example, is a valuable property

afforded by this topology, and should be explored more in the future, especially as

real systems of the scale described here become more common. Moreover, forming

coalitions that incorporate these additional metrics will further improve the quality of

coalitions. Unfortunately, this promotes the coalition formation algorithm heuristic to

a multi-objective optimization process, thus eliminating one of the primary attributes

of this approach: speed of coalition formation.
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To that end, further analysis is necessary to improve the allocation and destruc-

tion of clusters at runtime. Under high churn conditions, a cluster may be formed

or destroyed very rapidly in a short period of time. A better approach is to install

a threshold algorithm which restricts the formation and destruction of clusters based

on time or cluster capacity. This will reduce the amount of cluster thrashing some-

times seen in these systems, reducing maintenance actions, and improving overall

performance.

Coalition formation algorithm experiments were conducted in stable networks

without churn. As with other stimulus, adding another variable under test would

increase the duration of testing beyond the available time by as much as six months

to a year. RC-Chord and the coalition formation algorithms do reallocate tasks to

agents in the event of agent departures, but adequate testing and analysis of the

effects of churn on the coalition formation algorithms remains an open area.

6.3 Conclusions

The objective of RC-Chord is to establish a flexible and scalable foundation

upon which to build large-scale coalition formation algorithms. It builds upon the

well tested Chord protocol, incorporating hierarchical structure to organize the system

according to resource availability. Testing with multiple churn distributions introduces

a small lookup failure rate, but the reliability of the system is maintained. Simulations

demonstrate that RC-Chord performs well for systems up to several hundred thousand

agents, and is stable under churn.

The large-scale cooperative coalition formation problem is becoming a more

important challenge as networked systems seek to leverage the power and scale of

Peer-to-Peer (P2P) systems. The difficulty of efficiently sharing the capabilities and

assets of attached systems is explored here, and a solution to the cooperative coalition

formation problem is proposed and examined. The solution relies upon the facilities

provided by the RC-Chord structured overlay, specifically the ability to allocate agents

into clusters organized by resource or capability. With this structure, a distributed
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coalition formation algorithm is evaluated for allocating tasks to teams of agents

that provide required capabilities. The DLOE algorithm stores task information for

agents with each cluster, and passes this information up the network hierarchy to

construct a general view of the task loading on each sub-graph. The DLOE algorithm

uses this information to decide how far, and in which direction, to descend in search

of agents to satisfy task allocation requests. Simulation results compare the DLOE

algorithm against the CRP algorithm, which allocates tasks to agents using a uniform

distribution, and the CLOE algorithm which uses global knowledge to allocate tasks

such that the mean workload on each agent is minimized. Results indicate that our

distributed algorithm performs nearly as well as the centralized optimal algorithm,

and significantly better than the random baseline algorithm. With these results, we

are confident in stating that the DLOE algorithm sufficiently satisfies its objectives

to build efficient task coalitions in a cooperative, large-scale DMAS.
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6. Aberer, Karl, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. “P-Grid: a self-
organizing structured P2P system”. SIGMOD Rec., 32(3):29–33, 2003. ISSN
0163-5808.

7. Adar, Eytan and Bernardo A. Huberman. “Free Riding on Gnutella”. First
Monday, 5, 2000.

8. Alima, Luc Onana, Ali Ghodsi, and Seif Haridi. “A Framework for Structured
Peer-to-Peer Overlay Networks”. Lecture Notes in Computer Science, 3267:223–
250, 2004.

9. Androutsellis-Theotokis, Stephanos and Diomidis Spinellis. “A survey of peer-
to-peer content distribution technologies”. ACM Comput. Surv., 36(4):335–371,
2004. ISSN 0360-0300.

10. Ateconi, Stefano, David Hales, and Ozalp Babaoglu. Broadcasting at the Critical
Threshold in Peer-to-Peer Networks. Technical report, University of Bologna,
Department of Computer Science University of Bologna Mura Anteo Zamboni 7
40127 Bologna (Italy), March 2007.

11. Bao, Xiuguo, Binxing Fang, Mingzhen Hu, and Binbin Xu. “Heterogeneous
Search in Unstructured Peer-to-Peer Networks”. IEEE Distributed Systems On-
line, 6(2):1, 2005. ISSN 1541-4922.

12. Barella, A., C. Carrascosa, V. Botti, and M. Mart́ı. “Multi-agent systems applied
to virtual environments: a case study”. VRST ’07: Proceedings of the 2007 ACM

126



symposium on Virtual reality software and technology, 237–238. ACM, New York,
NY, USA, 2007. ISBN 978-1-59593-863-3.

13. Bharambe, Ashwin R., Mukesh Agrawal, and Srinivasan Seshan. “Mercury: sup-
porting scalable multi-attribute range queries”. SIGCOMM Comput. Commun.
Rev., 34(4):353–366, 2004. ISSN 0146-4833.

14. Birman, Kenneth P. Reliable Distributed Systems: Technologies, Web Services,
and Applications. Springer, first edition, March 2005.

15. Brunskill, Emma. “Building Peer-to-Peer Systems with Chord, a Distributed
Lookup Service”. HOTOS ’01: Proceedings of the Eighth Workshop on Hot
Topics in Operating Systems, 81. IEEE Computer Society, Washington, DC,
USA, 2001.

16. Bustamante, F. E. and Y. Qiao. “Designing Less-Structured P2P Systems for the
Expected High Churn”. Networking, IEEE/ACM Transactions on, 16(3):617–
627, June 2008. ISSN 1063-6692.

17. Cao, Y. Uny, Alex S. Fukunaga, and Andrew B. Kahng. “Cooperative Mobile
Robotics: Antecedents and Directions”. Autonomous Robots, 4(1):7–23, March
1997.

18. Castro, Miguel, Peter Druschel, Y. Charlie, and Hu Antony Rowstron. Exploiting
network proximity in peer-to-peer overlay networks. Technical report, 2002.

19. Chalupsky, Hans, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh,
David V. Pynadath, Thomas A. Russ, and Milind Tambe. “Electric Elves:
Applying Agent Technology to Support Human Organizations”. Proceedings of
the Thirteenth Conference on Innovative Applications of Artificial Intelligence
Conference, 51–58. AAAI Press, 2001. ISBN 1-57735-134-7.

20. Chow, Randy and Theodore Johnson. Distributed Operating Systems and Algo-
rithm Analysis. Addison-Wesley, 1997. ISBN 0201498383.

21. Clarke, Ian, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. “Freenet:
A Distributed Anonymous Information Storage and Retrieval System”. Lecture
Notes in Computer Science, 2009:46–63, 2001.

22. Cohen, Bram. “Bittorrent Protocol Specification v1.0”. WWW, June.

23. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

24. Coulouris, George F. and Jean Dollimore. Distributed systems: concepts and
design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.
ISBN 0-201-18059-6.

25. Dabek, Frank, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek,
and Robert Morris. “Designing a DHT for low latency and high throughput”.
NSDI’04: Proceedings of the 1st conference on Symposium on Networked Systems

127



Design and Implementation, 7–7. USENIX Association, Berkeley, CA, USA,
2004.

26. Datar, Mayur. “Butterflies and Peer-to-Peer Networks”. ESA ’02: Proceedings of
the 10th Annual European Symposium on Algorithms, 310–322. Springer-Verlag,
London, UK, 2002. ISBN 3-540-44180-8.

27. Dudek, Gregory, Michael R. M. Jenkin, and David Wilkes. “A taxonomy for
multi-agent robotics”. Autonomous Robots, 3:375–397, 1996.

28. Fiat, Amos and Jared Saia. “Censorship resistant peer-to-peer content address-
able networks”. SODA ’02: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, 94–103. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2002. ISBN 0-89871-513-X.

29. Frankel, Justin and Tom Pepper. “Gnutella”. Internet, 2000. URL
http://gnutella.wego.com.

30. Freiling, Felix C., Thorsten Holz, and Georg Wicherski. Botnet Tracking: Explor-
ing a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks.
Technical report, The Honeynet Project, 2005.

31. Ganesan, Prasanna, Krishna Gummadi, and Hector Garcia-Molina. “Canon in
G Major: Designing DHTs with Hierarchical Structure”. ICDCS ’04: Proceed-
ings of the 24th International Conference on Distributed Computing Systems
(ICDCS’04), 263–272. IEEE Computer Society, Washington, DC, USA, 2004.
ISBN 0-7695-2086-3.

32. Ganesh, Ayalvadi J., Anne-Marie Kermarrec, and Laurent Massoulié. “SCAMP:
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