8 research outputs found

    Trust-based Approaches Towards Enhancing IoT Security: A Systematic Literature Review

    Full text link
    The continuous rise in the adoption of emerging technologies such as Internet of Things (IoT) by businesses has brought unprecedented opportunities for innovation and growth. However, due to the distinct characteristics of these emerging IoT technologies like real-time data processing, Self-configuration, interoperability, and scalability, they have also introduced some unique cybersecurity challenges, such as malware attacks, advanced persistent threats (APTs), DoS /DDoS (Denial of Service & Distributed Denial of Service attacks) and insider threats. As a result of these challenges, there is an increased need for improved cybersecurity approaches and efficient management solutions to ensure the privacy and security of communication within IoT networks. One proposed security approach is the utilization of trust-based systems and is the focus of this study. This research paper presents a systematic literature review on the Trust-based cybersecurity security approaches for IoT. A total of 23 articles were identified that satisfy the review criteria. We highlighted the common trust-based mitigation techniques in existence for dealing with these threats and grouped them into three major categories, namely: Observation-Based, Knowledge-Based & Cluster-Based systems. Finally, several open issues were highlighted, and future research directions presented.Comment: 20 Pages, Conferenc

    IoT trust and reputation: a survey and taxonomy

    Full text link
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    IoT trust and reputation: a survey and taxonomy

    Get PDF
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    CTRUST: A Dynamic Trust Model for Collaborative Applications in the Internet of Things

    Get PDF
    Security through trust presents a viable solution for threat management in the Internet of Things (IoT). Currently, a well-defined trust management framework for collaborative applications on the IoT platform does not exist. In order to estimate reliably the trust values of nodes within a system, the trust should be measured by suitable parameters that are based on the nodes’ functional properties in the application context. Existing models do not clearly outline the parametrisation of trust. Also, trust decay is inadequately modelled in most current models. In addition, trust recommendations are usually inaccurately weighted with respect to previous trust, thereby increasing the effect of bad recommendations. A new model, CTRUST, is proposed to resolve these shortcomings. In CTRUST, trust is accurately parametrised while recommendations are evaluated through belief functions. The effects of trust decay and maturity on the trust evaluation process were studied. Each trust component is neatly modelled by appropriate mathematical functions. CTRUST was implemented in a collaborative download application and its performance was evaluated based on the utility derived and its trust accuracy, convergence and resiliency. The results indicate that IoT collaborative applications based on CTRUST gain a significant improvement in performance, in terms of efficiency and security

    Multi-Network Latency Prediction for IoT and WSNs

    Get PDF
    The domain of Multi-Network Latency Prediction for IoT and Wireless Sensor Networks (WSNs) confronts significant challenges. However, continuous research efforts and progress in areas such as machine learning, edge computing, security technologies, and hybrid modelling are actively influencing the closure of identified gaps. Effectively addressing the inherent complexities in this field will play a crucial role in unlocking the full potential of latency prediction systems within the dynamic and diverse landscape of the Internet of Things (IoT). Using linear interpolation and extrapolation algorithms, the study explores the use of multi-network real-time end-to-end latency data for precise prediction. This approach has significantly improved network performance through throughput and response time optimization. The findings indicate prediction accuracy, with the majority of experimental connection pairs achieving over 95% accuracy, and within a 70% to 95% accuracy range. This research provides tangible evidence that data packet and end-to-end latency time predictions for heterogeneous low-rate and low-power WSNs, facilitated by a localized database, can substantially enhance network performance, and minimize latency. Our proposed JosNet model simplifies and streamlines WSN prediction by employing linear interpolation and extrapolation techniques. The research findings also underscore the potential of this approach to revolutionize the management and control of data packets in WSNs, paving the way for more efficient and responsive wireless sensor networks

    Trust Modelling and Management for Collaborative and Composite Applications in the Internet of Things

    Get PDF
    A future Internet of Things (IoT) will feature a service-oriented architecture consisting of lightweight computing platforms offering individual, loosely coupled microservices. Often, an end-user will request a bespoke service that will require a composition of two or more microservices offered by different service providers. This architecture offers several advantages that are key to the realisation of the IoT vision, such as modularity, increased reliability and technology heterogeneity and interoperability. As a result, the adoption of this architecture in the IoT is being extensively researched. However, the underlying complexities of service compositions and the increased security risks inherent in such a massively decentralised and distributed architecture remain key problems. The use of trust management to secure the IoT remains a current and interesting topic; its potential as a basis for service compositions has not been thoroughly researched, however. Security through trust presents a viable solution for threat management in the IoT. Currently, a well-defined trust management framework for collaborative and composite applications on an IoT platform does not exist. In this thesis, a collaborative application refers to the one that enables collaboration among its users to jointly complete certain tasks, whereas a composite application is the one composed of multiple existing services to deliver integrated functionalities. To estimate reliably the trust values of nodes within a system, the trust should be measured by suitable parameters that are based on the nodes’ functional properties in the application context. Existing models do not clearly outline the parametrisation of trust. Also, trust decay is inadequately modelled in many current models. In addition, trust recommendations are usually inaccurately weighted with respect to previous trust, thereby increasing the effect of bad recommendations. This thesis focuses on providing solutions to the twin issues of trust-based security and trust-based compositions for the IoT. First, a new model, CTRUST, is proposed to resolve the above stated shortcomings of previous trust models. In CTRUST, trust is accurately parametrised while recommendations are evaluated through belief functions. The effects of trust decay and maturity on the trust evaluation process were studied. Each trust component is neatly modelled by appropriate mathematical functions. CTRUST was implemented in a collaborative download application and its performance was evaluated based on the utility derived and its trust accuracy, convergence, and resiliency. The results indicate that IoT collaborative applications based on CTRUST gain a significant improvement in performance, in terms of efficiency and security. In a second study, the trust properties of service compositions in the IoT, along with the effect of the service architecture on the security and performance of the composed service, are investigated. Novel approaches are considered in relation to trust decomposition and composition, respectively. Relevant trust evaluation functions are derived to guide the compositions, which are used to extend CTRUST into a new trust model, SC-TRUST. SC-TRUST is implemented in a suitable simulation and the results are evaluated. The model reliably guides service compositions while ensuring utility to the end-user. Overall, the analyses and evaluations support the conclusion that the trust models are effective in terms of performance gain and security. The models are scalable and lightweight such that they could be deployed to secure applications and drive meaningful services and collaborations in the envisaged IoT and Web 3.0 sphere

    A Trust Management Model for IoT Devices and Services Based on the Multi-Criteria Decision-Making Approach and Deep Long Short-Term Memory Technique

    No full text
    Recently, Internet of Things (IoT) technology has emerged in many aspects of life, such as transportation, healthcare, and even education. IoT technology incorporates several tasks to achieve the goals for which it was developed through smart services. These services are intelligent activities that allow devices to interact with the physical world to provide suitable services to users anytime and anywhere. However, the remarkable advancement of this technology has increased the number and the mechanisms of attacks. Attackers often take advantage of the IoTs’ heterogeneity to cause trust problems and manipulate the behavior to delude devices’ reliability and the service provided through it. Consequently, trust is one of the security challenges that threatens IoT smart services. Trust management techniques have been widely used to identify untrusted behavior and isolate untrusted objects over the past few years. However, these techniques still have many limitations like ineffectiveness when dealing with a large amount of data and continuously changing behaviors. Therefore, this paper proposes a model for trust management in IoT devices and services based on the simple multi-attribute rating technique (SMART) and long short-term memory (LSTM) algorithm. The SMART is used for calculating the trust value, while LSTM is used for identifying changes in the behavior based on the trust threshold. The effectiveness of the proposed model is evaluated using accuracy, loss rate, precision, recall, and F-measure on different data samples with different sizes. Comparisons with existing deep learning and machine learning models show superior performance with a different number of iterations. With 100 iterations, the proposed model achieved 99.87% and 99.76% of accuracy and F-measure, respectively
    corecore