1,915 research outputs found

    Designinig Coordination among Human and Software Agents

    Get PDF
    The goal of this paper is to propose a new methodology for designing coordination between human angents and software agents and, ultimately, among software agents. The methodology is based on two key ideas. The first is that coordination should be designed in steps, according to a precise software engineering methodology, and starting from the specification of early requirements. The second is that coordination should be modeled as dependency between actors. Two actors may depend on one another because they want to achieve goals, acquire resources or execute a plan. The methodology used is based on Tropos, an agent oriented software engineering methodology presented in earlier papers. The methodology is presented with the help of a case study

    Modeling and analyzing variability for mobile information systems

    Get PDF
    Abstract. Advances in size, power, and ubiquity of computing, sensors, and communication technology made possible the development of mobile or nomadic information systems. Variability of location and system behavior is a central issue in mobile information systems, where behavior of software has to change and re-adapt to the different location settings. This paper concerns modeling and analysis of the complementary relation between software and location variability. We use graphical and formal location modeling techniques, show how to elicit and use location model in conjunction with Tropos goal-oriented framework, and introduce automated analysis on the location-based models.

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconfiguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconfigurable STSs

    Location-based software modeling and analysis: Tropos-based approach

    Get PDF
    Abstract. The continuous growth of interest in mobile applications makes the concept of location essential to design and develop software systems. Location-based software is supposed to be able to monitor the surrounding location and choose accordingly the most appropriate behavior. In this paper, we propose a novel conceptual framework to model and analyze location-based software. We mainly focus on the social facets of locations adopting concepts such as actor, resource, and location-based behavior. Our approach is based on Tropos methodology and allows the analyst to elicit and model software requirements according to the different locations where the software will operate. We propose an extension of Tropos modeling and adapt its process to suit well with the development of location-based software. The proposed framework also includes automated analysis techniques to reason about the relation between location and location-based software.

    Context for goal-level product line derivation

    Get PDF
    Product line engineering aims at developing a family of products and facilitating the derivation of product variants from it. Context can be a main factor in determining what products to derive. Yet, there is gap in incorporating context with variability models. We advocate that, in the first place, variability originates from human intentions and choices even before software systems are constructed, and context influences variability at this intentional level before the functional one. Thus, we propose to analyze variability at an early phase of analysis adopting the intentional ontology of goal models, and studying how context can influence such variability. Below we present a classification of variation points on goal models, analyze their relation with context, and show the process of constructing and maintaining the models. Our approach is illustrated with an example of a smarthome for people with dementia problems. 1

    Location-based Modeling and Analysis: Tropos-based Approach

    Get PDF
    The continuous growth of interest in mobile applications makes the concept of location essential to design and develop software systems. Location-based software is supposed to be able to monitor the location and choose accordingly the most appropriate behavior. In this paper, we propose a novel conceptual framework to model and analyze location-based software. We mainly focus on the social facets of locations adopting concepts such as social actor, resource, and location-based behavior. Our approach is based on Tropos methodology and allows the analyst to elicit and model software requirements according to the different locations where the software will operate. We propose an extension of Tropos modeling and adapt its process to suit well with the development of location-based software. The proposed framework also includes automated analysis techniques to reason about the relation between location and location-based behavior

    The evolution of tropos: Contexts, commitments and adaptivity

    Get PDF
    Software evolution is the main research focus of the Tropos group at University of Trento (UniTN): how do we build systems that are aware of their requirements, and are able to dynamically reconfigure themselves in response to changes in context (the environment within which they operate) and requirements. The purpose of this report is to offer an overview of ongoing work at UniTN. In particular, the report presents ideas and results of four lines of research: contextual requirements modeling and reasoning, commitments and goal models, developing self-reconfigurable systems, and requirements awareness
    corecore