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Abstract. Software evolution is the main research focus of the Tropos group at 
University of Trento (UniTN): how do we build systems that are aware of their 
requirements, and are able to dynamically reconfigure themselves in response to 
changes in context (the environment within which they operate) and 

requirements. The purpose of this report is to offer an overview of ongoing 
work at UniTN. In particular, the report presents ideas and results of four lines 
of research: contextual requirements modeling and reasoning, commitments and 
goal models, developing self-reconfigurable systems, and requirements 
awareness. 

1   Introduction 

At the University of Trento (UniTN), research on Tropos is conducted within the 

Software Engineering and Formal Methods research program1
. Currently, our main 

research challenge is facilitating software evolution so that systems may be able to 

evolve in response to changes in their operational environment and, more pertinently, 

in their requirements themselves. We are addressing this challenge by formalizing 

high-level concepts, and developing tools, techniques, and methodologies around 

these concepts. Our approach is to support evolution via design-time models that are 

made available at runtime. These models capture stakeholder intentions and 

commitments, social interactions, business processes, and organizational goals.  

Evolution can be automatic (self-adaptation), or manual, or something in between. 

When evolution is automatic, design-time models determine what is to be monitored, 

what are the possible ways to adapt the behavior of the system when it deviates from 

its intended purposes, and how to evolve the system at runtime. When evolution is 

manual, these models are used as support for human activities. They offer a 

comprehensive view of the requirements and traceability links between elements of 

these models and the software code.  

The rest of the report describes our current research objectives and activities, our 

latest results, and future work.  

                                                        
1 http://www.troposproject.org 
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2   Objectives and Scientific Contributions 

Our activities in the area of software evolution may be broadly divided into the 

following topics: contextual requirements modeling and reasoning, commitments and 

goal models, architectures for self-reconfigurable systems, and requirements 

awareness. The following elaborates on each.  
 

Modeling and reasoning about contextual requirements. Advances in computing, 

sensors, and communication technology have given rise to new computing paradigms 
such as ambient, ubiquitous and pervasive computing. These paradigms weave 

computing systems with human living environments to transparently meet human 

needs. Context, a core element of these paradigms, can be defined as the reification of 

the environment, and includes whatever provides a surrounding within which the 

system operates [11]. Before influencing the behavior of software, context influences 

the behavior of users. It influences user goals and their choices in determining how to 

reach these goals. Capturing this latest influence is an essential step towards software 

developed to meet user requirements in different contexts.  
 

In our research, we are interested in modeling and reasoning techniques for 

developing software systems expected to operate in varying contexts. We extend the 

Tropos goal modeling framework [1, 2] with context and allow the designer to 
capture the relation between the space of variants of a goal model and the context in 

which each variant is applicable. The framework defines a set of modeling constructs 

to analyze and discover relevant information the system needs at runtime to identify 

and characterize the context in which it is operating. We also propose various 

reasoning techniques to support the analysis. Particularly, we are interested in (i) 

checking the consistency of contextual goal models, (ii) detecting harmful interplays 

between tasks of a goal model originating from conflicting changes over the context, 

(iii) deriving goal model variants that comply with certain context and users’ 

priorities, and (iv) deriving a subset of executable tasks that can satisfy at the minimal 

cost users’ goals in all analyzed contexts. A prototype tool has been implemented to 

support reasoning about contextual goal models. The modeling and reasoning 
framework has been applied on two systems scenarios: a smart home for people with 

dementia, and a museum-guide to support museum visitors. 
 

Social commitments and goal models. Requirements modeling for open settings 

such as for service-oriented and sociotechnical systems pose new challenges due to 
the autonomy and heterogeneity of the participants, that is, agents. Such settings are 

also highly dynamic—agents may not even know each others’ identities before 

runtime [3].  

The i* approach was influential in emphasizing the social nature of requirements 

fulfillment—agents often depend on others to achieve their goals. An i* dependency 

involves one actor wanting something, and another being able and committed to 
delivering that something. However, i* does not does not achieve a clean separation 

between an agent’s internals and its social relationships with others. For example, the 

formalization of dependencies refers to the ability of the dependee, that is, its internal 
routines. As a result, i* has limited applications in open settings. 



Our recent work on modeling agents and social relations among them replaces 

dependencies with interaction protocols and social commitments [3, 4]. Social 

commitments are brought about and manipulated solely by interaction among agents 

[7]. The protocols serve as specifications of convention. An agent’s social 

commitments cleanly capture an agent’s external relationships with others without 

referring to any agent’s internals. Given an agent’s goal model and capabilities—the 
specification of its internals—one can reason if a particular protocol supports the 

agent’s goals. Specifically, support for an agent’s goal may be determined objectively 
without referring to the agent’s beliefs about others. By contrast, in i*, an agent’s 

belief about the workability of dependencies must be justified. 
 

An agent’s beliefs about another’s ability or intentions with respect to a certain goal 

may be important in arriving at certain decisions. However, it is also important to 

systematically understand and separate the internal from the external—this enables us 

to build agent reasoning in a modular fashion. For example, an agent may first 

determine if a protocol is suitable for its goals, and then select with whom to interact 

within that protocol based on its internal model of others. 
 

Social commitments are more expressive than dependencies in i*. Social 

commitments are conditional, thus enabling capturing reciprocity among agents—that 

if one agent brings about some condition, then the other bring about another 
condition. Moreover, social commitments also refer to the contextual setting—these 

are often important in contractual settings. Formal reasoning for social commitments 

is also well-developed [12]. 
 

Architectures for self-reconfigurable sociotechnical systems. A sociotechnical 

ystem (STS) is an interplay of humans, organizations and technical systems. STSs are 

distributed systems where a number of autonomous and intentional actors interact in 

order to achieve their respective objectives. STSs are characterized by dynamism, 

unpredictability and weak controllability. The operational environment is subject to 

sudden and unexpected changes, actors may join and leave the system at will, social 

dependencies between actors are at risk because of actors’ autonomy, and actors may 

fail in achieving their goals. The interests of the actors can be supported 
technologically by a software architecture that (i) monitors the actors’ behavior, (ii) 

diagnoses failures against correct behavioral models, and (iii) reacts to failures via 

compensation actions. We have proposed an architecture based on this cycle in [5]. 

Our architecture becomes an integral component of an STS. The correct behavior of 

actors is specified by their respective goal model. The architecture observes the 

actions performed by participating actors, compares the monitored data against goal 

models, and enacts reconfigurations in response to failures. The implemented 

algorithms are based on the Belief-Desire-Intention paradigm [6]. Indeed, an actor 

participating in an STS behaves correctly if, whenever a goal is activated, it selects 

and executes a plan that eventually will lead to the achievement of that goal. Failures 

occur if the actor does not carry out the plan correctly, doesn’t perform any action, or 
if a dependee does not bring about the dependum for the depender. Reconfiguration 

actions take into account the autonomy and uncontrollability of the participants: the 

architecture can (i) perform real actions by controlling actuators; (ii) remind or 

suggest the actors what to do; and (iii) assign some responsibilities to external agents. 



The architecture has been applied to a smart-home case study, where the mission of 

the system is to support a patient in his everyday activities. 
 

Requirements awareness. Lately there has been growing interest in systems that can 

adapt to changes in their environment or requirements during run-time. This kind of 

adaptive system generally uses some kind of feedback loop to monitor, diagnose and 

compensate these adverse situations. We’re interested in studying the requirements 

that lead to this feedback loop functionality and we propose a new class of 

requirements, called Awareness Requirements (AwReqs). AwReqs are requirements 
that refer to other requirements, quality constraints or domain assumptions, and their 

success or failure. As a simple example, consider the requirements for a meeting 

scheduler. To schedule a meeting, one should know about the agenda of the 

participants of the meeting, arrange the meeting (set date/time, book room), and 

finally notify all participants about it. As a requirement for adaptation, we may want 

to say that the goal of notifying the participants should never fail, or that booking a 

room should succeed 90% of the times over any given month. To these AwReqs, the 

requirements engineer can attach compensation actions that would get the system 

back to normal operation. AwReqs can also refer to quality constraints (QCs) and 

domain assumptions (DAs). If there was a QC stating that meetings should have 75% 

attendance, an AwReq could say that this quality constraint should succeed 90% over 
every week. AwReqs for DAs are analogous. And since AwReqs are requirements 

themselves, one could create an AwReq that refers to the success of another AwReq 

(a meta-AwReq). Our research on this topic is detailed in [9], where we also propose: 

(a) a formalization using OCL; (b) elicitation techniques for AwReqs; (c) patterns for 

AwReqs; (d) graphical notation; and (e) a systematic process to go from AwReqs to 

feedback loops.  

 

3   Future work  

Future work on contextual requirements includes applying the framework developed 

so far to security requirements. The main idea is that contexts can influence security 

requirements and then security has to be analyzed and handled according to the 
context where the system operates. For example, in an emergency situation (such as 

fire), a person would allow the rescue team to access his personal data such as his 

location and his health status, while in a normal situation the same person would have 

more restricted security concerns. Our interest here is to extend the goal-oriented 

requirements engineering for security to cope with contextual security requirements 

introducing new constructs and different forms of reasoning specific for security.  

Concerning commitments and self-reconfigurable systems, we are currently analyzing 

how a monitor-diagnose-compensate loop changes when we consider commitments 

together with goals. We will develop runtime agent reasoning for actors specified as 

goals, qualities and commitments. A correctness property, from an actor’s 

perspective, would take the form of policies: achieve so and so goals but without 
violating so and so commitments. The key here is to formalize the notion of a variant 

in terms of both goals and commitments, and then understand adaptation as switching 

between variants — similar to the development in [10].  



With respect to awareness requirements, the research is at its beginnings and there is 

much to be done. First and foremost, we intend to conduct case studies to assess our 

proposal. For that matter, we plan on developing a prototype framework that imple-

ments feedback loops from requirement models, most likely using previous 

experience in diagnosing frameworks [8]. Other challenges that lie ahead include 

analyzing the role of contexts with respect to AwReqs, implementing consistency 

checking for the model, and studying predictive and evolutionary features that could 

improve adaptability.  
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