
The Evolution of Tropos:

Contexts, Commitments and Adaptivity

Raian Ali, Amit K. Chopra, Fabiano Dalpiaz,

Paolo Giorgini, John Mylopoulos, and Vitor E. Silva Souza

Department of Information Engineering and Computer Science

University of Trento – Italy

{ali, chopra, dalpiaz, paolo.giorgini, jm, vitorsouza}@disi.unitn.it

Abstract. Software evolution is the main research focus of the Tropos group at
University of Trento (UniTN): how do we build systems that are aware of their
requirements, and are able to dynamically reconfigure themselves in response to
changes in context (the environment within which they operate) and

requirements. The purpose of this report is to offer an overview of ongoing
work at UniTN. In particular, the report presents ideas and results of four lines
of research: contextual requirements modeling and reasoning, commitments and
goal models, developing self-reconfigurable systems, and requirements
awareness.

1 Introduction

At the University of Trento (UniTN), research on Tropos is conducted within the

Software Engineering and Formal Methods research program1
. Currently, our main

research challenge is facilitating software evolution so that systems may be able to

evolve in response to changes in their operational environment and, more pertinently,

in their requirements themselves. We are addressing this challenge by formalizing

high-level concepts, and developing tools, techniques, and methodologies around

these concepts. Our approach is to support evolution via design-time models that are

made available at runtime. These models capture stakeholder intentions and

commitments, social interactions, business processes, and organizational goals.

Evolution can be automatic (self-adaptation), or manual, or something in between.

When evolution is automatic, design-time models determine what is to be monitored,

what are the possible ways to adapt the behavior of the system when it deviates from

its intended purposes, and how to evolve the system at runtime. When evolution is

manual, these models are used as support for human activities. They offer a

comprehensive view of the requirements and traceability links between elements of

these models and the software code.

The rest of the report describes our current research objectives and activities, our

latest results, and future work.

1 http://www.troposproject.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4900212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Objectives and Scientific Contributions

Our activities in the area of software evolution may be broadly divided into the

following topics: contextual requirements modeling and reasoning, commitments and

goal models, architectures for self-reconfigurable systems, and requirements

awareness. The following elaborates on each.

Modeling and reasoning about contextual requirements. Advances in computing,

sensors, and communication technology have given rise to new computing paradigms
such as ambient, ubiquitous and pervasive computing. These paradigms weave

computing systems with human living environments to transparently meet human

needs. Context, a core element of these paradigms, can be defined as the reification of

the environment, and includes whatever provides a surrounding within which the

system operates [11]. Before influencing the behavior of software, context influences

the behavior of users. It influences user goals and their choices in determining how to

reach these goals. Capturing this latest influence is an essential step towards software

developed to meet user requirements in different contexts.

In our research, we are interested in modeling and reasoning techniques for

developing software systems expected to operate in varying contexts. We extend the

Tropos goal modeling framework [1, 2] with context and allow the designer to
capture the relation between the space of variants of a goal model and the context in

which each variant is applicable. The framework defines a set of modeling constructs

to analyze and discover relevant information the system needs at runtime to identify

and characterize the context in which it is operating. We also propose various

reasoning techniques to support the analysis. Particularly, we are interested in (i)

checking the consistency of contextual goal models, (ii) detecting harmful interplays

between tasks of a goal model originating from conflicting changes over the context,

(iii) deriving goal model variants that comply with certain context and users’

priorities, and (iv) deriving a subset of executable tasks that can satisfy at the minimal

cost users’ goals in all analyzed contexts. A prototype tool has been implemented to

support reasoning about contextual goal models. The modeling and reasoning
framework has been applied on two systems scenarios: a smart home for people with

dementia, and a museum-guide to support museum visitors.

Social commitments and goal models. Requirements modeling for open settings

such as for service-oriented and sociotechnical systems pose new challenges due to
the autonomy and heterogeneity of the participants, that is, agents. Such settings are

also highly dynamic—agents may not even know each others’ identities before

runtime [3].

The i* approach was influential in emphasizing the social nature of requirements

fulfillment—agents often depend on others to achieve their goals. An i* dependency

involves one actor wanting something, and another being able and committed to
delivering that something. However, i* does not does not achieve a clean separation

between an agent’s internals and its social relationships with others. For example, the

formalization of dependencies refers to the ability of the dependee, that is, its internal
routines. As a result, i* has limited applications in open settings.

Our recent work on modeling agents and social relations among them replaces

dependencies with interaction protocols and social commitments [3, 4]. Social

commitments are brought about and manipulated solely by interaction among agents

[7]. The protocols serve as specifications of convention. An agent’s social

commitments cleanly capture an agent’s external relationships with others without

referring to any agent’s internals. Given an agent’s goal model and capabilities—the
specification of its internals—one can reason if a particular protocol supports the

agent’s goals. Specifically, support for an agent’s goal may be determined objectively
without referring to the agent’s beliefs about others. By contrast, in i*, an agent’s

belief about the workability of dependencies must be justified.

An agent’s beliefs about another’s ability or intentions with respect to a certain goal

may be important in arriving at certain decisions. However, it is also important to

systematically understand and separate the internal from the external—this enables us

to build agent reasoning in a modular fashion. For example, an agent may first

determine if a protocol is suitable for its goals, and then select with whom to interact

within that protocol based on its internal model of others.

Social commitments are more expressive than dependencies in i*. Social

commitments are conditional, thus enabling capturing reciprocity among agents—that

if one agent brings about some condition, then the other bring about another
condition. Moreover, social commitments also refer to the contextual setting—these

are often important in contractual settings. Formal reasoning for social commitments

is also well-developed [12].

Architectures for self-reconfigurable sociotechnical systems. A sociotechnical

ystem (STS) is an interplay of humans, organizations and technical systems. STSs are

distributed systems where a number of autonomous and intentional actors interact in

order to achieve their respective objectives. STSs are characterized by dynamism,

unpredictability and weak controllability. The operational environment is subject to

sudden and unexpected changes, actors may join and leave the system at will, social

dependencies between actors are at risk because of actors’ autonomy, and actors may

fail in achieving their goals. The interests of the actors can be supported
technologically by a software architecture that (i) monitors the actors’ behavior, (ii)

diagnoses failures against correct behavioral models, and (iii) reacts to failures via

compensation actions. We have proposed an architecture based on this cycle in [5].

Our architecture becomes an integral component of an STS. The correct behavior of

actors is specified by their respective goal model. The architecture observes the

actions performed by participating actors, compares the monitored data against goal

models, and enacts reconfigurations in response to failures. The implemented

algorithms are based on the Belief-Desire-Intention paradigm [6]. Indeed, an actor

participating in an STS behaves correctly if, whenever a goal is activated, it selects

and executes a plan that eventually will lead to the achievement of that goal. Failures

occur if the actor does not carry out the plan correctly, doesn’t perform any action, or
if a dependee does not bring about the dependum for the depender. Reconfiguration

actions take into account the autonomy and uncontrollability of the participants: the

architecture can (i) perform real actions by controlling actuators; (ii) remind or

suggest the actors what to do; and (iii) assign some responsibilities to external agents.

The architecture has been applied to a smart-home case study, where the mission of

the system is to support a patient in his everyday activities.

Requirements awareness. Lately there has been growing interest in systems that can

adapt to changes in their environment or requirements during run-time. This kind of

adaptive system generally uses some kind of feedback loop to monitor, diagnose and

compensate these adverse situations. We’re interested in studying the requirements

that lead to this feedback loop functionality and we propose a new class of

requirements, called Awareness Requirements (AwReqs). AwReqs are requirements
that refer to other requirements, quality constraints or domain assumptions, and their

success or failure. As a simple example, consider the requirements for a meeting

scheduler. To schedule a meeting, one should know about the agenda of the

participants of the meeting, arrange the meeting (set date/time, book room), and

finally notify all participants about it. As a requirement for adaptation, we may want

to say that the goal of notifying the participants should never fail, or that booking a

room should succeed 90% of the times over any given month. To these AwReqs, the

requirements engineer can attach compensation actions that would get the system

back to normal operation. AwReqs can also refer to quality constraints (QCs) and

domain assumptions (DAs). If there was a QC stating that meetings should have 75%

attendance, an AwReq could say that this quality constraint should succeed 90% over
every week. AwReqs for DAs are analogous. And since AwReqs are requirements

themselves, one could create an AwReq that refers to the success of another AwReq

(a meta-AwReq). Our research on this topic is detailed in [9], where we also propose:

(a) a formalization using OCL; (b) elicitation techniques for AwReqs; (c) patterns for

AwReqs; (d) graphical notation; and (e) a systematic process to go from AwReqs to

feedback loops.

3 Future work

Future work on contextual requirements includes applying the framework developed

so far to security requirements. The main idea is that contexts can influence security

requirements and then security has to be analyzed and handled according to the
context where the system operates. For example, in an emergency situation (such as

fire), a person would allow the rescue team to access his personal data such as his

location and his health status, while in a normal situation the same person would have

more restricted security concerns. Our interest here is to extend the goal-oriented

requirements engineering for security to cope with contextual security requirements

introducing new constructs and different forms of reasoning specific for security.

Concerning commitments and self-reconfigurable systems, we are currently analyzing

how a monitor-diagnose-compensate loop changes when we consider commitments

together with goals. We will develop runtime agent reasoning for actors specified as

goals, qualities and commitments. A correctness property, from an actor’s

perspective, would take the form of policies: achieve so and so goals but without
violating so and so commitments. The key here is to formalize the notion of a variant

in terms of both goals and commitments, and then understand adaptation as switching

between variants — similar to the development in [10].

With respect to awareness requirements, the research is at its beginnings and there is

much to be done. First and foremost, we intend to conduct case studies to assess our

proposal. For that matter, we plan on developing a prototype framework that imple-

ments feedback loops from requirement models, most likely using previous

experience in diagnosing frameworks [8]. Other challenges that lie ahead include

analyzing the role of contexts with respect to AwReqs, implementing consistency

checking for the model, and studying predictive and evolutionary features that could

improve adaptability.

Acknowledgments This work has been partially funded by the EU Commission,

through projects SecureChange, COMPAS, NESSOS and ANIKETOS.

References

1. R. Ali, F. Dalpiaz, and P. Giorgini. Location-Based Software Modeling and Analysis:
Tropos-Based Approach. Proceedings of the 27th International Conference on Conceptual
Modeling (ER’08), pages 169–182, 2008.

2. R. Ali, F. Dalpiaz, and P. Giorgini. A Goal Modeling Framework for Self-
Contextualizable Software. Proceedings 14th International Conference on Exploring
Modeling Methods in Systems Analysis and Design (EMMSAD’09), LNBIP 29-0326,
pages 326–338. Springer, 2009.

3. A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and Reasoning about
Service-Oriented Applications via Goals and Commitments. Proceedings 22nd
International Conference on Advanced Information Systems Engineering (CAiSE’10),
2010. to appear.

4. A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Reasoning about Agents and
Protocols via Goals and Commitments. Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’10), 2010. to appear.

5. F. Dalpiaz, P. Giorgini, and J. Mylopoulos. An Architecture for Requirements-Driven
Self-Reconfiguration. Proceedings 21st International Conference on Advanced

Information Systems Engineering (CAiSE’09), LNCS 5565, pages 246–260. Springer,
2009.

6. F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Software Self-Reconfiguration: a BDI-Based
Approach. Proceedings 8th International Conference on Autonomous Agents and
Multiagent Systems, pages 1159–1160. IFAAMAS, 2009.

7. M. P. Singh. Agent communication languages: Rethinking the principles. IEEE Computer,
31(12):40–47, Dec. 1998.

8. V. E. S. Souza and J. Mylopoulos. Monitoring and Diagnosing Malicious Attacks with

Autonomic Software. Proceedings 28th International Conference on Conceptual Modeling
(ER’09), pages 84–98, Gramado, Brazil, 2009. Springer.

9. A. Lapouchnian, V. E. S. Souza, and J. Mylopoulos. Awareness Requirements for
Adaptive Systems. Submitted for review, 2010.

10. Ji Zhang and B. H. C. Cheng. Model-Based Development of Dynamically Adaptive Soft-
ware. Proceedings 28th International Conference on Software Engineering (ICSE), pages
371–380, 2006.

11. A. Finkelstein, A. Savigni. A Framework for Requirements Engineering for Context-

Aware Services. Proceedings of STRAW’01, 2001.
12. A. K. Chopra and M. P. Singh. Multiagent Commitment Alignment. Proceedings of the

Eighth International Conference on Autonomous Agents and Multiagent Systems, 2009,
pages 937—944

