83 research outputs found

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    Cognitive evaluation of computer-drawn sketches

    Get PDF
    CISRG discussion paper ; 1

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Estado del arte de algoritmos de generalización vectorial de núcleos urbanos.

    Get PDF
    Se presenta este artículo con el ánimo de enumerar y estudiar diferentes algoritmos que tratan la generalización de datos cartográficos vectoriales de zonas urbanas, debido a que en ellas se concentran la mayoría de los conflictos que se pueden encontrar en los procesos de generalización cartográfica. A pesar de que la generalización es uno de los procedimientos más difíciles de automatizar, existen herramientas que implementan estos algoritmos y ofrecen resultados satisfactorios, aunque ninguna de ellas es capaz de automatizar por completo el proceso de generalización. A continuación, se incluyen las pruebas realizadas al respecto, describiendo y analizando los resultados obtenidos, estableciendo una comparativa con trabajos realizados por diferentes autores. Se concluye el documento valorando los posibles trabajos futuros para solventar la problemática de la generalización cartográfica. Este estudio se encuentra en el marco del proyecto CENIT España Virtual. Abstract: This article is focused in studying different algorithms about generalization of vector map data from urban areas, because most of the conflicts in the processes of cartographic generalization are concentrated in these areas. Although generalization is one of the most difficult processes to automate, there are tools that implement these algorithms and provide satisfactory results. However,none of them can automate the process of generalization completely. Then tests in describing and analyzing the results are included, establishing a comparison with works of various authors. The document concludes by assessing the possible future works to solve the problem of cartographic generalization. This study is within the CENIT project España Virtual

    Towards extracting artistic sketches and maps from digital elevation models

    Get PDF
    The main trend of computer graphics is the creation of photorealistic images however, there is increasing interest in the simulation of artistic and illustrative techniques. This thesis investigates a profile based technique for automatically extracting artistic sketches from regular grid digital elevation models. The results resemble those drawn by skilled cartographers and artists.The use of cartographic line simplification algorithms, which are usually applied to complex two-dimensional lines such as coastlines, allow a set of most important points on the terrain surface to be identified, these form the basis for sketching.This thesis also contains a wide ranging review of terrain representation techniques and suggests a new taxonomy

    Bicriteria Aggregation of Polygons via Graph Cuts

    Get PDF
    We present a new method for the task of detecting groups of polygons in a given geographic data set and computing a representative polygon for each group. This task is relevant in map generalization where the aim is to derive a less detailed map from a given map. Following a classical approach, we define the output polygons by merging the input polygons with a set of triangles that we select from a constrained Delaunay triangulation of the input polygons\u27 exterior. The innovation of our method is to compute the selection of triangles by solving a bicriteria optimization problem. While on the one hand we aim at minimizing the total area of the outputs polygons, we aim on the other hand at minimizing their total perimeter. We combine these two objectives in a weighted sum and study two computational problems that naturally arise. In the first problem, the parameter that balances the two objectives is fixed and the aim is to compute a single optimal solution. In the second problem, the aim is to compute a set containing an optimal solution for every possible value of the parameter. We present efficient algorithms for these problems based on computing a minimum cut in an appropriately defined graph. Moreover, we show how the result set of the second problem can be approximated with few solutions. In an experimental evaluation, we finally show that the method is able to derive settlement areas from building footprints that are similar to reference solutions

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps?  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype. &nbsp

    Design and development of a system for vario-scale maps

    Get PDF
    Nowadays, there are many geo-information data sources available such as maps on the Internet, in-car navigation devices and mobile apps. All datasets used in these applications are the same in principle, and face the same issues, namely: Maps of different scales are stored separately. With many separate fixed levels, a lot of information is the same, but still needs to be included, which leads to duplication. With many redundant data throughout the scales, features are represented again and again, which may lead to inconsistency. Currently available maps contain significantly more levels of detail (twenty map scales on average) than in the past. These levels must be created, but the optimal strategy to do so is not known. For every user’s data request, a significant part of the data remains the same, but still needs to be included. This leads to more data transfer, and slower response. The interactive Internet environment is not used to its full potential for user navigation. It is common to observe lagging, popping features or flickering of a newly retrieved map scale feature while using the map. This research develops principles of variable scale (vario-scale) maps to address these issues. The vario-scale approach is an alternative for obtaining and maintaining geographical data sets at different map scales. It is based on the specific topological structure called tGAP (topological Generalized Area Partitioning) which addresses the main open issues of current solutions for managing spatial data sets of different scales such as: redundancy data, inconsistency of map scales and dynamic transfer. The objective of this thesis is to design, to develop and to extend the variable-scale data structures and it is expressed as the following research question: How to design and develop a system for vario-scale maps? To address the above research question, this research has been conducted using the following outline:  To address the above research question, this research has been conducted using the following outline: 1) Investigate state-of-the-art in map generalization. 2) Study development of vario-scale structure done so far. 3) Propose techniques for generating better vario-scale map content. 4) Implement strategies to process really massive datasets. 5) Research smooth representation of map features and their impact on user interaction. Results of our research led to new functionality, were addressed in prototype developments and were tested against real world data sets. Throughout this research we have made following main contributions to the design and development of a system of vario-scale maps. We have: studied vario-scale development in the past and we have identified the most urgent needs of the research. designed the concept of granularity and presented our strategy where changes in map content should be as small and as gradual as possible (e. g. use groups, maintain road network, support line feature representation). introduced line features in the solution and presented a fully-automated generalization process that preserves a road network features throughout all scales. proposed an approach to create a vario-scale data structure of massive datasets. demonstrated a method to generate an explicit 3D representation from the structure which can provide smoother user experience. developed a software prototype where a 3D vario-scale dataset can be used to its full potential. conducted initial usability test. All aspects together with already developed functionality provide a more complex and more unified solution for vario-scale mapping. Based on our research, design and development of a system for vario-scale maps should be clearer now. In addition, it is easier to identified necessary steps which need to be taken towards an optimal solution. Our recommendations for future work are: One of the contributions has been an integration of the road features in the structure and their automated generalization throughout the process. Integrating more map features besides roads deserve attention. We have investigated how to deal with massive datasets which do not fit in the main memory of the computer. Our experiences consisted of dataset of one province or state with records in order of millions. To verify our findings, it will be interesting to process even bigger dataset with records in order of billions (a whole continent). We have introduced representation where map content changes as gradually as possible. It is based on process where: 1) explicit 3D geometry from the structure is generated. 2) A slice of the geometry is calculated. 3) Final maps based on the slice is constructed. Investigation of how to integrate this in a server-client pipeline on the Internet is another point of further research. Our research focus has been mainly on one specific aspect of the concept at a time. Now all aspects may be brought together where integration, tuning and orchestration play an important role is another interesting research that desire attention. Carry out more user testing including; 1) maps of sufficient cartographic quality, 2) a large testing region, and 3) the finest version of visualization prototype
    corecore