
Bicriteria Aggregation of Polygons via Graph Cuts
Peter Rottmann #

Institute of Geodesy and Geoinformation, University of Bonn, Germany

Anne Driemel #

Hausdorff Center for Mathematics, University of Bonn, Germany

Herman Haverkort #

Institute of Computer Science, University of Bonn, Germany

Heiko Röglin #

Institute of Computer Science, University of Bonn, Germany

Jan-Henrik Haunert #

Institute of Geodesy and Geoinformation, University of Bonn, Germany

Abstract
We present a new method for the task of detecting groups of polygons in a given geographic data set
and computing a representative polygon for each group. This task is relevant in map generalization
where the aim is to derive a less detailed map from a given map. Following a classical approach, we
define the output polygons by merging the input polygons with a set of triangles that we select from
a constrained Delaunay triangulation of the input polygons’ exterior. The innovation of our method
is to compute the selection of triangles by solving a bicriteria optimization problem. While on the
one hand we aim at minimizing the total area of the outputs polygons, we aim on the other hand at
minimizing their total perimeter. We combine these two objectives in a weighted sum and study
two computational problems that naturally arise. In the first problem, the parameter that balances
the two objectives is fixed and the aim is to compute a single optimal solution. In the second
problem, the aim is to compute a set containing an optimal solution for every possible value of the
parameter. We present efficient algorithms for these problems based on computing a minimum cut
in an appropriately defined graph. Moreover, we show how the result set of the second problem can
be approximated with few solutions. In an experimental evaluation, we finally show that the method
is able to derive settlement areas from building footprints that are similar to reference solutions.

2012 ACM Subject Classification Information systems → Geographic information systems; Theory
of computation → Computational geometry

Keywords and phrases map generalization, aggregation, graph cuts, bicriteria optimization

Digital Object Identifier 10.4230/LIPIcs.GIScience.2021.II.6

1 Introduction

Map generalization is the process of deriving a less detailed map from a given map. It com-
prises multiple sub-tasks such as the selection, simplification, aggregation, and displacement
of objects. In this paper we address the task of detecting polygon groups and aggregating
each group to a single polygon, which we simply refer to as aggregation of polygons. This
task is relevant, e.g., to derive settlement areas from mutually disjoint building footprints.

A popular method for the aggregation of polygons is the adopt merge amalgamation
operator proposed by Jones et al. [19], which is based on a constrained Delaunay triangulation
of the space not covered by the input polygons; see Fig. 1. The approach is to select a set
T ′ ⊆ T from the set T of triangles of the triangulation to glue together groups of input
polygons. More precisely, the connected regions in the union of the triangles in T ′ and the
input polygons constitute the output polygons. We propose a new method that follows this
approach. Our focus is to find an optimal selection of triangles, whereas Jones et al. [19]
left it largely open how the selection T ′ of triangles is computed. They rather generally

© Peter Rottmann, Anne Driemel, Herman Haverkort, Heiko Röglin, and Jan-Henrik Haunert;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Geographic Information Science (GIScience 2021) – Part II.
Editors: Krzysztof Janowicz and Judith A. Verstegen; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rottmann@igg.uni-bonn.de
mailto:driemel@cs.uni-bonn.de
https://orcid.org/0000-0002-1943-2589
mailto:haverkort@uni-bonn.de
mailto:roeglin@cs.uni-bonn.de
mailto:haunert@igg.uni-bonn.de
https://orcid.org/0000-0001-8005-943X
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Bicriteria Aggregation of Polygons via Graph Cuts

Figure 1 Input polygons (filled gray)
aggregated to larger ones (red lines).

P

A extreme nondominated
nonextreme nondominated
dominated
Pareto-frontier
convex hull of Pareto-frontier

Figure 2 Different types of solutions and Pareto-frontier
of a bicriteria optimization problem.

recommended to use rules with thresholds. With our work we thus aim to overcome the
issue raised by Li et al. [21], who noticed that the aggregation of polygons has often been
discussed on a general conceptual level and that difficulties arise when engineering a method
in detail. In particular, computing the set T ′ of triangles based on rules with thresholds
requires finding the right threshold values, which is a cumbersome task.

Since setting the parameters of an algorithm is a challenge of general relevance, we do
not only aim to provide a new method for polygon aggregation but also set off to develop a
generic approach for the systematic exploration of different parameter values. Generally, map
generalization aims at finding a good balance between (i) the preservation of the information
given with the input map and (ii) the legibility of the output map [7]. We will give particular
consideration to setting a parameter that balances between these two objectives.

In our method for polygon aggregation, each of the two general objectives of map gener-
alization is implemented with one basic quantitative measure. We consider the preservation
of information by minimizing the total area of the output polygons, meaning that only little
area should be added to the input polygons when merging the selected triangles with them.
Legibility is considered by minimizing the total boundary length (or perimeter) of the output
polygons, which can be considered as an implementation of Tufte’s minimum-ink principle
[38]. A parameter α, which we call balance factor, is used to combine these objectives with
a weighted sum. To formalize this, we refer with A(S) to the area and with P (S) to the
perimeter of the union of all polygons in a set S, where the union can be a polygon or a
multipolygon. For a single polygon p we simply refer with A(p) and P (p) to its area and
perimeter, respectively. With this we state the problem we aim to solve as follows.

▶ Problem 1. Given a subdivision of the plane as a set S of n simple polygons, a set
B ⊆ S, and a balance factor α ∈ [0, 1], select a subset S′ with B ⊆ S′ ⊆ S minimizing
fα(S′) = α ·A(S′) + (1− α) · P (S′).

In our application, B is the set of input polygons, e.g., building footprints. The set S

contains all polygons of a planar partition, including the polygons in B and the triangles
of a triangulation partitioning the space not covered by the input polygons. Note that the
restriction to a triangulation is not necessary, i.e., one may use any other partition of the
plane instead. The requirement B ⊆ S′ ⊆ S means that the input polygons have to be in
the selection S′. The balance factor α combines the two objectives with a weighted sum,
yielding the overall objective function fα. To state that a solution to Problem 1 is optimal
for a certain balance factor α, we refer to it as an α-optimal solution.

Finally, with the following problem we address the challenge of setting the parameter α.

▶ Problem 2. Given a subdivision of the plane as a set S of n simple polygons and a set
B ⊆ S, find a set containing for every α ∈ [0, 1] an optimal solution to Problem 1.

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:3

Figure 3 An α-shape that generates a narrow bridge between two point sets.

By not requiring a pre-set value for α, our method becomes parameter free. However, it now
returns a set of solutions instead of a single one. This can be useful to let an expert choose
from a set of alternative solutions. Moreover, the different solutions could be evaluated
automatically by comparing them with a reference solution, to infer a suitable value for α.

According to the definition of Problem 2, if for a fixed α there are multiple optimal
solutions, only one of them has to be included in the result set. This corresponds to finding
what is called the set of all extreme nondominated points, which together with the nonextreme
nondominated points constitute the Pareto-frontier [3]; see Fig. 2.

We now summarize our contribution and give an outline of the paper.

Our Contribution

1. We show how to solve Problem 1 efficiently by computing a minimum cut in an appropri-
ately defined graph. This approach is inspired from image analysis, where graph cuts are
commonly used for image segmentation and related problems.

2. We show that it suffices to include O(n) solutions in the result set of Problem 2 and
that these solutions are geometrically nested. The linear size of the result set implies
that Problem 2 can be solved with O(n) min-cut computations via a generic recursive
algorithm. We also show how the recursive algorithm can be used to compute a small set
of solutions approximating the result set of Problem 2.

3. We evaluate our method on real data showing its applicability in practice.

In the following, we review related work (Sect. 2), present the three above-mentioned
contributions (Sects. 3–5), and provide a conclusion and outlook on future work (Sect. 6).

2 Related Work

Automatic map generalization remains a big challenge despite decades of research. The
challenge lies on the one hand in the complex interplay between different processes of map
generalization – a way to deal with this is to use multi-agent systems for the orchestration
of multiple map generalization operators [15, 23]. On the other hand, the challenge lies
in the acquisition of cartographic knowledge in a form that can be used by a computer.
Machine learning approaches have been proposed to solve this task, with a recent shift
towards deep learning [14, 37]. While we focus on a single map generalization operator, the
aggregation of polygons, our method for exploring different parameter values can be used
for automatic parameter tuning and, thus, considered as a machine-learning contribution.
Polygon aggregation is relevant when generalizing categorical coverage maps [16, 18] or
choropleth maps [27], where the polygons form a mosaic. These tasks are similar to districting
tasks where the aim is to group small areal units to form larger regions such as electoral
districts or police districts [10, 20]. In this paper, however, we deal with the aggregation of
potentially non-adjacent polygons, e.g., buildings.

GISc ience 2021

6:4 Bicriteria Aggregation of Polygons via Graph Cuts

The aggregation of polygons is closely related to the aggregation of points. The common
goal is to find a single polygon or multiple polygons enclosing the input data. A naïve method
is to compute the convex hull of all input points. However, since this may enclose large
empty regions, generalizations of the convex hull such as α-shapes [13] have been developed.
As an unwanted side effect, α-shapes tend to introduce narrow bridges between two nearby
point sets; see Fig. 3. Such a bridge can consist of a single edge, in which case it can be
easily removed [4], but handling bridges of multiple parallel edges is not straight forward.
Similar issues can arise with the concave hull introduced Moreira and Santos [26], which is
based on k-nearest neighbours clustering. In contrast, our method would never connect two
polygons with a narrow bridge as the one in Fig. 3 since not selecting the bridge would yield
a solution with both a smaller perimeter and less area. Note that the parameter α of our
method is different from that of α-shapes. Duckham et al. [12] defined the χ(chi)-hull as a
further generalization of the convex hull. First, all points are triangulated using a Delaunay
triangulation. Then, all boundary edges that are longer than a threshold are removed. This
procedure always returns a single polygon without holes. This may include large empty
regions and does not separate groups of points from each other. To address the latter issue,
Duckham et al. [12] suggest to identify clusters in a pre-processing step. However, this does
not prevent the method from covering large empty regions within a cluster.

With respect to the aggregation of polygons, Jones et al. [19] proposed a method for
merging polygons by selecting triangles of a constrained Delaunay triangulation, which they
call adopt merge amalgamation. They do not specify the criteria for the selection of the
triangles but generally recommend to use rules based on thresholds on the triangles’ edge
lengths. Using such rules the adopt merge amalgamation operator has been implemented
and experimentally evaluated by Li and Ai [22]. They showed that the method tends to
generate narrow bridges that can consist of a single triangle touching an input polygon with
only one of the triangle’s vertices. The method of Li et al. [21] overcomes this deficit by
selecting sequences of triangles instead of single ones. However, the rules used to govern
the selection are set up to aggregate polygons with parallel boundaries separated by long
and narrow corridors. With this the method can be used to derive built-up areas from city
blocks but not, e.g., settlement areas from footprints of detached houses. Sayidov et al. [33]
compute groups of polygons using a triangulation-based method and suggest to compute
a representative polygon for each group in a separate processing step. To accomplish this
step, automatic typification method can be used [1, 6, 24]. Similarly, Steinger et al. [36]
suggest a method that first detects groups of islands and then generates a representative
polygon for each group. They define the groups with a subgraph of a minimum spanning
tree and generate for each group the convex hull. Damen et al. [9] present an approach for
building generalization based on morphological operators. They combine multiple closing and
opening operations to simplify but also aggregate the input polygons. To retain the original
rectangular geometry that is typical for buildings they implement the closing operator with
a Minkowski sum of the input polygon and a square aligned with it.

Our method for polygon aggregation computes a binary partition of the set of polygons
of a planar subdivision. For computing the binary partition we adopt a technique from
computer vision based on graph cuts [5]. Graph cuts are very commonly used for image
segmentation [35, 39] or stereo matching [2]. However, most applications are concerned
with raster data. An exception is the work by Sadlacek and Zara. [34] dealing with the
generation of polygonal objects from three-dimensional point clouds. With respect to the
automatic tuning of a parameter that balances two objectives, the work of Peng and Veksler
[30] is most related to ours. While they focus on the development of quality metrics for the

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:5

p1

p2

p3

p4

p5

p6

(a) an instance of Problem 1, where B = {p1, p6};
red (bold) edges delineate a solution with selec-
tion S′ = {p1, p3, p4, p6}.

v1 v2
v3

v4 v5 v6

t

s

(b) graph G for the instance in (a); red (dashed)
edges show an s-t-cut modelling the solution S′.

Figure 4 Algorithmic solution of Problem 1 via a graph cut.

evaluation of image segmentation solutions, they simply use a constant step width to sample
different values for the parameter of a weighted-sum model. In contrast, we focus on a more
systematic exploration of different parameter values.

3 Polygon Aggregation via Minimum Cuts

For solving Problem 1 with graph cuts, we set up an undirected weighted graph G = (V, E)
modeling all feasible solutions as well as our minimization goal. This approach is illustrated
in Fig. 4 and described in detail in the following.

As starting point we use the adjacency graph G′ = (V ′, E′) of the planar subdivision
given with the set S of polygons. Assuming that the polygons are numbered in an arbitrary
order as p1, . . . , pn, we refer to the corresponding nodes in V ′ as v1, . . . , vn. The edge set E′

contains an edge {vi, vj} for every two polygons pi and pj whose boundaries share at least
one line segment. We define the node set of G as V = V ′ ∪ {s, t}, where s is a node called
source and t a node called sink. The edge set E of G contains all edges in E′ as well as,
for i = 1, . . . , n, the two edges {s, vi} and {vi, t}; see Figs. 4a and b. An s-t-cut in G is a
set of edges whose removal from G causes s and t to be in different connected components.
We solve Problem 1 by defining an edge weighting w : E → R≥0 and computing a minimum
s-t-cut in G, i.e., an s-t-cut in G of minimum total edge weight.

Formally, for any s-t-cut C ⊆ E, we define its weight as w(C) =
∑

e∈C w(e) and the graph
GC = (V, E \C). We call the connected component of GC containing s the source component
and the connected component of GC containing t the sink component of C. Moreover, we
refer to the set of polygons represented by nodes in the source component as the solution
modeled by C; see the red edges in Figs. 4a and b. It remains to ensure that any solution
modeled by a minimum s-t-cut in G is feasible and optimal with respect to Problem 1. For
this we define the edge weighting w as follows:

For every edge e = {vi, vj}, we set w(e) = (1− α) · ℓ(pi, pj), where ℓ(pi, pj) is the length
of the common boundary of polygons pi and pj .
For every node vi with pi ̸∈ B, we set w({s, vi}) = 0 and w({vi, t}) = α · A(pi) + (1 −
α) · ℓ(pi), where ℓ(pi) is the length of the boundary between pi and the outer face (0 if pi

and the outer face are not adjacent).
For every node vi with pi ∈ B, we set w({s, vi}) =∞ and w({vi, t}) = α ·A(pi) + (1−
α) · ℓ(pi). This avoids that {s, vi} is selected for the cut and thus ensures that vi is in
the source component. (In practice, we use a floating-point number format with a special
value representing ∞.)

GISc ience 2021

6:6 Bicriteria Aggregation of Polygons via Graph Cuts

For computing a minimum s-t-cut and the corresponding optimal solution to Problem 1 we
then use a standard graph algorithm.

▶ Theorem 1. The solution modeled by any minimum s-t-cut in G is an optimal solution to
Problem 1. This allows Problem 1 to be solved in O(n2/ log n) time.

Proof. We prove that (i) each selection S′ with B ⊆ S′ ⊆ S is modeled by an s-t-cut in G

whose total weight is α ·A(S′) + (1− α) · P (S′) = fα(S′) and (ii) each s-t-cut in G of total
weight W ̸= ∞ models a solution whose objective value measured with fα is at most W .
This together implies that any solution modeled by a minimum s-t-cut in G is an optimal
solution to Problem 1.

To show (i), let S′ be an arbitrary solution with B ⊆ S′ ⊆ S and C the cut defined
as follows. For each pi ∈ S′, we add edge {vi, t} to C, which amounts to weight α ·∑

pi∈S′ A(pi) + (1 − α) ·
∑

pi∈S′ ℓ(pi). Moreover, we add each edge {vi, vj} ∈ E′ with
pi ∈ S′ and pj ̸∈ S′ to C, which amounts to weight (1 − α) ·

∑
{vi,vj}∈E′′ ℓ(pi, pj) where

E′′ = {{vi, vj} ∈ E′ | pi ∈ S′ ∧ pj ̸∈ S′}. The set C is an s-t-cut in G modeling S′ because
the nodes for polygons in S′ plus node s constitute the source component of C. The weight
of C is

w(C) = α ·
∑

pi∈S′ A(pi) + (1− α) ·
∑

pi∈S′ ℓ(pi) + (1− α) ·
∑

{vi,vj}∈E′′ ℓ(pi, pj)

= α ·A(S′) + (1− α) ·
(∑

pi∈S′ ℓ(pi) +
∑

{vi,vj}∈E′′ ℓ(pi, pj)
)

= α ·A(S′) + (1− α) · P (S′) = fα(S′).

To show (ii), we consider an arbitrary s-t-cut C ′ in G of total weight w(C ′) = W ̸=∞.
Let S′ be the solution modeled by C ′. Because of w(C ′) ̸=∞, S′ satisfies B ⊆ S′ ⊆ S. Now,
let C be the cut for S′ as defined in the proof of (i). As argued before, C models S′ and its
weight equals the objective value of S′, i.e., w(C) = α ·A(S′) + (1− α) · P (S′). Moreover,
the weight of C is at most the weight W of C ′, since every edge in C is included in C ′ as
well, which can be seen as follows. Assume that there exists an edge e = {u, v} with e ∈ C

and e ̸∈ C ′. Because of e ∈ C and the way we constructed C, one of the nodes u and v lies
in the source component of C and the other one in the sink component of C. Because of
e ̸∈ C ′, u an v lie in the same connected component of GC′ . This contradicts the assumption
that C and C ′ model the same solution. Therefore, the assumption e ∈ C and e ̸∈ C ′ must
have been false. This allows us to conclude that w(C ′) ≥ w(C) = α ·A(S′) + (1− α) · P (S′).

The currently fastest algorithm for computing a minimum s-t-cut in a graph with O(n)
edges runs in O(n2/ log n) time [29]. This result applies to our case since G′ is planar (which
implies that it has O(n) edges) and since G has only two more edges for each node of G′.
The running time for computing the cut dominates the running times for computing G from
the input and generating the output selection from the cut (e.g., via a depth-first search in
the graph without the cut edges, starting from the source). Hence, the overall running time
for solving Problem 1 is O(n2/ log n). ◀

4 Computing Solutions for Multiple Parameter Values

In this section we deal with Problem 2, which asks for a set containing an α-optimal solution
for every α ∈ [0, 1]. First, in Sect. 4.1, we show that a set with the required property and
O(n) solutions exists. Then, in Sect. 4.2, we present an algorithm for computing such a set
or, more generally, a set containing for every α a solution that is at most a factor (1 + ε)
worse than an α-optimal solution while avoiding redundancy. The latter is relevant if the
aim is to approximate the output set of Problem 2 with few solutions.

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:7

L13

L23
L12

L03

L01

L02

A1

A2

A3

= S1

= S2

= S1 ∩ S2

= S2 \ S1

= S1 \ S2

A0

Figure 5 Schematic visualization of two α-optimal solutions S1 and S2. The labels Ai refer to
the areas and the labels Lij refer to the line lengths used in the proof of Lemma 2.

4.1 Linear number of solutions
Our argument about a sufficient size for the set requested by Problem 2 is based on the
following structural lemma.

▶ Lemma 2. For an instance of Problem 1, let S1 be an α1-optimal solution and S2 be an
α2-optimal solution, where α1 > α2. Then S1 ⊆ S2.

Proof. We distinguish four classes of polygons: those that are neither in S1 nor in S2; those
that are only in S1; those that are only in S2; and those that are in S1 ∩ S2. We denote
these classes by T0 = S \ (S1 ∪ S2); T1 = S1 \ S2; T2 = S2 \ S1; and T3 = S1 ∩ S2. By Ai we
denote the area of Ti, and by Lij we denote the total length of the edges that are shared by
Ti and Tj ; see Fig. 5. Let α′

i be 1− αi.
The α1-optimal solution S1 = T1 ∪ T3 is at least as good as S1 ∩ S2 = T3 for α = α1:

α1(A1 + A3) + α′
1(L01 + L03 + L12 + L23) ≤ α1A3 + α′

1(L03 + L13 + L23)
⇔ α1A1 + α′

1L12 ≤ α′
1(L13 − L01). (1)

The α2-optimal solution S2 = T2 ∪ T3 is not worse than S1 ∪ S2 = T1 ∪ T2 ∪ T3 for α = α2:

α2(A2 + A3) + α′
2(L02 + L03 + L12 + L13) ≤ α2(A1 + A2 + A3) + α′

2(L01 + L02 + L03)
⇔ α′

2(L13 − L01) ≤ α2A1 − α′
2L12. (2)

Now suppose S1 ⊈ S2, that is, A1 > 0. With α1 > α2 ≥ 0, Equation (1) then implies
L13 − L01 > 0. Since α2 < α1, we also have α′

1 < α′
2. Combining this with (1) and (2) gives:

α1A1 ≤ α1A1 + α′
1L12 ≤ α′

1(L13 − L01) < α′
2(L13 − L01) ≤ α2A1 − α′

2L12 ≤ α2A1.

Thus, α1A1 < α2A1. However, this contradicts the assumption α2 < α1. Therefore, the
assumption S1 ⊈ S2 must have been false, and we conclude S1 ⊆ S2. ◀

Suppose that we continuously decrease α from 1 to 0 while maintaining an α-optimal
solution in a lazy fashion, meaning that we replace the current solution only if it ceases
being α-optimal. At the beginning of this process we have the solution containing only the
polygons in B, since for α = 1 area is all that matters. Due to Lemma 2, whenever we have
to replace the current solution, we can define the new solution by including all the polygons
selected in the current solution plus at least one additional polygon from the set S. Since
there can be at most n− 1 such events, we can conclude the following lemma.

GISc ience 2021

6:8 Bicriteria Aggregation of Polygons via Graph Cuts

▶ Lemma 3. There exists a set of cardinality O(n) that contains an α-optimal solution for
every α ∈ [0, 1].

4.2 The search algorithm
According to Lemma 3, a linear number of solutions suffices to have an α-optimal solution
for every α ∈ [0, 1] as demanded by Problem 2. Our goal is now to find such a linear-size set
efficiently within the set of all possible solutions, which has exponential size. We do this with
a classical method for multi-objective optimization [8], which in the literature is sometimes
referred to as dichotomic scheme [32] or chord algorithm [11]. In the following we describe
the algorithm and how it is applied in our setting to approximate the result set of Problem 2.
For this we assume a user-specified error tolerance ε ≥ 0 as input. We ask for an output set
containing for every α ∈ [0, 1] a solution S′ satisfying fα(S′) ≤ (1 + ε) · opt, where opt is the
value of fα for an α-optimal solution. Approximating for ε = 0 will solve Problem 2.

Before describing the approximation algorithm we choose a geometric representation
for solutions that simplifies the discussion. Consider visualizing a solution S′ in a diagram
with α on the horizontal axis and the solution value αA(S′) + (1− α)P (S′) on the vertical
axis (see Fig. 6 for an illustration). Thus, the function graph of S′ is a line through the
points (0, P (S′)) and (1, A(S′)). Now suppose we put the function graphs of all possible
solutions in a single diagram. A solution S′ is α-optimal if the line for S′ is the first line
that is hit when we shoot a vertical ray from (α, 0) upwards. Thus, to compute an α-optimal
solution for every α, we need to compute the lower envelope (the piecewise minimum) of
the arrangement of all possible solutions’ lines, restricted to the α-range [0, 1]; see Fig. 6a.
Moreover, approximating the set of all α-optimal solutions roughly means to find a set of
solutions whose lower envelope is not too far above the lower envelope of all solutions.

To solve the approximation problem, we use the recursive procedure Approx presented
in Algorithm 1, which only considers a range [αL, αU] of values for α. To consider all values
for α in the range [0, 1], we proceed as follows:
1. Compute α-optimal solutions SL for α = 0 and SU for α = 1 using the min-cut algorithm.
2. Invoke Approx with αL = 0 and αU = 1: Approx(S, B, 0, 1, SL, SU, ε)
The solutions SL and SU are passed over to the procedure only to allow it to access their
associated areas A(SL) and A(SU) as well as perimeters P (SL) and P (SU). To keep the
presentation simple, we refer to these as AL and AU as well as PL and PU, respectively.

The recursive procedure operates as follows. If AL = AU and PL = PU (this may happen
in special cases), then the recursive procedure returns without output (ending in a leaf of the
recursion tree). Otherwise, we compute the α-value αc = (PU−PL)/(AL−AU +PU−PL) for
which SL and SU are equally good. (In effect, we compute the α-coordinate of the intersection
point C of the lines representing SL and SU.) Then, we call the min-cut algorithm to obtain
an αC-optimal solution SC. We compare the objective function value for this new solution
with the objective function for SL (comparing to SU would yield the same result). If the
new solution is substantially better (depending on the approximation factor ε), then the
corresponding line passes far below the intersection point C in the diagram between αL
and αU (refer to Fig. 6b for an illustration). We then call the procedure recursively twice:
once with range (αL, αC) and the solutions SL and SC, and once with range (αC, αU) and
the solutions SC and SU. In between these two calls, we output the new solution SC. The
described process is outlined by Algorithm 1.

For computing a complete set of solutions S1, ..., Sk representing the k linear pieces that
form the lower envelope we call the algorithm with ε = 0. Correctness of the procedure
can be shown by induction on the recursion tree. As for the running time, observe that, by

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:9

0 .2 .4 .6 .8 1 α0

fα(S)

ε = 0.0
ε > 0.0

(a) lower envelope (red) with approximation (blue).
0 .2 .4 .6 .8 1 α0

SL

SC

SU

αC

fα(S)

(b) recursive step of the algorithm.

Figure 6 Geometric representation of solutions as used in the discussion of the search algorithm.

Algorithm 1 Approximation of set of extreme nondominated points.
Input: Polygon sets S, B, lower α (αL), upper α (αU), α-optimal solutions SL, SU for
αL, αU, maximal error ε

Output: Report α-optimal solutions with αL < α < αU

1: procedure Approx(S, B, αL, αU, SL, SU, ε)
2: if A(SL) = A(SU) and P (SL) = P (SU) then return
3: αC ← crossing(SL, SU) ▷ Compute αC with fαC(SL) = fαC(SU)
4: SC ← mincut(S, B, αC) ▷ Solve Problem 1 via graph cut
5: if fαC(SL) > (1 + ε) · fαC(SC) then ▷ Maximal error exceeded
6: Approx(S, B, αL, αC, SL, SC, ε)
7: Report SC
8: Approx(S, B, αC, αU, SC, SU, ε)

Lemma 3, the number of pieces of the lower envelope k is bounded by O(n). Analysing the
recursive algorithm we see that overall at most O(n) invocations of the min-cut algorithm are
performed in the worst case. This also holds for the approximation algorithm (using ε > 0).

5 Experimental Evaluation

To evaluate our algorithms, we implemented them in Java and conducted tests with building
footprints from OpenStreetMap [28]. We transformed the data to UTM coordinates to
accurately calculate areas and perimeters of polygons with a metric unit of measurement.

To provide an overview, we first discuss a test with a smaller instance of 44 buildings; see
Fig. 7. The triangulation for this instance contains 546 triangles. With this test we rather
generally tried to get an idea of the kind of polygon groups and aggregated polygons that
our algorithms produce. Using the recursive algorithm to compute an α-optimal solution for
every α (i.e., ε = 0.0) we obtained 230 different solutions; see Fig. 7a. Some of these solutions
differ by only single triangles and are hardly distinguishable in the visualization. When
using the algorithm to approximate the result set with ε = 0.05, we obtained only 5 different
solutions that are substantially different from each other; see Fig. 7b. One can clearly perceive
the geometrically nested structure of the different solutions stated in Lemma 2. Plotting
the solutions by their associated perimeters and areas yields a diagram with the extreme
nondominated points; see Fig. 7c. We observe that these points occur at irregular distances,

GISc ience 2021

6:10 Bicriteria Aggregation of Polygons via Graph Cuts

100 m

(a) 230 solutions for ε = 0.0.

100 m

(b) 5 solutions for ε = 0.05.

2 4 6

Perimeter [km]

0.1

0.2

Area [km2]

Solutions, ε = 0.0

Solutions, ε = 0.05

(c) areas and perimeters for solutions.

Figure 7 Solutions obtained with Algorithm 1 for the same instance without (a) and with
approximation (b) and their values for the two objectives (c). Darker polygons correspond to
solutions for higher α values, which consist of multiple groups.

meaning that clusters but also larger gaps exist. Nevertheless, our approximation approach
yields a small and representative set of solutions. Due to this result, we decided to focus on
approximated result sets in the further experiments, which we present in the following.

We conducted further experiments with the aim to aggregate building polygons to settle-
ment areas as defined in the digital landscape model DLM250 of the German “Authoritative
Topographic-Cartographic Information System” (ATKIS). This corresponds to a map scale
1 : 250 000. We evaluate our approach on two instances of different sizes from the building
data set, each of which roughly corresponds to one settlement polygon in the DLM250 but
also includes buildings outside of the settlement; see Fig. 8. The larger instance consists of
16881 buildings and the smaller one of 853. They correspond to the town Euskirchen and the
village Ahrem, respectively. Figure 9 depicts for Ahrem the influence of ε on the number of
output solutions. Allowing a maximum error of ε = 0.01 = 1% already decreases the number
of solutions by several orders of magnitude in comparison to an exact solution (ε = 0.0).
For visualizing the aggregation results of the two instances we set ε = 0.1, resulting in six
solutions for Euskirchen (see Figs. 8a and 10a) and five for Ahrem (see Figs. 8b and 10b).

To evaluate our aggregation results, we computed a rather accurate approximation for
Euskirchen (ε = 10−6) and an exact solution to Problem 2 for Ahrem. We then compared
every solution in the result set with the corresponding settlement polygon in the DLM250.
For comparing a solution S1 with the reference S2 we used the following four different metrics:

The Jaccard index, which is also known as Intersection over Union (IoU), for polygons:

IoU = A(S1 ∩ S2)
A(S1 ∪ S2)

The Area Similarity and Perimeter Similarity, as suggested by Podolskaya et al. [31] for
quality assessment of polygon generalization:

VA = 1− |A(S1)−A(S2)|
max{A(S1), A(S2)} VP = 1− |P (S1)− P (S2)|

max{(P (S1), P (S2)}

The discrete Hausdorff distance dH of the polygons’ boundaries, whose vertex sets we
denote as V (S1) and V (S2). It adds to the other three measure that it indicates the
maximum difference of the solutions with respect to the Euclidean distance d.

dH = max
v1∈V (S1)

{ min
v2∈V (S2)

{d(v1, v2)}}

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:11

Table 1 Statistics for every solution that is the best for at least one evaluation metric. For the
Hausdorff distance lower is better (↓), else higher is better (↑).

Dataset α IoU ↑ VA ↑ VP ↑ dH [m] ↓

Euskirchen

0.0048 0.8951 0.9997 0.8033 298.476
0.0064 0.8999 0.9809 0.8437 273.568
0.0073 0.8943 0.9650 0.8495 264.562
0.0109 0.8301 0.8795 0.9989 926.226

Ahrem 0.0021 0.5882 0.6973 0.9998 336.437
0.0041 0.7896 0.9685 0.9106 114.570

The similarity measures IoU , VA, and VB are in the range of [0, 1], where 0 represents
minimum similarity and 1 represents maximum similarity. For cases where one polygon is
contained by a second polygon, VA equals IoU .

An important selection criterion of the DLM250 is that all settlement areas must be
larger than 40 hectares. Therefore, we removed all polygons smaller than the threshold
from a solution before computing the four metrics. The resulting metrics for Euskirchen are
shown in Fig. 11. For all α > 0.105 the solution contained no contiguous polygon reaching
the 40 hectares threshold, meaning that no similarity can be found. The graph reveals a
correlation of IoU and Area Similarity VA; in fact they are the same for α > 0.05. The
Perimeter Similarity VP, on the other hand, turned out to be quite meaningless as its graph
shows a rather erratic behaviour. This is because solutions for large α often contain polygons
smaller than the threshold, leading to a short perimeter after their removal.

For each metric we identified the value for α that yields the solution of maximum similarity
or minimum Hausdorff distance; see Table 1. For the cases where IoU , VA, and Hausdorff
distance have their respective best values, the other metrics are similar to their best values.
At the maximum of VP, the other metrics are significantly away from their best values. The
solutions of minimum Hausdorff distance and maximum IoU are also depicted in Figure 8 as
blue and red lines, respectively. We observe that the shapes are indeed similar, but that the
boundary of the reference solutions contain more angles close to 90◦. Using a schematization
algorithm in a post-processing step might increase the similarity in this respect.

In our Java implementation, we used the Push Relabel algorithm implemented in the
library JGraphT [25] to compute the graph cuts. This algorithm can be implemented to
run in the worst case in O(nm log(n2/m)) time on a graph with n nodes and m edges [17],
but the JGraphT documentation reports a worst-case running time of O(n3). This implies
that our implementation of the algorithm for Problem 1 runs in O(n3) time, where n is
the number of polygons in the set S. This is substantially higher than the sub-quadratic
running time that is achievable according to Theorem 1, but sufficiently low to solve problem
instances as the ones we discussed above. Our implementation of the recursive algorithm for
Problem 2 uses parallelization for the two recursive calls, which turned out to improve the
running time substantially. In particular, the running time improves from 79 seconds to 12
seconds for ε = 10−6 (528 solutions) on the instance of Ahrem by using parallelization.

6 Conclusion and Outlook

We have presented efficient algorithms for polygon aggregation optimizing a balance between
a small total area and a short total perimeter of the output polygons. We combined the two
criteria in a weighted sum, which we parameterized with a single parameter α ∈ [0, 1]. The

GISc ience 2021

6:12 Bicriteria Aggregation of Polygons via Graph Cuts

750 m

(a) Euskirchen.

200 m

(b) Ahrem.

Figure 8 Result sets of two evaluation data sets with ε = 0.1. The green outline corresponds to
the ground truth polygon. The red and blue outlines, which are mostly the same, represent the best
solutions in terms of IoU and dH.

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:13

0.00 0.05 0.10

ε

2

4

6

ln

#Solutions

Figure 9 Number of so-
lutions by ε for Ahrem.

0 200 400

Perimeter [km]

5

10

Area [km2]

Solutions, ε = 10−6

Solutions, ε = 0.10

(a) Euskirchen.

10 20

Perimeter [km]

0.5

1.0

Area [km2]

Solutions, ε = 0.00

Solutions, ε = 0.10

(b) Ahrem.

Figure 10 All α-optimal solutions and the approximated solutions
which are displayed in Fig. 8.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

α

0.0

0.2

0.4

0.6

0.8

1.0

S
im

il
a
ri

ty

0

500

1000

1500

H
a
u

sd
o
rff

D
is

ta
n

ce
[m

]

Jaccard Similarity IoU

Area Similarity VA

Perimeter Similarity VP

Hausdorff distance dH

Figure 11 Evaluation metrics for Euskirchen shown in Fig. 8a. For α > 0.105 all polygon of the
result set are below the specified minimum area.

first problem we studied asked for a single optimal solution for a fixed α. It turned out that
this problem can be solved by computing a minimum cut in a graph. A second problem
asked for an output set containing an optimal solution for every possible value for α. We
showed that a linear-size set with the requested property can be efficiently computed with a
recursive algorithm that uses the graph-cut algorithm as a subroutine. Moreover, we showed
how to approximate such a set using the same recursive algorithm.

Our experiments showed that the presented algorithms are fast enough to process realistic
problem instances, although we did not use the fastest known (i.e., sub-quadratic) graph-cut
algorithm in our implementation. We consider it astonishing how few solutions were needed
to approximate a set containing an optimal solution for every α: For our largest instance
with 16881 building footprints, a set of six solutions sufficed to include for every α a solution
that is at most 10% worse than optimal. Since the number of graph cuts computed by
the recursive algorithm is in the order of the size of its output set, the approximation
for the above-mentioned instance was achieved relatively fast, in 20.3 seconds. Finally,
our experiments support the claim that our algorithm can aggregate building footprints
to polygons that are quite similar to settlement areas as given in an official topographic
database of scale 1 : 250 000. However, experiments on a larger data basis are needed to
substantiate our finding. It would also be interesting to investigate further whether different
instances can be solved with the same α to obtain a solution similar to a reference solution.

As an idea for future research one could replace the triangulation used in our method with
other partitions of the plane. For example, one could try to preserve regularities of the input
polygons by subdividing the plane with linear extensions of the polygons’ edges. Moreover,
it would be interesting to consider relaxed or more constrained versions of the aggregation

GISc ience 2021

6:14 Bicriteria Aggregation of Polygons via Graph Cuts

problem. For example, one could relax the requirement to include every input polygon in the
output and/or introduce a hard size constraint for the output polygons. Most importantly,
however, we see our work as a step towards multi-criteria optimization in cartography. As
next steps one could consider more than two criteria or look at Pareto-optimal solutions
rather than just at the extreme nondominated (i.e., α-optimal) solutions.

References
1 Karl-Heinrich Anders and Monika Sester. Parameter-free cluster detection in spatial databases

and its application to typification. In Proc. 19th ISPRS Congress, volume 33 of International
Archives of Photogrammetry and Remote Sensing, pages 75–83, 2000.

2 Michael Bleyer and Margrit Gelautz. Graph-cut-based stereo matching using image segmen-
tation with symmetrical treatment of occlusions. Signal Processing: Image Communication,
22(2):127–143, 2007. doi:10.1016/j.image.2006.11.012.

3 Fritz Bökler and Petra Mutzel. Output-sensitive algorithms for enumerating the extreme
nondominated points of multiobjective combinatorial optimization problems. In Proc. 23rd
Annual European Symposium on Algorithms (ESA ’15), pages 288–299, 2015. doi:10.1007/
978-3-662-48350-3_25.

4 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes and
schematic polygonal approximations for sets of points within queried temporal ranges. In Proc.
27th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM SIGSPATIAL GIS ’19), pages 249–258, 2019. doi:10.1145/3347146.3359087.

5 Yuri Boykov and Olga Veksler. Graph cuts in vision and graphics: Theories and applications.
In Handbook of Mathematical Models in Computer Vision, chapter 5, pages 79–96. Springer,
Boston, MA, USA, 2006. doi:10.1007/0-387-28831-7_5.

6 Dirk Burghardt and Alessandro Cecconi. Mesh simplification for building typification.
International Journal of Geographical Information Science, 21(3):283–298, 2007. doi:
10.1080/13658810600912323.

7 Dirk Burghardt, Stefan Schmid, and Jantien Stoter. Investigations on cartographic con-
straint formalisation. In Proc. 11th ICA Workshop on Generalisation and Multiple Rep-
resentation, 2007. URL: https://kartographie.geo.tu-dresden.de/downloads/ica-gen/
workshop2007/Burghardt-ICAWorkshop.pdf.

8 Jared L. Cohon. Multiobjective Programming and Planning. Academic Press, New York, NY,
USA, 1978.

9 Jonathan Damen, Marc van Kreveld, and Bert Spaan. High quality building generalization by
extending the morphological operators. In Proc. 11th ICA Workshop on Generalisation and
Multiple Representation, pages 1–12, 2008. URL: https://kartographie.geo.tu-dresden.
de/downloads/ica-gen/workshop2008/04_Damen_et_al.pdf.

10 Steven J. D’Amico, Shoou-Jiun Wang, Rajan Batta, and Christopher M. Rump. A simulated
annealing approach to police district design. Computers & Operations Research, 29(6):667–684,
2002. doi:10.1016/S0305-0548(01)00056-9.

11 Constantinos Daskalakis, Ilias Diakonikolas, and Mihalis Yannakakis. How good is the chord
algorithm? SIAM Journal on Computing, 45(3):811–858, 2016. doi:10.1137/13093875X.

12 Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation of simple
polygons for characterizing the shape of a set of points in the plane. Pattern Recognition,
41(10):3224–3236, 2008. doi:10.1016/j.patcog.2008.03.023.

13 Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set
of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559, 1983.
doi:10.1109/TIT.1983.1056714.

14 Yu Feng, Frank Thiemann, and Monika Sester. Learning cartographic building generalization
with deep convolutional neural networks. ISPRS International Journal of Geo-Information,
8(6), 2019. doi:10.3390/ijgi8060258.

https://doi.org/10.1016/j.image.2006.11.012
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1007/978-3-662-48350-3_25
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1007/0-387-28831-7_5
https://doi.org/10.1080/13658810600912323
https://doi.org/10.1080/13658810600912323
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2007/Burghardt-ICAWorkshop.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2007/Burghardt-ICAWorkshop.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2008/04_Damen_et_al.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2008/04_Damen_et_al.pdf
https://doi.org/10.1016/S0305-0548(01)00056-9
https://doi.org/10.1137/13093875X
https://doi.org/10.1016/j.patcog.2008.03.023
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.3390/ijgi8060258

P. Rottmann, A. Driemel, H. Haverkort, H. Röglin, and J.-H. Haunert 6:15

15 Martin Galanda. Automated polygon generalization in a multi agent system. PhD thesis,
University of Zurich, Zürich, 2003. doi:10.5167/uzh-163108.

16 Sven Gedicke, Johannes Oehrlein, and Jan-Henrik Haunert. Aggregating land-use polygons
considering line features as separating map elements. Cartography and Geographic Information
Science, 48(2):124–139, 2021. doi:10.1080/15230406.2020.1851613.

17 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

18 Jan-Henrik Haunert and Alexander Wolff. Area aggregation in map generalisation by mixed-
integer programming. International Journal of Geographical Information Science, 24(12):1871–
1897, 2010. doi:10.1080/13658810903401008.

19 Christopher B. Jones, Geraint Ll. Bundy, and Mark J. Ware. Map generalization with a
triangulated data structure. Cartography and Geographic Information Systems, 22(4):317–331,
1995. doi:10.1559/152304095782540221.

20 Kamyoung Kim, Denis J. Dean, Hyun Kim, and Yongwan Chun. Spatial optimization
for regionalization problems with spatial interaction: a heuristic approach. International
Journal of Geographical Information Science, 30(3):451–473, 2016. doi:10.1080/13658816.
2015.1031671.

21 Chengming Li, Yong Yin, Xiaoli Liu, and Pengda Wu. An automated processing method
for agglomeration areas. ISPRS International Journal of Geo-Information, 7(6):204, 2018.
doi:10.3390/ijgi7060204.

22 Jingzhong Li and Tinghua Ai. A triangulated spatial model for detection of spatial character-
istics of GIS data. In Proc. 2010 IEEE International Conference on Progress in Informatics
and Computing (PIC ’10), volume 1, pages 155–159, 2010. doi:10.1109/PIC.2010.5687417.

23 Adrien Maudet, Guillaume Touya, Cécile Duchêne, and Sébastien Picault. Multi-agent multi-
level cartographic generalisation in CartAGen. In Proc. 12th International Conference on
Advances in Practical Applications of Heterogeneous Multi-Agent Systems (PAAMS ’14), pages
355–358, 2014. doi:10.1007/978-3-319-07551-8_37.

24 Robert B. McMaster and K. Stuart Shea. Generalization in digital cartography. Association
of American Geographers, Washington, DC, USA, 1992.

25 Dimitrios Michail, Joris Kinable, Barak Naveh, and John V. Sichi. JGraphT—a Java library
for graph data structures and algorithms. ACM Transactions on Mathematical Software, 46(2),
2020. doi:10.1145/3381449.

26 Adriano Moreira and Maribel Y. Santos. Concave hull: A k-nearest neighbours approach
for the computation of the region occupied by a set of points. In Proc. 2nd International
Conference on Computer Graphics Theory and Applications (GRAPP ’07), pages 61–68, 2007.
URL: http://hdl.handle.net/1822/6429.

27 Johannes Oehrlein and Jan-Henrik Haunert. A cutting-plane method for contiguity-constrained
spatial aggregation. Journal of Spatial Information Science, 15(1):89–120, 2017. doi:10.5311/
JOSIS.2017.15.379.

28 OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org, 2020.

29 James B. Orlin. Max flows in O(nm) time, or better. In Proc. 45th Annual ACM Symposium
on Theory of Computing (STOC ’13), page 765–774, 2013. doi:10.1145/2488608.2488705.

30 Bo Peng and Olga Veksler. Parameter selection for graph cut based image segmentation.
In Proc. British Machine Vision Conference (BMVC ’08), pages 16.1–16.10, 2008. doi:
10.5244/C.22.16.

31 Ekaterina S. Podolskaya, Karl-Heinrich Anders, Jan-Henrik Haunert, and Monika Sester. Qual-
ity assessment for polygon generalization. In Quality Aspects in Spatial Data Mining, chapter 16,
pages 211–220. CRC Press, Boca Raton, FL, USA, 2007. doi:10.1201/9781420069273.ch16.

32 Anthony Przybylski, Xavier Gandibleux, and Matthias Ehrgott. A recursive algorithm for
finding all nondominated extreme points in the outcome set of a multiobjective integer
programme. INFORMS Journal on Computing, 22(3):371–386, 2010. doi:10.1287/ijoc.
1090.0342.

GISc ience 2021

https://doi.org/10.5167/uzh-163108
https://doi.org/10.1080/15230406.2020.1851613
https://doi.org/10.1145/48014.61051
https://doi.org/10.1080/13658810903401008
https://doi.org/10.1559/152304095782540221
https://doi.org/10.1080/13658816.2015.1031671
https://doi.org/10.1080/13658816.2015.1031671
https://doi.org/10.3390/ijgi7060204
https://doi.org/10.1109/PIC.2010.5687417
https://doi.org/10.1007/978-3-319-07551-8_37
https://doi.org/10.1145/3381449
http://hdl.handle.net/1822/6429
https://doi.org/10.5311/JOSIS.2017.15.379
https://doi.org/10.5311/JOSIS.2017.15.379
 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.5244/C.22.16
https://doi.org/10.5244/C.22.16
https://doi.org/10.1201/9781420069273.ch16
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1287/ijoc.1090.0342

6:16 Bicriteria Aggregation of Polygons via Graph Cuts

33 Azimjon Sayidov, Robert Weibel, and Stefan Leyk. Recognition of group patterns in geological
maps by building similarity networks. Geocarto International, pages 1–20, 2020. doi:10.1080/
10106049.2020.1730449.

34 David Sedlacek and Jiri Zara. Graph cut based point-cloud segmentation for polygonal
reconstruction. In Proc. 5th International Symposium on Advances in Visual Computing
(ISVC ’09), pages 218–227, 2009. doi:10.1007/978-3-642-10520-3_20.

35 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. doi:10.1109/34.868688.

36 Stefan Steiniger, Dirk Burghardt, and Robert Weibel. Recognition of island structures for map
generalization. In Proc. 14th Annual ACM International Symposium on Advances in Geographic
Information Systems (ACM GIS ’06), pages 67–74, 2006. doi:10.1145/1183471.1183484.

37 Guillaume Touya, Xiang Zhang, and Imran Lokhat. Is deep learning the new agent for
map generalization? International Journal of Cartography, 5(2–3):142–157, 2019. doi:
10.1080/23729333.2019.1613071.

38 Edward R. Tufte. The visual display of quantitative information. Graphics Press, Cheshire,
CT, USA, 1992. doi:10.1119/1.14057.

39 Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(11):1101–1113, 1993. doi:10.1109/34.244673.

https://doi.org/10.1080/10106049.2020.1730449
https://doi.org/10.1080/10106049.2020.1730449
https://doi.org/10.1007/978-3-642-10520-3_20
https://doi.org/10.1109/34.868688
https://doi.org/10.1145/1183471.1183484
https://doi.org/10.1080/23729333.2019.1613071
https://doi.org/10.1080/23729333.2019.1613071
https://doi.org/10.1119/1.14057
https://doi.org/10.1109/34.244673

	1 Introduction
	2 Related Work
	3 Polygon Aggregation via Minimum Cuts
	4 Computing Solutions for Multiple Parameter Values
	4.1 Linear number of solutions
	4.2 The search algorithm

	5 Experimental Evaluation
	6 Conclusion and Outlook

