64 research outputs found

    Multi-pole voltage source converter HVDC transmission systems

    Get PDF
    This study connects several modular multilevel converters to form multi-pole voltage source converter highvoltage dc (VSC-HVDC) links which are suited for bulk power evacuation, with increased resiliency to ac and dc network faults. The proposed arrangements resemble symmetrical and asymmetrical HVDC links that can be used for bulk power transfer over long distances with reduced transmission losses, and for the creation of multi-terminal supergrids currently being promoted for transitional dc grids in Europe. The technical feasibility of the proposed systems is assessed using simulations on symmetrical and asymmetrical tri-pole VSC-HVDC links, including the case of permanent pole-to-ground dc faults

    Power-electronic systems for the grid integration of renewable energy sources: a survey

    Get PDF
    The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a powerelectronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented

    An Overview of Applications of the Modular Multilevel Matrix Converter

    Get PDF
    The modular multilevel matrix converter is a relatively new power converter topology suitable for high-power alternating current (AC)-to-AC applications. Several publications in the literature have highlighted the converter capabilities, such as full modularity, fault-redundancy, control flexibility and input/output power quality. However, the topology and control of this converter are relatively complex to realise, considering that the converter has a large number of power-cells and floating capacitors. To the best of the authors’ knowledge, there are no review papers where the applications of the modular multilevel matrix converter are discussed. Hence, this paper aims to provide a comprehensive review of the state-of-the-art of the modular multilevel matrix converter, focusing on implementation issues and applications. Guidelines to dimensioning the key components of this converter are described and compared to other modular multilevel topologies, highlighting the versatility and controllability of the converter in high-power applications. Additionally, the most popular applications for the modular multilevel matrix converter, such as wind turbines, grid connection and motor drives, are discussed based on analyses of simulation and experimental results. Finally, future trends and new opportunities for the use of the modular multilevel matrix converter in high-power AC-to-AC applications are identified.Agencia Nacional de Investigación y Desarrollo/[Fondecyt 11191163]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 1180879]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 11190852]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[ANID Basal FB0008]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondef ID19I10370]/ANID/ChileUniversidad de Santiago/[Dicyt 091813DD]//ChileUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctric

    DC current flow controllers for meshed HVDC grids

    Get PDF
    Premi Extraordinari de Doctorat, promoció 2018-2019. Àmbit d’Enginyeria IndustrialMeshed High Voltage Direct Current (HVDC) grids are seen as solution to transmit and exchange high amounts of power across long distances or using submarine cables with high levels of flexibility and redundancy. Also, they can be especially suitable to integrate offshore energy resources such as offshore wind power plants. This thesis focuses on the DC Current Flow Controllers (CFC) for meshed HVDC grids. The CFCs are being thought as power electronics based devices that may be installed in future meshed HVDC grids to aid in the current flow regulation. The concept is similar to Flexible Alternating Current Transmission Systems (FACTS) but applied to HVDC grids. First, an overview of the different CFC concepts proposed in the literature is presented. Then, the modelling and control of a DC/DC CFC converter is developed and the benefits of installing it in a meshed HVDC grid are analysed. The functionality of the previous CFC is also integrated into a DC Circuit Breaker, in order to have a single device with both capability to interrupt DC faults and provide DC current regulation. Afterwards, an interline DC/DC CFC topology is proposed, which has the advantage of a simplified converter structure. It is validated using dynamic simulations and a prototype is built and tested in a meshed DC grid experimental platform. A single CFC may not be enough to regulate the current flows in complex meshed HVDC grids, thus, this work also considers the concept of Distributed CFCs (DCFC) in a meshed HVDC grid, which are being operated selectively, allowing more flexibility when regulating the current flows. Also, multiple lines can be connected to a certain HVDC node. Therefore, the proposed CFC is extended to be connected to any number of HVDC lines and so, be able to control the current circulating through any of them. The obtained multi-port CFC is validated through simulations. Other devices can help to the current regulation in meshed HVDC grids, for example already installed DC/DC converters that adapt the different voltages of the HVDC systems. A transformerless DC/DC topology is analysed in this work and the design of its AC filter addressed. Finally, taking into account that some HVDC links based on Line Commutated Converters (LCC-HVDC) are installed near to potential offshore wind power resources, this work studies the operation and control of a Current Source Converter (CSC) based tapping station connected in series with the HVDC link to integrate offshore wind power.Les xarxes d'alta tensió mallades en contínua, meshed High voltatge Direct Current (HVDC) grids, es presenten com una solució per transportar grans quantitats d'energia a través de llargues distàncies o mitjançant cables submarins amb alts nivells de flexibilitat i redundància. També, són especialment adequades per la captació d'energia de parcs eòlics marins. Aquesta tesi se centra en els controladors del flux de corrent, Current Flow Controllers (CFC), per a xarxes HVDC mallades. Els CFC es plantegen com dispositius d'electrònica de potència que es podrien instal·lar en les futures xarxes HVDC mallades per tal d'ajudar en la regulació dels fluxos de corrent de les línies. Aquest concepte és similar als dispositius FACTS (Flexible AC Transmission Systems), però aplicat a xarxes HVDC. Primer, es realitza un recull de les diferents propostes de CFCs a la literatura. Després, es modelitza i es dissenya el control d'un convertidor DC/DC CFC i s'analitzen els beneficis d'instal·lar-lo en una xarxa HVDC mallada. La funcionalitat de l'anterior CFC s'inclou en els interruptors de contínua, DC Circuit Breakers (DCCB), per tal de tenir un dispositiu amb capacitat d'interropre faltes DC i també controlar corrents. A continuació, es proposa una topologia de CFC simplicada, que es valida per mitjà de simulacions i se'n construeix un prototip que es prova experimentalment al laboratori. Un únic CFC pot no ser suficient per a controlar els fluxos de corrent en xarxes HVDC mallades d'una certa complexitat. És per això, que també s'introdueix el concepte de CFCs distribuïts en diferents nodes de la xarxa i que s'operen de forma selectiva. Vàries línies HVDC poden estar connectades a un node, per aquest motiu, la topologia de CFC anteriorment presentada s'actualitza per tal de poder ser connectada a un nombre qualsevol de línies. La topologia multi-port obtinguda es valida per mitjà de simulacions. Altres dispositius que poden ajudar a controlar els fluxos de corrent són els propis convertidors DC/DC que s'encarreguen d'adaptar la tensió dels sistemes HVDC. S'analitza també un convertidor DC/DC sense transformador AC i es realitza el disseny del seu filtre AC. Finalment, algunes de les línies HVDC basades en tecnologia Line Commutated Converter (LCC) es troben a prop de zones amb energia eòlica potencial. Per aquest motiu, s'estudia l'operació i control d'un convertidor Current Source Converter (CSC) que actua com una estació de tapping per tal d'injectar l'energia d'un parc eòlic marí a la línia LCC-HVDC.Award-winningPostprint (published version

    Power Balancing in Cascaded H-Bridge and Modular Multilevel Converters Under Unbalanced Operation: A Review

    Get PDF
    Multilevel Voltage-Source Converters (VSC) based on modular structures are envisioned as a prominent alternative for grid and industry applications. Foremost among these are the Cascaded H-Bridge (CHB) and the Modular Multilevel Converter (MMC). In this context, depending on the application and the power conversion structure, unbalanced operating conditions can be asked to the converter. Previous investigations regarding the operation and the solutions for modular structures under unbalanced conditions have already addressed this topic, but information is dispersed over a wide number of sources. This paper identifies, classifies, and analyzes the intercluster active power balancing strategies for the adequate operation of the most commonly used modular structures in some typical unbalanced operating scenarios: the Static Synchronous Compensator (STATCOM) under unbalanced voltage and/or current conditions, the unequal power generation in large-scale photovoltaic (PV) power plants, and the uneven power distribution in a battery energy storage system (BESS). Each of the applications has been independently studied so as to provide a comprehensive analysis of the alternative techniques found in the specialized literature, clearly explaining their respective strengths and drawbacks. Several future challenges have been identified during the study, which will involve greater research effort in this key research topic

    Power electronics:The enabling technology for renewable energy integration

    Get PDF

    Static reactive power compensator design, based on three-phase voltage converter

    Get PDF
    At present, electrical network stability is of the utmost importance because of the increase in electric demand and the integration of distributed generation deriving from renewable energy. In this paper, we proposed a static reactive power compensator model with common direct current voltage sources. Converter parameters were calculated and designed to fulfill specifications. In order to ascertain the device response for different operating modes as reactive power consumer and generator, we developed the model’s power and control circuits in Matlab Simulink. Simulations were performed for different conditions, and as a result, the current and voltage waveforms and the circular power chart were obtained. This paper has theoretically proven it is possible to achieve the consumption or generation of purely active or reactive power by implementing a static reactive power compensator with common DC voltage sources. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    DC current flow controllers for meshed HVDC grids

    Get PDF
    Meshed High Voltage Direct Current (HVDC) grids are seen as solution to transmit and exchange high amounts of power across long distances or using submarine cables with high levels of flexibility and redundancy. Also, they can be especially suitable to integrate offshore energy resources such as offshore wind power plants. This thesis focuses on the DC Current Flow Controllers (CFC) for meshed HVDC grids. The CFCs are being thought as power electronics based devices that may be installed in future meshed HVDC grids to aid in the current flow regulation. The concept is similar to Flexible Alternating Current Transmission Systems (FACTS) but applied to HVDC grids. First, an overview of the different CFC concepts proposed in the literature is presented. Then, the modelling and control of a DC/DC CFC converter is developed and the benefits of installing it in a meshed HVDC grid are analysed. The functionality of the previous CFC is also integrated into a DC Circuit Breaker, in order to have a single device with both capability to interrupt DC faults and provide DC current regulation. Afterwards, an interline DC/DC CFC topology is proposed, which has the advantage of a simplified converter structure. It is validated using dynamic simulations and a prototype is built and tested in a meshed DC grid experimental platform. A single CFC may not be enough to regulate the current flows in complex meshed HVDC grids, thus, this work also considers the concept of Distributed CFCs (DCFC) in a meshed HVDC grid, which are being operated selectively, allowing more flexibility when regulating the current flows. Also, multiple lines can be connected to a certain HVDC node. Therefore, the proposed CFC is extended to be connected to any number of HVDC lines and so, be able to control the current circulating through any of them. The obtained multi-port CFC is validated through simulations. Other devices can help to the current regulation in meshed HVDC grids, for example already installed DC/DC converters that adapt the different voltages of the HVDC systems. A transformerless DC/DC topology is analysed in this work and the design of its AC filter addressed. Finally, taking into account that some HVDC links based on Line Commutated Converters (LCC-HVDC) are installed near to potential offshore wind power resources, this work studies the operation and control of a Current Source Converter (CSC) based tapping station connected in series with the HVDC link to integrate offshore wind power.Les xarxes d'alta tensió mallades en contínua, meshed High voltatge Direct Current (HVDC) grids, es presenten com una solució per transportar grans quantitats d'energia a través de llargues distàncies o mitjançant cables submarins amb alts nivells de flexibilitat i redundància. També, són especialment adequades per la captació d'energia de parcs eòlics marins. Aquesta tesi se centra en els controladors del flux de corrent, Current Flow Controllers (CFC), per a xarxes HVDC mallades. Els CFC es plantegen com dispositius d'electrònica de potència que es podrien instal·lar en les futures xarxes HVDC mallades per tal d'ajudar en la regulació dels fluxos de corrent de les línies. Aquest concepte és similar als dispositius FACTS (Flexible AC Transmission Systems), però aplicat a xarxes HVDC. Primer, es realitza un recull de les diferents propostes de CFCs a la literatura. Després, es modelitza i es dissenya el control d'un convertidor DC/DC CFC i s'analitzen els beneficis d'instal·lar-lo en una xarxa HVDC mallada. La funcionalitat de l'anterior CFC s'inclou en els interruptors de contínua, DC Circuit Breakers (DCCB), per tal de tenir un dispositiu amb capacitat d'interropre faltes DC i també controlar corrents. A continuació, es proposa una topologia de CFC simplicada, que es valida per mitjà de simulacions i se'n construeix un prototip que es prova experimentalment al laboratori. Un únic CFC pot no ser suficient per a controlar els fluxos de corrent en xarxes HVDC mallades d'una certa complexitat. És per això, que també s'introdueix el concepte de CFCs distribuïts en diferents nodes de la xarxa i que s'operen de forma selectiva. Vàries línies HVDC poden estar connectades a un node, per aquest motiu, la topologia de CFC anteriorment presentada s'actualitza per tal de poder ser connectada a un nombre qualsevol de línies. La topologia multi-port obtinguda es valida per mitjà de simulacions. Altres dispositius que poden ajudar a controlar els fluxos de corrent són els propis convertidors DC/DC que s'encarreguen d'adaptar la tensió dels sistemes HVDC. S'analitza també un convertidor DC/DC sense transformador AC i es realitza el disseny del seu filtre AC. Finalment, algunes de les línies HVDC basades en tecnologia Line Commutated Converter (LCC) es troben a prop de zones amb energia eòlica potencial. Per aquest motiu, s'estudia l'operació i control d'un convertidor Current Source Converter (CSC) que actua com una estació de tapping per tal d'injectar l'energia d'un parc eòlic marí a la línia LCC-HVDC

    Control of a permanent magnet synchronous general-based wind energy conversion system.

    Get PDF
    Master of Science in Electrical Engineering. University of KwaZulu-Natal, Durban 2016.Wind energy has proven to be a competitive and an environmentally friendly renewable energy resource for generating electricity. Wind farms are usually located far from the load centers; hence the generated power has to be transmitted over long distances to load centers. High voltage direct current (HVDC) transmission system is the preferred means for transmitting bulk power over long distances when compared to high voltage alternating current (HVAC) transmission system. An HVDC transmission system increases the transmission capacity, improves the system stability, and possesses lower transmission losses. In this research investigation, a 690V, 2MW wind turbine-driven permanent magnet synchronous generator is modelled to be integrated into a local 33kV AC grid via a three- level neutral-point-clamped voltage source converter (VSC)-based HVDC transmission system. Three control schemes were implemented, namely: pitch-angle controller, generator-side converter controller, and a grid-side converter controller to optimize the system performance. The stability analysis and controller modeling was carried out in MATLAB using bode plots and step response curves. The proposed subsystems and the control schemes were implemented in PSIM software package to evaluate the overall system's performance. The simulations were carried out on the model and it was concluded that the grid-side converter controller ensured maximum power point tracking when the wind speed was lower than the wind turbine(WT)'s rated wind speed. Conversely, as the wind speed exceeded the WT's rated wind speed, the pitch-angle controller was activated. This increased the angle of attack thereby reducing the power coefficient in order to shed off the aerodynamic power. Furthermore, the DC-link voltage was stabilized within the allowable limits to ensure a continuous flow of active power from the WT to the grid and the reactive power transfer between the grid-side converter and the AC utility grid was maintained to a minimum to ensure a unity power factor. The comparison analysis of the new control approach to the traditional control approach illustrated that for the new control approach, the ability of the DC-link voltage controller to keep the DC-link voltage within the allowable limits does not get impaired during fault conditions. Therefore, the power continues flowing from the WT generator to the grid. Conversely, it was observed that for the traditional control approach, the ability of the DC-link voltage controller to stabilize the DC-link voltage gets impaired and therefore it can no longer effectively transfer as much active power from the WT generator to the grid. Therefore, the new control approach proved to be effective in terms of stabilizing the DC-link voltage during fault conditions thereby enhancing the WT’s fault-ride-through capability
    corecore