714 research outputs found

    A Topological Representation of Branching Neuronal Morphologies

    Get PDF
    The online version of this article (https://doi.org/10.1007/s12021-017-9341-1) contains supplementary material, which is available to authorized users. Among others, we thank Athanassia Chalimourda and Katherine Turner for helpful conversations in various stages of this research and Jay Coggan for a critical reading of the manuscript. We also thank Hanchuan Peng and Xiaoxiao Liu for providing and curating the BigNeuron datasets. This work was supported by funding for the Blue Brain Project (BBP) from the ETH Domain. P.D. and R.L. were supported part by the Blue Brain Project and by the start-up grant of KH. Partial support for P.D. has been provided by the Advanced Grant of the European Research Council GUDHI (Geometric Understanding in Higher Dimensions). MS was supported by the SNF NCCR “Synapsy”.Peer reviewedPublisher PD

    One rule to grow them all: A general theory of neuronal branching and its practical application

    Get PDF
    Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramon y Cajal's laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron's electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron's computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the "TREES toolbox," which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks

    Growth-Driven Percolations: The Dynamics of Community Formation in Neuronal Systems

    Full text link
    The quintessential property of neuronal systems is their intensive patterns of selective synaptic connections. The current work describes a physics-based approach to neuronal shape modeling and synthesis and its consideration for the simulation of neuronal development and the formation of neuronal communities. Starting from images of real neurons, geometrical measurements are obtained and used to construct probabilistic models which can be subsequently sampled in order to produce morphologically realistic neuronal cells. Such cells are progressively grown while monitoring their connections along time, which are analysed in terms of percolation concepts. However, unlike traditional percolation, the critical point is verified along the growth stages, not the density of cells, which remains constant throughout the neuronal growth dynamics. It is shown, through simulations, that growing beta cells tend to reach percolation sooner than the alpha counterparts with the same diameter. Also, the percolation becomes more abrupt for higher densities of cells, being markedly sharper for the beta cells.Comment: 8 pages, 10 figure

    Context-aware modeling of neuronal morphologies

    Get PDF
    © 2014 Torben-Nielsen and De Schutter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsNEURONAL MORPHOLOGIES ARE PIVOTAL FOR BRAIN FUNCTIONING: physical overlap between dendrites and axons constrain the circuit topology, and the precise shape and composition of dendrites determine the integration of inputs to produce an output signal. At the same time, morphologies are highly diverse and variant. The variance, presumably, originates from neurons developing in a densely packed brain substrate where they interact (e.g., repulsion or attraction) with other actors in this substrate. However, when studying neurons their context is never part of the analysis and they are treated as if they existed in isolation. Here we argue that to fully understand neuronal morphology and its variance it is important to consider neurons in relation to each other and to other actors in the surrounding brain substrate, i.e., their context. We propose a context-aware computational framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously according to growth rules expressed in terms of interactions between the developing neuron and the surrounding brain substrate. As a proof of principle, we demonstrate that by using NeuroMaC we can generate accurate virtual morphologies of distinct classes both in isolation and as part of neuronal forests. Accuracy is validated against population statistics of experimentally reconstructed morphologies. We show that context-aware generation of neurons can explain characteristics of variation. Indeed, plausible variation is an inherent property of the morphologies generated by context-aware rules. We speculate about the applicability of this framework to investigate morphologies and circuits, to classify healthy and pathological morphologies, and to generate large quantities of morphologies for large-scale modeling.Peer reviewe

    Metrics for comparing neuronal tree shapes based on persistent homology

    Get PDF
    As more and more neuroanatomical data are made available through efforts such as NeuroMorpho.Org and FlyCircuit.org, the need to develop computational tools to facilitate automatic knowledge discovery from such large datasets becomes more urgent. One fundamental question is how best to compare neuron structures, for instance to organize and classify large collection of neurons. We aim to develop a flexible yet powerful framework to support comparison and classification of large collection of neuron structures efficiently. Specifically we propose to use a topological persistence-based feature vectorization framework. Existing methods to vectorize a neuron (i.e, convert a neuron to a feature vector so as to support efficient comparison and/or searching) typically rely on statistics or summaries of morphometric information, such as the average or maximum local torque angle or partition asymmetry. These simple summaries have limited power in encoding global tree structures. Based on the concept of topological persistence recently developed in the field of computational topology, we vectorize each neuron structure into a simple yet informative summary. In particular, each type of information of interest can be represented as a descriptor function defined on the neuron tree, which is then mapped to a simple persistence-signature. Our framework can encode both local and global tree structure, as well as other information of interest (electrophysiological or dynamical measures), by considering multiple descriptor functions on the neuron. The resulting persistence-based signature is potentially more informative than simple statistical summaries (such as average/mean/max) of morphometric quantities-Indeed, we show that using a certain descriptor function will give a persistence-based signature containing strictly more information than the classical Sholl analysis. At the same time, our framework retains the efficiency associated with treating neurons as points in a simple Euclidean feature space, which would be important for constructing efficient searching or indexing structures over them. We present preliminary experimental results to demonstrate the effectiveness of our persistence-based neuronal feature vectorization framework

    Neuronal morphologies: the shapes of thoughts

    Get PDF
    The mammalian brain, one of the most fascinating systems in nature, is a complex biological structure that has kept scientists busy for over a century. Many of the brain's mysteries have been unraveled due to the enormous efforts of the scientific community, but yet many questions remain unsolved. The detailed drawings of Ramon y Cajal revealed the hidden structure of the brain, identifying the neurons as its fundamental structural and functional units. Although a significant amount of experimental reconstructions have been gathered over the past years, neuronal morphologies still remain one of the unsolved riddles of the brain. Why is neuronal diversity important for the functionality of the brain and how do neuronal morphologies ''shape'' our thoughts? To address these questions one needs to characterize the various shapes of neuronal morphologies. Traditionally, this task has been performed by using a set of morphological features, such as total length, branch orders and asymmetry. However, these features focus on a specific morphological aspect thereby causing a significant information loss from the original structure. Inspired by algebraic topology, I have conceived a topological descriptor of neuronal trees that couples the topology of a tree with the geometric features of its structure, retaining more details of the original morphology than traditional morphometrics. This descriptor has proved to be very powerful in discriminating several neuronal types into concrete groups based on morphological grounds, and has lead to the discovery of two distinct classes of pyramidal cells in the human cortex. In addition, the Topological Morphology Descriptor is important for the generation of artificial cells whose morphologies remain faithful to the biological ones. Neurons of the same morphological type have similar topological and geometric characteristics, therefore appearing to be highly structured. However, it is still unknown to what extent the complex neuronal morphology is shaped by the genetic information of an organism and to what extent it arises from stochastic processes. To study the impact of randomness and structure of neuronal morphologies on the connectivity of the network they form, I compared the properties of networks that arise from different artificially generated morphologies, ranging from random walks to constrained branching structures, against those of biological networks and computational reconstructions built from biological morphologies. Surprisingly, networks that are generated from almost random morphologies share a lot of common properties with biological networks, such as the spatial clustering of connections and the common neighbor effect, indicating that stochastic processes that take place during development, contribute significantly to the observed neuronal shapes. This thesis resolves a number of the mysteries of neuronal morphologies and questions our beliefs about the role of randomness in the formation of the brain. Thus, it brings us closer to understanding the fundamental differences among morphologies, and how randomness and structure are combined together to generate one of the most complex biological systems
    corecore