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Abstract

The mammalian brain, one of the most fascinating systems in nature, is a complex

biological structure that has kept scientists busy for over a century. Many of the

brain’s mysteries have been unraveled due to the enormous efforts of the scientific

community, but yet many questions remain unsolved. The detailed drawings of

Ramón y Cajal revealed the hidden structure of the brain, identifying the neurons

as its fundamental structural and functional units. Although a significant amount

of experimental reconstructions have been gathered over the past years, neuronal

morphologies still remain one of the unsolved riddles of the brain. Why is neuronal

diversity important for the functionality of the brain and how do neuronal morphologies

“shape” our thoughts?

To address these questions one needs to characterize the various shapes of neuronal

morphologies. Traditionally, this task has been performed by using a set of morpho-

logical features, such as total length, branch orders and asymmetry. However, these

features focus on a specific morphological aspect thereby causing a significant informa-

tion loss from the original structure. Inspired by algebraic topology, I have conceived a

topological descriptor of neuronal trees that couples the topology of a tree with the

geometric features of its structure, retaining more details of the original morphology

than traditional morphometrics. This descriptor has proved to be very powerful in

discriminating several neuronal types into concrete groups based on morphological

grounds, and has lead to the discovery of two distinct classes of pyramidal cells in the

human cortex. In addition, the Topological Morphology Descriptor is important for the

generation of artificial cells whose morphologies remain faithful to the biological ones.

Neurons of the same morphological type have similar topological and geometric

characteristics, therefore appearing to be highly structured. However, it is still unknown

to what extent the complex neuronal morphology is shaped by the genetic information

of an organism and to what extent it arises from stochastic processes. To study the

impact of randomness and structure of neuronal morphologies on the connectivity of

the network they form, I compared the properties of networks that arise from different

artificially generated morphologies, ranging from random walks to constrained branching
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structures, against those of biological networks and computational reconstructions built

from biological morphologies. Surprisingly, networks that are generated from almost

random morphologies share a lot of common properties with biological networks, such

as the spatial clustering of connections and the common neighbor effect, indicating

that stochastic processes that take place during development, contribute significantly

to the observed neuronal shapes.

This thesis resolves a number of the mysteries of neuronal morphologies and

questions our beliefs about the role of randomness in the formation of the brain. Thus,

it brings us closer to understanding the fundamental differences among morphologies,

and how randomness and structure are combined together to generate one of the most

complex biological systems.

Keywords: Neuronal morphology, Artificial generation, Neuronal topology, Synthesis,

Brain connectivity, Axons, Dendrites, Random walk, Random network, Generative

model



Abstract

Le cerveau d’un mammifère, l’un des systèmes les plus fascinants de la nature, est une

structure biologique complexe étudiée depuis plus d’un siècle. De nombreux mystères

concernant le cerveau ont été élucidés grâce aux énormes efforts de la communauté

scientifique, mais beaucoup de questions restent encore sans réponse. Les dessins

détaillés de Ramón y Cajal ont révélé la structure cachée du cerveau, identifiant les

neurones comme ses unités structurelles et fonctionnelles fondamentales. Malgré la

quantité importante de reconstructions expérimentales recueillies au cours des dernières

années, il reste encore bon nombre de points obscurs concernant les morphologies

neuronales. De quelle maniére la diversité neuronale est-elle importante pour la

fonctionnalité du cerveau? Comment les neurones du cerveau forment-ils nos pensées?

Pour répondre à ces questions, il faut d’abord caractériser les formes différentes

de morphologies neuronales. Traditionnellement, cette tâche a été effectuée basé sur

un ensemble d’attributs morphologiques, tels que la longueur totale, les ordres de

branchement et l’asymétrie. Puisque ces attributs ne reflétent que certains aspects mor-

phologiques spécifiques, cela résulte en une perte d’information significative par rapport

à la structure originale. Inspiré par la topologie algébrique, j’ai conçu un descripteur

topologique d’arbres neuronaux qui couple la topologie d’un arbre aux caractéristiques

géométriques de sa structure, conservant plus de détails sur la morphologie originale

que les mesures traditionnels. Ce descripteur classifie de façon efficace plusieurs types

des neurones en groupes concrets selon leurs motifs morphologiques. Il a également

permis la découverte de deux classes distinctes de cellules pyramidales dans le cortex

humain. En plus, le Descripteur Topologique des Morphologies joue un rôle crucial dans

la synthése de cellules artificielles dont les morphologies restent fidèles à la biologie.

Les neurones du même type morphologique ont des caractéristiques topologiques et

géométriques similaires, ce qui implique qu’ils sont très structurés. Cependant, c’est

encore inconnu quelle part de la morphologie neuronale est résulte de l’information

génétique d’un organisme et quelle part résulte de processus stochastiques. Afin

d’étudier l’impact de l’aléatoire et de la structure des morphologies neuronales sur

la connectivité du réseau qu’elles forment, j’ai comparé les propriétés des réseaux
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de neurones qui sont générés à partir de différentes morphologies artificielles, qui

varient de promenades aléatoires à des structures de branchement contraints, aux

réseaux de neurones biologiques et aux réseaux computationnels construits à partir de

morphologies biologiques. Étonnamment, les réseaux de neurones qui sont générés à

partir de morphologies presque aléatoires partagent beaucoup de propriétés avec les

réseaux de neurones biologiques, indiquant que les processus stochastiques qui ont lieu

au cours du développement contribuent de manière significative aux formes neuronales

observées.

Cette thèse éclaircit plusieurs mystères concernant les morphologies neuronales et

met en question nos croyances sur le rôle du hasard dans la formation du cerveau.

Ainsi, elle nous rapproche de la compréhension des différences fondamentales entre

les morphologies neuronales et comment le hasard et la structure se mélangent pour

générer l’un des systèmes biologiques les plus complexes.

Keywords: Morphologie neuronale, Génération artificielle, Topologie neuronale, Syn-

thèse, Connectivité cérébrale, Axons, Dendrites, Promenade aléatoire, Réseau aléatoire,

Modèle génératif
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Introduction

A lot of scientific questions are associated with the brain’s structure and functionality,

as it is one of the most complicated biological systems known. The composition of

the brain is dominated by two cell types: neurons and glia cells. The role of glial

cells is not yet well understood. They are considered to participate in homeostatic

mechanisms (Sorrentino et al. 2016), and provide physical and metabolic support to

neurons (Tasker et al. 2012) while recent studies also suggest their involvement in brain

computations (Temburni and Jacob 2001, Perea et al. 2014). Neurons, on the other

hand, have been well studied, since they were identified as the fundamental structural

and functional units of the nervous system by Ramón y Cajal in the late 19th century.

Ramón y Cajal used Golgi’s staining method to systematically examine and describe

the anatomy of neurons. His highly detailed drawings revealed the hidden structure of

the brain, giving him the well deserved title of the father of neuroscience. Neurons

consist of several components with different anatomical and functional properties: the

cell body (soma), the signal receivers (dendrites) and the signal transmitter (axon).

They are electrically excitable cells (Rall 1959) that transmit information by electrical

and chemical signaling, and communicate with each other through synapses that are

formed between the post-synaptic axon and the pre-synaptic dendrites.

It is now well established that neuronal morphology and brain functionality are

strongly coupled (Chklovskii 2004, Wen et al. 2009). However, the precise mechanisms

through which the neuronal morphology determines the functionality and the connec-

tivity of a neuron are yet to be discovered. Multiple theories have been proposed to

explain the neuron’s complex shapes. It is tempting to believe that basic biological

principles, such as the minimal wiring (Chklovskii 2004, Cuntz et al. 2010) and the

synaptic efficacy optimization (Cuntz et al. 2007), are sufficient to explain the branch-

ing structure of neuronal trees. However, the great morphological diversity (Ascoli et
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al. 2007) suggests that the mechanisms that determine neuronal shape might be much

more perplexing.

In an attempt to acquire more information about the systematic roles of neurons

in the brain, modern neuro-anatomists observe them under a microscope and visually

distinguish them into groups, based on their shapes. This classification method is

subject to large variation between experts (DeFelipe et al. 2013). Hence, a digital

copy of a cell’s structure is generated -the neuronal reconstruction- that corresponds

to the digital version of Ramón y Cajal’s drawings. The neuronal reconstruction is a

mathematical tree that represents the morphology of the neuron and is used for the

systematic characterization of its shape.

Morphological features, also known as morphometrics (The Petilla Interneuron

Nomenclature Group P 2008), are used to describe and distinguish different neuronal

shapes. Standard morphometrics include global measurements such as total length,

number of branches and maximum extent, local measurements such as branching angles

and tortuosity and topological measurements such as asymmetry (Van Pelt et al. 1991)

and branch orders. However, single features that focus on a specific aspect of the

neuronal morphology are not appropriate to describe its structure as a whole, as they

result in significant information loss. In order to establish a rigorous categorization of

morphologies, a set of morphometrics that are indicative of the differences between

neuronal shapes and generalizable across brain regions and species is required. However,

it is challenging to find the hidden correlation between these morphometrics and combine

them into a solid descriptor of the neuronal shape (Lopez-Cruz et al. 2011).

Inspired by Algebraic Topology, I constructed a descriptor (see section 2.2) that

encodes the spatial distribution of the neuron’s branching structure into a topological

representation. The Topological Morphology Descriptor (TMD) couples the topology

of a tree with its geometry, providing a link between the local and global properties

of a neuron’s shape. The TMD was used to distinguish different types of neurons;

morphological types of different species and well established classes of rodent cells

were successfully retrieved. Based on the topological profiles of rat pyramidal cells,

an objective morphological classification scheme was established (see section 2.3).

Interestingly, a TMD-based clustering revealed two new classes of human pyramidal

cells, that could not be identified with standard morphometrics (see section 2.4).

Thus, the TMD is a rigorous mathematical descriptor of branching structures that is

fundamental for their objective clustering.

While neuronal structures are biologically interesting themselves, understanding

the morphological stages of neuronal growth is of particular interest for various fields
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of neuroscience. Advances in the study of neuronal growth (Graham et al. 2006) have

provided an insight into the relation between morphology and function and have lead

to a better understanding of the observed connectivity patterns in the brain and to

algorithms for the automatic generation of their shapes (Burke 1992, Ascoli et al. 2001,

Cuntz et al. 2010). To investigate the significance of topology on the neuronal growth, I

generated artificial morphologies based on their topological profiles (see Chapter 3). The

topological synthesis of neurons accurately recreates the biological shapes of neurons for

a large variety of morphological types. More importantly, morphological features that

have not been explicitly taken into account are reproduced by this synthesis algorithm.

This indicates that the topological morphology descriptor of neurons incorporates

feature correlations that are essential for their growth.

The neurons that belong in the same morphological type have similar topological

profiles and therefore appear highly structured. However, it is still unknown to what

extent the connectivity of a biological network is determined by the genetic information

of an organism and to what extent it arises from stochastic processes. To study the

impact of randomness and structure on the connectivity of a network, I compared

random networks, based on the structural touch points between computationally

generated morphologies, with the connectivity of biological networks (See Chapter 4).

Initially, these morphologies are simple random paths. Then biological constraints are

imposed on the morphologies and more structured networks are generated. Surprisingly,

simple mathematical constraints result in networks that succeed in capturing key

properties of the biological networks, indicating that simple interactions between

growing neurons, such as intersection avoidance, have a significant contribution to their

shapes and their connectivity.
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2

Topological analysis of neuronal

morphologies

“It would be so nice if something made sense for a change.”

– Alice, Alice in Wonderland

2.1 Introduction

Neurons, the fundamental computational units of the brain (Rall 1959), consist of the

cell body (soma), and two types of branching trees, the dendrites and axons, collectively

referred to as neurites, that transmit electrical signals within the neuronal network.

Pyramidal cells, which represent the majority of excitatory cells in the cortex (Lefort

et al. 2009), also have a special type of dendrite, the apical dendrite (see Figure 2.1),

that is characterized by a unique branching shape. A neuron has a number of dendrites

which collect the signal from multiple input sources. The signal is summed at the

initial section of the axon, where the action potential is initiated, and is transmitted to

other connected neurons. The characteristic branching structures of neurites influence

the functional properties of a neuron (Yi et al. 2017). In addition, the position of

neurons in the brain tissue and the distribution of their branches in space constrain the

appositions, or contact points, between neurons (Peters 1979, Kalisman et al. 2003).

As a result, the synaptic distribution depends on the spatial arrangement of neuronal

branches.

Inevitably, neuronal morphology and brain functionality are strongly coupled

(Yi et al. 2017). As a result, the study of neuronal morphology is important for

understanding brain functionality. For this reason, neuro-anatomists examine a cell
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under the microscope and generate a digital version of the neuron’s morphology,

the neuronal reconstruction (see Figure 2.1). As the quality of neuronal staining

and imaging improves, more accurate reconstructions are becoming available. The

morphological analysis of neurons is also evolving, ranging from simple morphometrics

such as the soma size and the number of neurites, to more detailed measurements such

as the distributions of section numbers and lengths, local bifurcation angles, radial

and path distances, branch orders and tree asymmetry (see Figure 2.1 and Petilla,

VanPelt). Neuronal morphologies present a great variety of shapes, even within the

same species or brain regions (see Figure 2.2).

A large number of reconstructions is available at NeuroMorpho.Org in a standardized

format (Ascoli et al. 2007) as the result of many groups’ contributions over many years.

An illustrative sample of these morphologies is shown in Figure 2.2 for various rodent

(rat and mouse) brain regions. Even though it is not always trivial to identify the

morphological differences between these morphologies, it is - in this particular example

- possible to distinguish the different shapes by visual inspection. Some morphological

differences are more easily identified, such as the size, extent and density of their

branches. Others are more difficult to distinguish, such as the tree asymmetry, the

branch ordering and the topological complexity of neurons.

More sophisticated morphometrics have been developed to capture various anatom-

ical characteristics that distinguish different shapes of neurons. The spatial density

function of branching morphologies is an example that has been studied in Snider

et al. (2010) and is useful for the description of distinct neuronal trees, as it repre-

sents a universal property of neurons. Similarly, in Samsonovich et al. (2003) and

in Fernandez-Gonzalez et al. (2017) universal properties of bifurcation angles across

different species and brain areas are examined. Another powerful morphometric is

Sholl analysis, which counts the intersections of concentric spheres with the neuronal

morphology. A topological description of neurons have been proposed in (Gillette et al.

2015).

Each of these measurements studies a different aspect of the neuronal morphology

and therefore they must be used in combination with other morphometrics for the

classification of neurons. To avoid over-fitting, which is a result of using a large number

of features when few individual cells are available, feature selection is required. However,

feature selection is subjective and feature sets proposed by different investigators are

mutually inconsistent (DeFelipe et al. 2013). A striking indication of the problem is

that experts may assign a different class to a neuron than the term they had chosen

in their own original publication for the same neuron (DeFelipe et al. 2013). In fact,
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generated random trees that differ in selected morphological features (section length and

number, local angles, tortuosity and asymmetry) can be distinguished with the same

descriptor. In Figure 2.4, I demonstrate how the diversity of the rodent morphologies

of various brain regions Figure 2.2 is reflected into their TMD profiles.

The TMD of a tree provides a topological benchmark for the consistent comparison

of different structures by effectively assigning a reliability measure to different groupings

of neuronal trees. In addition the TMD can be used for the standardized classification

of neurons that cannot be grouped by expert selected morphometrics. This technique

can be applied to any rooted tree equipped with a function defined on its nodes. Further

biological examples include botanic trees (Lopez et al. 2010), corals (Kruszynski et al.

2007) and roots of plants (Wang et al. 2009). The TMD method is used in different

problems to assist the progress of neuronal morphologies grouping.

I demonstrate the discriminative power of this method by applying it to a collec-

tion of artificial random trees, whose morphological properties (number of branches,

bifurcation angles, branch length, asymmetry) can be precisely modified. Then, the

TMD algorithm is used for the grouping of different biological reconstructions of

neuronal morphologies. Neurons from different species, pyramidal neurons of the same

cortical areas and automatic reconstructions from the BigNeuron project are compared

and distinguished according to their TMDs. Based on the topological profiles of rat

pyramidal cells, an objective morphological classification scheme has been established

(see Section 2.2).

Human cells are rare and difficult to acquire. The analysis of human neurons’

morphology can shed light to one of the fundamental questions in neuroscience “what is

unique about the human brain”. Using the topological profiles of 60 L2 and L3 human

pyramidal cells, the TMD-based classification revealed two distinct morphological

classes (the “slim-tufted” and the “profuse-tufted” cells) that differ in the shape of their

tufts. The two classes could not be distinguished with simple morphological features

(see section 2.3). Interestingly, the two classes of pyramidal cells also express different

electrical properties as the profuse-tufted cells fire at higher rates. Therefore, the

TMD captures basic principles of the underlying structure that are also relevant for

the electrical activity of the cells.

The radial distance from the soma is used as the “filtration” function of the TMD

that determines the start and end points of the bars. Alternatively, any other function

that can be computed on the bifurcations and terminations of the tree could be used. In

fact, independent morphometrics, such as the thickness of the processes and the spine

density, are not taken into account so trees that differ only on this property cannot be
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distinguished with the TMD. Another important property that is currently not taken

into account is the long range projections of the trees. This is particularly important

for axonal trees whose long range projections indicate the brain regions with which they

communicate. Nevertheless, the TMD is generalizable to a variety of morphometrics.

For instance, a modification of the algorithm that considers the orientation of the

tree is used for the analysis and systematic classification of rodent pyramidal cells

in the somatosensory cortex (see section 2.4). Therefore the TMD algorithm and its

variations is suitable for the supervised and the unsupervised discrimination of neurons

into distinct morphological groups.
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2.2 A topological representation of branching neu-

ronal morphologies

Lida Kanari, Pawel Dłotko, Martina Scolamiero, Ran Levi, Julian Shillcock

Kathryn Hess and Henry Markram

(Neuroinformatics, 2017, https://doi.org/10.1007/s12021-017-9341-1)

Abstract: Many biological systems consist of branching structures that exhibit a wide

variety of shapes. Our understanding of their systematic roles is hampered from the

start by the lack of a fundamental means of standardizing the description of complex

branching patterns, such as those of neuronal trees. To solve this problem, we have

invented the Topological Morphology Descriptor (TMD), a method for encoding the

spatial structure of any tree as a “barcode”, a unique topological signature. As opposed

to traditional morphometrics, the TMD couples the topology of the branches with

their spatial extents by tracking their topological evolution in 3-dimensional space. We

prove that neuronal trees, as well as stochastically generated trees, can be accurately

categorized based on their TMD profiles. The TMD retains sufficient global and local

information to create an unbiased benchmark test for their categorization and is able

to quantify and characterize the structural differences between distinct morphological

groups. The use of this mathematically rigorous method will advance our understanding

of the anatomy and diversity of branching morphologies.

Keywords: topological data analysis, neuronal morphologies, branching morphology,

clustering trees
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Introduction

The analysis of complex branching structures, such as branched polymers (Alexandrow-

icz et al. 1985), viscous fingering (Oded et al. 2002), and fractal trees (Mandelbrot

1983), is essential for understanding a great variety of physical and biological processes.

For example, the fundamental units of the nervous system, neurons, possess highly

ramified arborizations (Jan et al. 2010) that are thought to reflect their involvement

in different computational tasks (Cuntz et al. 2007, Zomorrodi et al. 2010, van Elburg

et al. 2010, Ferrante et al. 2013). In order to understand the properties of branching

morphologies we must study the differences between distinct arbor types. Much effort

has therefore been devoted to grouping morphologies into distinct classes (DeFelipe et

al. 2013, Markram et al. 2004, The Petilla Interneuron Nomenclature Group 2008), a

categorization process that is important in many fields (Lyons et al. 1999). However,

an efficient method for quantitatively analyzing the morphology of such structures has

proved difficult to establish.

In general, the properties of branching morphologies have been rigorously studied in

two extreme cases: in the limit of the full complexity of the structures (Carlsson 2009),

where the entire set of points is used, and in the opposite limit of feature extraction

(DeFelipe et al. 2013; Gomez-Gil et al. 2008; Blackman et al. 2014), where a (typically

small) number of selected morphometrics (i.e., statistical features) are extracted from

the morphology.

Topological data analysis (TDA) has been shown to reliably identify geometric

objects based on a sampled point cloud when they are built out of well-understood

pieces, such as spheres, cylinders and tori (Carlsson 2009). It suffers, however, from

the deficiency that reliable grouping of complex geometric trees by standard TDA

methods, such as Rips complexes (Edelsbrunner and Harer 2008), requires thousands

of sampled points, which is expensive in terms of both computational complexity and

memory requirements.

Feature extraction is thus the only currently feasible solution to establishing a more

quantitative approach to analyzing branching morphologies (Scorcioni et al. 2008; Ling

et al. 2012; The Petilla Interneuron Nomenclature Group P 2008). While this approach

has been efficiently used in specific fields of image recognition (Schurer 1994), the

extreme diversity of the branching patterns of neurons (Markram et al. 2004) makes it

difficult to identify an optimal set of statistical features that can reliably describe all

their shapes. Neuronal classification has traditionally focused on visually distinguishing

the shapes observed under a microscope (Masseroli et al. 1993), a method that is

subject to large variation between experts (DeFelipe et al. 2013).
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2005), centrifugal ordering (Van Pelt et al. 1989) and Strahler ordering (Strahler 1952;

Berry and Bradley 1976; Ledderose et al. 2014), to describe the topology of branching

structures. However none of those measurements preserves the correlations between

distinct features. In addition, feature selection is subjective, and alternative sets of

morphometrics result in different classifications (DeFelipe et al. 2013), as illustrated in

Fig 2.5(see also Figs A.1, A.2), since the statistical features commonly overlap even

across markedly different morphological types. This is a direct consequence of the

significant loss of information introduced by feature selection, as the dimensionality of

the data is substantially reduced.

As a result, neither using the full point cloud of the trees nor performing expert-

dependent feature selection are suitable to reliably study complex branching morpholo-

gies. In order to address this issue, we propose a standardized topological descriptor,

the Topological Morphology Descriptor (TMD), of any branching morphology. The

TMD algorithm encodes the branching pattern of the morphology by discarding local

fluctuations with little information content, such as the position of the nodes between

branch points and thus reduces the computational complexity of a tree. The TMD

couples the topology of the branching structure with the embedding in the metric

space, encoding the overall shape of the tree. Note that the TMD is not a complete

invariant that fully describes the original tree, but a simplification that retains enough

information to perform well in the proposed discrimination tasks, by mapping the tree

to a topological representation with less information loss than the usual morphometrics.

The TMD algorithm takes as input the partially ordered set of branch points

(nodes with more than one child) and leaves (nodes with no children) of the tree,

where the order is given by the parent-child relation, and produces a multi-set of

intervals on the real line known as a persistence barcode (Carlsson 2009), Fig 2.6b.

Each interval encodes the lifetime of a connected component in the underlying structure

(see Glossary), identifying when a branch is first detected (birth) and when it connects

to a larger subtree (death). This information can be equivalently represented in a

persistence diagram (Carlsson 2009), Fig 2.6c in which the pair of birth-death times

determines a point in the real plane. Either representation greatly simplifies the

mathematical analysis of the trees.

This approach provides a simplified comparison process, since distances inspired

by persistent homology theory (Carlsson 2009) can be defined between the outputs

of the TMD algorithm (see Appendix A: Distances between persistence diagrams).

Existing methods for computing distances between trees, such as the edit distance (Bille

2005), the sequence representation (Gillette and Ascoli 2015; Gillette et al. 2015), the
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Cobbold 2012) that reflects the abundance of species as well as their differences, in order

to further investigate the effects of different classification schemes (see Appendix A:

Diversity Index).
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Glossary of topological terms

A component of T is a path, i.e., a sequence of consecutive edges, in T from a

leaf to an internal node, a branch point. The TMD algorithm considers only a

subset of all the components.

The birth of a component with leaf l and internal node n occurs at time (or

radius) f (l)and its death occurs at time (or radius) f (n). Note that a component

may die before it is born, i.e., it can be true that f (n) ≤ f (l). This case is quite

usual for biological trees.

The lifetime of component with leaf l and internal node n is [ f (n), f (l)], when

f (n) ≤ f (l), and [ f (l), f (n)], when f (n) ≥ f (l).

In general, a barcode is a multiset (i.e., a set with possible repetitions) of closed

intervals in the real line. In the special case of the pair (T, f ), the barcode

consists of all the lifetimes for the components of the tree.

In general, a persistence diagram is a multiset of points in the upper righthand

quadrant of the real plane. In the special case of the pair (T, f ), the persistence

diagram consists of all the points ( f (l), f (n)) and ( f (n), f (l)).

Let D be the set given by the diagonal in the upper righthand quadrant of the

real plane {(x, x) |x ≥ 0} with infinite multiplicity. A matching between two

persistence diagrams PD and PD′ is a bijection µ between PD ∪ D and PD′∪ D.

Since D, which contains infinitely many points, is included in the bijection, there

is always a matching between two persistence diagrams regardless of their number

of points.

Given two persistence diagrams PD and PD′, the bottleneck distance between

them is dB (PD, PD′) = inf µ supx∈PD | |µ(x) − x | |∞, where | |y − z | |∞ = max{|y1 −
z1 |, |y2 − z2 |}.

A filtration of the tree T is an increasing sequence of subgraphs G0 ⊂ G1 ⊂
... ⊂ Gn ⊂ T . Note that (sub)graphs may represent a forest, i.e, a disjoint union

of trees.
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Methods

The extraction of the barcode from an embedded tree T is described by the TMD

algorithm. Let T be a rooted, and therefore oriented, tree (Knuth 1998), embedded in

R
3. Note that the operation described here is generalizable to trees embedded in any

metric space. We denote by N := B ∪ L the set of nodes of T , which is the union of

the set of branch points B and the set of leaves L. In the case of a neuron, the root R

is the node representing the soma. Each node n ∈ N has references to its parent, i.e.,

the first node on the path towards the root, and to its children. Nodes with the same

parent are called siblings.

Let f be a real-valued function defined on the set of nodes of T . Any function f

that is defined on the nodes of T can be used with the TMD algorithm, such as the

radial distance, the path distance, the branch length, or the branch order (see Fig A.4).

Alternative functions should serve to reveal shape characteristics that are independent

from each other and therefore be suitable for different tasks. For the purpose of this

study we define f to be the radial distance from the root R. For each n ∈ N , let Tn

denote the subtree with root at the node n, and Ln the set of leaves of Tn. We define a

function v : N → R, computed by the TMD algorithm, by v(n) = max{ f (x) | x ∈ Ln}.
An ordering of siblings can then be defined based on v: if n1, n2 ∈ N , are siblings and

v(n1) < v(n2), then n1 is younger than n2.

The algorithm is initialized by setting the value of v(l), l ∈ L equal to the value of

f (l). The leaves l ∈ L are added to a set of nodes, denoted A, which keeps a record

of the active nodes. Following the path of each leaf l ∈ L towards the root R, all but

the oldest (with respect to v) siblings are killed, i.e., removed from A, at each branch

point. If siblings have the same value v it is equivalent to kill any one of them. For

each killed component one interval (birth-death) is added to the persistence barcode

(Fig 2.6). The older sibling cm is replaced by its parent in A and the value v(p) of its

parent is set to f (cm). This operation is applied iteratively to all the nodes until the

root R is reached. At this point A contains only one component, the largest one.

When all the branches are outgoing, i.e., the radial distance of the origin of a

branch is smaller than the radial distance of its terminal point, the TMD algorithm is

equivalent to computing the barcode associated to a filtration of concentric spheres of

decreasing radii, centered at R (Fig 2.6). In this case, the birth time of a component is

the supremum of the radii of the spheres that do not contain the entire component.

The death time is the infimum of the radii of the spheres that contain the branch point

at which the component merges with a longer one.
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Algorithm 1 TMD algorithm
Require: T with R, B, L, f : T → R
Ensure: TMD(T, f ), a persistence barcode obtained from a tree T and the function f

1: TMD(T, f ): empty list to contain pairs of real numbers
2: A← L ⊲ A : set of active nodes
3: for every l ∈ L do
4: v(l) = f (l)

5: while R < A do
6: for l in A do
7: p : parent of l

8: C : children of p

9: if ∀n ∈ C, n ∈ A then
10: cm : randomly choose one of {c | v(c) = maxc′ (v(c′)) for c′ ∈ C}
11: Add p to A

12: for ci in C do
13: Remove ci from A

14: if ci , cm then
15: Add (v(ci), f (p)) to TMD(T, f )

16: v(p) ← v(cm)

17: Add (v(R), f (R)) to TMD(T, f )
18: Return TMD(T, f )

The computational complexity of the TMD algorithm is linear in the number of

nodes. Note that the i f statement in line 9 of the algorithm is critical for the linear

complexity. The number of currently active children is saved at each parent node to

avoid quadratic complexity.

This process results in a set of intervals on the real line, each of which represents the

lifetime of one component of the tree. The TMD algorithm that associates a persistence

barcode TMD(T, f ) to a tree T is invariant under rotations and translations, as long

as the function f is also. In this paper, f is the radial distance from R and as such it

is invariant under rotations about the root and rigid translations of the tree in R3.

The most common topological metric that is used to compare persistence diagrams

is the bottleneck distance (Edelsbrunner and Harer 2008), denoted dB. Given a matching

(i.e., a bijection) between two persistence diagrams D1, D2, we define the L∞ distance

as the maximum distance between matched points. The bottleneck distance dB (D1, D2)

is the infimum over all L∞ distances for the possible matchings between the two

persistence diagrams (Edelsbrunner and Harer 2008).

We prove that TMD: (T, f ) 7→ TMD(T, f ) is stable with respect to the bottleneck

distance (see Appendix A: Stability of TMD). For ǫ-small modifications of certain
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types in the tree T , the persistence diagram TMD(T, f ) is not modified more than

O(ǫ ). In particular, the method is robust with respect to small perturbations in the

positions of the nodes and the addition/ deletion of small branches.

However, none of the standard topological distances between persistence diagrams

is appropriate for the comparison of neuronal trees. The bottleneck distance as well as

distances stable with respect to it, such as the persistence distortion distance (Dey et

al. 2015) (see Appendix A: Distances between trees) cannot distinguish diagrams that

differ in their short components, which are nevertheless important for the distinction

of neuronal morphologies.

We therefore define in the space of the barcodes an alternative distance dBar that

we use to compare branching morphologies. For each barcode we generate a density

profile as follows: ∀x ∈ R the value of the histogram is the number of intervals that

contain x, i.e., the number of components alive at that point. The TMD-distance

between two barcodes TMD(T1, f ) and TMD(T2, f ) is defined as the integral of the

absolute differences between the density profiles of the barcodes. This distance is not

stable for a large number of ǫ-perturbations of the tree, but it is the only distance we

are aware of that succeeds in capturing the differences between the short components

of persistence barcodes. This distance is similar to Sholl analysis (Sholl 1953) with a

few fundamental differences (see Appendix A: Distances between neurons). However,

since this density profile collapses the barcodes into a one-dimensional distribution,

it fails to capture the local differences between the branching structures of similar

neuronal trees.

For this reason, the persistence diagram was also converted into an unweighted

persistence image, inspired by persistence images introduced in Adams et al. (2016).

We choose to use unweighted persistence images, since points close to the diagonal,

which represent short components, are important for the discrimination of the neuronal

trees, and these points are ignored in the weighted persistence images. The unweighted

persistence image representation allows the construction of an average image for groups

of trees, which is useful for quantifying the differences between tree types, since we are

not aware of any unambiguous and computationally feasible calculation of an average

of persistence barcodes or diagrams. This method is based on the discretization of a

sum of Gaussian kernels (Scott 2008), centered at the points of the persistence diagram.

This discretization generates a matrix of pixel values, encoding the persistence diagram

in a vector, called the unweighted persistence image. Machine learning tools, such as

decision trees and support vector machines can then be applied to this vector for the

classification of the persistence diagrams. Note that the unweighted persistence images,



26 Topological analysis of neuronal morphologies

unlike the persistence images defined in Adams et al. (2016), do not satisfy stability

for the Euclidean distance between their vectors with respect to the perturbations of

trees that we consider (see Appendix A: Stability of TMD).

Results

We demonstrate the discriminative power of the TMD by applying it to four examples of

increasing complexity. The first application is the grouping of artificial random trees that

provide a well-defined test case to explore the method’s performance. The random trees

are generated by a constrained stochastic algorithm (see Appendix A: Random trees

generation) and have properties that can be precisely modified. Next, we have analyzed

datasets of more biological relevance: neurons from different species, downloaded from

Ascoli et al. (2007), and distinct types of trees obtained from several morphological

types of rat cortical pyramidal cells (Romand et al. 2011) (see Information Sharing

Statement). This last example is interesting because, although there is biological

support for their separation into distinct groups, no rigorous mathematical model has

been proposed for their objective classification. Finally, we used the TMD-distance to

rank automatic reconstructions from the BigNeuron project (Peng et al. 2015). We

thereby illustrate the usefulness of the TMD across non-trivial examples.

Mathematical random trees are defined by a set of parameters that constrain their

shape: the tree depth Td, the branch length Bl , the branch angle Ba, the degree of

randomness Dr , and the asymmetry of branches Ab (see Appendix A: Random trees

generation). We defined a control group as a set of trees generated with predefined

parameters (Td = 5, Bl = 10, Ba = π/4, Dr = 10%, Ab = 0.0) and independent random

seeds. Each parameter was varied individually to generate groups of trees that differed

from the control group in only one property. A tree is assigned to the group which is

closer based on the comparison of the distances dBar between the tree’s barcode and

the barcodes of the trees in every group. This distance is used to construct a classifier

based on a simple hierarchical clustering algorithm (Ward 1963). The accuracy of this

classifier is defined as the percentage of successful trials.

We prove that this classifier efficiently separates groups of random trees that differ

in their tree depth (Fig 2.7), with an accuracy of 96% ± 3% (see Appendix A: Random

trees grouping). In Figure 2.7 the distance matrix indicates the existence of three

distinct groups, and the corresponding clustering. The TMD of random trees generated

by varying each of the other parameters Ba, Bl , Dr , Ab are grouped with an accuracy

of 88%, 96%, 99% and 100% respectively (see Figures A.7- A.11).
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Fig. 2.7 Topological analysis of artificial trees generated using a stochastic process. Three sets of trees
are shown (only four individuals out of twenty for clarity). Each group differs from the others only
in the tree depth. Each individual of the group is generated using the same tree parameters but a
different random number seed. The TMD-distance of the trees allow their accurate separation into
groups. The distance matrix indicates the existence of three groups which are identified with high
accuracy by a simple dendrogram algorithm.

Next, the TMD is used to quantify differences between neuronal morphologies.

Neurons that serve distinct functional purposes exhibit unique branching patterns(Cuntz

et al. 2007; Van Elburg and Van Ooyen 2010). In this study, we used cat, dragonfly,

fruit fly, mouse and rat neuronal trees. The qualitative differences between the neuronal

tree types are evident from the individual geometrical tree shapes (Fig 2.8A) as well

as the extracted barcodes (Fig 2.8B). The regions of different branching density are

visible in the average unweighted persistence images of each group (Fig 2.8D). Since

branching density is thought to be correlated with connection probability (Snider et

al. 2010), we can identify the anatomical parts of the trees that are important for the

connectivity of different cell types.

The performance of a supervised classifier trained on the unweighted persistence

images (see Appendix A: Supervised Classification, Classification of neuronal trees) of

the TMD results is demonstrated by the grouping of neuronal trees from the different

species, shown in Fig 2.8. The neuronal trees of the five different species are accurately

(84%) separated into the original groups. We note here that the performance of this
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Fig. 2.9 Comparison of the TMD of apical dendrite trees extracted from several types of rat pyramidal
neuron. Four cell types are shown in (A): UPC, SPC, TPC-A, TPC-B (left to right). The morphological
differences between these cell types are subtle, but the unweighted persistence images (B) clearly
reveal them, particularly the presence of two clusters in the TPC-A and TPC-B cell types. From
these unweighted persistence images we train a decision tree classifier on the expert-assigned groups of
cells. The binary classification (C) and the confusion matrix (D) based on the TMD algorithm shows
an overlap of TPC-A and TPC-B trees. When those two classes are merged (E, F) the separation
between the remaining types is evident. This result shows that the unweighted persistence images
objectively support the expert’s classification when the morphological differences between the classes
are significant.

known to play a key role in the integration of neuronal inputs through their synapses

in higher cortical layers, and is therefore a key indicator for the functional role of the

cell.

The separation of the PC trees into four groups cannot be justified based on purely

morphological grounds, since there is no coherent difference between the branching

patterns of TPC-A and TPC-B (Fig 2.9C, D). On the contrary, the separation in three

groups (UPC, SPC and TPC -the superset of TPC-A and TPC-B- Fig 2.9E, F) is

supported by TMD-based classifiers, by detecting the fundamental differences between



30 Topological analysis of neuronal morphologies

their branching structures. Therefore, the TMD provides a solid benchmark test to

objectively support or disprove proposed classification schemes.

Finally, the TMD algorithm can be used to assess the quality of any manually or

automatically reconstructed neuron if a reference morphology is available. The best use

case for this application is the datasets of BigNeuron (Peng et al. 2015), a community

effort to advance single-neuron automatic reconstruction. The same stack of images

of a scanned morphology is used for manual reconstruction (reference morphology)

and for automatic reconstructions with a set of algorithms (test set). Due to the large

number of reconstructions generated by the BigNeuron project, the analysis of the

data requires a high-computational-performance algorithm. The linear complexity of

the TMD makes it highly suitable for the analysis of this large dataset.

The automatic reconstructions were ranked based on their TMD-distance from

the reference morphology. The TMD was able to accurately assess the quality of the

automatic reconstructions, as presented in Fig 2.10, as the similarity of the branching

structure of the automatic reconstructions to the reference neuron decreases with the

TMD-ranking. The density plot of all the automatic reconstructions Fig 2.10A does

not reproduce the shape of the reference morphology, as reconstruction errors are over-

represented. On the contrary, the density plot of the ten TMD-best reconstructions

closely matches the structure of the reference morphology.

Discussion

The morphological diversity of neurons supports the complex information-processing

capabilities of the nervous system. A major challenge in neuroscience has therefore

been to reliably describe the shape of neurons. We have introduced here the Topological

Morphology Descriptor, derived from principles of persistent homology. The TMD

of a tree retains enough topological information to allow the systematic comparison

between branching morphologies. Therefore, it provides a topological benchmark for

the rigorous comparison of different structures and it could advance our understanding

of the anatomy and diversity of the neuronal morphologies.

This technique can be applied to any rooted tree equipped with a function defined

on its nodes. Further biological examples include botanic trees (Lopez et al. 2010),

corals (Kruszynski et al. 2007) and roots of plants (Wang et al. 2009). The method is

not restricted to trees in R3, but can be generalized to any subset T of a metric space

M, with a base-point R. A persistence barcode can then be extracted using a filtration

by concentric spheres in M centered at R, enabling us to efficiently study the shape of

complex multidimensional objects.
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roots (Wang et al. 2009) and trees, and in neuroscience, to study neurons in the

developing brain.

Information sharing statement

The artificial random trees used in Fig 2.5 and Fig 2.7 were generated by software

developed in BBP. The tree structures can be made available (in hdf5 format) upon

request. The biological morphologies used in Fig 2.5, Fig 2.6 and Fig 2.9 are provided

from Laboratory of Neural Microcircuitry (LNMC), EPFL (Romand et al. 2011).

The biological morphologies used in Fig 2.8 were downloaded from Neuromorpho.org.

In particular, cat neurons were provided by Rose et al. (1995), dragonfly neurons

by Gonzalez-Bellido et al. (2015), fruit fly neurons by Chiang et al. (2011), mouse

neurons by Badea and Nathans (2011) and rat neurons by Romand et al. (2011). The

automatic and manual reconstructions used in Fig 2.10 are provided by BigNeuron
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Abstract: Objective classification of neuronal morphologies is a difficult task, due to

the large diversity of branching shapes and the small number of detailed reconstructions.

Pyramidal cells, which are one of the most common type of neuron in the neocortex,

have been the focus of extensive studies, yet have not been objectively divided into

consistent types based only on local axonal and dendritic features. The topological

characterization of dendritic trees shows that the properties of local arbors are sufficient

for the objective classification of pyramidal cells and yields a quantitative measure of

the uncertainty in the classification. The topological classification reveals the existence

of three objectively distinguishable types of pyramidal cells in layer 2, two in layer 3,

three in layer 4, three in layer 5, and five types in layer 6. We also present possible

subdivisions of these objectively defined classes based on information that is not

considered in this topological descriptor. We conclude that local neuronal morphology

contains sufficient information for the objective classification of neurons, settling a

long-standing debate on whether cell-types are discrete or continuous morphological

variations of each other.

Keywords: Neocortex, Microcircuits, Somatosensory Cortex, Pyramidal Cells, Mor-

phology, Dendrites, Axon, Topological Analysis, Persistent homology
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Introduction

The mammalian neocortex consists of interneurons, which are predominantly inhibitory,

and pyramidal cells, which represent 70-85% of all excitatory neurons in the mammalian

cortex (Ramón y Cajal 1911; DeFelipe and Farinas 1992; Spruston 2007; Markram et

al. 2015; Ramaswamy and Markram 2015). Pyramidal cells (also termed principal

cells) are characterized by a triangular soma, two distinct dendritic domains, both of

which exhibit a high density of spines, emanating from the base (basal dendrites) and

the apex of the soma (apical dendrites, respectively), and a single axon projecting to

long distances that targets other brain regions forming several collateral branches that

further bifurcate before leaving the neocortex. Basal dendrites are localized around the

soma while apical dendrites ascend toward the pia, typically forming multiple oblique

dendrites and terminating in a distinct tuft that is associated with high branching

density. Apical dendrite impart unique functional properties to PCs and form the basis

for the generation of key synaptic and active events, such as back propagating action

potentials, and integration of synaptic inputs from different cortical layers (Larkum

et al. 1999; Larkum et al. 2001; Schaefer et al. 2003; Spruston 2008). The unique

functional properties of apical dendrites are essential for the integration of top-down

(from association areas) and bottom-up streams of input (from primary sensory and

motor areas) to the neocortex that shape the output firing pattern of PCs (Markram

et al. 1995; Stuart et al. 1997; Larkum et al. 2001).

The characteristic morphological shapes of apical dendrites are associated with their

unique functional properties, as objectively defined types of PCs are also associated with

unique firing patterns (Deitcher et al. 2017) and form distinct synaptic sub-networks

within and across layers (Wang, Markram et al. 2006). Therefore, the branching

properties of the apical trees are commonly used for their separation into morphological

classes. Visual classification by an expert, although not always trivial, usually makes

it possible to distinguish the different shapes of morphologies and group neurons into

classes. However, despite the expertise involved, visual inspection is subjective and

often results in non-consensual and ambiguous classifications (DeFelipe et al. 2013). A

striking indication of this problem, as described previously (DeFelipe et al. 2013), is

the fact that experts assign a different class to a neuron than the one they had chosen

in their original study for the same neuron, independently of the reconstruction quality

(DeFelipe et al. 2013). For this reason, an objective classification scheme is crucial for

a consensual and consistent definition of neuronal classes.

Morphological analysis is usually performed on 3D digital reconstructions of neurons.

Because standard morphometrics (such as section length, bifurcation angles etc.) focus
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to establish that PCs can be objectively classified based on the branching structure

of their apical dendrites. We compared the results of the topological classification to

the expert-proposed classes, and illustrated that the majority of subjective classes can

be objectively supported, with a single exception of Layer 5 subtypes (TPC:A and

TPC:B). The results are also compared to literature to identify the association of local

dendritic properties to long-range projections of axons.

Fig. 2.12 Morphological classification table. Inspired by Ascoli and Wheeler (2016) the classes of
cortical pyramidal cells are sorted according to increasing complexity (higher number of bars in the
corresponding persistence barcodes, from left to right) and increasing cortical depth (top to bottom)
to generate a table of morphological diversity of cortical pyramidal cells.

Methods

Staining and reconstruction techniques

PCs were filled and stained with biocytin and reconstructed in 3D using Neurolucida

from 300µm thick slices of rat somatosensory cortex. The reconstructed PCs from all

layers of rat somatosensory cortex were then classified PCs based on their topological

profiles.



2.3 Objective Classification of Neocortical Pyramidal Cells 41

Topological classification

For the topological classification, we first separated PCs according to the location of

their somata into layers. Then, PCs were separated into classes based on the topological

morphology descriptor (TMD) of their apical branching patterns (Kanari et al. 2017).

The same analysis shows no significant difference on the branching patterns of local

axons and basal dendrites of different m-types. The branching pattern of each apical

tree is decomposed into a set of components depending on a morphological feature

of each branch that is used as a filtration function. In this study we use the radial

distance from the soma as the discriminating factor. Because we want to take into

account the orientation of the trees, the radial distance is weighted according to the

orientation of the tree towards the pia surface. The set of all components is encoded in

a topological barcode (Carlsson 2009) using the TMD algorithm that is described in

details in (Kanari et al. 2017). The TMD of the tree is then used for the generation

of the persistent image (Chepushtanova et al. 2015) of the tree that summarizes the

density of components at different radial distances from the soma. The persistence

image representation is a vector that can be used as input to different machine learning

algorithms.

A supervised classifier is trained on the proposed by the expert classes. Then each

neuron is labeled according to its TMD profile. The accuracy of the classification

is defined as the ratio of the number of TMD-labels that agree with the expert

classification over the total number of cells. The classification is then repeated for

a set of randomized labels according to the initial number of classes. If the expert

classification accuracy is significantly higher than the randomized classification, the

proposed grouping is accepted. If this is not the case the classification cannot be

supported by the TMD. Then the classes are redefined according to the TMD profiles

of the neurons of the same layer with the objective of an optimal separation between

the defined classes.

The TMD classification is unbiased since it is based on a stable topological descriptor

of the tree’s branching structure and thus it is less prone to user induced biases.

There is no need to analyze the tree based on different morphological features in

an attempt to combine and use the ones that are significant. This way we avoid

over-fitting, i.e., confusing the random noise in the biological structure as a significant

discrimination factor, by implicitly accounting for the correlations between features

which are incorporated into their TMD profile. Indeed, the feature that is used as a

filtration function influences the result of the classification. It is therefore important to

select the morphological feature that will serve as the filtration function intelligently
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or to combine the TMD profiles for different features. However, the use of alternative

features revealed that the use of the radial distance as a filtration function is equivalent

to a number of other features (such as path distance, section lengths etc.) and therefore

there is no need to combine multiple functions for the study of PCs.

Results

The topological analysis of the branching structure of the apical trees of PCs revealed

the existence of three subtypes in Layer 2, two subtypes in Layer 3, three subtypes in

Layer 4, three subclasses in Layer 5 and five subclasses in Layer 6 (Fig 2.11). Apical

dendrites of PCs in supragranular layers 2 & 3 reach layer 1 and the pia; PCs in layers 4

and 6 often reach the supragranular layers, but not layer 1; major PC subtypes in layer

5 have the longest apical dendrites reaching layer 1 and the pia, and minor PC subtypes

in layer 5 tend to extend to the supragranular layers, but not layer 1 (Fig 2.11). The

expert analysis of the cells also revealed the existence of two more subtypes: a subtype

of TPC cells in Layer 5, and a horizontally oriented cell type in Layer 6. The subtype

of horizontally oriented cells in Layer 6 is supported by the main orientation of the

apical tree, but the topological profiles of these cells are indistinguishable from the

un-tufted pyramidal cells of Layer 6 (L6_UPC). Finally, by combining previous studies

mainly on primary sensory cortices, we illustrate the correlation between PCs classified

according to the proposed scheme and their long-distance projections, providing further

support for the proposed classification scheme. The results of the topological analysis

are summarized in the following section organized per layer.

Pyramidal Cells in Layer 2

The TMD-based clustering of Layer 2 apical trees illustrates the existence of two major

classes, depending on the direction of the apical tree. The L2_IPCs have apical trees

that project in the direction opposite to the pia, therefore generating a higher density

of branches in this direction (see Fig 2.13). On the contrary, the L2_TPCs contain

apical dendrites that project towards the pia, therefore exhibiting a higher density of

branches in this direction. Further analysis of the branching patterns of L2_TPCs

results in a separation into two sub-classes (L2_TPC:A and L2_TPC:B) depending

on the density of branches on the distal apical dendrites. In fact, L2_TPC:A have a

small density of branches within the tuft, while L2_TPC:B do not.

A quantitative analysis based on the morphometrics of 3D reconstructions of the

three Layer 2 subtypes of PCs (L2_TPC:A, n = 6; L2_TPC:B, n = 33; L2_IPC,
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Fig. 2.13 Three PC types/subtypes in layer 2. A. Exemplar 3D reconstructed PCs: apical dendrite
in pink, (duplicated at the upper right side for clarity); soma and basal dendrites in red; axons in
blue. B. Polar plot analysis of apical dendrites: vertically oriented for L2_TPC:A and L2_TPC:B,
vertically oriented in the opposite direction for L2_IPC. C and D. The Topological Morphology
Descriptor (TMD) of apical dendrites represents the spatial distribution of branches with respect
to the radial distance from the neuronal soma. In the persistence diagram (C) the radial distances
of the component’s initial (y-axis) and final (x-axis) points are illustrated. The average persistence
image (D) of an m-type shows the average density of the tree’s components at each radial distance.
L2_IPC apicals project on the opposite direction of the pia, L2_TPC apicals project towards the
pia; L2_TPC:A apicals have a small density of branches within the tuft compared to the L2_TPC:B
apicals.
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n = 4) revealed a quantitative difference of soma size, whose surface area is larger

for L2_TPC:B compared to L2_TPC:A. The basal dendrites of L2PC subtypes

share similar morphological features, and therefore no morphological difference can

be quantitatively justified. The total length, surface area and volume of the apical

dendrites of L2_TPC:B cells are significantly higher compared to L2_TPC:A cells,

reflecting their broad extends. In addition, L2_TPC:B axons extend further, resulting

in larger total lengths and surface areas, as well as maximum branch orders, suggesting

the formation of dense local axonal clusters.

Expert based observations of the same dataset suggest the existence of three distinct

classes: L2_IPC (inverted PC) have a vertically inverted apical dendrite projecting

towards deep layers and white matter that forms a proximal or distal extensive tuft

formation and multiple oblique dendrites. The apical dendrites of both L2_TPC:A

and L2_TPC:B sub-types reach the pia, and differ mainly in the bifurcating point

along the apical dendrite where the tufts begin to form; proximal or distal. Therefore,

the TMD-based classification supports the subjective observations for Layer 2 PCs,

and for consistency we use the expert proposed terminology for those classes.

Pyramidal Cells in Layer 3

The TMD-based clustering of the Layer 3 apical trees (Fig 2.14) illustrates the existence

of two sub-classes, depending on the density of branches on both proximal and distal

to the soma radial distances. The L3_TPC:A have apical trees with high density of

branches close to the soma, but lower density of branches within the tuft. On the

contrary, the L3_TPC:B apicals have a smaller density of branches around the soma,

but higher density of branches on the tuft.

Quantitative morphological analysis on the two subtypes of layer 3 PCs (L3_TPC:A,

n = 35; L3_TPC:B, n = 9) does not reveal any significant difference on the somatic and

axonal features of the two sub-types. The differences between the two sub-types are

only supported by the morphometrics of the apical dendrites. On average, L3_TPC:A

cells have a larger number of oblique dendrites compared to L3_TPC:B cells, which

corresponds to the lower densities of the latter observed in their persistence images.

Expert based observations of the same dataset suggest the existence of two distinct

classes of layer 3 PCs, both of which are oriented towards the pia: the L3_TPC:A

have a vertically projecting apical dendrite, with an often distal (occasionally proximal)

onset of tuft formation, which forms a small tuft (occasionally extensive) and multiple

oblique dendrites before tuft formation. On the contrary, the L3_TPC:B have a

vertically projecting apical dendrite with distal onset of tuft formation, which forms a
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Fig. 2.14 Two PC subtypes in layer 3. A. Representative 3D reconstructions of PCs: The color-
coding for different neuronal compartments is the same as in Figure 2.11. B. Polar plot analysis
of apical dendrites: vertically oriented for both L3_TPC:A and L3_TPC:B. C and D. Topological
Morphology Descriptor (TMD) of L3 apical dendrites. Both L3_TPC sub-types project towards
the pia; L3_TPC:A apicals have a high density of branches close to the soma, but lower density of
branches within the tuft and L3_TPC:B apicals have a smaller density of branches around the soma,
but higher density of branches on the tuft.
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small tuft and few oblique dendrites before tuft formation. Therefore, the TMD-based

classification supports the subjective observations of two sub-classes in Layer 3 PCs.

Compared to the pyramidal cells of higher layers (Layer 2, Fig 2.13), the PCs of

Layer 3 appear to be larger on average, presenting larger extends and higher densities of

branches, associated with larger total lengths. However, individual cells of Layer 3 can

be smaller than Layer 2 cells, indicating that they cannot be distinguished merely by

standard morphometrics. As a result, the information of soma location is essential for

the analysis of Layer 2 and Layer 3 pyramidal cells. The axonal bouton density of L2

and L3 PCs is similar, 18 - 21 boutons/100 µm on average. Previous studies examine

L2 and L3 PCs together, yielding two subtypes, which primarily differ in axonal

morphology (Larsen and Callaway 2006). One subtype of layer 2/3 PCs is sending

axonal collaterals into layers 3 and 5 avoiding layer 4. The other subtype is usually

located at the border of layer 3 and has significantly more axonal collaterals distributed

in layer 4, a subtype that could be associated to the corresponding L3_TPC:B of our

study.

Pyramidal Cells in Layer 4

The TMD-based clustering of the Layer 4 apical trees (Fig 2.15) illustrates the existence

of three major classes, that differ in the extent and the shapes of their apical trees.

The L4_TPCs have a long apical tree that extends to large radial distances and forms

a tuft that presents a high density of branches on the distal from the soma radial

distances. The L4_UPCs apical trees also extend to large radial distances, but do

not form a discrete tuft, as only few branches per tree reach to the maximum radial

distances. The apical trees of L4_SSCs present a high density of branches proximal to

the soma, but only extend to small radial distances (about half of the radial distances

of L4_TPCs).

Quantitative analysis based on the morphometrics of 3D reconstructions of the

three subtypes of layer 4 PCs (TPC, n = 44; UPC, n = 33; SSC, n = 12) illustrates that

L4_SSC have smaller somata than L4_TPC and L4_UPC. On average, L4_TPCs

have a larger number of basal dendrites compared to L4_UPC and L4_SSC, which

are also significantly longer. Similarly, L4_TPCs apical trees are bigger (larger total

length, areas and volumes) than both other types, even though both L4_TPC and

L4_UPC apical extends are significantly longer than L4_SSC. Due to the significant

loss of axonal mass, resulting from the slicing preparation, the results concerning the

axonal morphometrics are inconclusive. However, the existence of three classes is in

agreement with previous studies that used thicker brain slices (500 µm thick), (Staiger,
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Fig. 2.15 Three PC subtypes in layer 4. A. Representative 3D reconstructions of PCs. B. Polar plot
analysis of apical dendrites: vertically oriented for all three subtypes of L4_TPC and L4_UPC and
L4_SSC. C and D. Topological Morphology Descriptor (TMD) of L4 apical dendrites. L4_TPC
apicals extend to large radial distances and form a tuft of high density of branches on the distal from
the soma radial distances. L4_UPC apicals also extend to large radial distances, but do not form a
discrete tuft, as only few branches per tree reach to the maximum radial distances. L4_SSC apicals
have a high density of branches proximal to the soma, but only extend to small radial distances.
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Flagmeyer et al. 2004) and reported three distinct classes based on the axonal patterns

of the pyramidal cells of Layer 4. In agreement with this study, the bouton density of

L4_UPCs (22 ± 1 boutons/100 µm) is significantly higher than those of L4_TPCs

and L4_SSCs (19 ± 1 and 18 ± 1 boutons/100 µm; both P = 0.02).

Expert based observations of the same dataset suggest the existence of three types

of layer 4 PCs, based on their apical dendrites. The L4_TPC (tufted pyramidal

cells) have a vertically projecting apical dendrite with a distal small tuft and multiple

oblique dendrites before tuft formation. The L4_UPC (untufted pyramidal cells) have

a vertically projecting apical dendrite without a tuft and multiple oblique dendrites

that branch proximally to the soma. The L4_SSC (spiny stellate cells) have a vertically

projecting apical dendrite with small radial extends, not much longer than basal

dendrites. Typically, the apical dendrites of all PC types in layers 4 do not reach layer

1. Therefore, the TMD-based classification supports the subjective observations of

three major classes in Layer 4 PCs.

Pyramidal Cells in Layer 5

The TMD-based clustering of the Layer 5 PCs illustrates the existence of three major

classes, that differ in the branching of their apical trees. The L5_TPC:A have a long

apical tree that extends to the largest radial distances reaching Layer 1. L5_TPC:A

apical trees have two distinct clusters of high density of branches that differ on their

radial distance from the soma. The cluster proximal to the soma corresponds to the rich

oblique formation, while the distal from the soma region corresponds to the formation

of a densely branching tuft. Similarly to L5_TPC:A the apical trees of L5_TPC:C

have two distinct clusters of high branching density, one proximal to the soma that

corresponds to the obliques and one distal to the soma that corresponds to the tuft.

However, the tufts of L5_TPC:C have a lower density of branches even though they

reach up to large radial distances. L5_UPC have a single high branching density

cluster proximal to the soma, which corresponds to rich oblique formation. The reach

of the apical trees of L5_UPC are lower that the rest of L5PCs as the density of

branches decreases with the radial distance from the soma, indicating the absence of a

tuft.

The quantitative analysis of 3D reconstructions of three subtypes of layer 5 PCs

(TPC:A and TPC:B, n = 98; TPC:C, n = 33; UPC, n = 30) showed that L5_TPC:A

have significantly bigger somata compared to L5_TPC:C and L5_UPC. The basal

dendrites of layer 5 PC extend approximately to the width of a local cortical microcircuit

( 300 – 500 µm), except from L5_UPCs basal dendrites, which are narrower. L5_TPC:A
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Fig. 2.16 Four PC subtypes in layer 5. A. Representative 3D reconstructions of PCs. B. Polar plot
analysis of apical dendrites: vertically oriented for all four subtypes of L5_TPC:A, L5_TPC:B,
L5_TPC:C and L5_UPC. C and D. Topological Morphology Descriptor (TMD) of L5 apical dendrites.
L5_TPC:A and L5_TPC:B apicals have two distinct clusters of high branching densities; one
proximal to the soma that corresponds to the rich oblique formation, and one distal from the soma
that corresponds to the formation of a dense tuft. L5_TPC:C apicals have two distinct clusters of high
branching density similarly to L5_TPC:A but present a lower density of branches on the distal cluster
indicating a less dense tuft. L5_UPC apicals have a single high branching density cluster proximal
to the soma that corresponds to rich oblique formation, but the density of branches decreases with
the radial distance from the soma, indicating the absence of a tuft. The expert proposed separation
in L5_TPC:A and L5_TPC:B cannot be supported by the TMD classification as no significant
differences were found in the topological profiles of those subtypes.
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have a significantly larger basal dendritic surface area that enables higher synaptic

inputs in comparison to the two sub-types that have longer but thicker basal processes.

The morphological properties of L5_TPC:A apical trees confirm the topological results.

In addition, L5_TPC:A (15-16 boutons/100 µm) have bouton densities significantly

lower than those of L5_TPC:C and L5_UPCs (21 boutons/100 µm). Recent advances

in retrograde labeling of single neurons in vivo with recombinant rabies virus (Larsen

et al. 2007) resulted in the reconstruction of complete axons of layer 5 PCs, which

support the existence of three distinct subtypes based on their axonal properties. The

thick-tufted PCs (corresponding to L5_TPC:A) project their local axons within deep

cortical layers, while the slender-tufted PCs (L5_TPC:C) and the short untufted PCs

(L5_UPCs have extensive projections to superficial layers. The axons of L5_UPCs are

relatively columnar, while those of L5_TPC:Cs have extensive laterally spreads within

layer 2/3. Compared to in vivo labeling (Larsen et al. 2007, Oberlaender et al. 2011),

morphological measurements of axons obtained by in vitro (300 µm thick brain slices)

labeling are underestimated, since the laterally spreading axonal processes have been

largely severed during the slicing procedure.

Expert based observations of the same dataset suggest the existence of two major

classes and four sub-classes. The L5_TPC:A (Thick-tufted PC:A) have a vertically

projecting apical dendrite with a distal broad thick tuft and multiple oblique den-

drites emerging proximally. The L5_TPC:B (Thick-tufted PC:B) are similar to the

L5_TPC:A but further bifurcate into smaller tufts in comparison with L5_TPC:A.

The L5_TPC:C (small tufted PC) have a vertically projecting apical dendrite with a

distal small tuft and multiple oblique dendrites emerged proximally. The L5_UPC

(untufted PC) have a vertically projecting apical dendrite with no tuft formation. The

expert classification in L5_TPC:A and L5_TPC:B could not be validated by the TMD

classification as no significant differences were found in the topological profiles of those

subtypes. Based on the topological profiles of their apical trees, there is a gradient

between those two subtypes, defined by experts, rather than a clear separation in two

distinct classes. Therefore, the TMD-based classification supports the existence of three

major classes of L5_PCS, but not their separation into L5_TPC:A and L5_TPC:B

subtypes, as proposed by expert observations.

Pyramidal Cells in Layer 6

The TMD of Layer 6 PCs apical trees indicates the existence of a large diversity of

classes, unlike any other layer. TMD-based classification revealed the existence of

five distinct types of PCs in Layer 6. L6_BPC are identified by the two vertically
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projecting clusters of branching clusters that project to opposite directions. Both of

the apical trees of L6_BPC form a small distal tuft, which is indicated by a small

distal cluster of branches in the persistence image (Figure 6), and a high density of

branches close to the soma. L6_IPC are identified by the orientation of their apical

trees, which are directed towards white matter. The low distal branching density of

L6_IPC apicals indicates the existence of a small tuft. L6_UPC apicals have a single

dense cluster of branches proximal to the soma, which corresponds to a rich oblique

formation. L6_UPC have smaller extends than L6_TPC and the density of branches

decreases with the radial distance from the soma, indicating the absence of a tuft.

L6_TPC, which form a distinct and large tuft, can be separated into two sub-types,

as in the case of Layer 5 PCs. The L6_TPC:A have a long apical tree that extends to

large radial distances (and reaches Layer 4) and forms two distinct clusters of branches

with respect to the radial distance from the soma. The cluster proximal to the soma

corresponds to the rich oblique formation, while the distal cluster corresponds to the

formation of a densely branching tuft. The L6_TPC:C have also two distinct clusters

of branches, one proximal to the soma that corresponds to the obliques and one distal

to the soma that corresponds to the tuft. However, the tufts of L6_TPC:C have lower

density of branches in their tufts compared to L6_TPC:A. The last subtype of Layer

6 PCs is L6_HPC. The apical dendrites of L6_HPC have similar topological profiles

to the L6_UPCs, but appear to have a preferred horizontal orientation, as opposed to

all the other Layer 6 PCs.

The quantitative analysis based on the morphometrics of 3D reconstructions of

layer 6 PCs (TODO: L6_TPC:A, n = 26; L6_TPC:C, n = 18; L6_UPC, n = 23;

L6_IPC, n = 27; L6_BPC, n = 32; L6_HPC, n = 7) illustrates that the somata of

L6_HPCs are the biggest in layer 6 compared to other subtypes. L6_TPC:C basal

dendrites are the smallest (minimum total length) among all layer 6 PCs, the L6_HPCs

basal dendrites have the widest maximum horizontal extent, but the smaller number

of dendritic trees. L6_TPC:As and L6_UPCs have greater total dendritic length

than all other layer 6 PCs, except HPCs. Quantitative analysis of layer 6 PCs axons

demonstrates that they are largely similar, with the exception of L6_TPC:Cs, which

have the narrowest axonal trees with the smallest maximum horizontal extent that is

approximately equal to the width of a cortical column. In addition, the bouton density

of L6_TPC:Cs is the lowest (17 boutons/100 µm) and of L6_HPCs the highest (22

boutons/100 µm). The bouton density is similar between other types/subtypes of layer

6 PCs, ranging from 19 to 20 boutons/100 µm on average. However, axonal collaterals

of most PCs filled in slices have been severed to nearly 90% since their axonal clusters
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commonly extend across multiple columns, while their dendritic clusters are confined

within a column (Boudewijns, Kleele et al. 2011). Due to this technical limitation, the

morphometrics of Layer 6 axonal branches will not be discussed further.

Subjective observations suggest the existence of five major types and two subtypes.

The L6_TPC:A (tufted PC) have a vertically projecting apical dendrite with a distal

small tuft and multiple oblique dendrites. The L6_TPC:C (Narrow PC) have a narrow

vertically projecting apical dendrite, with a distal small tuft and often more oblique

dendrites than other PC types. The L6_UPC (untufted PC) have a vertically projecting

apical dendrite with no tuft formation, but multiple oblique dendrites. The L6_IPC

(inverted PC) have a vertically inverted apical dendrite projecting towards the white

matter with a distal small tuft and multiple oblique dendrites. The L6_BPC (bitufted

PC) have two vertically projecting apical dendrites; one oriented toward the pia with a

distal small tuft that forms multiple oblique dendrites and one inverted, projecting

towards the white matter with a distal small tuft and multiple oblique dendrites. The

L6_HPC (horizontal tufted PC) have a horizontally projecting apical dendrite with a

distal small tuft that forms a few oblique dendrites. The apical dendrites of layer 6 PCs

often reach layer 4 or supragranular layers, but very rarely reach layer 1. Therefore,

the TMD-based classification supports the existence of five subtypes in Layer 6 and

an additional class (L6_HPC) can be identified by using the main orientation of the

apical tree as a distinctive parameter.

Discussion

Despite the expertise involved, visual inspection is subjective and often results in

non-consensual and ambiguous classifications (DeFelipe et al. 2013). In this study, we

used a novel metric based on persistent homology (Kanari et al. 2017), which quantifies

the branching structure of apical dendrites, to establish an objective standardized

classification of pyramidal neuron morphologies in the rat somatosensory cortex. We

have demonstrated that the TMD of neuronal trees is not only reliable in validating

the quality of the expert classification, but can also propose an alternative separation

of cells into groups where the expert classification fails to provide a consensual and

consistent definition of neuronal classes.

This scheme revealed the existence of a common type of PC in layers 2-6 – the TPC,

and those that are uniquely found in specific layers, such as the SSC in layer 4 and the

BPC in layer 6. Interestingly, the variability of apical shapes increases with the depth

of the cells in the tissue. This indicates that the higher complexity function of deeper

cortical layers can be successfully supported by the large morphological variability
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Fig. 2.17 Six PC subtypes in layer 6. A. Representative 3D reconstructions of PCs. B. Polar plot
analysis of apical dendrites: The orientation of L6PC apical dendrites varies in different subtypes:
vertically oriented towards pial for L6_TPC:A, L6_TPC:C and L6_UPC; vertically oriented in the
opposite direction towards white matter for L6_IPC; vertically oriented towards both pial and white
matter for L6_BPC; horizontally oriented for L6_HPC. C and D. Topological Morphology Descriptor
(TMD) of L6 apical dendrites. L6_BPCs are identified by the two vertically projecting clusters of
branching clusters that indicate the existence of two apical trees that project to opposite directions.
L6_IPC apicals are directed towards white matter and have a low distal branching density that
indicates the existence of a small tuft. L6_UPC apicals have high branching density proximal to the
soma that indicates a rich oblique formation and an absence of a tuft. L6_TPC form a distinct and
large tuft that can be separated into two sub-types similarly to layer 5; the L6_TPC:C apicals with a
small tuft and the L6_TPC:A apicals with a dense tuft. The L6_HPC apicals have similar topological
profiles to the L6_UPCs but have a horizontal preferred orientation which is unique among the layer
6 pyramidal cells.
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Fig. 2.18 Accuracy of TMD-based classification of cortical pyramidal cells. The colormap indicates
the percentage of cells that are labeled as an m-type (ranging from 0.0: no cells, to 1.0 all cells). A
perfect separation would result in 1.0 on the diagonal and 0.0 everywhere else. All expert identified
classes are supported by the TMD-classification with the exception of L5_TPC_A and L5_TPC_B,
which express a gradient of changes rather than a clear separation, and the L6_HPC that requires
additional measurements to be identified -not shown here-. Note that all other classes are identified
by a significantly high accuracy.

that is present in deeper layers, in agreement with recent observations (Reimann et al.

2017). The TMD-based classification was unable to distinguish few cell types proposed

by experts that differ in other morphological characteristics, such as L6_HPC that are

pronounced by horizontally oriented dendrites. In this particular case, an additional

descriptor, the main orientation of the cell, was used for the objective discrimination

of L6_HPC neurons. This demonstrates that expert classification is essential to guide

further improvements of the method.

A new subfield of algebraic topology, which studies multidimensional persistence

(Carlsson and Zomorodian, 2009), could be used for combining morphological measure-

ments with independent parameters that are currently not considered, into multidimen-

sional barcodes. Using this technique independent characteristics could be combined
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into a single topological descriptor to strengthen even further the discriminative power

of the TMD descriptor. The cells that differ on parameters that are not currently

considered, such as the thickness of the processes and the bouton density, cannot be

distinguished with the TMD descriptor. Another important property that is currently

not considered, and should ideally be combined in an improved version of the TMD

descriptor, is the long-range projections of trees.

This property is particularly important for axonal trees whose long-range projections

indicate the brain regions with which they communicate. A significant number of

studies suggest a strong association between the locally defined types of PCs with their

target distant regions, which are genetically determined early on during differentiation

and prior to the migration of the neurons to their destination layers (Larkman and

Mason 1990; O’Leary and Koester 1993, Kasper et al. 1994; Franceschetti et al.

1998; Gao and Zheng 2004; Larsen and Callaway 2006; Morishima and Kawaguchi

2006; Kumar and Ohana 2008; Marx and Feldmeyer 2012). Indeed, long-range axonal

projection of PCs is an important feature that enables different computational functions

and should therefore be taken into account for their classification (Larsen and Callaway

2006; Larsen et al. 2007; Boudewijns et al. 2011).

Due to technical limitations, the long range projections of pyramidal cells are not

currently available for a sufficiently large number of cells to allow for their systematic

characterization. However, recent advances in optical imaging and long-range axon

labeling techniques is enabling a systematic reconstruction of single neurons at the

whole brain level (Yuan et al. 2015, Gong et al. 2016). Hopefully, these advances

will enable the systematic characterization of whole cells reconstructions in order to

quantify their long-range axonal projection properties and associate them to their local

properties. Ideally, it will be possible to build a mouse or rat brain atlas at single

neuron resolution, which is am essential step for biologically detailed simulations of

neuronal microcircuitry, brain regions and the whole brain (Markram 2006).
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2.4 Comprehensive morpho-electrotonic analysis shows

two distinct classes of L2 and L3 pyramidal neu-

rons in human temporal cortex

Yair Deitcher, Guy Eyal, Lida Kanari, Matthijs B. Verhoog, Guy Antoine

Atenekeng Kahou, Huibert D. Mansvelder, Christiaan P.J. De Kock, and Idan Segev

(Cerebral Cortex, 2017, https://doi.org/10.1093/cercor/bhx226)

Abstract: There have been few quantitative characterizations of the morphological,

biophysical and cable properties of neurons in the human neocortex. We employed

feature-based statistical methods on a rare dataset of 60 3Dreconstructed pyramidal

neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed

after brain surgery. Of these cells, 25 neurons were also characterized physiologically.

Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36.333 ±
18.157µm2; number of basal trees, 5.55 ± 1.47; dendritic diameter 0.76 ± 0.28µm).

Eighteen features showed a significant gradual increase with depth from the pia (e.g.,

dendritic length, soma radius). The other features showed weak or no correlation with

depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are

particularly elongated, enabling multiple nonlinear processing units in these dendrites.

Unlike the morphological features, the active biophysical features (e.g., spike shapes

and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26MΩ,

membrane time constant, 12.03± 1.79msec, average dendritic cable length, 0.99± 0.24)
were depth-independent. A novel descriptor for apical dendritic topology yielded two

distinct classes, termed hereby as “slim-tufted” and “profuse-tufted” HL2/L3 PCs; the

latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows

two distinct classes of HL2/L3 PCs.

Keywords: Dendritic cable properties, Electrical classification, Human pyramidal

cells, Morphological classification, Mouse vs. human dendrites
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Introduction

The temporal cortex is considered to have important cognitive functions (Mirz et

al. 1999; Fortier et al. 2011). In humans, the temporal neocortex is especially thick

(2.773µm) compared to monkeys (2.300µm) or rodents (969µm) (see Mohan et al.

2015, and see also DeFelipe, Alonso-Nanclares, and Arellano 2002). Layer 2 and Layer

3 (L2/L3)which receives input from Layer 4 and sends its output to Layer 5 and Layer

6, is considered to play a key role in intrinsic cortical computation (Callaway 2004;

Douglas and Martin 2004; Feldmeyer 2012; Constantinople and Bruno 2013; Li et

al. 2014). In the human temporal cortex, L2/L3 was found to be particularly thick

(average of 949µm, Mohan et al. 2015), which implies that it might endow the human

neocortex with enhanced computational capabilities. The major building block of

L2/L3 are the pyramidal cells, which in rodents consist of at least 70 − 80% of its total

number of cells (Nieuwenhuys 1994).

L2/L3 pyramidal neurons from the human temporal cortex (HL2/L3 PCs) possess

several unique features. Recent fine-scale anatomical studies on these neurons have

demonstrated that they are large, in terms of total dendritic length and number of

dendritic branches (Mohan et al. 2015). The dendrites of these cells are decorated

with a large number of dendritic spines ( 25.000 − 30.000 spines per neuron, Benavides-

Piccione et al. 2013; DeFelipe, Alonso-Nanclares, and Arellano 2002; Defelipe 2011).

Dendritic spines are the main targets for excitatory synapses; their large number

per neuron implies that L2/3 pyramidal neurons in humans are part of a densely

connected network. In addition, dendritic spines are key elements in memory and

learning processes (Yuste 2010), suggesting that L2/L3 neurons and the networks that

they form are endowed with enhanced memory capacity.

What are the biophysical characteristics of L2/L3 pyramidal neurons from the

human temporal cortex? To answer this question, experiments on living human brain

tissue are needed; however, this kind of tissue is only available in a few laboratories

worldwide and is obtained after brain surgery. Thus, there is scant information about

the biophysical properties of human neocortical neurons (Inda et al. 2006; Kohling and

Avoli 2006; Szabadics et al. 2006; Molnár et al. 2008; Verhoog et al. 2013; Testa-silva

et al. 2014; Tian et al. 2014; Varga et al. 2015). Recently, our team demonstrated that

L2/L3 pyramidal neurons in the human temporal cortex have distinctive biophysical

features (Eyal et al. 2016) including the fact that their specific membrane capacitance,

Cm is 0.5µF/cm2 is half the conventional value (1µF/cm2). We showed that such Cm

values have important implications for signal transfer and information processing at



2.4 Comprehensive morpho-electrotonic analysis of human cells 61

both the neuron and the network level. However very little is known either about the

anatomy or the physiology of human cortical neurons.

Here, we employed our recently developed feature-based characterization scheme to

demonstrate that morphologically, many features of HL2/L3 PCs show a gradual depth

dependency (such as a gradual increase with depth in the total dendritic surface area,

the number of branches and horizontal range, Figure 2.19). Using a novel topological

method, we found HL2/L3 PCs fall into two distinct classes we dub “slim-tufted” and

“profuse-tufted” HL2/L3 PCs. These two morphological types are also distinctive in

their I/F relationship. Moreover, human L2/L3 express a prominent “sag” in response to

hyperpolarizing currents, possibly suggesting that these cells express hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels (Magee 1998). We also found that

the mean cable length of human neurons is independent of depth, in contrast to the

physical mean length. Interestingly, we found a subpopulation of deep neurons that

have large diameters and large Rm values, both of which compensate for their long

dendrites. We discuss the functional implications of our results and compare our results

to those obtained for L2/L3 pyramidal neurons in rodents.

Materials and Methods

Electrical recordings of Human L2/L3 pyramidal cells (acute living slices)

All procedures on human tissue were performed with the approval of the Medical

Ethical Committee (METc) of the VU University Medical Centre (VUmc), with

written informed consent by patients involved to use brain tissue removed for the

treatment of their disease for scientific research, and in accordance with Dutch license

procedures and the declaration of Helsinki (VUmc METc approval “kenmerk 2012/362”).

Slices of human temporal cortex were cut from neocortical tissue that had to be

removed to enable the surgical treatment of deeper brain structures for epilepsy or

tumors. In all patients (20–57 years of age), the resected neocortical tissue was

located outside the epileptic focus or tumor, and displayed no structural/functional

abnormalities in preoperative MRI investigations. After resection, the neocortical

tissue was placed within 30s in ice-cold artificial cerebrospinal fluid (aCSF) slicing

solution which contained in (mM): 110 choline chloride, 26NaHCO3, 10 D-glucose,

11.6 sodium ascorbate, 7MgCl2, 3.1 sodium pyruvate, 2.5KCl, 1.25NaH2PO4, and

0.5CaCl2 − 300mOsm, saturated with carbogen gas (95%O2/5%CO2) and transported

to the neurophysiology laboratory, which is located 500 meters from the operating room.

The transition time between resection of the tissue and the start of preparing slices
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was less than 15min. Neocortical slices (350 − 400µm thickness) were prepared in ice-

cold slicing solution, and were then transferred to holding chambers filled with aCSF

containing (in mM): 126NaCl; 3KCl; 1NaH2PO4; 1MgSO4; 2CaCl2; 26NaHCO3; 10

glucose – 300mOsm, bubbled with carbogen gas (95%O2/5%CO2). Here, slices were

stored for 20 min at 34C, and for at least 30min at room temperature before recording.

Whole-cell, patch clamp electrophysiology recordings were then made from human

layer 2/3 pyramidal neurons as described previously (Verhoog et al. 2013; Testa-

silva et al. 2014). In short, we used standard, uncoated borosilicate glass pipettes

(glass thickness 0.64mm) with fire-polished tips (4.0 − 6.0MW resistance) filled with

intracellular solution containing (mM): 110 K-gluconate; 10 KCl; 10 HEPES; 10

K2Phosphocreatine; 4 ATP-Mg; 0.4 GTP, biocytin 5mg ml-1 (pH adjusted with KOH

to 7.3; 280 − 290mOsm). Recordings were made using a MultiClamp 700B amplifier

(Axon Instruments, CA, USA), sampling at 10 − 50kHz and low-pass filtering at

3 − 30kHz. Recordings were digitized with an Axon Digidata 1440A and acquired

using pClamp software (Axon). Recording aCSF was the same solution as the aCSF in

which slices were stored. Recording temperature was 32 − 35C.

3D reconstructions of human and mouse L2/L3 pyramidal cells (acute living

slices)

Sixty morphologies of human L2/L3 cells, residing at depths of 409 − 1192µm below

the pia, and 14 morphologies of mouse L2/L3 cells from depths of 222 − 493µm were

reconstructed in 3D using Neurolucida software (Microbrightfield, Williston, VT,

USA), using a 100x oil objective (1.4 N.A.). Dendritic diameters were incorporated

into the morphological reconstruction using Neurolucida (Microbrightfield, Williston,

VT) by manually setting the diameter of the line segments during reconstruction of

the biocytin-filled neurons. Reconstructions were performed with a 100x oil objective

(N.A. 1.4) and standardized for both human and mouse reconstructions. The value

for dendritic diameter was subsequently extracted for individual segments from the

digital files. Dendritic segments are assumed to be truncated cones, with initial and

end diameters. The surface area is the area of this dendritic cone, not including the

end caps. Additional details regarding the reconstruction methods can be found in

Mohan et al. 2015.

For a subset of neurons used in this study, the axons were also reconstructed (Mohan

et al. 2015); these axons were not included in the analysis performed in the present

study. In this work, dendritic spines were only considered when building cable models

of human neurons (Figures 2.24 and 2.25). In these models, the spine membrane area
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was incorporated globally using the F factor as in Rapp et al. 1992 (and for human

neurons, as in Eyal et al. 2016). In this work, Eyal et al. computed the F factor to be

1.9, based on detailed data from human cingulate cortex and human temporal cortex

(Benavides-Piccione et al. 2013). This data is based on two post-mortem samples

from two human males (aged 40 and 85) in which the neurons and dendritic spines

were reconstructed in 3D using high-resolution confocal microscopy. To the best of our

knowledge this is the most accurate data about human spines in neocortical pyramidal

cells available today. However, we do not yet know whether the density and the size of

dendritic spines in human neurons are depth-dependent or if there is any difference in

spine density between slim-tufted and profuse-tufted neurons. Thus, for the modeling

part of this work, we used F = 1.9 for all of our neuron models.

Morphological features

The 32 morphological features used for the present study are listed in Table 2.2. These

features are the natural ones to consider when characterizing dendritic morphologies.

These 32 features were extracted for each of the sixty human and fourteen mouse L2/L3

pyramidal neurons in our database using both the Pneumatk and NeuroM packages in

Python developed by the Blue Brain Project (Juan Palacios, Lida Kanari, Eleftherios

Zisis, Mike Gevaert). NeuronM is available in https://github.com/BlueBrain/NeuroM.

Electrophysiology and extraction of biophysical features

Electrical features were extracted from voltage responses to long hyperpolarizing and

depolarizing somatic current injections of various amplitudes (Table 2.3). Features 1-8

were extracted from the responses to 150% supra-threshold depolarizing current. Spikes

were detected by a crossing of a voltage threshold (0mV ). We defined the beginning of

the spike by detecting the maximum of the second derivative in the rising phase of the

spike. The end of the spike was defined as the minimum voltage following the spike.

The following features were defined:

1. Mean AP amplitude: Mean amplitude of the set of spikes that occurred during

the current step. The amplitude of a spike was defined as the difference between

the voltage at the beginning and the peak of the spike.

2. Mean AP half-width: Mean half-width of the set of spikes that occurred during

the current step. The half-width of a spike was defined as the amount of time

from the first crossing (in the upward direction) of the half-height voltage value
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to the second crossing (in the downward direction) of this value. The half-height

voltage is the voltage at the beginning of the spike plus half the spike amplitude.

3. Mean AP rise time: The mean rise time of the set of spikes that occurred during

the current step. The rise time was defined as the amount of time from the

beginning to the peak of the spike.

4. Mean AHP (after-hyperpolarization) depth: The mean AHP depth of the set of

spikes that occurred during the current step. The AHP depth (relative to rest)

was defined as the difference between the voltage at the end of the spike and the

resting membrane potential.

5. First spike latency : The amount of time from the current onset to the peak of

the spike.

6. Spike frequency : The firing rate of the neuron during the current step.

7. ISI-CV : Coefficient of variation (standard deviation divided by the mean) of the

distribution of ISIs (inter-spike interval).

8. Mean ISI : The mean of the distribution of ISIs.

9. Threshold current for spike generation: The minimal current that elicited a spike.

10. Membrane time constant, τm: This is estimated through exponential fit to

the recovery of the voltage response following astep hyperpolarizing current

(Figure 2.23B, inset). To capture the slowest (membrane) time constant, the

exponential fit to the voltage trace was calculated after a delay of 10msec from

the start of voltage recovery.The fitted time constant should be considered as the

“effective membrane time constant” as an active Ih current might be involved in

this estimate (Figure 2.23B).

11. Input resistance, RN : estimated by the linear fit of the I/V curve (Figure 2.23b).

12. Sag ratio: defined as 100 Vss−Vmin

Vrmp−Vmin
where Vss is the voltage at steady state, Vmin is

the minimum value reached after the beginning of the current injection and Vrmp

is the voltage at the resting membrane potential.
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Software

Analysis was carried out by custom software programmed in Matlab. The electrotonic

dendrograms in Figure 2.24B1,B2 and the scaled mouse neuron in Figure 2.26D were

constructed using the TREES toolbox (Cuntz et al. 2010), and the compartmental

modeling simulations of 3D reconstructed neurons shown in Figure 2.24C1,C2 were

run using NEURON 7.4 (Carnevale and Hines 2006).

Data analysis and Statistics

PCA

Principal component analysis (PCA; Duda et al., 2001) was used to determine the

prominent components of the variability in the data by calculating the eigenvectors of

the covariance matrix.

Statistical tests

To calculate the correlation between features and depth we used the Pearson correlation

coefficient. To correct for multiple correlations the Benjamini & Hochberg procedure

(Benjamini and Hochberg 1995) was used to control for the false discovery rate (FDR)

of a family of hypothesis tests with a false discovery rate of 0.05. To compare the

apical and basal trees and compare between the biophysical features of the two classes

(slim-tufted and profuse-tufted) we used the two-sample Kolmogorov-Smirnov test (K-S

test), a nonparametric hypothesis test.

Topological Morphology Descriptor (TMD)

We generated the topological profile of a neuron from its branching structure (the

detailed method is described in https://arxiv.org/abs/1603.08432). The algorithm

takes the branch points and the termination points of a tree as input as well as their

connectivity, and produces a set of intervals on the real line known as a persistence

diagram (Carlsson 2009). Each interval is a pair of real numbers that encodes the

“lifetime” of a single branch in the underlying structure; the first (y-axis) represents

the distance from the soma to the starting point of the branch and the second (x-axis)

represents the distance from the soma to the end point of the branch. The persistent

images (Figure 2.22A,B) are the density plots generated from the persistence diagram,

where the intensity of the color corresponds to the density of points in the persistence

diagram.

Classification of HL2/L3 PCs
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For the classification, we used an open-source tool developed in (Pedregosa et al.

2011). The persistent images (Figure 2.22a,b) were used as input to the classifier. We

initially trained the classifier with the persistent images of the 48 apical trees that were

clearly distinguishable. Then we assigned the remaining 8 cells to classes according to

the assessment of the classifier (Figure 2.22c). We cross-validated the results of the

classifier by a leave-one-out method (Evgeniou et al. 2004) based on a Decision Tree

classifier. The accuracy of the classifier was measured by the percentage of correct

assignments of the persistent images into classes. The accuracy of the classifier, based

on the leave-one-out cross-validation, was 90%. To control for the performance of the

classifier, we randomized the labels of the cells and repeated the previous experiment.

The accuracy of the classifier for the randomized dataset was 50%.

Results

Morphological properties

Depth dependency

The dataset of sixty morphologies from the human neocortex used in this study is

shown in Figure 2.19. All the neurons used for the morphological analysis in the

present study were human L2/L3 pyramidal neurons from the medial temporal cortex

(Brodmann area 21). The considerable variability in dendritic size and shape can be

seen in the figure, with a clear increase in the length of the apical tree with increasing

distance from the pia.

Table 2.1 summarizes the basic morphological features used for comparing apical

to basal dendrites. As shown in Table 2.1, the total surface area (apical and basal)

of L2/L3 human dendrites is about 35.000mm2 on average. The mean length of the

non-terminal branches is much longer for the apical tree (69.35±13.62mm) as compared

to the basal tree (31.06 ± 5.97mm, p 0.0001, n = 60, K-S test). By contrast, some

morphological features (e.g., the diameter) of the two trees are not significantly different

(p = 0.63, n = 60, K-S test).

For a systematic analysis of our morphological database of HL2/L3 PCs, we used the

set of 32 features extracted from each of the sixty neurons in our database (Table 2.2).

We separated the features into two major groups composed of the features for the

apical tree (#1 - #15) and the basal tree (features #16 - #31). We added a single

feature related to the soma (feature #32); namely, the mean soma radius.

Interestingly, the majority of the morphological features exhibited a gradual depth-

dependent change. Therefore, we sorted the features in descending order according to
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Table 2.2 The 32 features used for the morphological analysis of the 60 reconstructed HL2/L3 PCs

Feature number Feature description
1 Maximal radial distance of apical tree from soma (µm)
2 Maximal path length of apical tree from soma (µm)
3 Vertical field span of apical tree (µm)
4 Total length of apical tree (µm)
5 Maximal branch order in apical tree
6 Number of branches in apical tree
7 Mean length of nonterminal apical branches

(branches between 2 consecutive bifurcations) (µm)
8 Horizontal field span of apical tree (µm)
9 Total surface area of apical tree (µm2)
10 Total volume of apical tree (µm3)
11 Trunk diameter of apical tree (µm)
12 Mean length of terminal apical branches

(branches between bifurcation and dendritic termination)(µm)
13 Mean diameter of apical tree (µm)
14 Ratio between the horizontal and vertical field span of apical tree
15 Density of apical tree-ratio between the volumes of the apical tree

and of its convex hull
16 Total length of basal tree (µm)
17 Number of branches in basal tree
18 Maximal radial distance of basal tree from soma (µm)
19 Mean trunk diameter of basal tree (µm)
20 Total surface area of basal tree (µm2)
21 Maximal path length of basal tree from soma (µm)
22 Horizontal field span of basal tree (µm)
23 Total volume of basal tree (µm3)
24 Mean length of terminal basal branches

(branches between final bifurcation and dendritic termination) (µm)
25 Maximal branch order in basal tree
26 Number of basal trees
27 Vertical field span of basal tree (µm)
28 Density of basal tree-ratio between the volumes of the basal tree

and of its convex hull
29 Ratio between the horizontal and vertical field span of basal tree
30 Mean diameter of basal tree (µm)
31 Mean length of nonterminal basal branches

(branches between 2 consecutive bifurcations) (µm)
32 Mean soma radius (µm)

Features related to the apical tree are numbered 1-15; features related to the basal tree are numbered
16-31 and Feature 32 is related to the soma. Radial distance (Feature #1, Feature #18) is the
Euclidean distance from the soma to each section terminal. The total length (Feature #4, Feature
#16) is the sum of all the section lengths of the neurite. The path length (Feature #2, Feature #21)
is the length of the path from a terminal to the soma. The center of the soma is defined as the mean
of all the soma points. The mean radius of the soma is defined as the mean distance of all the soma
points from the center. For further documentation see https://github.com/BlueBrain/NeuroM.
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Figure 2.20A depicts four representative features that show the gradual depth-

dependent change. Since all cells reached the pia (Figure 2.19), it is not surprising

that the maximal path length of the apical tree was strongly correlated with depth

(Figure 2.20A1, feature #2, r = 0.95, p < 0.0005, n = 60). However, other features,

perhaps unexpectedly, showed a significant positive correlation with cortical depth,

such as the horizontal field span of the apical tree (Figure 2.20A2, feature #8, r =

0.48, p < 0.0005, n = 60), the total length of the basal tree (Figure 2.20A3, feature

#16, r = 0.50, p < 0.0005, n = 60) and the mean soma radius (Figure 2.20A4, feature

#32, r = 0.35, p < 0.01, n = 60).

Figure 2.20B depicts the correlation coefficients between the feature values and the

depths of the cells. Features with a significant correlation coefficient (p < 0.05) are

marked with an asterisk. Notably, most of the features displayed a positive correlation

with depth. In fact, out of the 32 features used, 18 showed a significant positive

correlation with depth and nearly all of the remaining features showed a weak positive

correlation. Note that at chance level only 2 features (5% of 32) would have a p-value

of less than 0.05. After correcting for multiple correlations (see Methods), 17 features

showed a significant positive correlation with depth.

Next, we performed principal component analysis (PCA, see Methods) using all

32 features (Table 2.2) to test the correlation between the linear combination of the

features and depth. Figure 2.21A shows the first principal component values for all cells

as a function of depth. Note the high correlation between the first principal component

score and depth (r = 0.59, p < 0.0001, n = 60), indicating that depth dependency is a

major component accounting for the variability in the data. Figure 2.21B shows the

fraction of variability represented by each of the first 10 principal components. Over

30% of variance was captured by the first principal component and about 90% of the

variance was captured by the first 10 principal components.

The weight of the contribution of each of the 32 features to the first principal

component is shown in Figure 2.21C. Features related to the apical dendrite are shown

in blue and features related to the basal dendrites are in red; the soma feature is in

green (Feature #32). Interestingly, the distribution is broad, with various features

carrying substantial weight, both for those related to the apical dendrite and to the

basal dendrites (e.g. the total surface area of apical tree, feature #9 and the total

surface area of basal tree, feature #20). Together, these results demonstrate that many

morphological features contribute strongly to the main source of variability in the data;

namely, the depth-dependent change in morphological properties.
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To assess the performance of the classifier we cross-validated the proposed grouping

using the leave-one-out method (Evgeniou et al. 2004). The proposed grouping was

shown to be stable with respect to the Decision Tree classifier with an estimated

accuracy of 90%, as opposed to a randomization of the groups, which resulted in

50%accuracy (see Methods).

Finally, we examined if the slim-tufted and the profuse-tufted classes exist in L2/L3

PCs from mouse temporal cortex. Based on our limited data (n = 14) these two classes

of neurons could not be found in mouse, suggesting that these two types are unique

types in the L2/L3 of the human cortex. Note that both groups of neurons (mouse and

human) were sampled across the full L2/L3 range, came from adult subjects and the

same methodology was used for both samples, including biocytin filling, histological

processing, and reconstruction methods (Mohan et al. 2015).

Biophysical properties

Depth independent

We next examined the biophysical features of the human L2/L3 pyramidal neurons. In

this analysis, we used our database of electrical recordings from 25 human neurons,

which were included in the morphological analysis above (cells marked with asterisks

in Figure 2.19).

To characterize the biophysical characteristics of HL2/L3 PCs, we analyzed the re-

sponses of these neurons to hyperpolarizing and depolarizing somatic current injections

(Figure 2.23). Typically, a brief high frequency burst of spikes appears at the start

of the supra-threshold current pulse; the following spikes appear to be highly regular

(Figure 2.23A). A zoom into an individual spike is shown on the right of Figure 2.23a.

Figure 2.23B depicts the voltage responses to hyperpolarizing step currents. Inset shows

the exponential fit (green dashed line) to the voltage response (black line) following

the termination of a current step. For each neuron, the membrane time constant, τm
(feature #10) was estimated from an exponential fit to the recovery of the voltage

response following a step hyperpolarizing current (Figure 2.23B inset and see Methods).

Table 2.3 summarizes the 14 biophysical features used in this study (feature #14,

the mean cable length, is analyzed separately in the cable analysis bellow). Note

that the comparison between the different spike features was made at 150% threshold

current. However, the conclusions drawn below are also valid for 175% threshold current

(not shown). The values for these biophysical features in human L2/L3 pyramidal

cells (e.g. the mean AP half-width and AP amplitude) are well within the range of
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Table 2.3 The 14 features used for the biophysical and cable analysis with their corresponding values

Feature Feature description Mean SD
number
1 Mean AP amplitude at 150% threshold current (mV ) 85.09 5.24
2 Mean AP half-width at 150% threshold current (ms) 1.26 0.42
3 Mean AP rise time at 150% threshold current (ms) 0.76 0.15
4 Mean AHP depth relative to rest at 150% threshold 15.39 3.63

current (mV )

5 First spike latency at 150% threshold current (ms) 28.85 12.29
6 Spike frequency at 150% threshold current (Hz) 12.72 5.62
7 Mean ISI-CV at 150% threshold current 0.37 0.22
8 Mean IS at 150% threshold current (ms) 94.64 48.67
9 Threshold current (Ithresh) for spike generation (pA) 267.20 118.52
10 Membrane time constant, τm (ms) 12.03 1.79
11 Input resistance, RN (mΩ) 47.68 15.26
12 Sag ratio (%) 16.60 8.16
13 Resting membrane potential (mV ) −85.1 3.19
14 Mean cable length, L 0.99 0.24

Neurons analyzed are marked in asterisks in Figure1. Features related to AP shape are numbered
1-4; features related to AP firing are numbered 5-9. Feature #14 is analyzed separately in the cable
analysis section. See “Materials and Methods” section for further details.

L2/L3 pyramidal neurons in rodents (Staiger et al. 2014). However, one interesting

feature worth noting from Table 2.3 is the appearance of a sag in the voltage response

to long hyperpolarizing current injections (feature #12). This contrasts with L2/L3

rodent pyramidal neurons in the somatosensory cortex, which show only very small

sag (Larkum et al. 2007; but see however Van Aerde and Feldmeyer 2015 who found a

subpopulation of L3 pyramidal cells that do display larger sag of 12%). In human

L2/L3 pyramidal neurons the sag is prominent, similar to that found in L5 rat pyramidal

neurons (Zhu 2000; Larkum et al. 2007; Van Aerde and Feldmeyer 2015). These results

suggest that HCN channels might be present in L2/L3 human pyramidal neurons (see

Discussion).

In the morphological analysis above we found that many features showed a gradual

depth-dependent change. We therefore tested whether this was also the case for the

biophysical features. Figure 2.23C presents the correlation coefficient for the feature

value and the depth of the cells. In contrast to the morphological features, there

was no correlation with depth for most of the biophysical features; only feature #3



76 Topological analysis of neuronal morphologies

(mean AP rise time) and #5 (first spike latency) showed a slight correlation with

depth. One unexpected finding was that the input resistance (RN, feature #11) was

not correlated with depth. One expects that neurons with smaller surface areas (more

superficial neurons) should have larger RN . However, we found that neurons with

smaller surface areas tend to have smaller τm (namely, a smaller specific membrane

resistivity, Rm, and consequently a smaller RN than expected if Rm were constant for

all cells, Supplementary Figure 2.20A). Other correlations between various biophysical

features are depicted in Supplementary Figure 2.20B,C.

Biophysical classification

Next, we compared the biophysical features of the slim-tufted and the profuse-tufted

neurons found in the morphological analysis. Figure 2.23D shows the normalized I/F

curves of the 24 HL2/L3 PCs profuse-tufted (dark red curves) and slim-tufted (dark

blue curves) neurons. The 25th neuron that was measured physiologically did not have

a tuft. The threshold current differs among these cells; however, when normalized by

the threshold current (Ithresh), the average I/F curves clearly distinguish between these

two classes (thick dark blue and dark red lines). The profuse-tufted class tends to

fire at higher rates than do the neurons belonging to the slim-tufted class. Indeed, at

I/Ithresh of 125%, 150% and 175%, the firing rate was statistically different between

the two classes (K-S test, p < 0.05; the number of cells with I/Ithresh of 200% was too

small for a reliable statistical test). The result of Figure 2.23D suggests that the two

morphological classes that were found in this work are also two separate biophysical

classes in term of their I/F curves. This assertion should be further validated on

a larger data set when it becomes available. Note, however, that other biophysical

features (shown in Table 2.3) do not show significant difference between the slim-tufted

and the profuse-tufted neurons (K-S test, p > 0.05).

Cable length

The cable properties of dendrites determine the integrative properties of the neurons

(Rall 1959). The cable properties of neurons are affected by both their morphology and

biophysical properties. In this section, we focus on a key cable parameter of HL2/L3

PCs dendrites; namely L, their electrotonic length. L is defined as, L = x/λ (in

dimensionless units, Rall, 1959), where x is the physical length of the dendritic branch

and λ is its space constant λ =
√

dRm/4Ri where d is the diameter of the dendritic

branch, Rm is the specific membrane resistance (in Ωcm2) and Ri is the specific axial

resistivity (in Ωcm).
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We define the mean cable length of a neuron as the mean cable length of all

(apical and basal) paths from the soma to the dendritic terminals. In our calculation,

the axial resistivity, Ri was assumed to be 200Ωcm and Rm was estimated from the

experimental membrane time constant, τm (Figure 2.23B, inset) using the specific

membrane capacitance, Cm = 0.5µF/cm2 of human cortical neurons reported before

(Eyal et al. 2016).

As in the previous sections we examined hereby the dependence of L on the depth

from pia as well as whether it differs between the slim-tufted and the profuse-tufted

neurons. We did not find significant differences in the value of L between these two

classes (K-S test, p > 0.05) and thus proceeded to explore below its depth-dependency.

Figure 2.24A1 and 6A2 depict the physical dendrograms of a superficial and a deep

neuron, respectively. As expected, the deeper neuron was longer in physical units.

Surprisingly, when comparing the electrotonic length of both neurons, the physically

longer deeper neuron was, on average, shorter in cable units (Figure 2.24B1, 2.24B2,

0.79x/λ vs. 0.63x/λ for the superficial and deep neurons, respectively). Moreover,

for the cells shown in Figure 2.24, the steady-state voltage attenuation factor from

dendrites to soma was larger, on average, for the superficial versus the deep neuron;

54.64 vs. 20.20 respectively (Figure 2.24C1, 2.24C2, respectively). This finding suggests

that the electrical compactness (and integration properties) of small and large HL2/L3

PCs is comparable, despite the considerable difference in the physical length of their

dendrites (see Discussion).

Figure 2.25A shows the mean physical length of the dendritic tree for the 25 HL2/L3

PCs (marked in asterisks in Figure 2.19) as a function of its depth from the pia. As

expected, there was a high correlation between physical length and depth (n = 25,

r = 0.62, p < 0.001). However, the mean cable length, L, of these neurons was not

correlated with depth (Figure 2.25B, n = 25, r = 0.08, p > 0.5). Two parameters

could account for this result: the dendritic diameter might be larger for deep cells,

and/ or Rm might be larger for these cells. Figure 2.25C clearly shows that some of

the deeper neurons (red circles) that were electronically short indeed had larger mean

diameters. For these neurons, their larger diameter partially compensated for their

longer dendrites, resulting in relatively small L values. Figure 2.25D demonstrates

that several deep neurons also had large Rm values and, consequently, had relatively

short electronic lengths. Note that the relative impact of the larger Rm for the deep

neurons in scaling their respective L values was smaller than that of the mean diameter

(compare the range of the color scale in Figure 2.25C vs. 2.25D). Examination of the

top right-most group of cells in Figure 2.25B,C,D shows that there is a population
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Analysis and found a clear separation between human and mouse neurons based on all

32 morphological features. As shown in Figure 2.26A, the first principal component,

separated both groups well. Over 40% of the variance was captured by the first

principal component and many features carried substantial weight in the first principal

component (Figure 2.26B). Note that a complete separation between the mouse and

human neurons was found when using a spectral k-means algorithm (Uw et al. 2001)

(not shown).

We also examined whether human neurons were morphologically just a “scaled”

version of mouse neurons; this does not seem to be the case (Figure 2.26D). First,

HL2/L3 PCs are not just longer, but they have significantly more branches in both

the apical and basal trees (Mohan et al. 2015). Moreover, interestingly, we found that

human terminal branches were particularly long compared to the terminal branches

in mouse. Yet, the non-terminal branches were similar in human and mouse cells

(Figure 2.26C). From this result, it is clear that human L2/L3 neurons are not a

simple linear stretch of mouse L2/L3 neurons. Further analyses should be conducted to

determine the structural rule for “transforming” HL2/L3 PCs into the respective mouse

neurons. It is important to note that this comparison was based on the morphological

properties of the neurons. As demonstrated above in the cable analysis, from a

functional viewpoint, the morphological properties only provide a partial perspective

thus making it crucial to compare the biophysical and cable properties of both groups.

In any case, many elongated, thin basal dendrites as found here in human L2/L3

pyramidal neurons constitute independent computational “subunits”, and have been

argued to enhance the computation repertoire of the neuron (Poirazi and Mel 2001;

Polsky et al. 2004).

Discussion

Using several cluster analysis methods, as well as cable theory, we analyzed a large

dataset of human L2/L3 pyramidal cells from the temporal cortex. This yielded a

systematic description of the morphological, biophysical and cable properties of HL2/L3

PCs. Since these data were taken from tissue removed after brain surgery (treatment

of deep tumors and/or epileptic seizures) there is ample justification in inquiring the

extent to which these cells were healthy. First, the neocortical tissue we study is

always well away from the epileptic focus or tumour, so never part of the disease.

Microglia and other inflammatory markers are at normal levels in this tissue, and the

cytoarchitecture of the tissue is normal. Pathologists of our hospital label this tissue

as “normal tissue”. Moreover, we compare parameters in patient groups with different





82 Topological analysis of neuronal morphologies

disease backgrounds (sclerosis, glioma, meningitis, cavernoma). These groups receive

very different medications (see for instance Table 2.1 in Mohan et al. 2015). When the

parameter overlaps between different groups, we conclude that it generalizes across

disease backgrounds. Finally, if the epilepsy has a role in the parameter, one would

expect that the severity of the disease would play a role. Therefore, we quantify the

potential influence of the disease history on the parameter by correlating the parameter

against the number of years of epilepsy of the patient and the seizure frequency. These

numbers widely vary between patients, from 1 to 50 years of epilepsy and from 1 to 400

seizures per month (see Figure 4 in Mohan et al., 2015). When there is no correlation

between disease severity and the parameter, we conclude that the epilepsy has little to

do with the parameter value. Further details are presented in Mohan et al. 2015.

In this study, we found that throughout the particularly thick L2/L3 (949± 179µm)

in the already thick human temporal cortex (2.773µm), cell bodies that are close to the

pia have small apical trees and overall, about half of the dendritic length and surface

area as compared to the deep neurons; these measurements were obtained for the five

most superficial neurons and the five deepest neurons in Figure 2.19. When averaging

the dendritic length of the entire 60 HL2/L3 PCs cells in our dataset, the average

length was 14.793µm; hence, almost three times larger than the L2/L3 pyramidal cells

from the rodent temporal cortex, and actually closer to the value found in L5 rodent

pyramidal cells from the somatosensory cortex (an average of 12.758µm) (Hay et al.

2013). Despite the considerable differences between superficial and deep HL2/L3 PCs,

our key morphological finding is that most of the 32 morphological features used here

(Table 2.2) show a gradual depth-dependent change (Figure 2.20 and Figure 2.21).

In general, the apical tree of cortical pyramidal cells reaches the pia, enabling

these cells at all depths to receive inputs that target layer 1 (mostly cortico-cortical

bundles and input from secondary thalamic nuclei). Inputs to layer 1 were recently

shown to regulate robustness to sensory inputs (Egger et al. 2015). Furthermore, the

dependence of various features on depth (e.g., of total dendritic length, number of

branches, horizontal filed span of dendrites) might suggest that L2/L3 cells at different

depths sample differently the input sources arriving to these layers. Also, deeper cells

(with longer total dendritic length and surface area) receive more synapses (about twice

assuming that the synaptic density/ unit length is identical at all depths) and are more

likely to serve as “hub neurons” as compared to superficial neurons (Gal et al. 2017).

Interestingly, it was also shown that morphological variability of the dendritic tree in

the cortical tissue ensures that the average synaptic properties are robust to changes

at the local network level as compared to the case where all neurons are similar to each
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other (Ramaswamy et al. 2012). This might be another functional consequence of the

large morphological variability of HL2/L3 PCs (see also Reimann et al. 2017).

By implementing a new method to characterize the global topology of neurons we

identified two distinct morphological types of L2/L3 neurons in the human temporal

cortex which we dubbed “profuse-tufted” and “slim-tufted” pyramidal neurons (Fig-

ure 2.22). These two M-types also show a significant difference in their I/F curves; the

profuse-tufted fire at higher rates (Figure 2.23D). In contrast, based on our limited

data (n = 14) of L2/L3 PCs from mouse temporal cortex, these two classes of neurons

could not be found (but see Van Aerde and Feldmeyer 2015 showing that in L3 in rat

medial prefrontal cortex there are several electro-morphological subtypes).

We would like to emphasize that our approach revealed two morphologically different

cell-types and in parallel found that the I/F curves were cell-type specific. The finding

of these two cell-types could have implications beyond the I/F curves. For example, the

excitability of the apical tufts could differ between these classes (perhaps showing e.g.,

NMDA spikes in one class and not/less so in the other class), and/or in the properties

of the back and/or forward propagation of electrical signals along the dendrites. Other

features that might also differ among these classes could be their spine density, wiring

diagrams between cell-types, etc. These are important questions for future studies.

It is tempting to speculate that these two cell types in HL2/L3 PCs are comparable

to the two excitatory cell types in layer 5 of the rodents; i.e., the slender and thick tufted

pyramidal cells (Hallman et al. 1988; Mason and Larkman 1990), which have been

found in the somatosensory, visual, auditory, motor and prefrontal cortices (Hübener

et al. 1990; Gao and Zheng 2004; Morishima and Kawaguchi 2006; Larsen et al. 2007;

Sakata and Harris 2009; Meyer et al. 2010; Oberlaender et al. 2012; Van Aerde and

Feldmeyer 2015). In rodents, these two types of neurons are thought to be the main

output cells of these cortices, and presumably project to different regions (Alloway

2008; Groh et al. 2008; Aronoff et al. 2010; Meyer et al. 2010; Oberlaender et al. 2011;

Narayanan et al. 2015). Studies have also shown that thick and thin tufted neurons

differentially increase their firing activity depending on the behavioral state of the

animal (de Kock et al. 2007; de Kock and Sakmann 2009). Whether the slim-tufted

and the profuse-tufted neurons that we found in human L2/L3 also project to different

regions should be tested, perhaps using the whole tissue taken out during surgery,

which includes subcortical regions as well. We stress that we gave new names to these

human L2/L3 pyramidal cells to avoid potential confusion with the two L5 pyramidal

cell types found in rodents.
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We further analyzed whether the patient parameters were different between the two

groups. Four parameters were compared: the age of epilepsy onset, seizure frequency,

the total number of seizures and years of epilepsy. None of the four patient parameters

corresponded to the clustering of individual morphologies into slim-tufted and profuse-

tufted pyramidal cells (Supplementary Figure 2.19B-F). Thus, the two groups of cells

are not related to the patient parameters.

L2/L3 neurons using 14 biophysical features, both passive and active (see Ta-

ble 2.3). In contrast to the morphological features, human L2/L3 pyramidal neurons

did not show gradual depth-dependent changes for most of the biophysical features

(Figure 2.23C). Interestingly and counterintuitively, we found that the input resis-

tance of the neurons did not correlate with the surface area of the cells. However,

the membrane time constant did correlate (but not strongly) with the surface area

(Supplementary Figure 2.20A).

We also analyzed more fully than ever before the active biophysical properties of

HL2/L3 PCs (Table 2.3). The properties of individual spikes for HL2/L3 PCs (mean

half width of 1.26 ± 0.42, mean spike amplitude of 85.09 ± 5.24, Table 2.3) were typical

of the cortical pyramidal cells of rodents (Staiger et al. 2014). Interestingly, HL2/L3

PCs show a prominent sag in the voltage response to long current injections (Table 2.3,

feature #12), unlike the L2/L3 pyramidal neurons from sensory cortices in rodents

(Larkum et al. 2007; but see however Van Aerde and Feldmeyer 2015 who found a

subpopulation of L3 pyramidal cells that do display larger sag of 12%). The sag

voltage is an indication of the presence of HCN channels. In L5 pyramidal cells HCN

channels are located almost exclusively in the apical dendritic tree (Williams and

Stuart 2000; Berger et al. 2001; Lörincz et al. 2002; Kole et al. 2006; Harnett et al.

2015). These channels are active at resting membrane potentials, further activated with

hyperpolarization and deactivated with depolarization. The reverse voltage-dependence

of HCN channels suggests a regulating role in which its main function is to oppose

changes in membrane potential (Wahl-Schott and Biel 2009). Moreover, HCN channels

play an important role in various dendritic computations and temporal summation and

act as a spatial filter that preferentially dampens distal inputs (Magee 1998; Williams

and Stuart 2000; Harnett et al. 2015). HCN channels were also shown to have a

behavioral role in controlling spatial working memory (Wang et al. 2007) and long term

synaptic plasticity (Nolan et al. 2004). Hence, HCN channels may endow human L2/L3

neurons with potentially greater computation properties than in the corresponding

neurons in the mouse.
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We also computed the cable length, L, of HL2/L3 PCs, which is a feature that com-

bines both morphological and biophysical properties. Unlike the physical length, which

correlated with depth, the mean cable length of the neurons was depth independent.

Some of the deeper neurons had a larger diameter and a larger specific membrane

resistivity, both of which can be interpreted as compensating for the expected marked

voltage attenuation in long dendrites (Figure 2.24 and Figure 2.25). This compensation

resulted in a comparable voltage attenuation along the dendritic tree in both the small

(near pia) and large (deeper) HL2/L3 PCs. Our passive cable analysis showed very

large voltage attenuations from distal dendrites in the entire HL2/L3 PCs population

(Figure 2.24 C1 and C2); we therefore predict that active mechanisms (e.g., dendritic

Ca2+ spikes and NMDA spikes) operate in these cells in order to compensate for this

large voltage attenuation, as is found in rodents (Larkum et al. 2009; Chen et al.

2011; Xu et al. 2012; Major et al. 2013; Smith et al. 2013; Grienberger et al. 2015;

Takahashi et al. 2016). The characterization of the membrane properties of human

dendrites constitutes a crucial experimental challenge for the near future.

Our study provides a first systematic multi-feature analysis of the morphological,

biophysical and passive cable properties of human Layer 2 and Layer 3 pyramidal

neurons. We found two district morpho-electrotonic types within this population,

which we termed “slim-tufted” and “profuse-tufted” pyramidal neurons. It would also

be important to further characterize additional building blocks (the various neuron

types, Wang et al. 2015) composing the human cortex which, in many ways, enable

the unique cognitive capabilities found in humans.
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3

Generating neuronal morphologies

“What I cannot create, I do not understand”

– Richard Feyman

3.1 Introduction

Recent advances in neuroimaging techniques (Peng 2008, Haberl et al. 2015, Economo et

al. 2016) and open source platforms for automatic reconstructions algorithms (Peng et

al. 2015) are rapidly increasing the number of available morphological reconstructions

(Ascoli et al. 2007). However, the number of such biological reconstructions of

morphologies within a brain region are far from being sufficient to populate digital

reconstructions of large brain networks that consist of tens of thousands cells (Markram

et al. 2015, Egger et al. 2014). It has been found (Landau et al. 2016, Ramaswamy et al.

2012) that morphological variability influences the functionality of computational brain

networks. As a result, these computational models require “clones”, i.e., noisy copies,

of the original morphologies to increase the morphological variability of the derived

networks.However, the clones only differ from the original cells in local fluctuations and

therefore cannot capture the biological variability that is required for the simulation of

digital reconstructions. Therefore, an algorithm to generate large numbers of distinct

artificial morphologies that are statistically indistinguishable from the biological neurons

is required.

A large variety of synthesis models have been proposed to simulate the growth of

neuronal morphologies (Hillman 1979, Burke et al. 1992, Ascoli et al. 2001). These

range from highly-detailed models that simulate the molecular mechanisms of neuronal

growth, to simplified models that simulate phenomenological growth mechanisms based
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on either basic mathematical rules or statistical sampling of morphological features (see

Figure 3.1). Biophysically accurate models, that simulate the detailed neural growth

(Zubler and Douglas 2009), focus on the details of the microscopic growth in order to

understand the biological mechanisms that govern neuronal development. As a result,

they are not optimized for the efficient generation of large numbers of neurons. On

the other hand, mathematical models implement simplified growth mechanisms to

study the effect of basic mathematical principles on neuronal growth. Different growth

models focus on different geometric and physical aspects of growth. The effect of spatial

boundaries and spatial embedding (Luczak 2006, Luczak 2010), the optimization of

local dendritic arborization properties (such as material cost and conduction time,

Cuntz et al. 2010) and the self-referential dendritic forces (Samsonovich and Ascoli

2003, Memelli et al. 2013) are just a few of the mathematical models studied. These

models provide a better intuition about the different mechanisms involved in neuronal

growth. Statistical models use a set of morphological properties extracted from the

original cells (Ascoli et al. 2001, Koene et al. 2009, Lopez-Cruz et al. 2011) to constrain

the growth process.

To study the effect of topological constraints on neuronal growth, I have developed

a synthesis algorithm based on the topological profile of branching morphologies (see

Chapter 2.1 for more details on the method). The topological neuron synthesis (TNS)

method is a combination of the mathematical and statistical approaches. A limited

number of features, extracted from the biological population are used to constrain the

neuronal growth, such as the soma size and the thickness of the branches of the tree.

The TMD of a biological neuron (see Chapter 2) is used to guide the neuronal growth.

Each neurite grows independently from the others taking into account a persistence

barcode extracted from a neurite of a reconstructed morphology. This persistence

barcode regulates the probability of each branch to bifurcate and terminate, as a

function of its radial distance from the soma. Each branch is generated as a directed

random walk, i.e., the direction of the next step within a branch is a combination of a

random direction, defined by a unit vector, a target direction, defined by the bifurcation

angle at the beginning of the branch, and the history of the previous directions of the

branch.

The thickness of the neuronal branches is as important as its branching structure

for its functionality (Cuntz et al. 2007, van Elburg and van Ooyen 2010, Bird and

Cuntz 2016). Unfortunately, despite the great progress in imaging techniques, technical

limitations often result in a poor diameter estimation and a few methods have been

developed to correct these artifacts (Conde-Sousa et al. 2017). As a result, a method to
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computationally assign accurate diameters from sparse biological data is required. The

algorithm to assign accurate diameters that I propose (see SI, TNS paper: Algorithm

5) traverses the tree from the tips to the root and increases the diameters according to

the biologically sampled taper rate (Scorcioni et al. 2008, Koene et al. 2009). At each

bifurcation the parent diameter is computed from the rall ratio n (Rall 1962) and the

diameters of its children Dn
= dn

1
+ dn

2
+ . . . . This algorithm generates diameters that

monotonically decrease with the path distance from the soma, and are statistically

close to the input neuronal branch diameters.

In order to ensure that the synthesis algorithm reproduces the statistical properties of

the biological neurons’ morphologies a number of independent validations are performed

(see section Validation). Initially, the topological profiles of the synthesized neurons

are compared to those of the biological neurons to ensure that the stochastic algorithm

generates cells with similar topology. Then, each synthesized neuron is compared to

the biological dataset, with respect to a large set of morphological features: the “input”

features, that are used as input in the algorithm, and the “emergent” features that are

not used as input. A cell is included in the synthesized population if its morphometrics

are statistically close to the biological features. Then the synthesized population, which

consists of cells that have passed the single-cell validations, is compared against the

biological dataset taking into account an extensive set of morphological features (see

Appendix C for details). This last step ensures that the TNS algorithm reproduces the

variability of the input biological morphologies.

The TNS algorithm is used to generate dendrites of interneurons and pyramidal

cells of different cortical morphological cell types. To validate the accuracy of this

algorithm, a large number of cells of the most abundant morphological types in the

cortex (L2/3 and L5 pyramidal cells) are synthesized and validated (see Results,

Validation). The TNS algorithm generates cells that are statistically close to the

biological cells and reproduces a large variety of dendritic shapes without the need for

manual fine tunning of the input parameters. Figures [? ] and [? ] illustrate that

the biological diversity of different interneuron and pyramidal cell types is reflected

in the synthesized morphologies. Cells that are synthesized with the same input

parameters but without taking into account the correlations between the bifurcation

and termination probabilities that are introduced by their topological profiles, are of

very poor quality. Therefore correlations between morphological features are essential

for the generation of biologically accurate cells, and the topological profiles of neurons

capture these correlations, without the need to explicitly use them.
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3.2 Generative model of cortical dendritic morpholo-

gies based on the topology of their branching ar-

chitecture

Lida Kanari, Athanassia Chalimourda, Guy Atenekeng, Joe Graham,

Julian Shillcock, Kathryn Hess, and Henry Markram

(to be submitted in 2018)

Abstract: Neuronal morphologies “shape” the dynamical properties of the brain.

As a result, the generation of digital morphologies that reproduce the branching

structures of neurons is a vital step towards the reconstruction and simulation of

physiologically realistic brain networks. However, the principles that define how

dendritic and axonal arbors take shape are still largely unknown. In a recent study,

we introduced a topological descriptor of branching morphologies that is able to

reliably categorize neurons into morphologically distinct groups. Here, we use this

descriptor and a small set of morphometrics to generate virtual dendritic morphologies.

Each generated morphology is validated against biological neurons, based on a large

number of morphological features. The synthesis algorithm driven by the topological

architecture of dendrites generates realistic morphologies for various distinct neuronal

types. Our results demonstrate that a topology-based generative model of neurons

implicitly captures correlations of features within a growing shape, without the need

for explicit identification of dependencies between features.

Keywords: Dendritic morphology; Virtual neuron; Topological generation of cells;

Artificial neuron; Topological Morphology Descriptor, Morphological synthesis
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Introduction

The dynamical properties of a neuronal network depend crucially on the branching

of neuronal morphologies, which affects both the functionality (Yi et al. 2017) and

connectivity of a neuron (Chklovskii 2004, Wen et al. 2009). Cajal argued that the

shape of neurons reflects the communication between them (Cajal 1899). It is now well

established that the anatomy of neurons regulates the wiring of the brain (Chklovskii

2004). More specifically, dendritic arborizations determine the integration of input

signals (Larkum et al. 2009, Yi et al. 2017), while axonal projections govern the

propagation of signals to different brain regions (Wang et al. 2015). The wide variety of

neuronal shapes supports the composite functional roles of different cell types, though

the precise role of each neuronal type is not yet fully understood due to the complexity

of biological branching patterns.

A digital reconstruction of a physiologically realistic network, such as the Blue

Brain Project (Markram et al. 2015, Egger et al. 2014), requires a large number of

detailed neuronal morphologies (Shillcock et al. 2016). Recent advances in automatic

reconstruction (Peng et al. 2015) and the systematic registration of reconstructions

in standardized databases (Ascoli et al. 2007) are a long way from making available

sufficient numbers of unique morphologies to populate biologically realistic networks

of a brain region. However, the variability of neuronal shapes is essential for the

functionality of computational models (Landau et al. 2016, Ramaswamy et al. 2012).

Thus an algorithm that can accurately reproduce the diversity of biological morphologies

for all cell types is necessary for the reconstruction and simulation of biophysically

accurate computational models of the brain (Shillcock et al. 2016).

The fundamental problem of neuronal synthesis (Hillman 1979) is the difficulty

of capturing and recreating the correlations between morphological features, from

the few available reconstructions of a morphological type. These correlations arise

from highly complicated developmental processes, which take place over many length

and time scales. Previous synthesis models have addressed this problem in different

ways. Detailed models operate at the molecular scale in an attempt to retain as

many details as possible in order to capture all the correlations in the cellular growth.

Phenomenological models are based on fundamental mathematical principles (Luczak

2006, Cuntz et al. 2010), or on statistical sampling of the morphological distributions

(Ascoli et al. 2001, Koene et al. 2009). These unfortunately tend to disregard most

correlations as the sampling is usually performed independently, and even if not,

correlations must be explicitly identified (Lopez-Cruz et al. 2011).
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Biophysically accurate models simulate detailed neural growth by taking into account

the known molecular mechanisms that contribute to the development of neurons (Zubler

and Douglas 2009). While these models are very important for understanding the

biological mechanisms that govern neuronal development, they focus on the microscopic

scale of growth and have a large number of parameters. As a result, they are not

appropriate for the generation of large numbers of neurons at whole brain length-scales.

Mathematical models with few parameters, on the other hand, focus on a specific

growth mechanism to study the effect of different factors on neuronal growth. The

impact of spatial boundaries and embedding has been studied by Luczak (2006,

2010), the minimization of wiring cost by Cuntz (2010) and self-referential forces by

Samsonovich and Ascoli (2003), and Memelli (2013), to name a few. These models

provide good intuition about the selected mechanisms involved in neuronal growth.

However, due to the small number of parameters, they fail to capture the full complexity

of neuronal arborizations for a wide variety of morphological types (m-types) without

appropriate adjustments to the algorithms for specific branching shapes. Statistical

models are based on sampling from a set of morphological properties (Ascoli et al.

2001, Koene et al. 2009, Lopez-Cruz et al. 2011) that guide the growth process. Such

statistical models can produce cells of specific morphological types with high accuracy

(Koene et al. 2009) but cannot capture the correlations that have not been explicitly

defined.

The limitations of previous synthesis methods applied to large numbers of mor-

phologically diverse cells imply that it is necessary to combine the mathematical and

statistical models into a unified synthesis method that circumvents the explicit selection

of correlated features, while also being computationally tractable. We developed a

synthesis algorithm based on the topological profile of a branching morphology (Kanari

et al. 2017) to investigate the significance of topology on neuronal shapes. The

Topological Morphology Descriptor (TMD) of a tree encodes its branching structure

in a “barcode”, i.e., a set of closed intervals, called “bars”, in the real line. Each bar

encodes the starting and ending radial distance from the soma of a component in the

underlying branching structure (see Appendix C: Topological morphology descriptor

algorithm). Since the TMD couples the topological and geometric properties of a tree

into a single descriptor, it is effective for the discrimination of tree types. Thus, this

topological descriptor that encodes the relevant correlations between morphological

features is also appropriate for the generation of artificial neurons.

We therefore use a TMD profile of a morphological type to define the branching and

termination probabilities of a neuron. Each branch is simulated as a directed random
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walk, and the local directionality is defined by the biological branching angles. The

degree of randomness of each branch defines the tortuosity of the neuronal morphology

and is an independent input parameter. The topological profiles of the neuronal

reconstructions and the statistical distributions of a small set of morphological features

(soma size, thickness of branches) are used as input to the algorithm.

The topological neuron synthesis (TNS) algorithm (see also Appendix C: Algorithm

2) is used for the generation of artificial rodent dendrites of a large variety of m-

types (see Figures 3.3-3.4). We demonstrate that the qualitative (Figure 3.5-3.6) and

quantitative (Figures 3.7-3.8) validations of all dendritic types agree with the biological

data. The TNS-generated neurons are compared to neurons generated by the same

input parameters but assuming that the bifurcation and termination probabilities

are independent. The algorithm that does not take into account the topological

profiles of the biological trees fails to generate accurate neuronal trees (see Figure C.8).

Therefore, the topology of a neuron is not only relevant for the generation of accurate

dendritic trees, as it implicitly captures morphological correlations, but is also crucial

for reproducing the large variety of shapes that populate the rodent cortex.

A consistent comparison of the artificial morphologies generated by different synthe-

sis models has not yet been performed to our knowledge, since each synthesis scheme

proposes a different type of morphological validation (Ascoli et al. 2001, Koene et al.

2009, Cuntz et al. 2010, Lopez-Cruz et al. 2011). In order to ensure that our synthesis

algorithm reproduces the statistical properties and the variability of the biological

neurons, a two-stage validation is performed, based on a wide range of morphometrics.

Each virtual morphology is validated against a biological set of neurons (single-cell

validation). The “input features” used for the validation ensure the reliability of the

algorithm with respect to the input distributions. The “emergent features”, which have

not been used as input, provide a measure of the effectiveness of the algorithm to

capture implicit correlations that were not used in the modeling. The morphologies that

pass the single-cell quality control compose the synthesized population, which is further

validated against the biological dataset in a population-to-population comparison.

The validation of the synthesized cells as a population ensures that they recreate the

statistical properties of the original population while capturing the biological variability.

The details of the validation framework are described in Appendix C: Validation of

synthesized basal and apical dendrites.
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Methods

The morphological development of neurons in the brain is a complicated process that

involves a large number of molecules and depends on both genetic and environmen-

tal components. The molecular processes that contribute to neuronal growth differ

between species, brain regions, and morphological types. Advances in experiments

and mathematical and computational models have converged to a set of commonly

accepted stages of morphological growth: the initiation of neurites, neurite elongation,

axon path-finding and neurite branching (Graham and van Ooyen 2006). These growth

stages are useful for the computational modeling of the generation of artificial neurons.

In this study we focus on the generation of artificial dendrites and thus we will not

consider the axon path-finding.The biological development is not simulated, but in-

formation from the biological principles of morphological growth are used to design a

computational algorithm that generates accurate artificial dendritic morphologies.

The TNS algorithm, which respects these biological stages of growth, consists

of three main components (Figure 3.2): the initiation, elongation and branching of

neurites. As illustrated in Figure 3.2, the first part of a neuron to be generated is

the cell body (or soma), which is modeled as a sphere (Fig 3.2A), whose radius is

sampled from a biological distribution (see Appendix C: Algorithm 3). Then, the

number of neurites is sampled from the biological distribution according to its cell type.

Each neurite is initialized with a trunk, the initial branch of the tree (Fig 3.2A) and

a barcode sampled from the biological set of trees. Subsequent steps of the growth

take place in a loop. Each branch of the tree is elongated as a directed random walk

(Aslangul et al.1993) with memory (see Appendix C: Algorithm 4, Fig 3.2B). At each

step a growing tip is assigned probabilities to bifurcate and terminate that depend on

the Euclidean distance from the soma and are defined by the bars of the topological

profile of the associated m-type (Fig 3.2C, see Appendix C: Algorithm 5). Once a bar

is used, it is removed from the barcode. The growth terminates when all the bars of

the input barcode have been used.

A. Initiation of neurites

Previous studies have disregarded the direction of the neurite protrusion from the soma

despite its importance (Graham and van Ooyen 2006). For some neurites the initial

direction is trivially defined; for example cortical apical dendrites typically grow towards

the pia. By contrast, the outgrowth direction of basal dendrites superficially appears

random and is usually assumed to be so. An in-depth analysis indicates, however,
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the diameters are independently corrected in the final step of the synthesis algorithm

(see section D). The positions of the trunks define the soma shape; the pyramidal soma

of excitatory cells originates from the apical dendrite that points towards the pia, while

the spherical soma of interneurons arises from the homogeneous positioning of trunks

on the surface of their cell bodies.

B. Elongation

A segment is defined as a pair of two consecutive points in the neuronal tree that has

a length L and a direction Dsegment , defined by a unit vector. Each virtual neurite is

grown segment by segment. The segment length is taken to be constant and equal to

one micron L = 1µm. The direction of the segment is a weighted sum of three unit

vector terms: the cumulative memory of the directions of previous segments within a

branch M, a target vector T , and a random vector R (Koene et al. 2009). The memory

term is a weighted sum of the previous directions of the branch with the weights

decreasing with distance from the tip. Different weight functions were examined, but

as long as the memory function decreases- faster than linearly - with the distance

from the growing tip, its form is not significant. The target vector is defined at the

beginning of each branch and depends on the biological branch angles (see Appendix C,

Algorithm 4). The random component is a vector of fixed length sampled uniformly

from three-dimensional space at each step. For computational efficiency the growth of

each branch is independent of other branches. The tortuosity of the path is defined by

three parameters:

Dsegment = ρR + τT + µM,

where ρ + τ + µ = 1

An increase of the randomness weight ρ results in a highly tortuous branch,

approaching the limit of a simple random walk when ρ = 1 (Pearson et al. 1905). If

the targeting weight τ = 1, the branch will be a straight line in the target direction

(see Figure C.3). Different combinations of the three parameters (τ, ρ, µ) can generate

more or less meandering branches and can reproduce the large variability of dendrites

(see Appendix C, Figure C.3).

C. Branching-Termination

The neuronal branching pattern is generated as a Galton-Watson tree (Galton and

Watson 1875), which is a discrete random tree generated as follows. At each growing
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tip a number of offspring is independently sampled from a distribution. A neuronal tree

consists only of bifurcations and terminations so the accepted values for the number

of offspring are: zero (a termination), one (a continuation) or two (a bifurcation).

Since the Galton-Watson tree only generates the branching structure and ignores the

embedding in space, we modify the traditional process to introduce a dependency of the

neuronal growth on the embedding, so that the bifurcation/termination probabilities

depend on the Euclidean distance of the growing tip from the soma.

Each growing tip is assigned a bar, sampled from the barcode, that includes a

starting radial distance B, an ending radial distance T and a bifurcation angle A (see

Appendix C). At each step the growing tip first checks the probability to bifurcate. If a

bifurcation does not occur, then the growing tip checks the probability to terminate. If

the growing tip does not bifurcate or terminate, then the branch continues to elongate

(see section B). The probability to bifurcate depends on the starting radial distance

B. As the growing tip gets closer to the radial distance B the probability to bifurcate

increases exponentially until it reaches the highest possible value (1.0). Similarly, the

probability to terminate depends exponentially on the ending radial distance T .

The probabilities to bifurcate and terminate are taken from an exponential distribu-

tion e−λx, whose free parameter λ should be wisely chosen. A very steep exponential

distribution (high value of λ) will result in cells that are very close to the biological

input and thus will reduce the variability of the synthesized cells. On the other hand, a

very low value of λ will result in cells that are almost random, since the dependence on

the input persistence barcodes will be decreased significantly. The value of the parame-

ter λ should be of the order of the step size (see Appendix C: Branching-Termination).

As a result, we select a critical correlation length λ = 2, so that the bifurcation and

termination points are stochastically chosen but depend on the biological persistence

barcodes (See Appendix C: Description of synthesis steps).

Previous synthesis algorithms (Burke et al. 1992, Koene et al. 2009) sample the

branching and termination probabilities from independent distributions. In TNS the

correlation of these probabilities are captured in the structure of the barcode. When

the growing tip bifurcates, the corresponding bar is removed from the input TMD

to exclude re-sampling of the same conditional probability. This keeps a record of

the neuronal growth history and is essential for reproducing the biological branching

structure. In the event of a termination, the growing tip is deactivated and the bar

that corresponds to this termination point is similarly removed from the input TMD.

In the event of a bifurcation, two new branches are generated (Appendix C, Al-

gorithm 5) and the directions of the daughter branches depend on the bifurcation
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angle A. Three branching methods were examined (symmetric, biased and composite,

see Appendix C, Fig [? ]). The symmetric method assumes that the two daughter

branches split symmetrically with respect to their parent branch’s direction. The

biased method assumes that one of the daughter branches inherits the parent direction

and therefore the split is asymmetric. The composite method assumes a combination

of the symmetric and the biased methods; for this approach two biological angles are

required. We found that the basal dendrites cannot be accurately generated by the

symmetric or the biased methods (see Appendix C, Fig [? ]) but the composite method

recreates the biological branching angles. The apical dendrite requires a combination

of methods: the composite method for the tuft and the biased method for the obliques.

The selection of the branching method is the only difference between the synthesis

algorithms of the basal and apical dendrites of cortical pyramidal cells.

D. Tapering

The thickness of a neuron’s branches should also be accurately reproduced (Koene et

al. 2009), as it is equally important to the branching structure (Cuntz et al. 2007,

van Elburg and van Ooyen 2010, Bird and Cuntz 2016). Despite the great progress in

imaging techniques that enables the generation of large numbers of reconstructions

(Peng 2008, Haberl et al. 2015, Economo et al. 2016), their resolution is still too

limited to allow for accurate determination of diameters, which are on the order of a few

microns. As a result, accurate diameters must be computationally inferred from sparse

datasets of biological reconstructions. Conde-Sousa proposed a method to correct the

swelling of the reconstructed diameters (Conde-Sousa et al. 2017) that usually results

in lower mean diameters.

In the absence of a curated dataset, the original diameters of the reconstructed cells

are used as input for the synthesis algorithm. The reconstructions are analyzed with

NeuroM (github.com/BlueBrain/NeuroM) to extract the taper rate (T R, Scorcioni et

al. 2008) within a branch, the Rall ratio (RR, Rall 1962) at the bifurcation points and

the termination (T D) and maximum diameters (MD) of a tree. These values are used

to assign diameters independently to each synthesized dendrite.

The algorithm (see Appendix C: Algorithm 6) starts from the tips of the tree and

assigns diameters to the termination points sampled from the biological distribution T D.

Then, the tree is traversed from the tips to the root (post-order), and the diameters

are increased according to the biologically sampled taper rate T R, as long as the new

diameter is less than a sampled maximum diameter MD. When the diameters of all
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the children of a section have been computed, the new section is assigned a diameter

according to the sampled Rall ratio RR:

dparent = (dRR
1
+ dRR

2
+ . . . )1/RR

This algorithm results in diameters that follow the original distribution. The

synthesized diameters monotonically decrease with distance from the soma, a property

that ensures that basic physical principles (Cuntz et al. 2007) are taken into account.

Note that the swelling of the dendritic trees, resulting from staining artifacts, is

not compensated for and therefore the diameters of the synthesized cells might be

overestimated.

E. Validation method

Single-cell validation

In order to identify and remove the poor quality cells from the synthesized population,

the distributions of key features of each cell are compared against a set of reconstructed

biological cells. To measure a cell’s difference from the biological dataset, a statistical

distance, defined as the absolute “Difference Between the Medians” over the “Overall

Visible Spread” (DBM/OVS), is used. Intuitively, this measure quantifies the difference

between the medians of the two distributions with respect to their joint dispersion (See

Appendix C: Validation of synthesized basal and apical dendrites). A cell is declared an

outlier when at least one of the key-features, such as total length, number of bifurcations,

terminations, surpasses the feature-specific thresholds, which are chosen so that the

reconstructed biological cells that represent the “gold standard” are not considered as

outliers. The percentage of the detected outliers in the set of computationally generated

cells illustrates the accuracy of the synthesis process. The cells that successfully pass

the single cell validation compose the population of synthesized cells.

Population to population validation

The synthesized population is validated by comparing the distributions of a large number

of morphological features to those of the biological reconstructions. Essential features,

such as the Sholl analysis, the degree of the dendritic tree (number of terminations),

the branch orders and the number of sections, the total length per neurite and the path

length are included in the validation and shown in Figures 3.7-3.8. Summary statistics

such as mean, standard deviation, median of morphological features are reported in

Table TBD. Each of the morphological distributions is compared to the biological one,
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using the Kolmogorov-Smirnov distance, which quantifies the dissimilarity between two

distributions. The K-S metric measures the maximum distance between two cumulative

distributions, ranging from 0 for identical distributions to 1 in the case of maximal

difference between them.

F. Synthesis input

The neuronal reconstructions of different morphological types were used as input to the

synthesis algorithm. Few modifications were performed on the original reconstructions

to compensate for reconstruction artifacts. For example, the slicing of the brain tissue

and the filling of the cells with biocytin (Horikawa and Armstrong 1988) in order to

retrieve and reconstruct the original morphologies, results in their shrinkage. This

issue affects the tortuosity of the reconstructions (as cells appear more tortuous than

they originally were) and the extent of their processes decreases. To compensate for

those artifacts, the cells that are used as input for synthesis are initially “unraveled”,

as described in (Markram et al. 2015). Another important artifact is the loss of

arborization, due to slicing of the tissue during the reconstruction process. This error

is compensated for with a “repair” process described in (Markram et al. 2015). Because

repair modifies the branching properties of the tree, only cells that have been unraveled,

but not repaired are used as input to the TNS algorithm for the current study. To

compensate for the loss of arborizations, trees that contain less than three sections are

considered cut and are thus discarded from the synthesis input at the beginning of the

process.

Results

There are two major types of cortical cell, which are distinguished based on their

functional roles: the excitatory cells and the inhibitory cells. Excitation is mainly

mediated by the pyramidal cells, with the exception of the spiny stellate cells of layer 4,

and use glutamate as a neurotransmitter. Inhibition is mediated by the interneurons,

which use GABA as a neurotransmitter to regulate the cortical activity. The various

types of interneurons, which also play different functional roles, are distinguished by

their axonal branching patterns. An interneuron’s dendrites (see Figure 3.3A), which

are basal dendrites that emanate from the base of the cell body and are localized mainly

around the soma, are less complex than the apical dendrites of pyramidal cells (Figure

3.4A), which ascend towards the pia and present a wider diversity of shapes. The TNS









3.2 Generative model of cortical dendritic morphologies 113

per neurite, section termination lengths, section bifurcation lengths) and three more

detailed features (remote bifurcation angles, section path distances, section radial

distances). The statistical distributions of the morphological features of the synthesized

cells closely match the distributions of the biological cells (see Appendix C: Distances

of morphometrics). Due to the exclusion of biological trees that contain less than three

sections from the synthesis input (see section F) the distributions that correspond

to single neurite morphometrics (number of terminations, sections and total length)

were computed for the filtered population rather that the whole set of biological

reconstructions.

The TNS algorithm generates artificial dendrites that reproduce the statistical

properties of the input reconstruction morphologies. An essential question is whether

accurate synthesis requires the correlations encoded in the TMD of trees, or whether the

independent bifurcation and termination probabilities suffice to describe and reproduce

the branching patterns of the neuronal morphologies, as in the mathematical models

proposed by Luczak (2006) and Cuntz (2010). To answer this question we generated

artificial cells that do not take into account the connectivity of the trees encoded

in their TMD profiles (See Appendix C: Synthesis without correlation of bifurcation

/ termination). Instead of using the joint probability distribution to bifurcate and

terminate, as encoded in the persistence barcodes of the biological dendrites, the

marginal probabilities were used. This method results in surprisingly poor quality

of synthesized cells (see Appendix C: Synthesis without correlation of bifurcation /

termination), indicating that the correlations encoded in the TMD of dendrites are

essential for the accurate generation of artificial cells.

Correlations between morphological features have been found to be important for

any synthesis method (Lopez-Cruz et al. 2011). However, an explicit description of

correlated morphometrics has either to be identified manually (Koene et al. 2009)

or optimized using complex automatic algorithms (Lopez-Cruz et al. 2011). The

manual identification of feature correlations is problematic, as different experts disagree

on the optimal set of features that describes neuronal morphologies (DeFelipe et al.

2013). The set of optimal morphometrics may also not generalize across different

m-types. On the other hand, the complicated machine learning techniques that infer

feature correlations have the risk of over-fitting when only a few biological examples

are available. In this case, instead of reproducing the biological principles of neuronal

morphologies, the algorithm will overestimate local properties and assume complicated

correlations that reproduce the noise of the input cells.
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For the generation of accurate axonal shapes, the current synthesis scheme should

be extended to take into account environmental influences. These include long-range

targeting (Wang et al. 2015) and intersection avoidance between neighboring cells

(Grueber and Sagasti 2010). This will improve the generation of neurites with complex

branching patterns, such as cortical axons of both interneurons and pyramidal cells,

glial cells and long range projecting cells, such as nigrostriatal dopaminergic neurons

(Matsuda et al. 2009) and densely connected claustrum cells (Torgerson et al. 2015)

and thus allow the digital reconstruction of brain areas that extend beyond a local

region, such as the somatosensory cortex.

The small variability of the available biological reconstructions is the second major

challenge faced in neuronal synthesis. Due to the high degree of similarity between the

TMDs of neurons of a single morphological type, it is tempting to conjecture that a

small number of biological examples of a cell type suffice to synthesize a large number of

unique morphologies with the same characteristics. A stochastic algorithm to generate

unique persistence barcodes that obey the principles of the biological diagrams from

sparse biological examples would resolve the problem of the low variability of the

synthesis input. An algorithm for the generation of persistence diagrams based on a

single instance of an original dataset has in fact been proposed in (Adler et al. 2017)

and could be used in order to increase the variability of the topological profiles of

neurons when the available biological reconstructions are not sufficient. This technique

exploits the power of randomness to generate unique copies of neuronal morphologies

while ensuring that they all share the statistical properties of the original cells.
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Network of random walks





4

Modeling multi-neuron growth via

random walks

“What we call chaos is just patterns we haven’t recognized. What we call

random is just patterns we can’t decipher.”

– Chuck Palahniuk, Survivor

4.1 Introduction

The rodent cerebral cortex is a complex ensemble of neuronal morphologies whose

highly ramified arbors meander through 3D space. The physical contacts between

two neurons are formed between the pre-synaptic axonal arbor and the post-synaptic

dendritic span (Peters 1979). The shape of neuronal morphologies and their relative

positions in space are two key geometrical factors that govern the formation of a

physical connection, i.e., an apposition (Peters 1979, Kalisman et al. 2003). From these

appositions between neurons the functional connections are formed, which establish

the synaptic distribution of the brain. We define as a neuronal network the network

that consists of morphologically detailed neurons, where the connectivity is defined by

the physical appositions between them. Since the functionality of a neuronal network

depends on its synaptic distribution, an accurate computational model of the brain

should faithfully reproduce its synaptic connectivity.

A variety of novel imaging techniques (Shi and Toga 2017, Craddock et al. 2013),

which are rapidly advancing, allow accurate mapping of the brain connectivity across

different length scales. As a result, an increasing number of connectivity matrices of

different species becoming available (Human Connectome Project) and new methods
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have been developed to analyze them (Rubinov and Sporns 2010, Reimann et al. 2017).

These connectivity matrices represent a snapshot of development at some point in

the animal’s life. It is still not clear how the interactions between neurons during the

developmental process lead to the complex connectivity patterns that are observed.

One of the fundamental questions is to what extent the structure of the neuronal

network is encoded in the genetic information of an organism and to what extent

the connectivity patterns stochastically emerge from interactions between growing

structures.

Studying the common characteristics, or invariants, between the neuronal networks

of different organisms can shed light on this question. Connectivity patterns within

neuronal networks that are commonly observed between different individuals and species

are usually considered to be the outcome of precise growth mechanisms (Graham and

van Ooyen 2006) that shape the neuropil into functional brain networks. However, this

approach underestimates stochastic processes that influence the neuronal growth. The

contributions of randomness to the neuronal connectivity are to a large extent still

unknown. These contributions cannot however be ignored, as natural patterns often

occur as the sum of stochastic forces. For example, the random motion of particles

suspended in a fluid generates trajectories that are statistically similar to each other.

The average characteristics of these trajectories are precisely defined, even though they

have been generated by random processes. Contrary to intuition, recent studies suggest

that stochastic components of interacting morphologies contribute to the generation

of invariants in the resulting networks, and therefore cannot be ignored (Tekin et al.

2016, Weigand et al. 2016).

Another approach to investigate neuronal network formation is to disentangle the

roles of randomness and structure in artificially generated networks. The idea of

generating random point-neuron networks (termed here as artificial neuronal networks,

ANN) and studying their properties was introduced by Erdős and Renyi (1959). The

Erdős-Renyi (ER) graphs have a fixed number of vertices, connected randomly by edges

assigned between pairs of vertices with equal probabilities. A lot of variations to this

basic model (Meghanathan 2015) have been proposed. In these models the connection

probabilities of the random graphs are sampled from different statistical distributions.

The generated ANNs do not consider the space in which the neurons are embedded,

thereby disregarding the physical dimensions of the individual morphologies.

In this study, we propose a model that differs from the classical random ANN

generative models in one important aspect: the neuronal network is generated by

morphologies that are embedded in the 3D space. As a result, the actual paths that
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connect two morphologies are preserved and the positions of their connections are

known. The idea is based on the following question; how does the increasing structural

complexity of individual morphologies affect the connectivity of the resulting neuronal

network? This concept can be studied by starting from purely stochastic processes in

3D (i.e., random walks in space, Pearson 1905) and adding more and more constraints,

increasing the complexity of the morphologies to make them more biologically accurate.

A simple mathematical model based on random walks is designed to study the effect

of different interactions between growing morphologies on the neuronal network that

they generate. The initial positions of a set of morphologies are placed within a 3D

bounding box. Then the morphologies are grown in place according to a growth model

described by a set of mathematical rules. The contact points of these morphologies

are interpreted as appositions, or potential connections (Reimann et al. 2015). The

neuronal network formed by these appositions represents the connectivity between

the morphologies. A sequence of different growth models of increasing complexity

are studied. Initially, the morphologies are simple paths (straight lines, random

walks). Then, structural constraints are imposed on the morphologies to reproduce

the morphological properties of biological reconstructions. The last step consists of

simulating the interactions between the morphologies (avoidance, targeting, optimal

path finding). The connectivity matrices that are generated from each growth model

-of increasing complexity- are compared to the connectivity of the digital reconstruction

of BBP (Markram et al. 2015).

Through this sequence of models, we are able to distinguish the connectivity patterns

that can be reproduced by stochastic processes from these that also require complex

interactions between biologically accurate morphologies. Interestingly, many structural

and connectivity properties of biological systems can be reproduced by networks of

simple random morphologies. Contrary to intuition, but in agreement with recent

studies, we provide evidence in favor of the involvement of stochastic interactions

to the generation of connectivity patterns that reproduce the local connectivity of

biological neuronal networks. The complicated processes that take place in brain

development involve a great variety of biochemical interactions that influence the shape

of the neurons and the connectivity of the resulting neuronal network (Scott and Luo

2001). Since the proposed generative model represents a simplification of this highly

elegant process, we cannot conclude that the same rules govern the actual growth of

neurons. We can however, propose that basic principles, derived from the fundamental

mathematical and physical properties of interacting morphologies, are crucial in the

formation of these patterns.
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4.2 Methods

In order to study the effect of the probabilistic interactions between growing neurons,

a set of morphologies is generated within a cuboid domain (Lx, Ly, Lz) (Figure 4.1).

The artificially generated network (AGN) consists of R morphologies each of which

represents a neuron and has one or more emerging paths or neurites, that correspond

to neuronal trees. The step size D is fixed and is used for the generation of points at a

distance D from each other. Each morphology consists of T points in total and its total

path length is T ∗ D. The growth of each path starts from the root of the morphology

that corresponds to the soma of a neuron. The direction of the next point in a path

is given by a “growth model”, and all the points of the morphologies are restricted to

lie within the bounding box (Lx, Ly, Lz). Different growth models are illustrated in

Figure 4.2 and include simple and non-intersecting random walks and simple branching

tree structures. Since the morphologies start growing from the soma, R initial positions

are distributed within the bounding box (see Figure 4.1B). From these R positions,

the morphologies grow until they reach their target length T or until they stop at the

boundaries of the domain. For periodic boundary conditions, the morphologies do not

terminate once they reach the boundaries of the domain but continue their growth at

the other side. For computational efficiency the domain is decomposed into a three

dimensional grid of voxels.

The growth-model independent parameters used for the generation of the random

walk networks are the dimensions of the bounding box (Lx, Ly, Lz), the number of

morphologies R, the total length of each morphology T and the step size D. In order

to use dimensionless parameters we define the step length as D = 1µm, and express all

other lengths in units of D. When a branching growth model is selected, the number

of sections, or branches, Nsec per neurite must also be defined. For the branching

morphologies, there is also the possibility to select different numbers of steps for each

section, in which case T is a list of size Nsec. The actual thickness of the morphologies

is not considered in the simulations in order to reduce the computational cost and each

morphology is registered in the grid voxels.

The paths of two morphologies that cross each other generate intersections that

cannot physically occur in biological systems. In fact, the geometric intersections that

are present in computationally generated networks introduce considerable artifacts

such as the unrealistic correlations between the connections of the generated network.

Morphologies that grow independently, i.e. not taking into account other paths, in the

same space have a high probability to intersect with each other even at low densities.

This probability increases with the morphology density. A number of growth models
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would result in self-intersections is called a self-avoiding random walk (SAW). To

avoid potential intersections the SAW re-samples a new random point. A directional

self-avoiding walk (DSAW) is a combination of a SAW and a BRW. The next point is

chosen randomly, as in the simple random walk, unless an intersection is detected. To

avoid a potential intersection the DSAW grows towards the initial direction instead.

Since the number of self-intersections for a random walk in 3D cannot be predicted

exactly the “bias” of the DSAW can only be computationally approximated. A variation

of this model is the directional intersection-avoiding random walk (DIAW). The next

point of the DIAW is sampled randomly unless an intersection with its own or any

other path is detected. It this case, the DIAW follows the initial direction to avoid

intersections.

The models described so far generate morphologies containing a single path. These

shapes are obviously simpler than the biologically observed shapes of neurons. For

this reason, growth models of higher branching complexity are also studied. The first

improvement to the previous models is the generation of multiple paths from the

initial point of the morphology. In this case a star morphology is generated (SRW). A

BTRW growth model implements a split of the morphology into branches to create

a tree structure. A symmetric or an asymmetric tree can be generated, according

to the mathematical rule used for the definition of the branching process. These

growth-models are in fact a collection of many possible models, since many different

values of asymmetry can be chosen.

The generation of R morphologies of T steps that grow independently has a com-

putational cost of O(R ∗ T ). For the generation of the same R morphologies when

interactions between them are accounted for, each new point needs to check its distance

from all the existing points. As a result the computational cost increases to O(R2 ∗T2).

In order to localize the intersection detection and reduce the computational cost,

each new point of a path is registered into a voxel in space. The domain (Lx, Ly, Lz)

is discretized with a grid of resolution similar to the step size D so that only the

neighboring voxels need to be checked for intersections. The computational cost is

reduced to O(27 ∗ R ∗ T ∗ Tactual ), where 27 is the number of neighboring voxels in

a 3D regular lattice, and Tactual is the expected number of points contained in each

voxel, which is O(1). This way, the computational cost is reduced to linear on the total

number of points O(R ∗ T ). This is crucial to extend this growth scheme to large scale

models of growth.
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4.3 Analysis of artificially generated networks

For each growth model, a set of morphologies is generated and a number of measure-

ments are computed to quantify the statistical properties of the model. We define as

spatial observables the properties that describe the distribution of morphology points

in space and as connectivity measurements the properties related to the connectivity

of the resulting network. The spatial observables and the connectivity measurements

are then compared to those of biological networks. Improvements of the growth model

can then be proposed in order to generate more and more realistic networks.

The morphologies are generated point-by-point and registered in the grid voxels

of the three dimensional space. Since all the information about the positions of each

morphology are saved in the grid structure, spatial observables of the resulting network,

such as the density, the pair correlation function and more advanced measures of

the three dimensional morphology points in space (see Spatial observables) can be

easily measured. For an appropriate selection of the parameters of the model (such as

number and total length of morphologies) the generated network can be compared to

the biological packing of neuronal processes, i.e., the neuropil.

The connectivity matrix of the generated network is computed from the touch

points, i.e., appositions, of the morphologies, when two morphologies pass through the

same voxel. Because of the density of connections in a brain region ( 1 connection per

µm3, Braitenberg and Schuz 1998, Kasthuri et al. 2015, Anton-Sanchez et al. 2014) the

voxel size is chosen to be of the order of 1µm3, which also corresponds to the chosen

growth step D = 1µm. The connectivity graph C of a network is an R× R matrix whose

element Ci j is the number of connections between a pair of morphologies i, j. Since

the morphologies do not take into account the differences between axonal or dendritic

processes, the connectivity matrix is symmetric. The corresponding binary connectivity

Cbin is defined by computing the presence or absence of a connection between two cells,

without taking into account the number of connections.

From the connectivity matrix of a network a variety of measurements can be

computed. These include standard graph measurements, such as the degree distribution,

the shortest path length and the distribution of common neighbors (see Connectivity

measurements, Rubinov and Sporns 2010); and topological measurements, such as

the clustering properties and the distribution of cliques within the connectivity graph

(Reimann et al. 2017). Biological data acquired through years of meticulous studies

have revealed the structure of local cortical circuits in the rodent brain (Perin et al.

2011, Kasthuri et al. 2015). However, due to the effort required for the collection of this

data, the information acquired from biological systems is limited to very small parts of
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the brain (a cubic box of a few microns, Kasthuri et al. 2015). Due to these limitations,

the connectivity measurements of the random walk models are also compared against

detailed computational models that approximate the brain networks (Markram et al.

2015, Reimann et al. 2017).

The BBP circuit is reconstructed with a wide variety of morphological types of

neurons that are placed within the cortical microcircuit (of 0.29mm3 volume). These

morphologies correspond to biological reconstructions that are curated in order to

correct experimental artifacts and cloned to increase the variability of the morphological

diversity of the computational model. The structural connectivity is acquired from the

appositions between morphologies. The structural appositions are transformed into

functional connections with an algorithm developed in BBP (Reimann et al. 2015) that

takes into account biological constraints. As a result, the simple random walk models

cannot be compared to the final state of the BBP circuit connectivity. The artificially

generated networks (AGN) based on different random walk models are compared to

the initial state of the BBP circuit, i.e., the structural connectivity.

In order to acquire a dataset of homogeneous connectivity avoiding artifacts related

to the boundary conditions and the size of the cortical column, a symmetric bounding

box that is located in the middle of the column is examined. However, the computa-

tionally intensive calculations that are required for the collection of information from

this very densely packed area, restrict us to work with a small bounding box of around

100µm × 100µm × 100µm. For this reason the AGN models are also constructed in a

domain of the same size.

Spatial observables

The spatial structure of both the morphologies and their connections are measured

from the distribution of points in the gridded domain. A variety of measurements can

be computed for a set of points embedded in a metric space. The relative positions of

the points are studied with the distribution of distances between them and the pair

correlation function. The spatial observables are compared to the properties of the

neuropil, and the connectivity measurements to the connectome of a brain region. The

combination of these measurements reveals interesting properties about the generated

network that are discussed in detail in Section 4.4.

For a network of R morphologies of T points each, the expected density, i.e. the

density excluding intersections of points in space, is the number of generated points

divided by the total number of voxels in space.
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Dens =
RT

Lx LyLz

(4.1)

The observed density, however, is the number of voxels that are occupied by at

least one path divided by the total number of voxels in the domain. As a result, the

observed density depends on the number of paths that are contained within each voxel.

For intersecting morphologies this density is lower than the expected density, since

two or more paths can occupy the same voxel. Similarly, the density of connections in

space is measured as the number of voxels that contain at least two paths divided by

the total number of voxels in space.

The distribution of morphology points in space is described by their pair-correlation

function, g(r). This function measures the number of pairs separated by Euclidean

distance r in space.

g(r) =
1

4πr2
1

N2

N
∑

i=1

N
∑

k,i

δ(r − |rk − ri |) (4.2)

The pair correlation function is the probability to find a point in space at a certain

distance from another point. For homogeneous processes, the pair correlation function

(PCF) converges to a constant value due to the regularity of the distribution of points

in space.

We define as “failure rate” the number of morphologies that fail to grow without

intersections within a domain of a fixed density. This measurement is not only an

indication of the limitations of the computational method but also a fundamental

property of packing objects in space. This is similar to the problem of packing spheres

within a box (Sloane 2002), where the maximum density of spheres that can fit in the

domain is determined

Connectivity measurements

An element ci j in the connectivity graph C is the number of connections between the

morphologies i and j. A variety of measurements that characterize the connectivity of

the system can be computed from this graph.

The connection probability (Rubinov and Sporns 2010) is measured as the total

number of connections divided by the maximum number of all possible connections

in the graph which is R(R − 1) for an R × R connectivity matrix. The degree of a

node in the graph counts the total number of connections that this morphology forms.
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For a binary connectivity matrix Cbin the degree of a node i counts the number of

morphologies that are connected to this node. The degree ki of a node i is computed:

ki =

∑

{ j≤R| j,i}
ci j (4.3)

Another interesting measurement is the number of connections Nc between a pair

of connected morphologies. This can be measured from the connectivity matrix C

if the number of connections is encoded in the connectivity matrix. The common

neighbors CNi j of a pair of morphologies (Perin et al. 2011) are the morphologies that

are connected to both of them. The number of common neighbors between a pair

of neurons is a determinant of the connection probability between a pair of neurons

Pc. Neurons that share more common neighbors are known to be connected with

higher probabilities than neurons that do not share any common neighbors (Perin

et al. 2011). To examine if this principle also holds for the model of random walks,

the conditional connection probabilities are computed as a function of the number of

common neighbors that a pair of morphologies shares.

Pc(connected|CN ) =

R
∑

j,i | share CNi j

# connected cells
# cells

(4.4)

The shortest path distance si j , (Rubinov and Sporns 2010) between two nodes i,

j measures the minimum number of edges of the graph that need to be traversed to

reach node j starting from node i. Because the connectivity matrix C is undirected,

the direction of the shortest path distance is not relevant and hence si j = s ji. The

average shortest path distance Ls of the network reflects how well connected a graph

is. The shortest path distances are small for a highly connected graph, and high for a

sparsely connected graph. Note that the shortest path distance can be computed only

for connected graphs.

The betweenness centrality bc (Rubinov and Sporns 2010) of a graph measures

the distribution of nodes within the shortest paths of the network. A node with

high betweenness centrality will have more control over the information flow as it

participates in more shortest path connections. The betweenness centrality bcv of a

node v is defined as the fraction of all shortest paths in the network that pass through

the given node v.

bcv =
∑

(i, j)∈C, i, j,v

nsi j (v)

nsi j

, (4.5)
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where nsi j is the number of shortest paths between i, j and nsi j (V ) is the number of

shortest paths between i, j that pass through the node v.

The clustering coefficient (Rubinov and Sporns 2010) measures whether the nodes

of a graph tend to cluster together or not. The local clustering coefficient CCi of a

node i is the proportion of existing connections between the neighbors of the node i

divided by all the possible connections that they could form among themselves. For a

node i of degree ki the number of possible connections of its neighbors is ki (ki − 1)/2.

Therefore the clustering coefficient CCi of a node i is:

CCi =
2

ki (ki − 1)

∑

k,l: neighbors of node i

ckl (4.6)

A small world network (Watts and Strogatz 1998) is a graph that is highly clustered

but has a small average shortest path length. Small world networks are characterized

by few long range connections, while the local clustering still remains high because

neighbors tend to connect to each other. The small worldness σ of a graph is computed

from the ratio of the average clustering coefficient CC and the average shortest path

Ls of a graph:

σ =
CC/CCr

Ls/Lr

, (4.7)

where CCr and Lr are the average clustering coefficient and the average shortest path

length of a random graph. If σ > 1 the network is considered to be a “small-world”

network, so this practically requires CC ≫ CCr and Ls ≈ Lr .

4.4 Results

The impact of soma positioning and branching

The first step is to position the somata of the morphologies in space. To explore

the effect of the soma positioning on the connectivity of a generated network, we have

constructed two types of artificially generated networks with the same parameters

(LX = LY = LZ = 200, R = 125,T = {100, . . . , 8000}). The first type of networks

were generated from regularly positioned roots of morphologies on a three-dimensional

lattice (REG-network) (Figure 4.3A). The second type of networks were generated from

randomly positioned roots of morphologies (RAND-network) in the three-dimensional

space of the bounding box (Figure 4.3B). The morphologies were initially simulated by

the DSAW growth model. This experiment did not reveal any statistically significant
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structural differences between the number of connections formed within the REG and

RAND networks, despite the significantly different effect of the two models on the

spatial distribution of their points in space (Figure 4.3). Then, each morphology was

generated by STRW growth model with six independent paths. The RAND-network of

STRW morphologies generated significantly more connections compared to the regular

network with the same properties (Figure 4.3). The results presented in Figure 4.3

correspond to the statistical averages and the standard deviations from 50 repetitions.

For a network of STRW morphologies of total length T = 1600, which corresponds

to a density of morphology points ≈ 2.5%, the number of connections increases from

≈ 5, 000 for the REG-network to ≈ 8, 500 for the RAND-network. The corresponding

AGN with the same input parameters generated from DSAW morphologies resulted

in ≈ 2, 000 connections. In addition, the mean degree of the STRW network’s nodes

increases from 21 for the REG-network to 31 for the RAND-network, while the

corresponding DSAW networks (REG and RAND) had a degree of ≈ 12. The average

clustering coefficient of the STRW networks increases from 0.31 for the REG-network

to 0.37 for the RAND-network, while both DSAW networks have a clustering coefficient

around 0.12. The shortest path distance of the STRW networks decreases from 1.95

for the REG-network to 1.75 for the RAND-network, while the DSAW networks have

shortest path distances around 2.2.

The previous results demonstrate that the random positioning of the somata of

STRW morphologies generates more connections in space, but also increases the

mean number of morphologies that each cell is connected to, , while the single path

morphologies generate consistently a smaller number of connections. The RAND-

network is not only more connected but also the connections within the network are

more clustered compared to the REG-network for the branching random walks. For

further evaluation of this result, we have also generated two types of REG and RAND

networks of (STRW and DSAW) random walks for different morphology densities

(T = 8000), using the same properties (somata positions, number of cells, box size)

that were used for the generation of the DSAW and STRW networks.

Indeed for a network of STRW morphologies of total length T = 8000, which

corresponds to a density of morphology points ≈ 11%, the number of connections

increases from ≈ 55, 000 for the REG-network to ≈ 57, 000 for the RAND-network.

The corresponding AGN with the same input parameters generated from DSAW

morphologies resulted in ≈ 53, 000 connections. The differences in the number of

connections of the networks are much smaller compared to the lower density networks

but they are statistically significant. However, the connectivity properties of the
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resulting networks are not statistically distinguishable. The average degree of all

networks is around 112 − 114, the clustering coefficient around 0.91 − 0.92 and the

shortest path distance around 1.06−1.08. This result indicates that for highly connected

networks 50% the effect of somata positioning and branching is not as effective.

As a result, a natural mechanism to take advantage of the properties of randomness

in space, in order to increase the number of connections and the degree of connectivity

is to generate multiple branches from the root of the morphology. In this case, for

the same wiring length, the local space around a morphology is optimally sampled in

all directions and more connections with a larger number of cells are generated. For

sparsely connected networks this approach also generates more clustered networks with

shortest path distances between their nodes.

Statistical properties of intersections

To study if the intersection avoidance has a significant contribution on the connectivity

of computational models of detailed neuronal networks, the effect of intersections on

the spatial distribution of structural connections is examined. The frequency of

intersections between the structural connections of the BBP circuit (Markram et al.

2015) is measured by registering the connections in a gridded domain and counting

the number of connections that belong to each voxel. In a 80µm × 80µm × 80µm

domain of which 80% is occupied by neuronal processes (60% axons, 20% dendrites),

about 400, 000 appositions are generated between axons and dendrites, 250, 000 among

dendrites and 450, 000 among axons. From those, 24% of the dendritic appositions

intersect with each other, i.e., are registered at the same voxel, which corresponds

to 6% of the voxels being occupied by more that one connections. Similarly, 26%

of the axon-axonic appositions intersect with each other, which corresponds to 12%

of the voxels being occupied by more that one connection. Respectively, 38% of the

axon-dendritic appositions intersects with each other, which corresponds to 16% of

the voxels being occupied by more that one connections. As a result, the intersections

among the connections of the network are too frequent to be ignored, and the impact

of the intersections on the resulting connectivity needs to be evaluated.

The intersections of morphologies in a computational model can either be biologically

relevant or represent an artifact arising from the placement of morphologies in space. To

test if the intersections in the BBP circuit can be reproduced by random morphologies,

we compared the intersections present in the BBP circuit to the intersections of an

artificially generated network (AGN) of DSAW morphologies. A low density (20%)

AGN of DSAWs reproduces the appositions between dendrites and a high density (60%)
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Fig. 4.4 Comparison of appositions in space. The percentage of voxels that contain a certain number
of morphology points is presented for the BBP model of dendrites (purple) and axons (black). This
property is compared to networks of artificially generated morphologies based on the DSAW growth
model of similar densities (red, 20% to simulate dendrites and blue, 60% density to simulate axons).

AGN of DSAWs reproduced the appositions between axons, as illustrated in Figure 4.4.

The percentage of voxels that contain a given number of connections of low density

DSAW morphologies matches the distribution of dendritic connections, while the curve

for the high density DSAW morphologies follow the distribution of axonal connections.

In both cases, the exact BBP distributions are not reproduced precisely, but they

are very close. It is possible that the inconsistency of the AGN and BBP curves is

introduced by the difference of the algorithms that calculate the appositions. In the

AGN, appositions are counted from the paths that are registered in the same voxel,

while the BBP circuit appositions are measured from the morphologies whose paths

come closer than a few microns. It is also interesting to note that for both axonal

and dendritic intersections the maximum number of morphology points contained in a

voxel are much higher than their equivalent random walk models. This effect may be

caused by the duplication of the same morphologies in the digital reconstruction, but

this artifact occurs very rarely.

Biological reconstructions were also registered in the bounding box, starting from

random positions for their roots, until the selected density was reached. The “growth

model” that corresponds to biological reconstruction morphologies registered in space

will be named “rNeurons”, for random neurons. This is useful for the comparison of
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Fig. 4.5 Comparison of distribution of points per voxel for different growth models. The percentage of
voxels that contain a certain number of morphology points is presented for different growth rules. The
DSAW growth model is the simplest model that can reproduce the properties of neuronal morphologies.
A x − y slice of the corresponding network, where the colormap represents the number of points per
voxel, is presented for a selected number of growth models. The non-intersecting model of DSAW
generates a distribution of points in space that is similar to the three-dimensional distribution of
connections in space, according to Anton-Sanchez et al. (2014).

the AGN intersection peaks to the neuronal ones computed with the same method of

intersection detection. For this experiment the target density of occupied positions in

space was chosen to be 80%. The intersection peaks for a number of different growth

models are presented in Figure 4.5. The DSAW growth model is the simplest model

that can reproduce the distribution of neuronal intersections in space. Random walks

have consistently lower numbers of voxels with a certain number of points compared

to all other models. On the contrary the random points in space have higher numbers

of voxels with a certain number of points, compared to all other models. Interestingly,

more complex branching patterns have intersection peaks that are very similar to the

DSAW model and the rNeurons.

The numbers of intersections per voxel are presented in a slice of the corresponding

box for different growth models. Random points appear to be distributed homogeneously

in space, while SRW, DSAW, STRW and BTRW show a correlation of intersection peaks
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in space (for the detailed analysis of correlations see Spatial correlations of connectivity).

Due to the continuity of paths in space, the voxels that contain the maximum number

of points, named peaks, are surrounded by voxels which also contain a large number of

points. As a result, this peak-effect would make any attempt to remove the intersections

after the construction of the circuit computationally intractable.

In a recent paper (Anton-Sanchez et al. 2014) found that the distribution of

neuronal synapses in space is reproduced by a random sequential adsorption (RSA)

without intersections. This model generates a homogeneous distribution of synapses in

space, which captures the properties of the three dimensional distribution of cortical

synapses. Even though the quantitative features of this model will be difficult to

reproduce with a set of random walk morphologies, the qualitative properties of this

model are effectively recreated by the DIAW growth model. The intersection avoidance

between paths, that is used in the growth models such as the DIAW, seems to be

sufficient for the generation of a spatial distribution of connections that is in agreement

with the model proposed by Anton-Sanchez et al. (2014). Intersection avoidance and

tiling are in fact mechanisms that are biologically important for the generation of

specific connectivity patterns in visual cortex and in networks of glia cells (Grueber et

al. 2010).

Limitations of non-intersecting growth models

The constraint of intersection avoidance is sufficient to approximate the spatial distri-

bution of synapses in space proposed in the phenomenological model of Anton-Sanchez

et al. (2014). A natural question is whether this model can generate morphologies that

achieve the high density of the brain tissue. The mean density of matter in cortical

areas is estimated to be around 60% (Braitenberg and Schuz 1998). However, the local

density can be higher in dense areas, such as layers 4 and 5. To check if morphologies

that avoid intersections can grow up to the high densities that are observed in biology,

the failure rate of a non-intersecting DIAW is measured. Multiple simple random walk

networks are generated for different densities (from 0% to 100%, see Figure 4.6). For

each network, the failure rate is measured as the percentage of DIAW morphologies

that fail to grow to their full length (400 for a box of size 100 × 100 × 100).
As expected, the mean failure rate is zero for very low densities and increases to

one for densities above 90% where it is not possible any more to grow non-intersecting

structures. However, it is important to note that almost no morphologies fail to grow

for densities below 50%, while even at the biological densities 60 − 70% only a small

fraction of morphologies 10 − 20% fail to grow their full length. This result suggests
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Fig. 4.7 Distributions of appositions in space. The spatial distribution of appositions in space are
presented for three different growth models of non-intersecting morphologies: (A) random points in
space, (B) directional self avoiding random walks and (C) random walks. The distribution of distances
between the appositions of the three models (D) shows that DSAW appositions are similar to the
RSA. The pair correlation function of appositions (E) indicates that the DSAW model is a mixture
of the random walk and the phenomenological models. For short length scales (< 5µm) the DSAW
connections are highly correlated, while this correlation disappears for longer length scales (> 5µm).

Spatial correlation of connections

The previous statistical analysis revealed that the three-dimensional distribution

of connections of a non-intersecting set of DIAW morphologies is similar to the phe-

nomenological model, proposed by Anton-Sanchez et al. (2014), that approximates

the spatial distribution of cortical synapses. In order to quantify this result, the

pair correlation function of connections in space is computed, which quantifies the

probability to find a connection at a certain distance from another one in space. Three

types of non-intersecting morphological systems were generated for this study: a set of

random points, a set of random walks and a set of directional self avoiding random

walks (Figure 4.7). The roots of the morphologies were randomly distributed in space

for all the growth models.

The phenomenological model of synaptic distribution corresponds to a random

distribution of points in space with intersection avoidance, as proposed by Anton-
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Fig. 4.8 Clustering of connections between DIAW morphologies. A. Example of a connected pair of
morphologies (bold white), within a network of non-intersecting DIAW morphologies (light gray). The
two morphologies share a large number of connections, clustered in space (in red). B. The number
of connections between a pair of connected morphologies is low (≈ 1) for the random points model
and goes up to large values (≈ 30) for the network of random walks. The DIAW morphologies have
approximately between 1 − 10 connections.

Sanchez et al. (2014) and can be reproduced by the DSAW model for large length scales.

The resulting networks of the RSA and DSAW are not only visually similar (Figure 4.7A.

blue, B. red respectively) compared to the random walk network (Figure 4.7C, green),

but also have the same distribution of distances among the positions of their connection

(Figure 4.7D). Interestingly the pair correlation function (see equation 4.2) of appositions

(Figure 4.7E) indicates that the DSAW model behaves as intermediate between the

random walk and the phenomenological models. For short length scales (< 5µm) the

DSAW connections are highly correlated, while this correlation disappears for longer

length scales (> 5µm).

The spatial correlation of connections between a pair of DIAW morphologies is a

fundamental property that arises from the continuity of the morphological paths in

the embedded space. In addition, the clustering of connections in space is supported

by a number of fundamental biological observations. First, the number of connections

between a pair of connected neurons ranges from one to multiple connections (3-8

synapses, Fauth et al. 2015), a property that is important for the functionality of brain

networks. In fact the probability for a pair of connected morphologies to have more

than one connection is significantly large for morphologies in cortical brain regions

compared to equivalent random networks (Kasthuri et al. 2015, Markram et al. 2015).
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The high “clustering” of connectivity in biological networks is present even in networks

generated within a set of cultured neurons (Downes et al. 2012).

The spatial correlation of synapses is also in agreement with the optimization of

information processing by dendrites as proposed in the computational model of Poirazi

and Mel (2001). This computational model (Poirazi and Mel, 2001) of structural plas-

ticity suggests that non-linear integration of signals by dendrites supports larger storage

capacities. Dendritic branches that act as neuronal subunits, in which connections are

clustered together in space, integrate signals optimally. The mechanism they propose

can be used by a structural learning rule that combines random synapse formation

with activity-dependent stabilization or elimination. This result supports the existence

of spatial clustering of connections as a mechanism for learning optimization.

Therefore, the spatial correlation of connections seems to play be important for the

functionality of dendrites. Consequently, even though this effect is not supported by

the RSA model, there is strong biological and computational evidence in favor of this

property. The spatial clustering of local connections that arises due to the continuity

of paths in space, could indeed be a useful property that biological networks take

advantage of during their development.

Connection probability depends on the number of common neigh-

bors

Once the statistical and spatial properties of connections are approximated by a

computational model, the connectivity graph, which encodes the connection probability

between any pair of morphologies, need to be examined. A recent study (Perin et al.

2011) revealed one of the fundamental principles of cortical networks; the connection

probability and the synaptic weights of cortical neurons depend on the number of

common neighbors. A pair of neurons has a higher probability to be connected, even

for higher intersomatic distances, if they have at least one common neighbor. This

probability also increases further with the number of common neighbors that they

share. It is interesting to note that Erdős-Renyi networks do not reproduce the common

neighbor effect of biological systems, even when modified accordingly to be distant

dependent.

However, the common-neighbor effect is reproduced by several AGN growth models.

For this experiment, sparse networks of the same morphological density (6%) were

generated and the connection probability was computed as a function of the number

of common neighbors (see equation 4.6). For random walks this probability increases



4.4 Results 147

STRW

Fig. 4.9 Common neighbor effect. Connection probability between two cells depends on the number
of common neighbors that they share. For different types of AGN (random walks: blue, directional
self avoiding walks: red and branching DSAWs: green) the connection probability increases with the
number of common neighbors.

quickly and reaches up to one. This property can be explained by the local high density

of random walk networks, which also results in pairs of connected morphologies that

share a large number of connections (see also Figure 4.7). Similarly, the connection

probability of DSAW and STRW networks also increase with the number of common

neighbors. However, the connection probabilities remain much lower in the case of

DSAW and STRW morphologies, as they do not posses such a high local density of

branches.

A number of connectivity measurements (number of connections, mean degree,

average shortest path distance and average clustering coefficient) of these three growth

models (RW, DSAW, STRW) are compared to the connectivity properties of a random

Erdős Renyi graph (ER, Erdős and Renyi 1959). For the same connection probability

(number of nodes and number of edges preserved) the DSAW have ≈ +20% higher

clustering coefficient (0.120 ± 0.002) compared to ER random networks (0.095 ± 0.002).
The STRW networks have even higher (≈ +30% ) clustering coefficient (0.142 ± 0.003)
compared to the ER random networks. This indicates that small world networks can

be generated by DSAW and STRW morphologies. Those morphologies generate not

only spatially clustered connections, but also highly clustered connectivity networks.
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Fig. 4.10 Number of connections as a function of morphology length. For different types of AGN (RW:
orange, DSAW: green and STRW: red). The equivalent biological mean length is presented with a
blue star, and the equivalent dotted line is shown for guidance to the eye.

Connectivity of different growth models

In section “The impact of soma positioning and branching” we demonstrated the

significance of the placement of the morphologies’ roots for the connectivity of a

network. In order to compare the connectivity of artificially generated networks to

the connectivity of the BBP circuit, the original positions of the BBP morphologies

should be used as the roots of the artificial morphologies. For this study, we used a

small subset of the densely connected structural BBP network, which corresponds to

the connectivity of neurons in the superficial cortical layer (Layer 1).

First, we examined the dependence of the number of connections in the connectivity

matrix C as a function of the morphological length T . The RW cannot reproduce the

properties of the BBP circuit, as the connection probability remains very low, due

to the localization of the morphologies around the root, which in turn minimizes the

radial extents of the RW morphologies. The RW network requires more morphologies

or morphologies of higher lengths to reach the same morphology density and therefore

the same number of connections. The DSAW and the STRW reach the BBP number

of connections for a total length that is close to the mean length of axonal trees

(≈ 12500µm) of biological cells in Layer 1 (Figure 4.10).
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The same morphological length is also retrieved by other branching growth models

(BTRW, symmetric and asymmetric, not shown). There seem to be no significant

difference in the number of connections, as a function of the length of the morphologies,

among the networks generated by different branching rules (see Figure 4.10). This

is expected by the mathematical properties of the “random walk”-like shapes, as

morphologies of the same (significantly large) length that are restricted within the

same space, are expected to make the same number of intersections. Note that even

though the total number of connections does not depend on the branching shape for

very long morphologies, the percentage of connections and the number of morphologies

that a cell connects to increases with the complexity of the branching structure (see

section “The impact of soma positioning and branching”, Figure 4.3).

The importance of the total length of a morphology (equivalent to the volume

density of the morphology) for the connectivity of a network is a well known fact

(Kalisman et al. 2003). It is interesting to observe that even morphologies with simple

stochastic shapes make the same number of connections that complex biological shapes

generate. However, the statistical properties of the connectivity of different networks

demonstrate the effect of different growth models on the connectivity of the network.

Even though morphologies of length equal to the average biological length have a

similar average degree, the distribution of degrees of the DSAW network’s nodes is very

sharp and does not correspond to the distribution of the BBP circuit (not shown). This

is a result of the lack of variability of lengths in the artificially generated morphologies

(Figure 4.11).

For this reason, a network of STRW morphologies of a wide distribution of lengths

(from 800µm to 24, 000µm) with average length of ≈ 12, 500µm is generated. This net-

work has the same average degree as the BBP circuit, but it also closely approximates

the broad distribution of degrees observed in the BBP network (see Figure 4.11A).

The morphologies of larger lengths generate more connections with a larger number of

neurons, a property that results in higher degrees. On the other hand, shorter morpholo-

gies have smaller degrees. Therefore, an increase in the variability of morphological

lengths results in a network that closely approximates the biological variance of degrees.

This network also reproduces a number of other connectivity measurements, such as

the distribution of average shortest path distances (Figure 4.11B), the distribution of

betweenness centralities (Figure 4.11C) and the distribution of intersomatic distances

between connected morphologies (not shown). However, the clustering of the DSAW

network is significantly lower (Figure 4.11D) compared to the BBP circuit, indicating
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that more complex morphologies are required for the recreation of the high clustering

that is observed in biological networks.

4.5 Conclusions

Stochastic processes that influence neuronal growth have been underestimated in

the generation of morphologically detailed computational networks, as the contribution

of randomness to biological neuronal connectivity is to a large extent unknown. In

this study, we have demonstrated that networks built from random morphologies can

reproduce a number of structural and connectivity properties of biological networks.

The most important morphological determinants for the connectivity of a network

are predicted to be the somata positions, the total branch length, the targeting of

individual morphologies, the intersection avoidance between the branches of different

morphologies and the number of trees that emanate from the root. Therefore, contrary

to common belief, stochastic components of neuronal interactions significantly affect

the generation of morphologically detailed networks and should not be ignored.

A network of directed random walks with the same total path length as a set of

biological morphologies can reproduce their number of connections in space. The

three-dimensional distribution of synapses in space, described in DeFelipe et al. (2013),

is best approximated by enforcing intersection avoidance between growing morphologies.

In addition, star-branched directional self-avoiding random walks recreate a number

of connectivity measurements, such as connectivity probability, average shortest path

distance and the degree distribution of the highly detailed computational model of BBP

(Markram et al. 2015). Interestingly, artificially generated morphologies whose initial

positions are unstructured appear to maximize the total number of connections and

the number of cells a morphology connects to, compared to the equivalent structured

initial positioning of somata.

These observations imply that there is a strong connection between the randomness

of morphologies and the observed structure in the resulting network. It is, therefore,

possible that the complicated natural mechanisms that result in the formation of

efficient brain networks take advantage of the properties of randomness to generate

efficient brain networks. An example supporting this suggestion is the formation of

spatially correlated connections in networks of directional non-intersecting random

walks, a property that is hypothesized to optimize the learning capacity of dendrites

(Poirazi and Mel 2001).
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It would be wrong to assume that biological neuronal networks are nothing more

than the result of randomness, partly because this analysis studies only the behavior

of the initial state of structural connections, and not the functional synapses of the

network. In fact, plasticity mechanisms that define which connections are activated

(Ramirez-Amaya 2007) are particularly unlikely to be reproduced by random processes,

as they are the outcome of complex learning processes that associate the connectivity

of the network to external inputs. The results of this study suggest that the brains

of rodents have a structural connectivity that is initially largely random, thereby

enabling a large number of functional connectivity patterns to be realized. Thus, we

propose a simple mechanism to incorporate stochastic processes in the generation of

morphologically detailed networks in order to reproduce a number of fundamental

principles of biological networks.
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Future directions

The purpose of this work was to study the properties of neuronal morphologies and

investigate how they contribute to the spatial structure and the connectivity of the

brain. While bringing us closer to understanding the fundamental differences between

morphologies, and how randomness and structure are combined to generate one of the

most fascinating biological systems, many questions remain unsolved. Some of these

problems could be addressed with small extensions to the techniques that have been

developed and described in this thesis, other problems are more speculative. In this

thesis I focused on the development of mathematical methods for neuroscience. Future

applications can be pursued in several directions including those outside the field of

neuroscience. First, general improvements to the TMD algorithm will benefit multiple

applications followed by new applications to neuronal axon synthesis among others.

Second, extensions to the TMD based synthesis will improve the quality of artificial

morphologies, contributing to better digital reconstructions of larger brain regions.

The TMD has been developed and applied in the field of neuron morphological analysis

and synthesis, but its general nature suggests that it will find applications in many

other fields, and will be extended in ways that have not even been described here.

General Extensions to Topological Morphology Descrip-

tor

The topological morphology descriptor (TMD) algorithm is useful for the description

and the discrimination of the branching structure of morphologies. However, it does

not encode all the information that describe the structural aspects of a neuron. Several

properties of the branching structure, such as the diameters of the branches or the
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bouton densities, are not represented in the persistence barcode based on the radial

distances of the tree’s branches from the soma. As a result, the grouping of cells based

on this barcode ignores information about the original morphology that is important

for the functional role of the cells.

In order to establish a more complete classification scheme, the extraction of the

TMD should be extended to take into account additional morphological properties

that are currently not considered, as it has been implemented for the classification

of the apical trees of pyramidal cells by accounting for the direction of the trees

in space (see Chapter 2.3). This idea can be taken a step further by combining

multiple morphometrics into a single descriptor. This could be achieved using the

newly developed tools of Multidimensional Persistence (Carlsson and Zomorodian

2009), which combine different filtration functions into a single metric.

This approach would revolutionize the way we think about neuronal trees as it

will allow us to study the correlations not only between static morphological features,

but also between the spatial and temporal properties of neurons. A concrete example

of this idea is the study of the structural properties of growing neurons during the

different stages of their morphological development, such as the datasets published

in (Goncalves et al. 2016). This application is not limited to the study of growing

neurons but could be useful for studying the morphological growth of other branching

structures, such as corals and botanic roots.

Applications of Topological Morphology Descriptor

In Chapter 2, the TMD was used for the characterization of neuronal trees. However,

there is an abundance of biological trees that can be studied with the same method.

Some biological examples include botanic trees, roots and corals. A particularly

challenging application of the TMD is the study of vascular systems. These are

networks of veins and arteries that carry blood, such as the cerebral and pulmonary

vascular systems. A topological descriptor that would distinguish healthy from diseased

vascular systems would be very useful for identification and treatment of blood flow

diseases. In order to apply the TMD algorithm to vascular systems we need to adapt

the algorithm accordingly to extract the barcode of graphs as opposed to trees.



157

Improvements of Topological Neuron Synthesis

The generation of artificial neuronal morphologies that are statistically close to a

biological population of reconstructed neurons is a challenging problem that is neverthe-

less essential for increasing the morphological variability of digital reconstructions. In

Chapter 3, I have used the TMDs of cortical neurites to generate artificial dendrites, of a

wide variety of cell types, and demonstrated that they closely match the morphometrics

and the topology of the original cells, thereby improving the quality of the synthesized

cells and increasing the limited biological variability.

The thickness of dendritic branches is an important determinant of their functionality

(Cuntz et al. 2007), as it directly impacts the density and distribution of ion channels

on their surface and consequently the way that dendrites integrate signals. In Chapter

3, I introduced a simplified algorithm to generate diameters for the branches of the

synthesized trees. This algorithm reproduces the distribution of diameters on the

biological reconstructions available from the labs. However, it does not reproduce the

branch diameters of biological cells as reconstructions are subject to often significant

diameter errors. Ideally I would like to use High-Resolution Cryo-EM data to estimate

and correct the reconstruction error in order to use more accurate thickness data on

the modeling of branch diameters.

Another important point that needs further investigation is the simulation of the

branching angles of the growing morphologies. Currently, the branching angles are

sampled using a composite method that considers the biological angles between siblings

as well as the angles between parent-children and works well for the generation of

dendritic branches. However, this method is limited by the quality of the input dataset.

A more realistic approach for the definition of branching angles would be more effective

for the generalization of the topological synthesis to a variety of different neuronal

morphologies. An example of a more sophisticated bifurcation algorithm, which is

based on self-referential forces, is proposed in Memelli at al. (2013).

The current synthesis technique increases the limited variability of the sparse

biological reconstructions of certain m-types. However, because the topological profiles

of neurons of the same m-type are similar, it is tempting to conjecture that a small

number of biological reconstructions of a cell type could suffice to synthesize a large

number of unique morphologies with similar characteristics. A stochastic algorithm

that creates unique persistence barcodes from a small number of exemplar barcodes

generated from the sparse biological reconstructions of a cell type, would significantly

increase the variability for the synthesis input. If this assumption is true, synthesis

would be essential for the generation of large numbers of unique morphologies from
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few examples of biological cells, to populate computational models that extend beyond

the scale of a few microcircuits.

Applications of Topological Neuron Synthesis

The next logical step is to use the TNS algorithm to synthesize neurons of different

brain areas and species. Preliminary results suggest that cell types with more regular

spatial conformations, such as Purkinje cells that are almost planar, require additional

constraints in order to be accurately reproduced. The invariance of the TMD to

rotations is useful for the generation of spatially symmetric trees, such as the cortical

dendrites, but is insufficient to capture the preferred orientations of more stereotypical

cell structures. It is thus, important to identify the limitations of the TNS algorithm

for different cell types and propose improvements for its generalization.

One of the most challenging problems in computational neuroscience is the genera-

tion of artificial axonal trees, and especially long range axonal projections, which are

rarely included in biological reconstructions. The generation of artificial axons is of

particular interest for the computational modeling of brain networks for a number of

reasons. First, because of their highly complex branching structures, the reconstruction

of axons requires considerable effort and time. As a result only a small number of intact

(not cut) axonal reconstructions are available. In addition, the branching structure of

axonal morphologies is an essential determinant of the functionality of a network, as it

provides the contact points between neurons and thus defines the connectivity of the

network.

The cortex is curved in shape, with curvatures ranging from place to place. In order

to synthesize axonal trees it is crucial to couple the TNS algorithm with environmental

cues derived from a curved space, a property that is not currently taken into account.

This will also contribute to the generation of artificial cells in place, that could then

directly populate curved brain regions. Therefore, the current synthesis scheme should

be extended to take into account environmental influences, such as long-range targeting

and intersection avoidance between neighboring cells (Grueber and Sagasti 2010). This

approach will also improve the generation of neurites of complex branching patterns,

such as cortical axons of both interneurons and pyramidal cells, glial cells and long

range projecting cells, such as nigrostriatal dopaminergic neurons (Matsuda et al. 2009)

and densely connected claustrum cells (Torgerson et al. 2015) and thus allow the

digital reconstruction of brain areas that extend beyond a single microcircuit.
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Extensions to random walk models for synthesis in 3d

space

The artificially generated networks (AGN) of random walks, described in Chapter

4, were developed with the intention of studying the interactions between growing

structures and identifying their impact on the resulting networks. As a result the

significance of randomness and intersection avoidance on the resulting networks have

been demonstrated. However, the growth-models that were used produced simplified

morphologies that do not correspond to the biological cells that are found in the brain.

A natural next step is to add stricter constraints on the growth-models to generate

realistic morphologies and examine the impact of specific morphological characteristics

on the resulting network. One of the most important morphological features of a neuron

is considered to be the asymmetry of a neuronal tree (Van Pelt et al. 1992), which

depends on the topology of its branching structure. With this model we can study

if symmetric trees generate different connectivity patterns compared to asymmetric

trees. Another feature that is considered to be essential for the morphology of a neuron

(Fernandez-Gonzalez et al. 2017) is the branching angles. The AGN model will allow

us to study whether branching angles have an impact on the connectivity of a network

or not.

An improvement of the growth models could be introduced by considering inter-

actions between the growing morphologies and the embedded space. For instance, a

gradient field that would guide the individual morphologies to preferred targets in

space would be a meaningful approximation for the growth of long range axons. This

way, the complex chemical and molecular guidance cues that have been ignored in

the synthesis algorithm described in Chapter 3, could be approximated. Applying

environmental constraints to the simplified structures will make the implementation

of more complex interactions feasible in order to evaluate their impact on artificially

generated networks.

Apart from the effect of environmental cues on the growth of morphologies, the

interactions between morphologies is one of the most interesting problems that can be

studied with this model. As illustrated in Chapter 4, intersections between morphologies

have a significant impact on the spatial distribution of synapses, and therefore should be

removed from a digital reconstruction in order to accurately approximate the biological

properties of brain networks. However, the elimination of the intersections at the final

stage of the digital reconstruction, i.e., when all full-grown morphologies are placed in

space, is computationally intractable. As a result, the optimal strategy would be to
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synthesize all neurons simultaneously in space. However, this approach will require the

modeling of more complex forces, such as attraction and repulsion, between the growing

morphologies. Different types of interaction could be studied with the model proposed

in Chapter 4, in order to identify their limitations and their impact on artificially

generated networks.
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Appendix A

SI: A topological representation of

branching neuronal morphologies

Morphological clustering

Traditionally, the different morphological shapes of neurons have been qualitatively

described based on visual inspection and quantitatively described based on morphome-

tric parameters. Feature extraction results in significant loss of information, as the

dimensionality of the data is significantly reduced. As a result, a limited set of selected

features is not sufficient to capture the full complexity of the neuronal shapes. On the

other hand, a large number of features will result in overfitting, since the correlated

features are accounted for multiple times. In fact, the feature-based classification of

neuronal trees strongly depends on the set of morphometrics that are used as input.

Alternative sets of morphometrics result in different classifications (DeFelipe et al.

2013) for the same set of cells.

In this section we illustrate the problems of this method with a simple example. In

Fig 2.5 we present the results of the feature classification for a set of neuronal trees

that belong in three distinct groups (axons, basal and apical dendrites). The data used

for this grouping are given in Tables A.1, A.2, A.3. The visual separation of the trees

into three groups is presented in Fig A.1A. Even though two of the most important

anatomical features, i.e., the total length and the total number of branches of the

tree, are used, the resulting clustering does not correspond to the biological grouping

(colormap in Fig A.1).
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Table A.1 Morphological features (Number of branches, Total length) extracted from the trees (axons,
apicals, basals) presented in Fig A.1A.

Tree ID Num branches Total length(um)
Axon 1 57 3684.24
Axon 2 55 3642.24
Axon 3 39 2750.47
Axon 4 23 1614.04
Apical 1 57 3603.75
Apical 2 37 2776.20
Apical 3 39 2692.38
Apical 4 23 1526.87
Basal 1 41 3017.89
Basal 2 24 1611.49
Basal 3 23 1539.61
Basal 4 23 1615.44

Table A.2 Morphological features (Max branch angles, Max radial distances) extracted from the trees
(axons, apicals, basals) presented in Fig A.1B.

Tree ID Max branch angles Max radial distances
Axon 1 2.99 316.97
Axon 2 2.28 428.41
Axon 3 2.90 587.82
Axon 4 2.41 543.14
Apical 1 2.08 448.66
Apical 2 2.17 639.10
Apical 3 2.24 337.68
Apical 4 2.27 202.35
Basal 1 2.27 463.33
Basal 2 2.09 205.11
Basal 3 2.14 168.58
Basal 4 2.49 216.26

that the feature based classification of neuronal trees is very sensitive to the selected

features. As a result, a feature based classification is not reliable, as the appropriate

feature set cannot be generalized across different groups.
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Demonstration of the TMD algorithm

The idea of the TMD algorithm is presented in Figs A.3A. The input of the TMD

algorithm is a rooted tree with a function f defined on the set of nodes. In this example,

the function f is the radial distance. The root, denoted by R, is shown in red, while

the other nodes of the tree are labeled a − i. Note that the set of nodes consists of the

branch points and the leaves. During the initialization of the algorithm, the leaves

(a, c, e, g, h) are inserted into the list of active nodes, A. The algorithm then iterates

over the members of A. The order of this process is not significant. Recall that the

function v assigns to a node n of the tree the largest value of the function f on the

leaves of the subtree with root at n (see Methods).
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Fig. A.3 Demonstration of the TMD algorithm: A simple embedded rooted tree (A) is transformed
with the TMD algorithm into the corresponding persistence barcode (B) and the equivalent persistence
diagram (C). The root (R) is colored red, while the branch points and leaves are shown in green. The
edges connecting corresponding pairs of points are presented by straight lines. The dashed circles
are provided as a guide to the eye to indicate different levels of radial distances. The correspondence
between the tree (A) and its extracted barcode (B) and its diagram (C) is given by the notation
of the same nodes in both figures. Each bar in (B) represents the lifetime of a component. The
positions of x-axis correspond to the circles in (A) while y-axis represents individual components,
ordered according to their length. In (C) each point represents the birth and death time of a branch
component in A.
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The algorithm assigns the values of v on the leaves: v(a) = f (a) = 1, v(c) = f (c) =

3, v(e) = f (e) = 4, v(g) = f (g) = 5, v(h) = f (h) = 6. Consider the node a as the

first element of the list A. The parent of a is b and its only other child is c. Since

both a and c are in A, the algorithm orders the siblings according to the values of

function v. The older sibling is c and therefore v(b) = v(c) = 3. The interval [1, 2] is

added to the persistence barcode (Fig A.3B) TMD(T, f ) representing the lifetime of

the node a. This interval is equivalently represented as a point ab on the persistence

diagram (Fig A.3C). Nodes a and c are removed from A, and b is added to A. The

next vertex in the list A is e. The algorithm finds its parent, d, but this node is not

processed further at this stage, since j, the sibling of d, is not in A. The next node

to be processed is g. Both children g and h of j are in A. The oldest child is h and

therefore v( j) = v(h) = 6. The interval [5, 4], representing the lifetime of node g, is

added to TMD(T, f ). The node j is added to A, and both g and h are removed from A.

The list of alive components then consists of b, e, j. The node b cannot be processed

since its sibling d is not in A. The next node to be processed is therefore e, whose

parent d has all of its children in A. In this case, the node with highest value of v is j,

and therefore v(d) = v( j) = 6. The interval [4, 3] is added to TMD(T, f ). Then nodes e

and j are removed from A, and d is added to A. The next node in A is b, whose parent

is i. Since both children of i are now in A, the algorithm finds the older sibling, d and

assigns v(i) = v(d) = 6. The interval [3, 1] is added to TMD(T, f ) and d, b are removed

from A, while i is added to A. The only alive node is now i whose parent is the root

R. The algorithm computes v(R) = v(i) = 6, i is removed from A and R is added in A.

Since only the root R is alive, the while loop in the algorithm terminates. The last

step adds the interval [6, 0] to TMD(T, f ), which represents the largest component of

the tree.

Using alternative functions for the TMD algorithm

In the previous section, we applied the TMD algorithm with the radial distance as the

filtration function f . Any alternative function f can be used, such as the path distance

from the root, which should serve to reveal shape characteristics that are independent of

the radial distance and thus not captured by this approach. The constraint of rotational

invariance could also be relaxed by projecting the radial distance to a selected axis, to

map the spherical filtration into an ellipsoidal one, in order to study the relation of a

tree’s spatial density to its embedding space.
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Depending on the classification problem, alternative morphometrics could be more

appropriate for the separation of trees in classes. For instance, the path distance

Fig A.4A would be more appropriate to capture the differences between tortuous and

straight trees, while the projected radial distance Fig A.4C can discriminate trees with

different spatial distribution of branches. In Fig A.4 we present four variations of the

TMD using different morphometrics (radial distance from the soma (A), path distance

from the soma (B), projected to the axis towards the pia radial distance (C), branch

orders). Each morphometric captures different properties of the branching structure.

Those and other morphometrics could be combined in a multidimensional persistence

diagram for the better discrimination of trees.
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Fig. A.4 Demonstration of TMD algorithm for different morphological features. A. Radial distance
from the soma. B. Path distance from the soma. C. Projected radial distance from the soma to the
axis normal to the pia; this measurement can discriminate trees with different spatial distributions.
D. Branch order; this measurement does not take into account the embedding in space, only the
combinatorial branching patterns of the tree. Note the similarity among the three first morphometrics.
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Definition of distances

In order to establish the comparison with the current literature we need to define a

notion of distance between trees equipped with a real-valued function on their nodes,

as well as a notion of distance between persistence diagrams.

Distances between persistence diagrams

Below we recall various representations of persistence diagrams and some notions of

distance between them. We also provide a reference to software that computes the

distances considered, when available. All of the metrics summarized below can be

applied directly to the output of the TMD algorithm.

The most classical distances used in topological data analysis are the bottleneck and

Wasserstein distances. Given a persistence diagram D, the points in the diagonal are

“virtual” points, which have birth time equal to their death time. Therefore, we assume

without loss of generality that a persistence diagram contain points in the diagonal

with infinite multiplicity. Given two persistence diagrams D1 and D2, we construct a

matching (i.e., a bijection) φ : D1 → D2 and define two numbers

Bφ = sup
x∈D1

d(x, φ(x))

and

W
p

φ
= (
∑

x∈D1

d(x, φ(x))p)
1

p ,

where d is the standard Euclidean distance in R2. Note that Bφ is simply the longest

distance that φ shifts a point in D1, while (W
p

φ
)p is a sum of p-th powers of lengths of

the line segments joining x and φ(x), for all x. The infimum of Bφ over all possible

matchings is the bottleneck distance between D1 and D2. The infimum of W
p

φ
over

all possible matchings is the p−Wasserstein distance between D1 and D2. Given

two persistence diagrams D1 and D2, their bottleneck distance will be denoted by

dB (D1, D2) and their p−Wasserstein distance by Wp(D1, D2). One implementation of

these distances is given in Morozov (2016)and a faster approximation in Kerber et al.

(2016).

A persistence diagram can also be represented by a persistence landscape, i.e.,

a piecewise linear function L : R × N → R. Given two persistence landscapes, we
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can compute the distance between them in Lp space (Bubenik et al. 2015). The

implementation is described in Dłotko et al. (2015).

One can also encode persistence diagrams by unweighted persistence images as

described in the main text. The idea is to apply a smoothing function, i.e., a Gaussian

kernel, at every point of the diagram and then to discretize the distribution obtained

into a pixel-based image. It is then straightforward to compute a distance between

two unweighted persistence images, using common image-recognition techniques. A

simplified version of this representation is used in the classification of morphological

types of neurons in the experimental section of this paper. We are not aware of a

publicly available implementation of this approach. An implementation is provided

with the software of this paper.

Distances between trees

A classic metric to compare trees, the edit distance (Bille 2005), is based on the

transformation of one tree T1 into another T2 by a sequence of operations (deletion

and insertion of vertices), each of which has a non-negative cost. The edit distance

(Bille 2005) between T1 and T2 is defined to be the infimum of the total cost of all

possible transformations from T1 to T2. However, the edit distance is not relevant to

our problem, since it does not involve geometric information about the tree structure

and is known to be NP-complete (Shapira et al. 2011).

An important notion of distance is the one between merge trees as defined in

(Beketayev et al. 2014) and (Morozov et al. 2013). This distance is applied to merge

trees of sublevel sets of functions. For a function f : X → R, where X is a metric space,

the sublevel set at level a ∈ R is {x ∈ X | f (x) ≤ a}. The differences captured by merge

trees are considerably more subtle than the differences captured by the persistent

homology of the function’s sublevel sets. The authors of (Beketayev et al. 2014) and

(Morozov et al. 2013) provide examples of pairs of simple merge trees T and T ′ that

have the same persistence diagrams, but that are a nonzero distance apart. It is clear

that in this particular case, the TMD would provide the persistent homology of the

sublevel sets of the function. Therefore, by rescaling T and T ′, the difference between

the distances used in those papers and the distances used in the current paper can get

arbitrarily large.

Another relevant metric is the persistence distortion distance (Dey et al. 2015)

between two graphs G1 and G2. To compute this distance one must calculate the

shortest path distance from a fixed point to any other point in the tree for all v1 ∈ G1,

denoted P(G1, v1), and all v2 ∈ G2, denoted P(G2, v2). Given the shortest paths,
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the persistence distortion is defined as the minimal bottleneck distance between

the persistence diagrams in dimension zero of the superlevel sets of the distance

functions P(G1, v1) and P(G2, v2). The persistence diagrams obtained in the process

are conceptually very close to the diagrams we get from the TMD algorithm. In

our case, we obtain a significant computational advantage from working with rooted

trees, since there is always a unique path between every pair of vertices. Moreover a

reasonable choice of initial vertices v1 and v2 from which to compute shortest paths is

to take the root of the trees considered, given that this is the computational center

of the neuron. In this case, the persistence diagram arising when computing the

persistence distortion distance is the one we would get from the TMD algorithm when

the function f is the path distance from the root. The computational cost of the

distortion distance is considerable in the general case, but linear in our case. However,

since the persistence distortion distance is based on the bottleneck distance, it suffers

from that metric’s limitations, i.e., the shortest components, which are important

for the neuronal morphologies, are not taken into account. The code to compute

persistence distortion distance is available here (Dey and Shi 2016).

Distances between neurons

Strahler ordering (Strahler et al. 1952 , Ledderose et al. 2014), a metric introduced

for the study of a river’s branching patterns, assigns a number to each branch of

the tree, starting from the terminal branches (order 1) and increasing the ordering

when branches of the same order merge. Strahler ordering analysis is similar to the

TMD-algorithm because it starts from the terminal branches of the tree and proceeds

from the outer branches towards the root. However, since the embedding of the tree

is not considered, branches of different lengths are treated equally and their spatial

distribution cannot be studied. The advantage of Strahler ordering is that the overall

branching topology of the tree is captured in a single value and hence the comparison

between trees is straightforward. However, depending on the branching structure,

very complicated neuronal trees can be assigned low Strahler orders (for example a

Hippocampus pyramidal cell can be of Strahler order 4, (see Ledderose et al. 2014,

Figure 3) so they are inseparable from simpler structures. This is once again due to

the significant information loss of this analysis.

Sholl analysis (Sholl 1953) is a typical measurement used to study neuronal mor-

phologies. It counts the number of segments that intersect with a set of equidistant

spheres {S0, S1, S2, ..., Ss} of increasing diameters {0, sd, 2sd, ...}. Because of the high

frequency of local fluctuations, the choice of the diameter step sd has a significant
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impact on the result of this analysis. While the Sholl analysis counts the number of

components at each level, the persistence diagram of a tree T tracks the evolution of

those components in space. As a result, the persistence diagram of a tree contains

strictly more information than the Sholl analysis. In fact, the Sholl analysis can be

retrieved from the TMD of a tree using a discretized version of distance dBar , which

is defined in Methods. Similarly to the Sholl analysis the dBar distance encodes the

number of components of the tree for a set of spheres of increasing diameters with a

few significant differences. First, dBar does not depend on a choice of diameter step, so

it is not subject to local fluctuations. In addition, the distance dBar counts the number

of intersections of the branches of a tree with a sphere, as opposed to the segments that

are counted in Sholl analysis. As a result, this distance is equivalent to a continuous

version of Sholl analysis that processes the branches of the tree. This distance collapses

the barcode structure into one dimension which results in significant information loss.

As a result, it is not appropriate to distinguish subtypes of trees that express similar

branching structures, such as subtypes of pyramidal cells (Fig 2.9).

A novel metric that is useful for distinguishing neuronal trees was proposed in (Wan

at al. 2015). Blastneuron focuses on the comparison of neurons based on the alignment

of the branches by topology and path shapes after first defining similar neurons on

the basis of their morphometrics. A set of morphological features is extracted from

the trees, and the initial estimation of the distance between them is defined by the

distance between the extracted features. An alignment algorithm is then applied to

pairs of trees in order to identify local similarities. The local alignment requires the

comparison of all pairs of branches, making the computation very expensive. This

method is designed for the efficient matching of trees with highly similar structures,

but the high variability within the groups of rat cortical neurons does not allow similar

trees to be grouped together by local alignment, since local structures are often altered,

depending on the location of the cells in the tissue.

The most recent advance in the field was made by sequence representation (Gillette

et al. 2015), an original encoding of trees as sequences of characters ‘ACT’ representing

the local topology. Bifurcations are encoded on the basis of whether their children

branch or terminate. Arborizing bifurcations (in which both child branches bifurcate)

are encoded with the letter ‘A’, bifurcations with one bifurcating child and one

terminating are encoded as ‘C’ and terminating bifurcations (with two terminating

children) as ‘T’. This method enables us to align different trees via Sequence-based

Tree Alignment, which can be used for the assignment of a similarity score between

trees, using cluster analysis. Furthermore, this method is useful for the generation of a
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consensus representation (Gillette et al. 2015) from a group of neurons that reveals the

conserved structural properties of the corresponding trees. This technique is the closest

existing method to the proposed TMD, since it reveals the topological properties that

are persistent throughout a group of trees. However, the TMD takes into account

the embedding of the tree in space preserving the relation between the short and

long components of the tree. Furthermore, the TMD algorithm has a computational

advantage over the highly computationally demanding sequence alignment techniques.

Stability of TMD

Let T denote a finite rooted tree with vertex set N containing a distinguished root

R, which endows each edge of T with a natural orientation away from the R. Let

f : N → R be any function satisfying f (n) > f (R) for all n , R in N , i.e., f takes its

lowest value at the root R. A pair (T, f ), where T is a rooted tree (not assumed to be

embedded in any ambient space) and f is a function satisfying the condition above, is

referred to as a TMD-pair.

In this section we prove that the T MD algorithm that associates with a TMD-pair

(T, f ) a persistence diagram TMD(T, f ) is robust under the type of perturbations of

the tree T and the function f that are most likely to arise in the reconstruction process,

i.e., the transformation of a physical tree-like object, such as a neuron, into input data

for the TMD algorithm. We consider two types of reconstruction errors:

E1. error in measuring the exact placement of a node, and

E2. omission or addition of a small branch.

Errors of type E2 may have the effect of changing the tree considered, which implies

that the function f defined on its nodes takes on new values or loses a few of its

previous values. Errors of type E1 may affect the values of the function f on the nodes

of the tree, though the abstract graph underlying the tree remains the same.

We now define four types of perturbations of TMD-pairs that will be considered

admissible for our purposes. If T is a tree, then by “adding a branch" to T , we mean

attaching a new branch to any node of T or adding a node to the interior of an existing

branch of T and attaching a new branch to that node.

Definition 1 Fix a TMD-pair (T, f ) and a real number ǫ > 0. An elementary ǫ-

perturbation of (T, f ) is a TMD-pair (T ′, f ′) obtained from (T, f ) by one of the following

operations.
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T1. T = T ′, f (R) = f ′(R), and for all n , R, | f ′(n) − f (n) | < ǫ.

T2. T ′ is obtained from T by adding a branch at a node n of T , f ′(n) = f (n), and

| f ′(n′) − f (n) | < ǫ, where n′ is the added leaf (univalent node). The restriction

of f ′ to the nodes of T is equal to f .

T3. T ′ is obtained from T by adding an internal node n′ on an existing edge in

T , with incident nodes u and v, and a branch at n′ with leaf n′′, such that

| f ′(n′)− f ′(n′′) | < ǫ , while f ′(n′) lies between f (u) and f (v), or | f ′(n′)− f (u) | < ǫ ,
or | f ′(n′) − f (v) | < ǫ. The restriction of f ′ to the nodes of T is equal to f .

T4. T ′ is obtained from T by removing a branch with incident nodes n′, n′′, where n′′

is a leaf, such that | f (n′) − f (n′′) | < ǫ . The function f ′ is the restriction of f to

T ′.

A TMD-pair (T ′, f ′) is said to be an ǫ-perturbation of (T, f ) if (T ′, f ′) is obtained

from (T, f ) by

i) performing operations of type T1 on a subset of the set of nodes of T , and then

ii) performing a finite number of operations of types T2, T3, and T4 on the resulting

tree, such that every branch that is present in T ′ but not in T is a leaf, and the

following condition holds.

– If nodes {vi}ti=1 are added via operations of type T3 to a branch in T with

incident nodes u and v, then the deviation from linear order of the values

f ′(vi) according to the position of the vi on the branch is smaller than ǫ for

every pair of adjacent nodes.

Let Pǫ (T, f ) = {(T ′, f ′) | (T ′, f ′) is an ǫ-perturbation of (T, f )}

Example 1 Let T be a rooted tree embedded in R3, and let f be the real-valued function

that assigns to a node n in T its Euclidean distance to the root R. An elementary ǫ-

perturbation of type T1 corresponds to moving nodes in space by at most ǫ . Elementary

perturbations of types T2, T3 and T4 correspond to removing branches from or adding

branches to T , such that the distance between their nodes is at most ǫ. At the end of

this section we observe that in fact any TMD-pair can be thought of as arising in this

way.

The following definition is standard in the literature.
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Definition 2 Let T be a rooted tree with root R. The depth of a node n in T is the

number of edges in the unique path connecting n to R. The depth of a tree T is the

maximum depth of a node in T .

A tree of depth 1 is said to be a corolla. Let T be a corolla with root R and leaves

l1, . . . lm. Let mi denote the multiplicity of the value f (li), for 1 ≤ i ≤ k, where l1, ..lk

are the leaves on the function f assumes distinct values. The persistence diagram

associated to (T, f ) through the TMD algorithm has the form

T MD(T, f ) =
{

(

f (li), f (R)
)mi | 1 ≤ i ≤ k

}

∪ D,

where (x, y) j denotes the point (x, y) with multiplicity j, and D is the diagonal. If

the values of function f are non-negative, then it suffices to consider D as the first

quadrant diagonal.
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Let T be any tree of depth h and root R. For a node n ∈ T , recall that Tn denotes

the subtree of T starting at n, considered as a rooted tree with root n. In particular

TR = T and for any n , R, Tn is a tree of depth strictly less than h.

Let n1, . . . nm be the nodes in T of depth 1 (i.e., the children of R). For every i, let

bi = max{x | (x, y) ∈ T MD(Tni, f )}

(i.e., bi is the largest value of f on a node of Tni). Then for each i the point

(bi, f (ni)) is in the persistence diagram TMD(Tni, f ), and one easily observes that

T MD(T, f ) =
{

(bi, f (R)) | 1 ≤ i ≤ m
} ⊔

m
∐

i=1

T MD(Tni, f ) \ {(bi, f (ni)) | 1 ≤ i ≤ m
}

We can now establish the stability of the TMD algorithm with respect to bottleneck

distance under ǫ-perturbations of TMD-pairs.

Theorem 1 Let (T, f ) be a TMD-pair, and let ǫ > 0. If (T ′, f ′) is an ǫ-perturbation

of (T, f ), then

dB

(

T MD(T, f ),T MD(T ′, f ′)
) ≤ 3ǫ .

Proof 1 The proof proceeds by induction on the depth of T , separating the cases in

which T ′ is obtained from T through operations of type T1, T2, or T3. Since any set

of operations of type T4 reverses a corresponding set of operations of types T2 and

T3, and since bottleneck distance is a metric (and hence symmetric), the effect of

perturbations of type T4 will be discussed only briefly.

Perturbations of type T1.

If (T ′, f ′) is a TMD-pair obtained from (T, f ) by perturbations of type T1, then

the depth of T is equal to the depth of T ′. For every node n in T , we denote by n′

the corresponding node in T ′. To compute an upper bound on the bottleneck distance

between TMD(T, f ) and TMD(T ′, f ′), we construct a specific type of matching between

their persistence diagrams. Recall that

T MD(T, f ) =
{(

bi, f (R)
) | 1 ≤ i ≤ m

} ⊔
m
∐

i=1

T MD(Tni, f ) \ {(bi, f (ni)
) | 1 ≤ i ≤ m

}
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and

T MD(T ′, f ′) =
{(

b′i, f ′(R′)
) | 1 ≤ i ≤ m

} ⊔
m
∐

i=1

T MD(T ′
n′
i
, f ′) \ {(b′i, f ′(n′i )

) | 1 ≤ i ≤ m
}

We show by induction on the depth of T that there exists a matching between

TMD(T, f ) and TMD(T ′, f ′) such that
(

bi, f (R)
)

is matched with
(

b′
i
, f ′(R′)

)

for every

i and such that the L∞-distance between each pair of matched points is less than ǫ,

from which we deduce that the bottleneck distance bewteen TMD(T, f ) and TMD(T ′, f ′)

is also less than ǫ .

For the base step of the induction we consider a corolla T , with root R and leaves

l1, . . . , lm, whence T ′ is also a corolla with root R′ and leaves l′
1
, . . . , l′m. It follows that

T MD(T, f ) =
{

(

ui, f (R)
)mi | 1 ≤ i ≤ k

}

∪ D,

and

T MD(T ′, f ′) =
{

(

u′i, f ′(R′)
)m′

i | 1 ≤ i ≤ k′
}

∪ D,

where {ui | 1 ≤ i ≤ k} is the set of values of f on the nodes of T (other than the root

R), and mi is the multiplicity of ui, for 1 ≤ i ≤ k, while {u′
i
| 1 ≤ i ≤ k′} is the set of

values of f ′ on the nodes of T ′ (other than the root R′), and m′
i
denotes the multiplicity

of the value u′
i
, for 1 ≤ i ≤ k′.

Condition T1 implies that | f (li)− f ′(l′
i
) | < ǫ for all 1 ≤ i ≤ m and | f (R)− f ′(R′) | < ǫ

and thus the L∞-distance between the points
(

f (li), f (R)
)

and
(

f ′(l′
i
), f ′(R′)

)

is less

than ǫ. Matching
(

f (li), f (R)
)

with
(

f (l′
i
), f ′(R′)

)

for every 1 ≤ i ≤ m, we see that ǫ

is an upper bound on the bottleneck distance between TMD(T, f ) and TMD(T ′, f ′) in

this case, i.e.,

dB

(

T MD(T, f ),T MD(T ′, f ′)
)

< ǫ.

The constructed matching is of the desired type.

Suppose now that the inductive hypothesis holds for all TMD-pairs (T, f ), where

T is a tree of depth less than h, and all (T ′, f ′) ∈ Pǫ (T, f ) obtained by perturbations
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of type T1. Let (T, f ) be a TMD-pair where T is a tree of depth h. Assume that

(T ′, f ′) ∈ Pǫ (T, f ) is obtained by perturbations of type T1 from (T, f ).

For each 1 ≤ i ≤ m, let

C =
{(

bi, f (R)
) | 1 ≤ i ≤ m

}

,

C′ =
{(

b′i, f ′(R′)
) | 1 ≤ i ≤ m

}

,

Di = T MD(Tni, f ) \ {(bi, f (ni)
)}

, and

D′i = T MD(T ′
n′
i
, f ′) \ {(b′i, f ′(n′i )

)}

.

Matchings between Di and D′
i
for every i and a matching between C ∪D and C′∪D

together give rise to a matching between TMD(T, f ) and TMD(T ′, f ′), from which we

can compute an upper bound on dB

(

T MD(T, f ),T MD(T ′, f ′)
)

.

Since (T ′
n′
i

, f ′) is an ǫ-perturbation of (Tni, f ) of type T1 for all i, and each Ti is of

depth less than h, the inductive hypothesis implies that for all i, there is a matching

between TMD(Tni, f ) and TMD(T ′
n′
i

, f ′) such that
(

bi, f (ni)
)

is matched with
(

b′
i
, f ′(n′

i
)
)

and such that the L∞-distance between each pair of matched points is less than ǫ. By

removing the matched pairs of points
(

bi, f (ni)
)

and
(

b′
i
, f ′(n′

i
)
)

, we obtain a matching

between Di and D′
i
such that the L∞-distance between every pair of matched points is

less than ǫ . Moreover, the argument for the corolla case shows that there is a matching

between C ∪ D and C′ ∪ D that matches
(

bi, f (R)
)

with
(

b′
i
, f ′(R′)

)

for every i and

such that the L∞-distance between every pair of matched points is less than ǫ. The

union of these two matchings gives rise to the desired matching between TMD(T, f )

and TMD(T ′, f ′) that satisfies the inductive hypothesis. In particular,

dB

(

T MD(T, f ),T MD(T ′, f ′)
) ≤ max

(

{

dB

(

Di, D
′
i

) | 1 ≤ i ≤ m
} ∪ {dB (C,C′)}

)

< ǫ.

Perturbations of type T2.

Let (T ′, f ′) ∈ Pǫ (T, f ) be a TMD-pair obtained from (T, f ) by perturbations of type

T2. To set our notation, let {ni}mi=1 denote the set of all nodes in T different from the

root R. Let {ni}ri=1 (r ≤ m) denote the nodes where new branches were added. For each

1 ≤ i ≤ r, let {ui,k }qik=1
denote the new nodes resulting from adding new branches at the

node ni. Finally let, {zs}ns=1 denote the nodes added to T ′ as a result of adding branches

at the root R. Thus the nodes in T ′ are
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{R, n1, . . . , nr, nr+1, . . . , nm} ∪ {ui,k | 1 ≤ k ≤ qi, 1 ≤ i ≤ r } ∪ {zs | 1 ≤ s ≤ n}.

With this notation, Condition T2 ensures that f (R) = f ′(R), and

• for all 1 ≤ i ≤ m, f ′(ni) = f (ni), and for all 1 ≤ i ≤ r and 1 ≤ k ≤ qi,

| f ′(ui,k ) − f ′(ni) | < ǫ, and

• for all 1 ≤ s ≤ n, | f ′(R) − f ′(zs) | < ǫ.

As in the previous case, the proof is carried out by induction: we prove the statement

first in the case where T is a corolla, and then move on to the general case.

Assume T is a corolla. The persistence diagram for (T, f ) has the form:

T MD(T, f ) =

m
∐

i=1

( f (ni), f (R)) ∪ D,

where D is the diagonal. On the other hand, the persistence diagram for (T ′, f ′) has

the form:

T MD(T ′, f ′) =
m
∐

i=r+1

(

f ′(ni), f ′(R)
)

⊔

r
∐

i=1

(

f ′(ui,ki ), f ′(R)
)

⊔ L ⊔
n
∐

s=1

(

f ′(zs), f ′(R)
)

∪ D,

where for each 1 ≤ i ≤ r, ui,ki is a node on which f ′ obtains a maximal value among

all nodes {ui,k }qik=1
, and L is a collection of points of the form (ni, ui, j ) for those j , ki

such that f ′(ni) > f ′(ui, j ), and (ui, j, ni) for j , ki such that f ′(ni) < f ′(ui, j ). There is

an obvious matching between the sets

∐m
i=1( f (ni), f (R)) in TMD(T, f ) and

∐m
i=r+1

(

f ′(ni), f ′(R)
)

⊔∐r
i=1

(

f ′(ui,ki ), f ′(R)
)

in TMD(T ′, f ′),
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and the distance between any pair in this matching is bounded above by ǫ by

Condition T2. All other points are at L∞-distance at most ǫ from the diagonal. Hence

matching those points to the diagonal gives an upper bound of ǫ on the bottleneck

distance in this case.

For the induction step, let T be a tree of depth h with root R, where the nodes of

depth 1 are denoted l1, . . . , lm. For each 1 ≤ i ≤ m, let Tli denote the subtree of T with

root li. Let xi = argmax f
Tli

for each i. Let T MD0(Tli, f ) denote the sub-diagram of

TMD(Tli, f ) consisting of all points except the unique one with f (li) as its y-coordinate.

The persistence diagram for T is of the form

T MD(T, f ) =

m
∐

i=1

T MD0(Tli, f ) ⊔
m
∐

i=1

(

f (xi), f (R)
) ∪ D.

Let T ′ be a rooted tree obtained from T with operations of type T2. For each i, let

T ′
li

denote the subtree of T ′ with root li. As above,

T MD(T ′, f ′) =
m
∐

i=1

T MD0(T ′li, f ′) ⊔
m
∐

i=1

(

f ′(yi), f ′(R)
)⊔

n
∐

s=1

(

f ′(zs), f ′(R)
) ∪ D,

where yi = argmax( f ′)
T ′
li

for each 1 ≤ i ≤ m.

Notice that if D1, D
′
1
, D2, D

′
2

are persistence diagrams such that dB (Di, D
′
i
) ≤ δ for

some δ > 0 and for i = 1, 2, then dB (D1 ⊔ D2, D
′
1
⊔ D′

2
) ≤ δ. This observation and the

induction hypothesis together show that

dB (

m
∐

i=1

T MD0(Tli, f ),

m
∐

i=1

T MD0(T ′li, f ′)) ≤ ǫ .
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Clearly, yi − xi ≤ ǫ for each 1 ≤ i ≤ m. Thus it follows that matching the points

(xi, f (R)) and (yi, f ′(R)) for each 1 ≤ i ≤ m does not increase the distance between the

corresponding sub-diagrams. Finally notice that each point of the form ( f ′(zs), f ′(R))

is of L∞-distance at most ǫ from the diagonal. Putting these observations together we

conclude that

dB (T MD(T, f ),T MD(T ′, f ′)) ≤ ǫ,

as claimed.

Perturbations of type T3.

Let (T ′, f ′) ∈ Pǫ (T, f ) be a TMD-pair obtained from (T, f ) by perturbations of type

T3. To set our notation for this case, let {v j }tj=1 denote the new (internal) nodes added

to T , i.e., the v j are the nodes in T ′ where a branching point occurs that is not present

in T . For each 1 ≤ j ≤ t, let {w j,l }
pj

l=1
denote the new nodes resulting from adding

branches at v j .

Condition T3 ensures that f (R) = f ′(R) and that the following statements hold.

• For all 1 ≤ j ≤ t, f ′(v j ) is either an intermediate value between the values of f

on the nodes incident to the edge along which v j was added, or f ′(v j ) is no more

than ǫ away from the value of f on at least one of those nodes.

• For all 1 ≤ j ≤ t, and all 1 ≤ l ≤ p j , | f ′(w j,l ) − f ′(v j ) | < ǫ.

Notice also that the values of f ′ on new nodes added on a single branch in T satisfy

the extra linear ordering condition in Definition 1.

Once more, we start by assuming T is a corolla. As before, in this case,

T MD(T, f ) =

m
∐

i=1

( f (ni), f (R)) ∪ D,

where D is the diagonal. For each 1 ≤ i ≤ m, let ei denote the i-th branch in T , and

let e′
i
denote the branch of T ′ corresponding to ei. It follows that e′

i
either is identical

to ei or contains one or more new branching points. Notice that TMD(T, f ) =
∐m

i=1

TMD(ei, f |ei ) ∪ D, and similarly that TMD(T ′, f ′) =
∐m

i=1 TMD(e′
i
, f |e′

i
) ∪ D. Hence it

suffices to prove the claim for m = 1, i.e., when T is a corolla with exactly one leaf.
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Let T consist of the root R and a node n with a single edge between them. Let {v j }tj=1
denote the internal nodes added in T ′, and let {w j,l }

pj

l=1
denote the leaves added at v j .

For nodes v j such that f ′(v j ) is not intermediate between f (n) and f (R), condition T3

guarantees that the value of f ′ on those nodes and their branches is at most 2ǫ away

from f (n). Indeed, notice first that f ′(v j ) cannot be smaller than f (R), by hypothesis.

Hence the only way for f ′(v j ) not to be intermediate is to have f ′(v j ) > f (n). If this is

the case, then | f ′(w j,l ) − f (n) | < 2ǫ . On the other hand, for nodes v j such that f ′(v j )

is an intermediate value between f (n) and f (R), the contribution of an added leaf

with end node w j,l to TMD(T ′, f ′) is easily seen to be L∞-distance at most ǫ from the

diagonal. Thus, let u be a node in T ′ such that f ′(u) is maximal (possibly u = n). Then

the point ( f ′(u), f ′(R)) can be matched with ( f (n), f (R)). It is now easy to observe that

all remaining points in TMD(T ′, f ′) are of L∞-distance at most ǫ from the diagonal,

and hence can be matched with diagonal points, so that the claim for the corolla follows.

The induction step now follows very similarly to the case of perturbations of type

T2. Hence in this case we obtain once more

dB (T MD(T, f ),T MD(T ′, f ′)) < 2ǫ .

Perturbations of type T4.

Let (T ′, f ′) ∈ Pǫ (T, f ) be a TMD-pair obtained from (T, f ) by perturbations of type

T4. Reversing the roles, (T, f ) is a TMD-pair obtained from (T ′, f ′) by perturbations

of type T2 and T3. Hence by the discussion of perturbations of these types

dB (T MD(T, f ),T MD(T ′, f ′)) < 2ǫ .

Conclusion.

We are now ready to complete the proof of the theorem. Notice that perturbations of

types T2, T3, and T4 can be performed on a TMD-pair (T, f ) simultaneously without

any complications. Hence if (T ′, f ′) is a TMD-pair that results from (T, f ) by applying

these operations, then the bottleneck distance between the corresponding persistence

diagrams is bounded above by 2ǫ . Adding perturbations of type T1 and using the triangle

inequality for bottleneck distance, we conclude that

dB (T MD(T, f ),T MD(T ′, f ′)) ≤ 3ǫ

for all (T ′, f ′) ∈ Pǫ (T, f ).
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Note that errors in the connectivity of the tree are not considered. When the

connectivity is modified, the new tree T∗ will have a different topology. Therefore it is

not possible to ensure that T and T∗ will be ǫ-close and as a consequence T MD(T ) and

T MD(T∗) are not restricted to be ǫ-close.

A geometric interpretation.

We finish the section by observing that Example 1 is generic, in the sense that

every TMD-pair (T, f ) can be thought of as a rooted tree embedded in R3, with f the

function given by radial distance from the root. Indeed, since we assume that f (R)

is the absolute minimal value of f on the nodes of T , there is no loss of generality in

assuming that f (R) = 0. Since the set of nodes of the T is finite, the function f takes

on finitely many values 0 < a1 < · · · < ar . Identify R with the origin in R3, and embed

the set f −1(ai) into the sphere of radius ai about the origin for each i. Connect by a

straight line each pair of points corresponding to nodes in T that are connected by an

edge. Compactness of a finite union of line segments allows the transformation of this

into an embedding by small perturbations, without moving points off of the sphere of

radius ai. The function f is now given by radial distance from the origin.
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Random trees

Random tree generation
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Fig. A.6 Random tree generation. Definition of growth parameters of artificial random trees: each
tree is a perfect binary tree, which consists of branch points and leaves. A random walk defines the
edges that connect pairs of points on the tree. The order of a branch is defined as the number of
bifurcations between the branch point (or leaf) and the root. The tree depth is the maximum branch
order of a tree. The branch length is the length of each edge. The branch angle defines the bifurcation
angle between two children of a branch point. The degree of randomness indicates if the edge is a
straight line or a simple random walk.

The random trees that were used for testing the TMD algorithm’s performance were

generated with software developed within the Blue Brain Project (BBP). Each tree

consists of branches, i.e., paths between two branch points, which are generated based

on a simple random walk, SRW, (Pearson 1905) in R3. The position of the walk at

each step is given as a weighted sum of a predefined direction dn and a simple random

walk Ψ:

Xn+1 = Xn + ws · ((1 − Dr ) · dn + Dr · Ψ) ,

where ws is the step size, and Dr defines the randomness of each step and Ψ is a

random vector in R3 sampled from a uniform distribution. For Dr = 0 the branch is

a straight line, while for Dr = 1 the branch is a SRW. The number of steps is given

by the preselected branch length Bl . Once the number of steps is reached, the tree

bifurcates, i.e., two new branches are created. The angle between the initial points
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of the branches is defined by the branch angle Ba. The tree generated this way is a

perfect binary tree, i.e., every leaf has the same depth, since new branches are added

at every branch point until the preselected tree depth Td (i.e., the maximum number

of edges in the unique path from a leaf to the root R) is reached. The total number of

branches in the tree is then 2Td − 1. For example, the tree in Fig A.6 has Td = 4 and

consists of 24 − 1 = 15 branches.

This set of parameters {Td, Bl, Ba, Dr } defines the global properties of the tree.

Random trees that are generated with the same set of parameters share common

morphometric properties, but have unique spatial structures, due to the stochastic

component of the growth. This allowed us to check the effectiveness of the algorithm

at identifying sets of trees that have been generated with the same input parameters

{Td, Bl, Ba, Dr } and that differ only in the random seed. Random trees constructed with

the described algorithm can intersect geometrically, even though the probability of this

event is very low. However, for the random tree generation, the connectivity is obtained

from the branches of the tree and therefore even if branches intersect geometrically, no

cycle will be created in the tree.

Grouping random trees

We defined a control group as a set of trees generated with fixed parameters (Td = 5,

Bl = 10, Ba = π/4, Dr = 10%) but independent random seeds. Then, we varied each

parameter individually to generate groups of trees that differed from the control group

in only one property. For all trees we extracted the persistence barcode using the

TMD algorithm. The assignment of a tree to a group based on the comparison of

the distances dBar between the tree’s barcode and the barcodes of the trees in every

group constitutes one trial. The trial is successful if the tree is correctly assigned to its

original group. The performance of the TMD-based classifier in separating groups of

trees generated with different values for each of the described parameters is summarized

in Table A.4. We cross-validate our method by generating 100 trees for each group,

divided into 5 subsets of 20 trees. The standard deviation in Table A.4 shows the

statistical significance of our results.

Table A.4 Summary of accuracy results for the classification of random trees.

Td : (4, 6, 8) Ba : ( π
4
, π
2
, π) Bl : (5, 10, 30) Dr : (0.1, 0.5, 0.8) Ab : (0.0, 0.3, 0.9)

96 ± 3% 88 ± 9% 96 ± 4% 99 ± 1% 100 ± 0%
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The variation of the previous parameters includes only quantitative morphological

features. All the generated trees are binary trees. In order to assess the performance

of the TMD algorithm at grouping trees with different asymmetries, we generated

trees with the same morphological features: number of terminal branches (16), branch

lengths(100um), branch angles(π/3) and degree of randomness(0.1) but different degree

of asymmetry as defined in (Van Pelt and Verwer 1983). Trees with different degree of

asymmetry express different topology of their branching patterns, the probabilities of

which are described in (Van Pelt and Verwer 1983). The results of this analysis are

presented in Fig A.11 for asymmetries of 0.0, 0.3, 0.9.

The influence of each morphological feature (tree depth, branch length, branch

angles, degree of randomness and degree of asymmetry) on the corresponding persistence

barcode is described in detailed in Figures A.7 - A.11. The TMD-based classifier is

able to distinguish the variation of all five parameters with significantly high accuracy.

This indicates that the TMD-based distance is effectively separating artificial random

trees that differ in one of the described morphological properties.
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Fig. A.7 Groups of trees with different tree depths (4(A), 6(B), 8(C)) can be effectively separated.
Larger tree depths result in larger number of branches on the tree (Nbranches = 2Td − 1). As a result
the density of branches increases with the tree depth, and a larger number of topological components
is generated in the respective persistence barcodes. The distance matrix (D) indicates the existence of
three groups that are identified with high accuracy by a simple dendrogram (E).
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Fig. A.8 Groups of trees with different constant branch lengths (5(A), 10(B), 30(C)) can be effectively
separated. The length of the branches is reflected in the lengths of the topological components in the
respective persistence barcodes. The increasing branch length results in the presence of bars at larger
radial distances. The distance matrix (D) indicates the existence of three groups that are identified
with high accuracy by a simple dendrogram (E).
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Fig. A.9 Groups of trees with different constant branch angles on the x − y plane (π/4(A), π/2(B),
π(C)) can be effectively separated. The branch angles influence the radial distances of the branches
and as a result their respective persistence barcodes. For smaller branch angles the branches of the
trees extend to larger radial distances, resulting in longer bars. The distance matrix (D) indicates the
existence of three groups that are identified with high accuracy by a simple dendrogram (E). A few
mis-classifications are present in the dendrogram (denoted in black). This fact indicates that this
distance is not appropriate for 100% accurate separation of branch angles since the branch angles are
not directly accounted for in the TMD algorithm. However, the secondary effects of the branch angles
can distinguish the trees with very high accuracy (97%).
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Fig. A.10 Groups of trees with different degrees of randomness (0.10(A), 0.50(B), 0.80(C)) can be
effectively separated. The degree of randomness influences the extent of individual branches on
the trees. For lower values of randomness the trees are less tortuous and extend to larger radial
distances. As a result, the trees with smaller degree of randomness generate longer bars in their
respective persistence barcodes. The distance matrix (D) indicates the existence of three groups that
are identified with high accuracy by a simple dendrogram (E).
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Fig. A.11 Groups of trees with different topological patterns that result in different degrees of
asymmetry (0.9(A), 0.3(B), 0.0(C)) can be effectively separated. The asymmetry of the branching
structure generates distinct patterns in the respective persistence barcodes. Interestingly, the more
asymmetric trees (A) result in a more homogeneous distribution of branches in space along the path
of the main branch. As a result, the corresponding pesristence images are more symmetric around
the diagonal. The asymmetry of the trees is reflected in the barcodes by an inverse relation, as the
more symmetric trees are encoded in more skewed barcodes. The distance matrix (D) indicates the
existence of three groups that are identified with high accuracy by a simple dendrogram (E).
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Supervised Classification

Supervised classification is a machine learning technique in which a sample dataset

(training set) is presented to the algorithm, which then predicts the labels of the

individuals that have not been presented (test set).
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Fig. A.12 Results of supervised classification on the dataset of Fig 4 based on the average unweighted
persistence images of neuronal morphologies from different species: (I) cat, (II) dragonfly, (III) fruit fly,
(IV) mouse and (V) rat. Traditional classification methods measure the degree of separation between
two classes, as opposed to the TMD which also reveals the structural principles that differentiate
distinct morphological groups. Below the diagonal we illustrate the separation of each pair of groups
by presenting the confusion matrices (color-scale from 0 to 1) for the binary classification of the two
groups in question. Above the diagonal we present the structural differences between the two groups,
as they are revealed by subtracting their unweighted persistence images. Note that since we are
studying the structure and not the size differences, the data are not normalized according to the size
of the neurons. As a result, the structural differences are unscaled and the relative sizes are presented
in the average unweighted persistence images, on the left.
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In this section we present the results of the supervised classification that was

performed on the trees of the five groups of neurons from different species that are

shown in Fig 2.8. A supervised classification algorithm (Decision Tree) is trained on

the unweighted persistence images. The trained classifier is used to predict the class

of trees of the test set. The accuracy of the classifier is defined by the number of the

correct predictions divided by the total number of predictions.

The results of the classification are presented with the overall accuracy (percentage)

and the confusion matrix. The confusion matrix represents the performance of the

classification: true positives are presented in the diagonal, where false positives are

presented in non-diagonal elements. A perfect classification would result in ones on

the diagonal and zero values everywhere else.
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Fig. A.13 Supervised classification of neuronal species. A. Results of supervised classification, trained
on the unweighted persistence images of the five groups of neuronal trees presented in Fig 2.8. The
confusion matrix represents the performance of the classification: true positives are presented in the
diagonal, where false positives are presented in non-diagonal elements. Intense red indicates high
fraction of data and white shades indicate small fraction of data that correspond to each element of
the matrix. The fact that the diagonal is represented in intense red indicates that in most of the
cases the classifier accurately predicts the initial group of the neuronal trees. B. For the same dataset
(Fig 2.8) we quantify the accuracy of the supervised classification as the number of correctly predicted
labels. The classifier is trained with a subset of the data, as shown in x-axis. As the number of
samples that are used for the training is increased the accuracy increases. Note that the accuracy
reaches 70% when one fourth of the data (25%, 20 individuals) is used for the training. As a result, a
relatively small subset of the data is needed in order to achieve very high accuracy.

Classification of neuronal trees

The average unweighted persistence images were used for the efficient separation of

different morphological classes. The hierarchical clustering (Fig A.12) as well as the

supervised classification (Fig A.13A) illustrate the clear separation between the neurons
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of different species. In addition, by subtracting the persistence images of two groups

we can identify the nature of their structural differences, as opposed to traditional

methods. Note that the average persistence images have been scaled according to the

largest processes for each species in order to illustrate the scale invariant branching

properties of each neuronal type.

For example in Fig A.12, we illustrate the spatial differences of the branching

patterns of neuronal trees from the different species of Fig 2.8. The dragonfly neurons

consist of much smaller processes that generate a high concentration of branches around

the diagonal, which are not present in other species. Mouse neurons present a wide

variety of branch lengths which result in a wider distribution of points around the

diagonal compared to all the other species. The rat pyramidal neurons present a tuft

at larger radial distances that differentiates them from the other species.

The results of supervised classification, trained on the unweighted persistence

images of the five groups of neuronal trees of Fig 2.8 are shown in Fig A.13A. The

higher values in the diagonal of the confusion matrix (true positives) as opposed to

small values at the rest of the cases (false positives) indicates that the classifier predicts

the actual group of the neuronal trees with high accuracy.

The performance of the classifier as a function of the size of the training set is

presented in Fig A.13B for the same dataset (Fig 2.8). As the number of samples that

are used for the training increases the accuracy increases accordingly. Note that the

accuracy reaches 70% when one fourth of the data (25%, 20 individuals) is used for

the training. As a result, a relatively small subset of the data is needed in order to

achieve very high accuracy. The classifier based on the unweighted persistence images

is capable to predict the class of neuronal trees even when it is trained with very small

datasets. This property is very useful for the classification of neuronal trees, where

usually only few data of each class are available.

Diversity Index

The diversity index of a community is a quantitative measure that reflects how many

different types are present in the dataset and how evenly they are distributed. The

diversity increases with the number of types. For a given number of groups, the

diversity index is maximized when all groups are equally represented in the dataset.

However, most diversity indices behave as if different species had nothing in common.

An alternative method for the characterization of the diversity of a community

has been proposed in (Leinster and Cobbold 2012). The diversity profile, i.e., the
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graph of the diversity index versus a sensitivity parameter q, describes the shape of the

community as the perceived diversity changes with respect to the richness (rare species

are influencing the graph for small q) and the dominance of the species (common species

almost exclusively define the graph for large q). Therefore, the parameter q represents

the inverse of the sensitivity to rare species. The density profile takes into account the

actual similarity between different groups, as opposed to classical measurements that

use the naive similarity, i.e., the identity matrix, assuming that different species are

completely independent. Based on this method, we generate the diversity profiles of

the biological datasets that have been studied in this paper: neurons of five different

species (Fig A.14A) and layer five pyramidal cells (Fig A.14B).
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Fig. A.14 A. Diversity indices for the species (A) and the L5 pyramidal cells (B).

For the neurons of different species (Fig A.14 A) the perceived diversity does not

change significantly, when we use the actual similarity matrix (solid line) compared

to the naive similarity matrix (dashed line). This is due to the fact that neurons of

different species are very distinct and therefore their similarity matrix is very close

to the identity matrix. It is however interesting to notice that the values of diversity

index are much higher in this example compared to the ones of the layer 5 pyramidal

cells (Fig A.14 B), indicating that this dataset is indeed more diverse, as expected

from visual examination of the neurons.

On the contrary, the diversity profile of layer 5 pyramidal cells (Fig A.14 B) is

strongly influenced by the similarity matrix in the case of four classes, while this effect

is highly reduced in the case of three classes. This indicates that the classification of

the neurons in three classes is much more robust. In this case the classes are more

distinct and the similarity matrix is closer to the identity matrix.
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Appendix B

Of mouse and human cells

The topological profiles of mouse cells
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Fig. B.1 Examples of mouse L2/3 pyramidal cells. According to the topological profiles of the mouse
cells (and the TMD analysis as described for the human pyramidal cells) we do not find sufficient
evidence to support the existence of two classes in the mouse dataset. In agreement with literature
data the L2/3 mouse pyramidal cells seem to express a single morphological type, that consists of
few obliques and a dense tuft. The variability of quantitative features within this type is large: for
example the branches of superficial cells extend to smaller distances from the soma (note the different
scales on the persistent images) and the location of the tuft varies according to the depth of the cell
in the tissue.
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Comparison between mouse and human cells
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Fig. B.2 Comparison between mouse pyramidal cells and human pyramidal cells of two types. A.
Compared to the human pyramidal cells, the mouse apicals have in principle a smaller number of
obliques. The slim tufted human cells possess a smaller number of tuft branches than the mouse cells,
while the profuse-tufted possess a larger number of tuft branches. It is interesting to note that the
human apical dendrites of both classes present a larger variability of branch lengths compared to
the mouse apical dendrites. B. There is no evidence for morphological differences between the basal
dendrites of the two human pyramidal cell types. The basal dendrites of human cells are typically
fewer in number compared to the mouse cells, but present a larger variability of lengths, with larger
branches, and comparable extends from the soma. Note that the mouse cells appear more symmetric
while the human cells appear to have an orientation preference towards the direction opposite to the
pia, a property that we cannot justify at the moment.
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Topological synthesis of cortical

pyramidal cells

Topological morphology descriptor algorithm

We briefly explain the TMD algorithm that generates a persistence barcode Barcode

from a tree T ; the details of the algorithm are given in (Kanari et al. 2017). The

TMD algorithm encodes the branching pattern of the morphology into a topological

representation. The local fluctuations with little information content, such as the

position of the nodes between branch points, are discarded, and thus the computational

complexity of the tree is significantly reduced. The TMD algorithm couples the topology

of the branching structure with the geometric properties of the tree (in this case the

radial distance from the soma), encoding its over-all shape into a single descriptor.

The algorithm takes as input the set of branch points (nodes with more than one child)

and leaves (nodes with no children) of the tree and produces a multi-set of intervals,

i.e., bars, on the real line known as a persistence barcode (Carlsson 2009), Fig. C.1B.

Each bar encodes the lifetime of a component in the underlying structure, identifying

when a branch is first detected (birth) and when it connects to a larger subtree (death).

Equivalently the persistence diagram (Carlsson 2009), Fig. C.1C, represents the bars of

birth-death times of each component as a point in the real plane. These representations

greatly simplify the mathematical complexity of the tree.

The main concept of the TMD algorithm is presented in Fig C.1. The TMD

algorithm takes as input a rooted tree T with a function f defined on the set of the

tree’s nodes. In this example, the function f is the radial distance from the soma. The

root, denoted by R, is shown in red, and the rest of the tree’s nodes (branch points

and terminations, or leaves) that are labeled a − i, are shown in green. All the leaves
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Fig. C.1 Demonstration of the TMD algorithm (Figure published in the supplementary information of
“A topological representation of branching neuronal morphologies”, Kanari et al. 2017, Neuroinformatics.
A rooted tree (A) is transformed with the TMD algorithm into the corresponding persistence barcode
(B) and the equivalent persistence diagram (C). The root R is colored red, while the branch points
and leaves are shown in green. The edges connecting corresponding pairs of points are presented
by straight lines. The dashed circles are provided as a guide to the eye to indicate different levels
of radial distances. The correspondence between the tree (A) and its extracted barcode (B) and its
diagram (C) is given by the notation of the same nodes in both figures. Each bar in (B) represents
the lifetime of a component. The positions of x-axis correspond to the circles in (A) while y-axis
represents individual components, ordered according to their length. In (C) each point represents the
start and end radial distance of a branch component in A. The longest component is shown in red
(B,C).

(a, c, e, g, h) are initially inserted into the list of active nodes, A. The algorithm then

iterates over the active nodes A and traverses the tree towards the root. At each branch
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point, for example at node b, the children nodes, (a, c), are checked. The node of the

minimum value f , in this case radial distance from the soma, forms a bar (a, b) that is

added to the Barcode. Each bar encodes the starting radial distance of the component

a and the ending radial distance b. This process is iteratively performed until the root

R is reached. The component that survives until the root is the longest component of

the tree (shown in red).

Synthesis input

A set of neuronal reconstructions is used as input to the synthesis algorithm. From

the input neuronal trees, the persistence barcodes are generated. Along with the

topological profiles of the neurons, a set of basic morphometrics, related to the features

of the soma and the thickness of the tree, are also extracted. Those morphometrics are

summarized in the “Algorithm input distributions”. Apart from the biological inputs

a set of user-defined parameters, described in “Algorithm input parameters”, are also

used as input for the TNS algorithm.

As a guide to the reader, the main definitions of morphological terms that will be

used through this paper are summarized in the following table. Note that these terms

might have different meanings in other references, but the morphological terminology

is often not consistent through the literature.
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Definition of morphological terms.

Soma: the cell body is described as a sphere Sc
ds

of diameter ds and center c.

Neurite: A neuronal tree.

Neurite point: (x, y, z, d), where (x, y, z) are the coordinates in 3D space and d

is the diameter that represents the thickness of the neurite at that point.

Neurite section: a list of points in the neurite, that are between two branch

points of between a branch point and a termination. A section can also be

referred to as a branch.

Neurite tips: The collection of termination points of a neurite.

Neurite trunk: the initial section of a neurite, as it emerges from the soma.

V ect: A spherical unit vector, which is equivalently represented by a pair of

angles and defines a direction, or orientation, in 3D space.

Biological persistence barcodes

The algorithm that extracts a persistence barcode from a neuronal tree is described

in the previous section. The barcodes that are used as input for synthesis are enhanced

with the bifurcation angles of their corresponding components. At the point where the

component terminates the bifurcation angle A with its parent is encoded. Therefore for

each component of the tree T , a Bar = (B,T, A) is defined, where B is the initial radial

distance of the component, T is the terminal radial distance and A is the bifurcation

angle at which the component emerges from its parent. In order to use a population of

neurons as input for synthesis, the barcodes of all the biological trees are extracted.

BARcodes = {Barcode j |1 ≤ j ≤ n},

where n = # of neuronal trees in the biological population.

This distribution of persistence barcodes is sampled during the artificial growth of

a neuron and a single barcode, which corresponds to a biological tree is used for the

generation of a synthesized neuronal tree.
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Barcode j = {Bari = (Bi,Ti, Ai) |1 ≤ i ≤ b j },

where b j = # of components (bars) of Barcode j

Biological distributions of morphological features

Along with the persistence barcodes, which encode the topology of the neurites, a

number of independent morphometrics also need to be measured. The first morphomet-

rics that will be used as input for synthesis are the ones that define the size of the cell

body, or soma. The soma is initially considered to be a sphere and therefore a center

and a diameter are sufficient to describe it. The center is passed as a user defined

input, while the diameter is sampled from the corresponding biological distribution SS.
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Algorithm input distributions.

Soma parameters

SS: Distribution of soma diameters.

N N : Distribution of number of neurites of a specific type within a neuron.

PA: Distribution of unit vectors that define pairwise angles between neurites.

Diameter parameters

T D: Distribution of the diameters of the tips, or terminations, of the neurite.

T R: Distribution of taper rates that define the tapering, i.e., the difference

of the diameters normalized by the length, within a section of the neurite:

(D f inal − Dinitial )/length. This value is actually corrected so that the mean value

of the diameters within a section is preserved.

RR: Distribution of Rall ratios n that define the ratio between the diameter

of a parent and its children. The Rall ratio n is the exponent for which Dn
=

dn
1
+ dn

2
+ . . . at a branch point, where di are the diameters of the children and

D is the parent diameter.

MD: Distribution of maximum diameters of each neurite within a neurite.

Input parameters

A few input parameters are used to define the properties that are not measured as

input from the biological dataset. The first two parameters τ, ρ define the properties

of the elongation within a branch. The center of the soma c is an input parameter

to allow the user to control the initial position of the cell. The apical point distance

Dapical is initially a user-defined parameter. However, we should compute this from

the biological barcode in future versions of the synthesis algorithm.
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Algorithm inputs parameters.

τ: weight of the targeting bias that is used for the elongation of a section.

ρ: the weight of the random component that is used for the elongation of a

section.

c: defines the center of the soma, and the starting point for the growth of the

neuron.

Dapical : radial distance of the apical point from the soma. This distance is used

to modify the oblique branching method used during the growth of an apical

tree to the tuft branching method.
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Topological Neuron Synthesis algorithms

Algorithm 2 Synthesizer
Input:

Bio = {SS, N N, PA,T D,T R, RR,MD} ⊲ (see Biological distributions)

Param = {c, τ, ρ} ⊲ (see Input Parameters)

BARcodes ⊲ (see Biological barcodes)

function Sample(distr) := draws from input distribution

Generate a Soma and Neurites using (Alg 2, Bio, c) ⊲ (each neurite is initialized

with a point on the soma surface, which defines a direction dir1)

for neurite in Neurites do

Active ← neurite’s initial point

Barcode = Sample(BARcodes)

Sort Bars in Barcode from longest to shortest

Initialize first section S1 with the longest Bar1

while Active sections do

for Section Sk in Active do ⊲ (a section gets a target direction dirk and a

bar Bark)

Grow a section using (Alg 3, dirk , Bark = (Bk,Tk, Ak ))

Remove Bark from Barcode ⊲ (each Bar can be used only once)

if status = Bi f urcate then

Generate children using (Alg 4, Barcode, Bark, dirk)

Add children to Active sections

else if status = Terminate then

Section growth terminates

Remove current section Sk from Active

Generate accurate diameters using (Alg 5, Bio)

Output:

A neuron: a set of points and their connectivity.
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Algorithm 3 Generate soma - neurites initialization
Input:

Bio = {SS, N N, PA, c} ⊲ (see Biological distributions)

function Sample(distr) := draws from input distribution

ds = Sample(SS)

Soma is a sphere of diameter ds and center c: Sc
ds

#neurites = Sample(N N )

Create first neurite N1 on Sc
ds

surface at random direction, V ect1

The first point of the neurite P1

1
is on Sc

ds
surface

for Neurite (Ni |2 ≤ i ≤ #neurites) do

V ecti = V ecti−1 + Sample(PA)

First point of Ni is Pi
1 which corresponds to V ecti

Output:

A soma Sc
ds

and the initial points of each neurite Ni

Algorithm 4 Elongate section
Input:

τ, ρ, dir, Bark = (Bk,Tk, Ak ), x0

µ = 1 − τ − ρ ⊲ (Normalization of weights to 1)

function rd(point) := radial distance of point from soma

n = 1

status = Continue

while status is Continue do

random = random direction sampled uniformly in a unit sphere

memory = direction from the weighted sum of previous directions xi≤n

xn+1 = xn + ρ ∗ random + τ ∗ dir + µ ∗ memory

if Check Pr(Bi f urcate | rd(xn+1), Bk ) then

status = Bi f urcate

else if Check Pr(Terminate | rd(xn+1),Tk ) then

status = Terminate

else

status = Continue

Output:

A section and a status which is either a bifurcation or a termination.
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Algorithm 5 Bifurcate
Input:

Barcode, Bark = (Bk,Tk, Ak )

function Split(vect) := returns two new unit vectors dir1, dir2 from the input unit

vector

dir1, dir2 = Split(Ak)

Find next available index i in Barcode for which min(Bi)

Generate child section 1: ← dir1, Bar1 = (Bi,Tk, Ai)

Generate child section 2: ← dir2, Bar2 = (Bi+1,Ti+1, Ai+1)

Output:

Two new sections, each initialized with a direction dir and a Bar.

Algorithm 6 Diametrizer
Input:

Bio : T D,T R, RR,MD (see Biological distributions)

function Sample(distr) := draws number from distribution

for all Neurite tips do dtip = Sample(T D)

Active ← tips

while Active do

for Section in Active do

taper = Sample(T R)

for Point in Section do ⊲ From termination to the root

dnew = dn+1 + taper ∗ length

if dnew ≤ MD then

dn = dnew

else

dn = dn+1

Remove Section from Active

if all siblings 1, 2, . . . computed then

n = Sample(RR)

Dparent = (dn
1
+ dn

2
+ . . . )(1/n)

Add parent Section to Active

Output:

Assigns new values to the diameters of the neuron.
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the target direction (purple straight line in C.3). The memory µ has a more complicated

effect on the generated branch. For high values of the targeting parameter τ the line is

already straight so the effect of larger memory weights is not significant. For lower

values of the targeting parameter τ the memory generates shapes of larger curvature

but lower local randomness as the correlations between segment directions are preserved

for longer distances.

Branching - Termination

Each growing tip is assigned a barcode that includes a starting radial distance B, an

ending radial distance T and a bifurcation angle A (see TMD definition). The active

tip first checks the probability to bifurcate. If a bifurcation does not occur, then the

active tip checks the probability to terminate. If the active tip does not bifurcate

or terminate, then the branch continues to elongate. The probability to bifurcate

depends on the starting radial distance B and the probability to terminate depends

exponentially on the ending radial distance T .

As the active tip gets closer to the radial distance B the probability to bifurcate

increases according to an exponential distribution e−λx until it reaches the highest

possible value 1.0 when the tip exceeds the target radial distance. The rate parameter λ

of the exponential distribution e−λx controls the probability to bifurcate and terminate.

The parameter λ should be wisely chosen in order to generate biologically relevant

neurites (see Figure C.4).

A very steep exponential distribution (high value of λ) generates cells that are very

close to the biological input and thus the variability of the synthesized cells is reduced

(top row of Figure C.4). On the other hand, a very low value of λ generates cells that

are almost random, since the dependence on the input persistence barcodes will be

decreased significantly. If the value of parameter λ is of the order of the step size, the

bifurcation will occur within a few steps from the target radial distance. As a result,

the generated shapes will differ from the input branching structure, introducing the

necessary variability, but will preserve the overall shape of the input tree, generating

biologically acceptable structures.

In the event of a bifurcation, two new branches are generated (see Algorithm 4)

and the directions of the daughter branches depend on the input bifurcation angle A.

Three branching methods were examined: the symmetric, the biased and the composite.

The “symmetric method” assumes that the two daughter branches emerge at the same

angles from their parent branch. The bifurcation angle is split in two and equally

distributed among the daughter branches. The “biased method” assumes that one of the
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Fig. C.4 Illustration of artificially generated neuronal trees with different branching probabilities.

daughter branches continues to grow towards the direction of its parent and therefore

the split is asymmetric. The “composite method” assumes that a combination of the

symmetric and the biased methods is required. For this approach two biological angles

are required, the bifurcation angle A which defines the angle between the daughter

branches, and the parent-daughter angle which defines the angle between the parent

and one of the daughter branches.

Validation of synthesized basal and apical dendrites

Identifying Outliers in the Synthesized Cells Population

We developed a method to identify outliers in the synthesized neurons in order to

remove them and improve the statistics of the population. Furthermore, the percentage

of the detected outliers in the synthesized population gives an idea of the accuracy of

the synthesis process.
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Fig. C.5 Different branching methods: symmetric, biased and combined.

For identifying outliers, we compare the distributions of key features of each neuron

to the reconstructed biological cell population. We quantify the distance between the

distributions with the absolute Difference Between the Medians as a proportion of

the Overall Visible Spread (DBM/OVS). This is an intuitive measure of quantifying

the difference between the medians of the two distributions with respect to their

joined dispersion. The Overall Visible Spread is defined as the range between the

minimum 25th percentile of the two distributions and the maximum 75th percentile of

the distributions. Its minimum is 0 when the medians of the distributions coincide.

Its maximal value is 1 in the special case where the smaller median coincides with

the smaller 25th percentile and the larger median with the largest 75th percentile.

This is a very special case, though; in most cases the DBM/OVS measure is below

1. The closest the DBM/OVS gets to 1 the largest is the difference of medians with

respect to the overall spread of the distributions making likely to reject the neuron in
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question. For an illustration, see figure in the supplementary and the first reference for

a thorough discussion.

The DBM/OVS measure works better than other measures of standardized difference

of means like Hedges’ g, for example, for non-symmetric distributions (see two last

references). A cell is considered an outlier when at least one of the key-features

mentioned above is above certain feature-specific thresholds. We choose the thresholds

so that the reconstructed biological cells are not sorted out as outliers, since they

represent the golden standard. One can imagine the thresholds defining a hypercube

in the space of features. If a cell falls out of this cube, it is rejected as an outlier.

Population to Population Validations

We validate the synthesized neurons by comparing the distributions of their morpho-

metrics features to those of the biological cell reconstructions. In the following figures,

we show the comparisons for the Sholl analysis and further key features like the degree

of the dendritic tree (number of terminations), branch orders, number of sections

per neurite, total length, section intermediate and section terminating lengths and

path length to the terminal tips. We report summary statistics like means, standard

deviations, medians and sample sizes. The Kolmogorov-Smirnov distance quantifies the

dissimilarity between the distributions. Concretely, it measures the maximum distance

between the two empirical cumulative distributions. It ranges from 0 in the case of

identical distributions to 1 in the case of maximal difference, for example when the

distributions are completely shifted. In the case of discrete distributions like the branch

orders, we use the adapted version of the Kolmogorov-Smirnov test as described in

Arnold and Emerson (see reference).

Additional features comparisons between the synthesized and the reconstructed

cell populations are given in the following table. These include the number of neurites,

number of sections per neurite, number of bifurcations, radial (Euclidean) distance,

bifurcation angles, tortuosity and partition as an expression of the asymmetry of the

cells.

Results

Topological distances of synthesized dendrites

In order to ensure that the topological profiles of the original reconstructions are

reproduced by the TNS algorithm, the topological distances between the biological and
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the synthesized cells are computed and compared to the topological distances within the

biological population. The mean topological distance among the dendrites of biological

interneurons is ≈ 9, 800 while the maximum distance is ≈ 60, 000. Respectively, the

mean distance between the dendrites of synthesized and biological cells is ≈ 9, 000

and the maximum distance is ≈ 57, 000 (Figure C.6). Note that if the exact TMD

of the biological cells were recreated by the TNS algorithm, this distance would be

zero. However, since we aim to increase the morphological variability of the digitally

reconstructed network, it is important that the topological profiles of the synthesized

cells do not exactly match the biological ones, otherwise the artificially created neurons

will differ from their input cells only in local properties.
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Topological distances of interneuron dendrites Topological distances of interneuron dendrites

. .

Fig. C.6 Comparison between biological and TMD synthesized densrites. The topological distances
between biological dendrites (in red) are compared against the topological distances between synthesized
and biological dendrites (in blue). A. Interneuron distances. B. Pyramidal cells distances.

Distances of Morphometrics

In order to ensure that the statistical properties of the original reconstructions’ mor-

phometrics are reproduced by the TNS algorithm, we also compute the statistical

distance between the biological and the synthesized distributions of each morphological

feature that was used for the validation of the synthesized cells (Figures 3.7-3.8). The

statistical distance that we will use for this test is the KS-distance (see Population

to Population Validations). A comparative value is computed for the corresponding

distances of the morphometrics of cells within the biological population. The mean

values of the biological distances are presented in Figure C.7, in blue, and compared to

the distances between synthesized and biological cells, in red. The distance between

synthesized and biological cells are typically smaller that the corresponding distances

within the biological population. This indicates that the TNS algorithm faithfully

reproduces the morphometrics of the input population.
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A. B.

C.

Fig. C.8 Comparison between random and TMD synthesized cells. A. Biological reconstructions.
B. Artificial cells synthesized with the TMD algorithm. C. Artificial cells synthesized with the
non-correlated probabilities of branching and termination. The TMD generated cells are visually close
to the biological reconstructions compared to the non-correlated cells.

smaller branch orders, a behavior that indicates that this synthesis algorithm does not

respect basic morphological principles of the original reconstructions, as the correlations

between features are not considered.
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