8,780 research outputs found

    Co-designing smart home technology with people with dementia or Parkinson's disease

    Get PDF
    Involving users is crucial to designing technology successfully, especially for vulnerable users in health and social care, yet detailed descriptions and critical reflections on the co-design process, techniques and methods are rare. This paper introduces the PERCEPT (PERrsona-CEntred Participatory Technology) approach for the co-design process and we analyse and discuss the lessons learned for each step in this process. We applied PERCEPT in a project to develop a smart home toolset that will allow a person living with early stage dementia or Parkinson's to plan, monitor and self-manage his or her life and well-being more effectively. We present a set of personas which were co-created with people and applied throughout the project in the co-design process. The approach presented in this paper will enable researchers and designers to better engage with target user groups in co-design and point to considerations to be made at each step for vulnerable users

    Staff development at RMIT: Bottom‐up work serviced by top‐down investment and policy

    Get PDF
    Effective staff development is the weaving together of many strands. We need to support staff in their current work, while providing them with ideas, incentives and resources to look for new ways to design learning environments which will enhance student learning. Staff development must be combined with specific projects where change is occurring. Ideas are not hard to find Incentives and resources are another matter. The paper will outline some general principles for effective staff development. These principles will be applied in the description of the substantial investment RMIT has made in order to realize our teaching and learning policy. We have a model of ‘grass‐roots’ faculty‐based work funded by large‐scale corporate ‘investment’. ‘Bottom‐up’ meets ‘top‐down’

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Study of Tools Interoperability

    Get PDF
    Interoperability of tools usually refers to a combination of methods and techniques that address the problem of making a collection of tools to work together. In this study we survey different notions that are used in this context: interoperability, interaction and integration. We point out relation between these notions, and how it maps to the interoperability problem. We narrow the problem area to the tools development in academia. Tools developed in such environment have a small basis for development, documentation and maintenance. We scrutinise some of the problems and potential solutions related with tools interoperability in such environment. Moreover, we look at two tools developed in the Formal Methods and Tools group1, and analyse the use of different integration techniques

    Implementing centralised IT service management: drawing lessons from the public sector

    Get PDF
    [Abstract]: The IT service management model represents a paradigm shift for IT organisations as it deemphasizes the management of IT assets and focuses on the provision of quality end-to-end IT services. This paper presents part of an in-depth study that examines the experience of a government agency, Queensland Health, in the implementation of a centralised IT service management model based on the ITIL framework. The paper sheds light on the challenges and breakthroughs, distils a set of critical success factors and offers a learning opportunity for other organisations. Outsourcing some activities and tool requirements to vendors was seen as one contributor to success although ensuring effective technology transfer to in-house staff was also necessary. Another success factor was centralisation of IT services. Commitment of senior management was also crucial as was a recognition of the need for effective change management to transform the organisational culture to a service-oriented focus

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Heart Failure Monitoring System Based on Wearable and Information Technologies

    Get PDF
    In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilitie
    • 

    corecore