28 research outputs found

    Quality of service aware data dissemination in vehicular Ad Hoc networks

    Full text link
    Des systĂšmes de transport intelligents (STI) seront Ă©ventuellement fournis dans un proche avenir pour la sĂ©curitĂ© et le confort des personnes lors de leurs dĂ©placements sur les routes. Les rĂ©seaux ad-hoc vĂ©hiculaires (VANETs) reprĂ©sentent l'Ă©lĂ©ment clĂ© des STI. Les VANETs sont formĂ©s par des vĂ©hicules qui communiquent entre eux et avec l'infrastructure. En effet, les vĂ©hicules pourront Ă©changer des messages qui comprennent, par exemple, des informations sur la circulation routiĂšre, les situations d'urgence et les divertissements. En particulier, les messages d'urgence sont diffusĂ©s par des vĂ©hicules en cas d'urgence (p.ex. un accident de voiture); afin de permettre aux conducteurs de rĂ©agir Ă  temps (p.ex., ralentir), les messages d'urgence doivent ĂȘtre diffusĂ©s de maniĂšre fiable dans un dĂ©lai trĂšs court. Dans les VANETs, il existe plusieurs facteurs, tels que le canal Ă  pertes, les terminaux cachĂ©s, les interfĂ©rences et la bande passante limitĂ©e, qui compliquent Ă©normĂ©ment la satisfaction des exigences de fiabilitĂ© et de dĂ©lai des messages d'urgence. Dans cette thĂšse, en guise de premiĂšre contribution, nous proposons un schĂ©ma de diffusion efficace Ă  plusieurs sauts, appelĂ© Dynamic Partitioning Scheme (DPS), pour diffuser les messages d'urgence. DPS calcule les tailles de partitions dynamiques et le calendrier de transmission pour chaque partition; Ă  l'intĂ©rieur de la zone arriĂšre de l'expĂ©diteur, les partitions sont calculĂ©es de sorte qu'en moyenne chaque partition contient au moins un seul vĂ©hicule; l'objectif est de s'assurer que seul un vĂ©hicule dans la partition la plus Ă©loignĂ©e (de l'expĂ©diteur) est utilisĂ© pour diffuser le message, jusqu'au saut suivant; ceci donne lieu Ă  un dĂ©lai d'un saut plus court. DPS assure une diffusion rapide des messages d'urgence. En outre, un nouveau mĂ©canisme d'Ă©tablissement de liaison, qui utilise des tonalitĂ©s occupĂ©es, est proposĂ© pour rĂ©soudre le problĂšme du problĂšme de terminal cachĂ©. Dans les VANETs, la Multidiffusion, c'est-Ă -dire la transmission d'un message d'une source Ă  un nombre limitĂ© de vĂ©hicules connus en tant que destinations, est trĂšs importante. Par rapport Ă  la diffusion unique, avec Multidiffusion, la source peut simultanĂ©ment prendre en charge plusieurs destinations, via une arborescence de multidiffusion, ce qui permet d'Ă©conomiser de la bande passante et de rĂ©duire la congestion du rĂ©seau. Cependant, puisque les VANETs ont une topologie dynamique, le maintien de la connectivitĂ© de l'arbre de multidiffusion est un problĂšme majeur. Comme deuxiĂšme contribution, nous proposons deux approches pour modĂ©liser l'utilisation totale de bande passante d'une arborescence de multidiffusion: (i) la premiĂšre approche considĂšre le nombre de segments de route impliquĂ©s dans l'arbre de multidiffusion et (ii) la seconde approche considĂšre le nombre d'intersections relais dans l'arbre de multidiffusion. Une heuristique est proposĂ©e pour chaque approche. Pour assurer la qualitĂ© de service de l'arbre de multidiffusion, des procĂ©dures efficaces sont proposĂ©es pour le suivi des destinations et la surveillance de la qualitĂ© de service des segments de route. Comme troisiĂšme contribution, nous Ă©tudions le problĂšme de la congestion causĂ©e par le routage du trafic de donnĂ©es dans les VANETs. Nous proposons (1) une approche de routage basĂ©e sur l’infonuagique qui, contrairement aux approches existantes, prend en compte les chemins de routage existants qui relaient dĂ©jĂ  les donnĂ©es dans les VANETs. Les nouvelles demandes de routage sont traitĂ©es de sorte qu'aucun segment de route ne soit surchargĂ© par plusieurs chemins de routage croisĂ©s. Au lieu d'acheminer les donnĂ©es en utilisant des chemins de routage sur un nombre limitĂ© de segments de route, notre approche Ă©quilibre la charge des donnĂ©es en utilisant des chemins de routage sur l'ensemble des tronçons routiers urbains, dans le but d'empĂȘcher, dans la mesure du possible, les congestions locales dans les VANETs; et (2) une approche basĂ©e sur le rĂ©seau dĂ©fini par logiciel (SDN) pour surveiller la connectivitĂ© VANET en temps rĂ©el et les dĂ©lais de transmission sur chaque segment de route. Les donnĂ©es de surveillance sont utilisĂ©es en entrĂ©e de l'approche de routage.Intelligent Transportation Systems (ITS) will be eventually provided in the near future for both safety and comfort of people during their travel on the roads. Vehicular ad-hoc Networks (VANETs), represent the key component of ITS. VANETs consist of vehicles that communicate with each other and with the infrastructure. Indeed, vehicles will be able to exchange messages that include, for example, information about road traffic, emergency situations, and entertainment. Particularly, emergency messages are broadcasted by vehicles in case of an emergency (e.g., car accident); in order to allow drivers to react in time (e.g., slow down), emergency messages must be reliably disseminated with very short delay. In VANETs, there are several factors, such as lossy channel, hidden terminals, interferences and scarce bandwidth, which make satisfying reliability and delay requirements of emergency messages very challenging. In this thesis, as the first contribution, we propose a reliable time-efficient and multi-hop broadcasting scheme, called Dynamic Partitioning Scheme (DPS), to disseminate emergency messages. DPS computes dynamic partition sizes and the transmission schedule for each partition; inside the back area of the sender, the partitions are computed such that in average each partition contains at least a single vehicle; the objective is to ensure that only a vehicle in the farthest partition (from the sender) is used to disseminate the message, to next hop, resulting in shorter one hop delay. DPS ensures fast dissemination of emergency messages. Moreover, a new handshaking mechanism, that uses busy tones, is proposed to solve the problem of hidden terminal problem. In VANETs, Multicasting, i.e. delivering a message from a source to a limited known number of vehicles as destinations, is very important. Compared to Unicasting, with Multicasting, the source can simultaneously support multiple destinations, via a multicast tree, saving bandwidth and reducing overall communication congestion. However, since VANETs have a dynamic topology, maintaining the connectivity of the multicast tree is a major issue. As the second contribution, we propose two approaches to model total bandwidth usage of a multicast tree: (i) the first approach considers the number of road segments involved in the multicast tree and (ii) the second approach considers the number of relaying intersections involved in the multicast tree. A heuristic is proposed for each approach. To ensure QoS of the multicasting tree, efficient procedures are proposed for tracking destinations and monitoring QoS of road segments. As the third contribution, we study the problem of network congestion in routing data traffic in VANETs. We propose (1) a Cloud-based routing approach that, in opposition to existing approaches, takes into account existing routing paths which are already relaying data in VANETs. New routing requests are processed such that no road segment gets overloaded by multiple crossing routing paths. Instead of routing over a limited set of road segments, our approach balances the load of communication paths over the whole urban road segments, with the objective to prevent, whenever possible, local congestions in VANETs; and (2) a Software Defined Networking (SDN) based approach to monitor real-time VANETs connectivity and transmission delays on each road segment. The monitoring data is used as input to the routing approach

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les rĂ©seaux vĂ©hiculaires accueillent une multitude d’applications d’info-divertissement et de sĂ©curitĂ©. Les applications de sĂ©curitĂ© visent Ă  amĂ©liorer la sĂ©curitĂ© sur les routes (Ă©viter les accidents), tandis que les applications d’info-divertissement visent Ă  amĂ©liorer l'expĂ©rience des passagers. Les applications de sĂ©curitĂ© ont des exigences rigides en termes de dĂ©lais et de fiabilitĂ© ; en effet, la diffusion des messages d’urgence (envoyĂ©s par un vĂ©hicule/Ă©metteur) devrait ĂȘtre fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portĂ©e de transmission d’un Ă©metteur, il est nĂ©cessaire d’utiliser un mĂ©canisme de transmission multi-sauts. De nombreuses approches ont Ă©tĂ© proposĂ©es pour assurer la fiabilitĂ© et le dĂ©lai des dites applications. Toutefois, ces mĂ©thodes prĂ©sentent plusieurs lacunes. Cette thĂšse, nous proposons trois contributions. La premiĂšre contribution aborde la question de la diffusion fiable des messages d’urgence. A cet Ă©gard, un nouveau schĂ©ma, appelĂ© REMD, a Ă©tĂ© proposĂ©. Ce schĂ©ma utilise la rĂ©pĂ©tition de message pour offrir une fiabilitĂ© garantie, Ă  chaque saut, tout en assurant un court dĂ©lai. REMD calcule un nombre optimal de rĂ©pĂ©titions en se basant sur l’estimation de la qualitĂ© de rĂ©ception de lien dans plusieurs locations (appelĂ©es cellules) Ă  l’intĂ©rieur de la zone couverte par la portĂ©e de transmission de l’émetteur. REMD suppose que les qualitĂ©s de rĂ©ception de lien des cellules adjacentes sont indĂ©pendantes. Il sĂ©lectionne, Ă©galement, un nombre de vĂ©hicules, appelĂ©s relais, qui coopĂšrent dans le contexte de la rĂ©pĂ©tition du message d’urgence pour assurer la fiabilitĂ© en multi-sauts. La deuxiĂšme contribution, appelĂ©e BCRB, vise Ă  amĂ©liorer REMD ; elle suppose que les qualitĂ©s de rĂ©ception de lien des cellules adjacentes sont dĂ©pendantes ce qui est, gĂ©nĂ©ralement, plus rĂ©aliste. BCRB utilise les rĂ©seaux BayĂ©siens pour modĂ©liser les dĂ©pendances en vue d’estimer la qualitĂ© du lien de rĂ©ception avec une meilleure prĂ©cision. La troisiĂšme contribution, appelĂ©e RICS, offre un accĂšs fiable Ă  Internet. RICS propose un modĂšle d’optimisation, avec une rĂ©solution exacte optimale Ă  l'aide d’une technique de rĂ©duction de la dimension spatiale, pour le dĂ©ploiement des passerelles. Chaque passerelle utilise BCRB pour Ă©tablir une communication fiable avec les vĂ©hicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    Communications in Vehicular Ad Hoc Networks

    Get PDF

    TDMA Slot Reservation in Cluster-Based VANETs

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) are a form of Mobile Ad Hoc Networks (MANETs) in which vehicles on the road form the nodes of the network. VANETs provide several services to enhance the safety and comfort of drivers and passengers. These services can be obtained by the wireless exchange of information among the vehicles driving on the road. In particular, the transmission of two different types of messages, safety/update and non-safety messages. The transmission of safety/update message aims to inform the nearby vehicles about the sender\u27s current status and/or a detected dangerous situation. This type of transmission is designed to help in accident and danger avoidance. Moreover, it requires high message generated rate and high reliability. On the other hand, the transmission of non-safety message aims to increase the comfort on vehicles by supporting several non-safety services, from notifications of traffic conditions to file sharing. Unfortunately, the transmission of non-safety message has less priority than safety messages, which may cause shutting down the comfort services. The goal of this dissertation is to design a MAC protocol in order to provide the ability of the transmission of non-safety message with little impact on the reliability of transmitting safety message even if the traffic and communication densities are high. VANET is a highly dynamic network. With lack of specialized hardware for infrastructure and the mobility to support network stability and channel utilization, acluster-based MAC protocol is needed to solve these overcomes. This dissertation makes the following contributions: 1. A multi-channel cluster-based TDMA MAC protocol to coordinate intracluster communications (TC-MAC) 2. A CH election and cluster formation algorithm based on the traffic flow and a cluster maintenance algorithm that benefits from our cluster formation algorithm 3. A multi-channel cluster-based CDNIA/TDMA hybrid MAC protocol to coordinate inter-cluster communications I will show that TC-MAC provides better performance than the current WAVE standard in terms of safety/update message reliability and non-safety message delivery. Additionally, I will show that my clustering and cluster maintenance protocol provides more stable clusters, which will reduce the overhead of clusterhead election and re-clustering and leads to an efficient hierarchical network topology

    Cross-Layer Treatment of Mobility for Mobile Ad Hoc Networks

    Get PDF
    The current era of mobile communication is passing through the days of rapidly changing technologies. Such an evolving promising technology is mobile ad hoc networks (MANETs). The communications in ad hoc networks are adversely affected by the link failures in the network layer, and by the hidden station, mobile hidden station, neighborhood capture and asymmetric radio link problems in the MAC layer. All the problems are highly affected by mobility of the stations. If the degree of mobility of any station in a route increases, the route life time decreases. That causes frequent link failures, and results packet retransmissions, additional latency and packet loss. An algorithm to include mobility in a routing protocol to reduce packet losses in a MANET is proposed in this thesis. The proposed algorithm estimates the number of packets that can traverse through the route before it breaks because of mobility. The algorithm is implemented in dynamic source routing protocol, and simulated in Network Simulator-2. The MHS problem arises if a station is hidden due to mobility. Asymmetric/unequal radio links in can occur in MANETs/VANETs for many reasons such as hardware limitations, power saving protocols, shadowing effects, dynamic spectrum managements. A MAC protocol named extended reservation Aloha (ERA) is proposed which partially solves these problems. Then, using the concept of ERA, another MAC protocol named extended sliding frame reservation Aloha (ESFRA), which addresses all the above mentioned MAC problems, is proposed in this thesis. As safety critical information dissemination in DSRC/WAVE systems requires reliability and robustness, a network-MAC cross-layer information dissemination protocol is proposed in this thesis to address those issues. Although the layered architecture is still a good candidate for any design of wireless networks, the researchers are looking for some optimizations by interaction between neighbor layers which is called cross-layer design. So I proposed a network-MAC cross-layer algorithm, cross-layer extended sliding frame reservation Aloha (CESFRA), which solves mobility related problems, confirms low and deterministic end-to-end delay, and is robust and reliable in safety critical information dissemination up to 3rd hop. Discrete time Markov chain (DTMC) and OMNeT++ are used for all the MAC layer analyses

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Dynamic probabilistic routing discovery and broadcast schemes for high mobility Ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) have lately come to be widely used in everyday applications. Their usability and capability have attracted the interest of both commercial organizations and research communities. Recently, the Vehicular Ad-hoc Network (VANET) is a promising application of MANETs. It has been designed to offer a high level of safety for the drivers in order to minimize a number of roads accidents. Broadcast communication in MANETs and VANETs, is essential for a wide range of important services such as propagating safety messages and Route REQuest (RREQ) packets. Routing is one of the most challenging issues in MANETs and VANETs, which requires high efficient broadcast schemes.The primitive and widely deployed method of implementing the broadcast is simple ‘flooding’. In this approach, each node ‘floods’ the network, with the message that it has received, in order to guarantee that other nodes in the network have been successfully reached. Although flooding is simple and reliable, it consumes a great deal of network resources, since it swamps the network with many redundant packets, leading to collisions contention and huge competition, while accessing the same shared wireless medium. This phenomenon is well-known in MANETs, and is called the Broadcast Storm Problem.The first contribution of this thesis is to design and develop an efficient distributed route discovery scheme that is implemented based on the probabilistic concept, in order to suppress the broadcast storm problem. The proposed scheme is called a Probabilistic Disturbed Route Discovery scheme (PDRD), and it prioritizes the routing operation at each node with respect to different network parameters such as the number of duplicated packets, and local and global network density. The performance of the proposed scheme PDRD has been examined in MANETs, in terms of a number of important metrics such as RREQ rebroadcast number and RREQ collision number. Experimental results confirm the superiority of the proposed scheme over its counterparts, including the Hybrid Probabilistic-Based Counter (HPC) scheme and the Simple Flooding (SF) scheme.The second contribution of this thesis is to tackle the frequent link breakages problem in MANETs. High mobility nodes often have frequent link breakages; this potentially leads to re-discovery of the same routes. Although different probabilistic solutions have been suggested to optimize the routing in MANETs, to the best of our knowledge they have not focused on the problem of frequent link breakages and link stability.IIUnlike other existing probabilistic solutions, this thesis proposes a new Velocity Aware-Probabilistic (VAP) route discovery scheme, which can exclude unstable nodes from constructing routes between source and destination. The main idea behind the proposed schemes is to use velocity vector information to determine the stable nodes and unstable nodes. A proper rebroadcast probability and timer are set dynamically according to the node stability. Simulation results confirm that the new proposed scheme has much better performance in terms of end-to-end delay, RREQ rebroadcast number and link stability.The routing in VANETs is very critical and challenging in terms of the number of broken links and packet overheads. This is mainly due to the fast vehicles’ speed and different vehicles’ movement directions. A large number of routing protocols such as Ad-hoc On-demand Distance Vector (AODV) and Dynamic Source Routing (DSR) have been proposed to deal with the routing in MANETs. However, these protocols are not efficient and cannot be applied directly to VANETs context due to its different characteristics. Finally toward this end, this thesis proposes new probabilistic and timer probabilistic routing schemes in order to improve the routing in VANETs. The main aim of the proposed schemes is to set up the most stable routes to avoid any possible link breakage. These schemes also enhance the overall network performance by suppressing the broadcast storm problem, which occurs during the route discovery process. The proposed schemes also make AODV protocol suitable and applicable for VANETs. Simulation results show the benefit of the new routing schemes in terms of a number of metrics such as RREQ rebroadcast number, link stability and end-to-end delay

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore