77 research outputs found

    Joint Sparsity with Different Measurement Matrices

    Full text link
    We consider a generalization of the multiple measurement vector (MMV) problem, where the measurement matrices are allowed to differ across measurements. This problem arises naturally when multiple measurements are taken over time, e.g., and the measurement modality (matrix) is time-varying. We derive probabilistic recovery guarantees showing that---under certain (mild) conditions on the measurement matrices---l2/l1-norm minimization and a variant of orthogonal matching pursuit fail with a probability that decays exponentially in the number of measurements. This allows us to conclude that, perhaps surprisingly, recovery performance does not suffer from the individual measurements being taken through different measurement matrices. What is more, recovery performance typically benefits (significantly) from diversity in the measurement matrices; we specify conditions under which such improvements are obtained. These results continue to hold when the measurements are subject to (bounded) noise.Comment: Allerton 201

    On Unlimited Sampling

    Full text link
    Shannon's sampling theorem provides a link between the continuous and the discrete realms stating that bandlimited signals are uniquely determined by its values on a discrete set. This theorem is realized in practice using so called analog--to--digital converters (ADCs). Unlike Shannon's sampling theorem, the ADCs are limited in dynamic range. Whenever a signal exceeds some preset threshold, the ADC saturates, resulting in aliasing due to clipping. The goal of this paper is to analyze an alternative approach that does not suffer from these problems. Our work is based on recent developments in ADC design, which allow for ADCs that reset rather than to saturate, thus producing modulo samples. An open problem that remains is: Given such modulo samples of a bandlimited function as well as the dynamic range of the ADC, how can the original signal be recovered and what are the sufficient conditions that guarantee perfect recovery? In this paper, we prove such sufficiency conditions and complement them with a stable recovery algorithm. Our results are not limited to certain amplitude ranges, in fact even the same circuit architecture allows for the recovery of arbitrary large amplitudes as long as some estimate of the signal norm is available when recovering. Numerical experiments that corroborate our theory indeed show that it is possible to perfectly recover function that takes values that are orders of magnitude higher than the ADC's threshold.Comment: 11 pages, 4 figures, copy of initial version to appear in Proceedings of 12th International Conference on Sampling Theory and Applications (SampTA

    A Dimension Reduction Scheme for the Computation of Optimal Unions of Subspaces

    Get PDF
    Given a set of points \F in a high dimensional space, the problem of finding a union of subspaces \cup_i V_i\subset \R^N that best explains the data \F increases dramatically with the dimension of \R^N. In this article, we study a class of transformations that map the problem into another one in lower dimension. We use the best model in the low dimensional space to approximate the best solution in the original high dimensional space. We then estimate the error produced between this solution and the optimal solution in the high dimensional space.Comment: 15 pages. Some corrections were added, in particular the title was changed. It will appear in "Sampling Theory in Signal and Image Processing

    Nearness to Local Subspace Algorithm for Subspace and Motion Segmentation

    Get PDF
    There is a growing interest in computer science, engineering, and mathematics for modeling signals in terms of union of subspaces and manifolds. Subspace segmentation and clustering of high dimensional data drawn from a union of subspaces are especially important with many practical applications in computer vision, image and signal processing, communications, and information theory. This paper presents a clustering algorithm for high dimensional data that comes from a union of lower dimensional subspaces of equal and known dimensions. Such cases occur in many data clustering problems, such as motion segmentation and face recognition. The algorithm is reliable in the presence of noise, and applied to the Hopkins 155 Dataset, it generates the best results to date for motion segmentation. The two motion, three motion, and overall segmentation rates for the video sequences are 99.43%, 98.69%, and 99.24%, respectively

    On the Effective Measure of Dimension in the Analysis Cosparse Model

    Full text link
    Many applications have benefited remarkably from low-dimensional models in the recent decade. The fact that many signals, though high dimensional, are intrinsically low dimensional has given the possibility to recover them stably from a relatively small number of their measurements. For example, in compressed sensing with the standard (synthesis) sparsity prior and in matrix completion, the number of measurements needed is proportional (up to a logarithmic factor) to the signal's manifold dimension. Recently, a new natural low-dimensional signal model has been proposed: the cosparse analysis prior. In the noiseless case, it is possible to recover signals from this model, using a combinatorial search, from a number of measurements proportional to the signal's manifold dimension. However, if we ask for stability to noise or an efficient (polynomial complexity) solver, all the existing results demand a number of measurements which is far removed from the manifold dimension, sometimes far greater. Thus, it is natural to ask whether this gap is a deficiency of the theory and the solvers, or if there exists a real barrier in recovering the cosparse signals by relying only on their manifold dimension. Is there an algorithm which, in the presence of noise, can accurately recover a cosparse signal from a number of measurements proportional to the manifold dimension? In this work, we prove that there is no such algorithm. Further, we show through numerical simulations that even in the noiseless case convex relaxations fail when the number of measurements is comparable to the manifold dimension. This gives a practical counter-example to the growing literature on compressed acquisition of signals based on manifold dimension.Comment: 19 pages, 6 figure
    • …
    corecore