841 research outputs found

    A Survey on Emotion Recognition for Human Robot Interaction

    Get PDF
    With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Design of a Simulator for Neonatal Multichannel EEG: Application to Time-Frequency Approaches for Automatic Artifact Removal and Seizure Detection

    Get PDF
    The electroencephalogram (EEG) is used to noninvasively monitor brain activities; it is the most utilized tool to detect abnormalities such as seizures. In recent studies, detection of neonatal EEG seizures has been automated to assist neurophysiologists in diagnosing EEG as manual detection is time consuming and subjective; however it still lacks the necessary robustness that is required for clinical implementation. Moreover, as EEG is intended to record the cerebral activities, extra-cerebral activities external to the brain are also recorded; these are called “artifacts” and can seriously degrade the accuracy of seizure detection. Seizures are one of the most common neurologic problems managed by hospitals occurring in 0.1%-0.5% livebirths. Neonates with seizures are at higher risk for mortality and are reported to be 55-70 times more likely to have severe cerebral-palsy. Therefore, early and accurate detection of neonatal seizures is important to prevent long-term neurological damage. Several attempts in modelling the neonatal EEG and artifacts have been done, but most did not consider the multichannel case. Furthermore, these models were used to test artifact or seizure detection separately, but not together. This study aims to design synthetic models that generate clean or corrupted multichannel EEG to test the accuracy of available artifact and seizure detection algorithms in a controlled environment. In this thesis, synthetic neonatal EEG model is constructed by using; single-channel EEG simulators, head model, 21-electrodes, and propagation equations, to produce clean multichannel EEG. Furthermore, neonatal EEG artifact model is designed using synthetic signals to corrupt EEG waveforms. After that, an automated EEG artifact detection and removal system is designed in both time and time-frequency domains. Artifact detection is optimised and removal performance is evaluated. Finally, an automated seizure detection technique is developed, utilising fused and extended multichannel features along a cross-validated SVM classifier. Results show that the synthetic EEG model mimics real neonatal EEG with 0.62 average correlation, and corrupted-EEG can degrade seizure detection average accuracy from 100% to 70.9%. They also show that using artifact detection and removal enhances the average accuracy to 89.6%, and utilising the extended features enhances it to 97.4% and strengthened its robustness.لمراقبة ورصد أنشطة واشارات المخ، دون الحاجة لأي عملیات (EEG) یستخدم الرسم أو التخطیط الكھربائي للدماغ للدماغجراحیة، وھي تعد الأداة الأكثر استخداما في الكشف عن أي شذوذأو نوبات غیر طبیعیة مثل نوبات الصرع. وقد أظھرت دراسات حدیثة، أن الكشف الآلي لنوبات حدیثي الولادة، ساعد علماء الفسیولوجیا العصبیة في تشخیص الاشارات الدماغیة بشكل أكبر من الكشف الیدوي، حیث أن الكشف الیدوي یحتاج إلى وقت وجھد أكبر وھوذو فعالیة أقل بكثیر، إلا أنھ لا یزال یفتقر إلى المتانة الضروریة والمطلوبة للتطبیق السریري.علاوة على ذلك؛ فكما یقوم الرسم الكھربائي بتسجیل الأنشطة والإشارات الدماغیة الداخلیة، فھو یسجل أیضا أي نشاط أو اشارات خارجیة، مما یؤدي إلى -(artifacts) :حدوث خلل في مدى دقة وفعالیة الكشف عن النوبات الدماغیة الداخلیة، ویطلق على تلك الاشارات مسمى (نتاج صنعي) . 0.5٪ولادة حدیثة في -٪تعد نوبات الصرع من أكثر المشكلات العصبیة انتشارا،ً وھي تصیب ما یقارب 0.1المستشفیات. حیث أن حدیثي الولادة المصابین بنوبات الصرع ھم أكثر عرضة للوفاة، وكما تشیر التقاریر الى أنھم 70مرة أكثر. لذا یعد الكشف المبكر والدقیق للنوبات الدماغیة -معرضین للإصابة بالشلل الدماغي الشدید بما یقارب 55لحدیثي الولادة مھم جدا لمنع الضرر العصبي على المدى الطویل. لقد تم القیام بالعدید من المحاولات التي كانتتھدف الى تصمیم نموذج التخطیط الكھربائي والنتاج الصنعي لدماغ حدیثي الولادة, إلا أن معظمھا لم یعر أي اھتمام الى قضیة تعدد القنوات. إضافة الى ذلك, استخدمت ھذه النماذج , كل على حدة, أو نوبات الصرع. تھدف ھذه الدراسة الى تصمیم نماذج مصطنعة من شأنھا (artifact) لإختبار كاشفات النتاج الصنعيأن تولد اشارات دماغیة متعددة القنوات سلیمة أو معطلة وذلك لفحص مدى دقة فعالیة خوارزمیات الكشف عن نوبات ضمن بیئة یمكن السیطرة علیھا. (artifact) الصرع و النتاج الصنعي في ھذه الأطروحة, یتكون نموذج الرسم الكھربائي المصطنع لحدیثي الولادة من : قناة محاكاة واحده للرسم الكھربائي, نموذج رأس, 21قطب كھربائي و معادلات إنتشار. حیث تھدف جمیعھا لإنتاج إشاراة سلیمة متعدده القنوات للتخطیط عن طریق استخدام اشارات مصطنعة (artifact) الكھربائي للدماغ.علاوة على ذلك, لقد تم تصمیم نموذجالنتاج الصنعيفي نطاقالوقت و (artifact) لإتلاف الرسم الكھربائي للدماغ. بعد ذلك تم انشاء برنامج لكشف و إزالةالنتاج الصناعينطاقالوقت و التردد المشترك. تم تحسین برنامج الكشف النتاج الصناعيالى ابعد ما یمكن بینما تمت عملیة تقییم أداء الإزالة. وفي الختام تم التمكن من تطویر تقنیة الكشف الآلي عن نوبات الصرع, وذلك بتوظیف صفات مدمجة و صفات الذي تم التأكد من صحتھ. (SVM) جدیدة للقنوات المتعددة لإستخدامھا للمصنفلقد أظھرت النتائج أن نموذج الرسم الكھربائي المصطنع لحدیثي الولادة یحاكي الرسمالكھربائي الحقیقي لحدیثي الولادة بمتوسط ترابط 0.62, و أنالرسم الكھربائي المتضرر للدماغ قد یؤدي الى حدوث ھبوطفي مدى دقة متوسط الكشف عن نوبات الصرع من 100%الى 70.9%. وقد أشارت أیضا الى أن استخدام الكشف والإزالة عن النتاج الصنعي (artifact) یؤدي الى تحسن مستوى الدقة الى نسبة 89.6 %, وأن توظیف الصفات الجدیدة للقنوات المتعددة یزید من تحسنھا لتصل الى نسبة 94.4 % مما یعمل على دعم متانتھا

    Design of a Neuromemristive Echo State Network Architecture

    Get PDF
    Echo state neural networks (ESNs) provide an efficient classification technique for spatiotemporal signals. The feedback connections in the ESN enable feature extraction in both spatial and temporal components in time series data. This property has been used in several application domains such as image and video analysis, anomaly detection, and speech recognition. The software implementations of the ESN demonstrated efficiency in processing such applications, and have low design cost and flexibility. However, hardware implementation is necessary for power constrained resources applications such as therapeutic and mobile devices. Moreover, software realization consumes an order or more power compared to the hardware realization. In this work, a hardware ESN architecture with neuromemristive system is proposed. A neuromemristive system is a brain inspired computing system that uses memristive devises for synaptic plasticity. The memristive devices in neuromemristive systems have several interesting properties such as small footprint, simple device structure, and most importantly zero static power dissipation. The proposed architecture is reconfigurable for different ESN topologies. 2-D mesh architecture and toroidal networks are exploited in the reservoir layer. The relation between performance of the proposed reservoir architecture and reservoir metrics are analyzed. The proposed architecture is tested on a suite of medical and human computer interaction applications. The benchmark suite includes epileptic seizure detection, speech emotion recognition, and electromyography (EMG) based finger motion recognition. The proposed ESN architecture demonstrated an accuracy of 90%90\%, 96%96\%, and 84%84\% for epileptic seizure detection, speech emotion recognition and EMG prosthetic fingers control respectively

    Patient-specific seizure onset detection

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 121-124).Approximately one percent of the world's population exhibits symptoms of epilepsy, a serious disorder of the central nervous system that predisposes those affected to experiencing recurrent seizures. The risk of injury associated with epileptic seizures might be mitigated by the use of a device that can reliably detect or predict the onset of seizure episodes and then warn caregivers of the event. In a hospital this device could also be used to initiate time-sensitive clinical procedures necessary for characterizing epileptic syndromes. This thesis discusses the design of a real-time, patient-specific method that can be used to detect the onset of epileptic seizures in non-invasive EEG, and then initiate time-sensitive clinical procedures like ictal SPECT. We adopt a patient-specific approach because of the clinically observed consistency of seizure and non-seizure EEG characteristics within patients, and their great heterogeneity across patients. We also treat patient-specific seizure onset detection as a binary classification problem. Our observation is a multi-channel EEG signal; its features include amplitude, fundamental frequency, morphology, and spatial localization on the scalp; and it is classified as an instance of non-seizure or seizure EEG based on the learned features of training examples from a single patient. We use a multi-level wavelet decomposition to extract features that capture the amplitude, fundamental frequency, and morphology of EEG waveforms. These features are then classified using a support vector machine or maximum-likelihood classifier trained on a patient's seizure and non-seizure EEG; non-seizure EEG includes normal and artifact contaminated EEG from various states of consciousness.(cont.) The outcome of the classification is examined in the context of automatically extracted spatial and temporal constraints before the onset of seizure activity is declared. During validation tests our method exhibited an average latency of 8.0[plus-minus]3.2 seconds while correctly identifying 131 of 139 seizure events from thirty-six, de-identified test subjects; and only 11 false-detections over 49 hours of randomly selected non-seizure EEG from these subjects. The validation tests also highlight the high learning rate of the detector; a property that allows it to exhibit excellent performance even when trained on as few as two seizure events from the test subject. We also demonstrate through a comparative study that our patient-specific detector outperforms a nonpatient-specific, or generic detector in terms of a lower average detection latency; a lower total number of false-detections; and a higher total number of true-detections. Our study also underscores the likely event of a generic detector performing very poorly when the seizure EEG of a subject in its training set matches the non-seizure EEG of the test subject.by Ali Hossam Shoeb.M.Eng

    Sparse machine learning methods with applications in multivariate signal processing

    Get PDF
    This thesis details theoretical and empirical work that draws from two main subject areas: Machine Learning (ML) and Digital Signal Processing (DSP). A unified general framework is given for the application of sparse machine learning methods to multivariate signal processing. In particular, methods that enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compressibility. The methods presented can be seen as modular building blocks that can be applied to a variety of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set of multivariate signals. In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets were carried out. These included: the classification of musical genre from polyphonic audio files; a study of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS); analysis of human perception of different modulations of musical key from Electroencephalography (EEG) recordings; classification of genre of musical pieces to which a listener is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the framework and highlight interesting directions of future research

    Exploring machine learning techniques in epileptic seizure detection and prediction

    Get PDF
    Epilepsy is the most common neurological disorder, affecting between 0.6% and 0.8% of the global population. Among those affected by epilepsy whose primary method of seizure management is Anti Epileptic Drug therapy (AED), 30% go on to develop resistance to drugs which ultimately leads to poor seizure management. Currently, alternative therapeutic methods with successful outcome and wide applicability to various types of epilepsy are limited. During an epileptic seizure, the onset of which tends to be sudden and without prior warning, sufferers are highly vulnerable to injury, and methods that might accurately predict seizure episodes in advance are clearly of value, particularly to those who are resistant to other forms of therapy. In this thesis, we draw from the body of work behind automatic seizure prediction obtained from digitised Electroencephalography (EEG) data and use a selection of machine learning and data mining algorithms and techniques in an attempt to explore potential directions of improvement for automatic prediction of epileptic seizures. We start by adopting a set of EEG features from previous work in the field (Costa et al. 2008) and exploring these via seizure classification and feature selection studies on a large dataset. Guided by the results of these feature selection studies, we then build on Costa et al's work by presenting an expanded feature-set for EEG studies in this area. Next, we study the predictability of epileptic seizures several minutes (up to 25 minutes) in advance of the physiological onset. Furthermore, we look at the role of the various feature compositions on predicting epileptic seizures well in advance of their occurring. We focus on how predictability varies as a function of how far in advance we are trying to predict the seizure episode and whether the predictive patterns are translated across the entire dataset. Finally, we study epileptic seizure detection from a multiple-patient perspective. This entails conducting a comprehensive analysis of machine learning models trained on multiple patients and then observing how generalisation is affected by the number of patients and the underlying learning algorithm. Moreover, we improve multiple-patient performance by applying two state of the art machine learning algorithms

    Low Power Circuits for Smart Flexible ECG Sensors

    Get PDF
    Cardiovascular diseases (CVDs) are the world leading cause of death. In-home heart condition monitoring effectively reduced the CVD patient hospitalization rate. Flexible electrocardiogram (ECG) sensor provides an affordable, convenient and comfortable in-home monitoring solution. The three critical building blocks of the ECG sensor i.e., analog frontend (AFE), QRS detector, and cardiac arrhythmia classifier (CAC), are studied in this research. A fully differential difference amplifier (FDDA) based AFE that employs DC-coupled input stage increases the input impedance and improves CMRR. A parasitic capacitor reuse technique is proposed to improve the noise/area efficiency and CMRR. An on-body DC bias scheme is introduced to deal with the input DC offset. Implemented in 0.35m CMOS process with an area of 0.405mm2, the proposed AFE consumes 0.9W at 1.8V and shows excellent noise effective factor of 2.55, and CMRR of 76dB. Experiment shows the proposed AFE not only picks up clean ECG signal with electrodes placed as close as 2cm under both resting and walking conditions, but also obtains the distinct -wave after eye blink from EEG recording. A personalized QRS detection algorithm is proposed to achieve an average positive prediction rate of 99.39% and sensitivity rate of 99.21%. The user-specific template avoids the complicate models and parameters used in existing algorithms while covers most situations for practical applications. The detection is based on the comparison of the correlation coefficient of the user-specific template with the ECG segment under detection. The proposed one-target clustering reduced the required loops. A continuous-in-time discrete-in-amplitude (CTDA) artificial neural network (ANN) based CAC is proposed for the smart ECG sensor. The proposed CAC achieves over 98% classification accuracy for 4 types of beats defined by AAMI (Association for the Advancement of Medical Instrumentation). The CTDA scheme significantly reduces the input sample numbers and simplifies the sample representation to one bit. Thus, the number of arithmetic operations and the ANN structure are greatly simplified. The proposed CAC is verified by FPGA and implemented in 0.18m CMOS process. Simulation results show it can operate at clock frequencies from 10KHz to 50MHz. Average power for the patient with 75bpm heart rate is 13.34W

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition
    corecore