970 research outputs found

    Analogue to Digital and Digital to Analogue Converters (ADCs and DACs): A Review Update

    Full text link
    This is a review paper updated from that presented for CAS 2004. Essentially, since then, commercial components have continued to extend their performance boundaries but the basic building blocks and the techniques for choosing the best device and implementing it in a design have not changed. Analogue to digital and digital to analogue converters are crucial components in the continued drive to replace analogue circuitry with more controllable and less costly digital processing. This paper discusses the technologies available to perform in the likely measurement and control applications that arise within accelerators. It covers much of the terminology and 'specmanship' together with an application-oriented analysis of the realisable performance of the various types. Finally, some hints and warnings on system integration problems are given.Comment: 15 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    VCO-based ADCs Design Techniques for Communication Systems

    Get PDF
    This work presents a novel technique to implement voltage-controlled oscillator based continuous-time Delta-Sigma analog-to-digital converters (VCO-based CT-ΔΣ ADCs) in closed-loop configuration. Over the past years there has been an upward trend in the use of these type of converters for instrumentation, audio and communication applications. The reason is that they are mostly digital and thus benefit from advances in deep-submicron CMOS processes. VCO-based ADCs have been widely studied in a great deal of papers and it is known that one of its main drawbacks is the non-linearity it presents. To overcome this issue, to place the VCO within a closed-loop is usually done to attenuate its input magnitude level. However, to do so it is needed a digital-to-analog converter (DAC) as in a conventional CT-ΔΣ, therefore it is required for the DAC to be simple and it cannot present a high number of elements, being the latter a bottleneck for implementing VCOs with a high number of inverters. This works presents a technique that enables to use VCOs with severals inverters while keeping the same number of DAC elements as before. Based upon previous theoretical studies of the VCO-based ADCs which model it as a pulse frequency modulation encoder, this new technique is analyzed and linear models are developed in order to study its viability at system level. Moreover, how impairments related to a real implementation affect the use of this technique are also analyzed. The contributions proposed in this document are focused but not limited to communication applications.Máster Universitario en Ingeniería de Sistemas Electrónicos y Aplicaciones. Curso 2018/201

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Mención Internacional en el título de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438μW. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600μW. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482μW. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153μW. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los últimos años, el desarrollo de las tecnologías móviles y las aplicaciones de machine-learning han aumentado la demanda de micrófonos digitales basados en MEMS. Los dipositivos móviles tienen varios micrófonos que permiten la cancelación de ruido, el beamforming o conformación de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje automático, el interés por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el interés por desarrollar micrófonos digitales en nodos CMOS nanométricos donde el front-end analógico y el procesamiento digital del micrófono, que puede incluir redes neuronales, está integrado en el mismo chip. Tradicionalmente, los convertidores analógicos-digitales (ADC) en micrófonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La técnica más común para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos más adecuados para las tareas que requieren una operación continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la señal de entrada es codificada en voltaje durante el proceso de conversión, lo que hace que la integración en nodos CMOS más pequeños sea complicada debido a la menor tensión de alimentación. Una técnica alternativa consiste en codificar la señal de entrada en tiempo (o frecuencia) en lugar de tensión. Esto es lo que hacen los convertidores de codificación temporal. Recientemente, los convertidores de codificación temporal han ganado popularidad ya que son más adecuados para nodos CMOS nanométricos que los convertidores Sigma-Delta. Entre los que más interés han despertado encontramos los ADCs basados en osciladores controlados por tensión (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores también tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementación de convertidores en nodos CMOS nanométricos. Sin embargo, dos problemas principales están presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resolución del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsión a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificación temporal para micrófonos MEMS, con especial interés en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resolución. En este documento se explica el cuantificador y obtienen las ecuaciones para la función de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atención al tema de los RO-ADC. Presentamos el chip de un micrófono MEMS de alto rango dinámico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementación del front-end analógico que incluye el oscilador y la interfaz con el MEMS. Esta implementación se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango dinámico. La descripción del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango dinámico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438μW. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentación no muestreado alrededor del oscilador. El objetivo es reducir la distorsión. Además, también se logra la mitigación del ruido de fase del oscilador. Se analyza una primera topologia de realimentación incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este diseño se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600μW en la parte analógica. Seguidamente, se analiza una segunda topología sin el amplificador operacional. Se fabrican y miden dos chips diseñados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482μW. El segundo incluye solo el oscilador y está implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia analógica es de 153μW. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detección de voz (VAD).Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Antonio Jesús Torralba Silgado.- Secretaria: María Luisa López Vallejo.- Vocal: Pieter Rombout

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    A CMOS Digital Beamforming Receiver

    Full text link
    As the demand for high speed communication is increasing, emerging wireless techniques seek to utilize unoccupied frequency ranges, such as the mm-wave range. Due to high path loss for higher carrier frequencies, beamforming is an essential technology for mm-wave communication. Compared to analog beamforming, digital beamforming provides multiple simultaneous beams without an SNR penalty, is more accurate, enables faster steering, and provides full access to each element. Despite these advantages, digital beamforming has been limited by high power consumption, large die area, and the need for large numbers of analog-to-digital converters. Furthermore, beam squinting errors and ADC non-linearity limit the use of large digital beamforming arrays. We address these limitations. First, we address the power and area challenge by combining Interleaved Bit Stream Processing (IL-BSP) with power and area efficient Continuous-Time Band-Pass Delta-Sigma Modulators (CTBPDSMs). Compared to conventional DSP, IL-BSP reduces both power and area by 80%. Furthermore, the new CTBPDSM architecture reduces ADC area by 67% and the energy per conversion by 43% compared to previous work. Second, we introduce the first integrated digital true-time-delay digital beamforming receiver to resolve the beam squinting. True-time-delay beamforming eliminates squinting, making it an ideal choice for large-array wide-bandwidth applications. Third, we present a new current-steering DAC architecture that provides a constant output impedance to improve ADC linearity. This significantly reduces distortion, leading to an SFDR improvement of 13.7 dB from the array. Finally, we provide analysis to show that the ADC power consumption of a digital beamformer is comparable to that of the ADC power for an analog beamformer. To summarize, we present a prototype phased array and a prototype timed array, both with 16 elements, 4 independent beams, a 1 GHz center frequency, and a 100 MHz bandwidth. Both the phased array and timed array achieve nearly ideal conventional and adaptive beam patterns, including beam tapering and adaptive nulling. With an 11.2 dB array gain, the phased array achieves a 58.5 dB SNDR over a 100 MHz bandwidth, while consuming 312 mW and occupying 0.22 mm2. The timed array achieves an EVM better than -37 dB for 5 MBd QAM-256 and QAM-512, occupies only 0.29 mm2, and consumes 453 mW.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147716/1/smjang_1.pd

    A Triple-Mode Performance-Optimized Reconfigurable Incremental ADC for Smart Sensor Applications

    Get PDF
    This paper proposes a triple-mode discrete-time incremental analog-to-digital converter (IADC) employing successive approximation register (SAR)-based zooming and extended counting (EC) schemes to achieve programmable trade-off capability of resolution and power consumption in various smart sensor applications. It mainly consists of an incremental delta???sigma modulator and the proposed SAR-EC sub-ADC for alternate operation of the coarse SAR conversion and EC. They can be reconfigured to operate separately depending on the application requirements. The SAR-based zooming structure allows the IADC to have better linearity and resolution, and additional activation of the EC function gives the further resolution. During this reconfigurable conversion process, pipelined reusing operation of sub-blocks reduces the silicon area and the number of cycles for target resolutions. A prototype ADC is fabricated in a 180-nm CMOS process, and its triple-mode operation of high-resolution, medium-resolution, and low-power is experimentally verified to achieve 116.1-, 109.4-, and 73.3-dB dynamic ranges, consuming 1.60, 1.26, and 0.39 mW, respectively

    Oversampled analog-to-digital converter architectures based on pulse frequency modulation

    Get PDF
    Mención Internacional en el título de doctorThe purpose of this research work is providing new insights in the development of voltage-controlled oscillator based analog-to-digital converters (VCO-based ADCs). Time-encoding based ADCs have become of great interest to the designer community due to the possibility of implementing mostly digital circuits, which are well suited for current deep-submicron CMOS processes. Within this topic, VCO-based ADCs are one of the most promising candidates. VCO-based ADCs have typically been analyzed considering the output phase of the oscillator as a state variable, similar to the state variables considered in __ modulation loops. Although this assumption might take us to functional designs (as verified by literature), it does not take into account neither the oscillation parameters of the VCO nor the deterministic nature of quantization noise. To overcome this issue, we propose an interpretation of these type of systems based on the pulse frequency modulation (PFM) theory. This permits us to analytically calculate the quantization noise, in terms of the working parameters of the system. We also propose a linear model that applies to VCO-based systems. Thanks to it, we can determine the different error processes involved in the digitization of the input data, and the performance limitations which these processes direct to. A generic model for any order open-loop VCO-based ADCs is made based on the PFM theory. However, we will see that only the first-order case and a second order approximation can be implemented in practice. The PFM theory also allows us to propose novel approaches to both single-stage and multistage VCObased architectures. We describe open-loop architectures such as VCO-based architectures with digital precoding, PFM-based architectures that can be used as efficient ADCs or MASH architectures with optimal noise-transfer-function (NTF) zeros. We also make a first approach to the proposal and analysis of closed loop architectures. At the same time, we deal with one of the main limitations of VCOs (especially those built with ring oscillators), which is the non-linear voltage to- frequency relation. In this document, we describe two techniques mitigate this phenomenon. Firstly, we propose to use a pulse width modulator in front of the VCO. This way, there are only two possible oscillation states. Consequently, the oscillator works linearly. To validate the proposed technique, an experimental prototype was implemented in a 40-nm CMOS process. The chip showed noise problems that degraded the expected resolution, but allowed us to verify that the potential performance was close to the expected one. A potential signal-to-noise-distortion ratio (SNDR) equal to 56 dB was achieved in 20 MHz bandwidth, consuming 2.15 mW with an occupied area equal to 0.03 mm2. In comparison to other equivalent systems, the proposed architecture is simpler, while keeping similar power consumption and linearity properties. Secondly, we used a pulse frequency modulator to implement a second ADC. The proposed architecture is intrinsically linear and uses a digital delay line to increase the resolution of the converter. One experimental prototype was implemented in a 40-nm CMOS process using one of these architectures. Proper results were measured from this prototype. These results allowed us to verify that the PFM-based architecture could be used as an efficient ADC. The measured peak SNDR was equal to 53 dB in 20 MHz bandwidth, consuming 3.5 mW with an occupied area equal to 0.08 mm2. The architecture shows a great linearity, and in comparison to related work, it consumes less power and occupies similar area. In general, the theoretical analyses and the architectures proposed in the document are not restricted to any application. Nevertheless, in the case of the experimental chips, the specifications required for these converters were linked to communication applications (e.g. VDSL, VDSL2, or even G.fast), which means medium resolution (9-10 bits), high bandwidth (20 MHz), low power and low area.El propósito del trabajo presentado en este documento es aportar una nueva perspectiva para el diseño de convertidores analógico-digitales basados en osciladores controlados por tensión. Los convertidores analógico-digitales con codificación temporal han llamado la atención durante los últimos años de la comunidad de diseñadores debido a la posibilidad de implementarlos en su gran mayoría con circuitos digitales, los cuales son muy apropiados para los procesos de diseño manométricos. En este ámbito, los convertidores analógico-digitales basados en osciladores controlados por tensión son uno de los candidatos más prometedores. Los convertidores analógico-digitales basados en osciladores controlados por tensión han sido típicamente analizados considerando que la fase del oscilador es una variable de estado similar a las que se observan en los moduladores __. Aunque esta consideración puede llevarnos a diseños funcionales (como se puede apreciar en muchos artículos de la literatura), en ella no se tiene en cuenta ni los parámetros de oscilación ni la naturaleza determinística del ruido de cuantificación. Para solventar esta cuestión, en este documento se propone una interpretación alternativa de este tipo de sistemas haciendo uso de la teoría de la modulación por frecuencia de pulsos. Esto nos permite calcular de forma analítica las ecuaciones que modelan el ruido de cuantificación en función de los parámetros de oscilación. Se propone también un modelo lineal para el análisis de convertidores analógico-digitales basados en osciladores controlados por tensión. Este modelo permite determinar las diferentes fuentes de error que se producen durante el proceso de digitalización de los datos de entrada y las limitaciones que suponen. Un modelo genérico de convertidor de cualquier orden se propone con la ayuda de este modelo. Sin embargo, solo los casos de primer orden y una aproximación al caso de segundo orden se pueden implementar en la práctica. La teoría de la modulación por frecuencia de pulsos también permite nuevas perspectivas para la propuesta y el análisis tanto de arquitecturas de una sola etapa como de arquitecturas de varias etapas construidas con osciladores controlados por tensión. Se proponen y se describen arquitecturas en lazo abierto como son las basadas en osciladores controlador por tensión con moduladores digitales en la etapa de entrada, moduladores por frecuencia de pulsos que se utilizan como convertidores analógico-digitales eficientes o arquitecturas en cascada en las que se optimizan la distribución de los ceros en la función de transferencia del ruido. También se realiza una aproximación a la propuesta y el análisis de arquitecturas en lazo cerrado. Al mismo tiempo, se aborda una de las problemáticas más importantes de los osciladores controlados por tensión (especialmente en aquellos implementados mediante osciladores en anillo): la relación tensión-freculineal que presentan este tipo de circuitos. En el documento, se describen dos técnicas cuyo objetivo es mitigar esta limitación. La primera técnica de corrección se basa en el uso de un modulador por ancho de pulsos antes del oscilador controlado por tensión. De esta forma, solo existen dos estados de oscilación en el oscilador, se trabaja de forma lineal y no se genera distorsión en los datos de salida. La técnica se propone de forma teórica haciendo uso de la teoría desarrollada previamente. Para llevar a cabo la validación de la propuesta teórica se fabricó un prototipo experimental en un proceso CMOS de 40-nm. El chip mostró problemas de ruido que limitaban la resolución, sin embargo, nos permitió velicar que la resolución ideal que se podrá haber obtenido estaba muy cercana a la resolución esperada. Se obtuvo una potencial relación señal-(ruido-distorsión) igual a 56 dB en 20 MHz de ancho de banda, un consumo de 2.15 mW y un área igual a 0.03 mm2. En comparación con sistemas equivalentes, la arquitectura propuesta es más simple al mismo tiempo que se mantiene el consumo así como la linealidad. A continuación, se propone la implementación de un convertidor analógico digital mediante un modulador por frecuencia de pulsos. La arquitectura propuesta es intrínsecamente lineal y hace uso de una línea de retraso digital con el fin de mejorar la resolución del convertidor. Como parte del trabajo experimental, se fabricó otro chip en tecnología CMOS de 40 nm con dicha arquitectura, de la que se obtuvieron resultados notables. Estos resultados permitieron verificar que la arquitectura propuesta, en efecto, podrá emplearse como convertidor analógico-digital eficiente. La arquitectura consigue una relación real señal-(ruido-distorsión) igual a 53 dB en 20 MHz de ancho de banda, un consumo de 3.5 mW y un área igual a 0.08 mm2. Se obtiene una gran linealidad y, en comparación con arquitecturas equivalentes, el consumo es menor mientras que el área ocupada se mantiene similar. En general, las aportaciones propuestas en este documento se pueden aplicar a cualquier tipo de aplicación, independientemente de los requisitos de resolución, ancho de banda, consumo u área. Sin embargo, en el caso de los prototipos fabricados, las especificaciones se relacionan con el ámbito de las comunicaciones (VDSL, VDSL2, o incluso G.fast), en donde se requiere una resolución media (9-10 bits), alto ancho de banda (20 MHz), manteniendo bajo consumo y baja área ocupada.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Michael Peter Kennedy.- Secretario: Antonio Jesús López Martín.- Vocal: Jörg Hauptman

    A Highly Digital VCO-Based ADC With Lookup-Table-Based Background Calibration

    Get PDF
    CMOS technology scaling has enabled dramatic improvement for digital circuits both in terms of speed and power efficiency. However, most traditional analog-to-digital converter (ADC) architectures are challenged by ever-decreasing supply voltage. The improvement in time resolution enabled by increased digital speeds drives design towards time-domain architectures such as voltage-controlled-oscillator (VCO) based ADCs. The main challenge in VCO-based ADC design is mitigating the nonlinearity of VCO Voltage-to-frequency (V-to-f) characteristics. Achieving signal-to-noise ratio (SNR) performance better than 40dB requires some form of calibration, which can be realized by analog or digital techniques, or some combination. This dissertation proposes a highly digital, reconfigurable VCO-based ADC with lookup-table (LUT) based background calibration based on split ADC architecture. Each of the two split channels, ADC A and B , contains two VCOs in a differential configuration. This helps alleviate even-order distortions as well as increase the dynamic range. A digital controller on chip can reconfigure the ADCs\u27 sampling rates and resolutions to adapt to various application scenarios. Different types of input signals can be used to train the ADC’s LUT parameters through the simple, anti-aliasing continuous-time input to achieve target resolution. The chip is fabricated in a 180 nm CMOS process, and the active area of analog and digital circuits is 0.09 and 0.16mm^2, respectively. Power consumption of the core ADC function is 25 mW. Measured results for this prototype design with 12-b resolution show ENOB improves from uncorrected 5-b to 11.5-b with calibration time within 200 ms (780K conversions at 5 MSps sample rate)

    Architectural Improvements Towards an Efficient 16-18 Bit 100-200 MSPS ADC

    Get PDF
    As Data conversion systems continue to improve in speed and resolution, increasing demands are placed on the performance of high-speed Analog to Digital Conversion systems. This work makes a survey about all these and proposes a suitable architecture in order to achieve the desired specifications of 100-200MS/s with 16-18 bit of resolution. The main architecture is based on paralleled structures in order to achieve high sampling rate and at the same time high resolution. In order to solve problems related to Time-interleaved architectures, an advanced randomization method was introduced. It combines randomization and spectral shaping of mismatches. With a simple low-pass filter the method can, compared to conventional randomization algorithms, improve the SFDR as well as the SINAD. The main advantage of this technique over previous ones is that, because the algorithm only need that ADCs are ordered basing on their time mismatches, the absolute accuracy of the mismatch identification method does not matter and, therefore, the requirements on the timing mismatch identification are very low. In addition to that, this correction system uses very simple algorithms able to correct not only for time but also for gain and offset mismatches
    corecore