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SUMMARY

This work presents a novel technique to implement voltage-controlled oscillator based
continuous-time Delta-Sigma analog-to-digital converters (VCO-based CT-∆Σ ADCs) in
closed-loop configuration. Over the past years there has been an upward trend in the use of
these type of converters for instrumentation, audio and communication applications. The
reason is that they are mostly digital and thus benefit from advances in deep-submicron
CMOS processes.

VCO-based ADCs have been widely studied in a great deal of papers and it is known
that one of its main drawbacks is the non-linearity it presents. To overcome this issue, to
place the VCO within a closed-loop is usually done to attenuate its input magnitude level.
However, to do so it is needed a digital-to-analog converter (DAC) as in a conventional
CT-∆Σ, therefore it is required for the DAC to be simple and it cannot present a high
number of elements, being the latter a bottleneck for implementing VCOs with a high
number of inverters. This works presents a technique that enables to use VCOs with
severals inverters while keeping the same number of DAC elements as before. Based upon
previous theoretical studies of the VCO-based ADCs which model it as a pulse frequency
modulation encoder, this new technique is analyzed and linear models are developed in
order to study its viability at system level. Moreover, how impairments related to a real
implementation affect the use of this technique are also analyzed.

The contributions proposed in this document are focused but not limited to communi-
cation applications.

Keywords: Delta-Sigma, Voltage-Controlled Oscillator, Analog-to-Digital conver-
sion, VCO-based ADC.
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1. INTRODUCTION

1.1. Motivation of Work

Analog-to-Digital converters (ADC) play an important role every time that a signal from
the physical, and thus analog world needs to be quantified in order to be processed later on
in the digital domain, for that reason they are present everywhere from test instruments,
radio systems, audio systems to an everyday object like a smartphone, where they are used
for recording and communications purposes among many others. ADCs are circuits that
present both analog and digital electronics, and are implemented on microelectronic cir-
cuits where the digital side domains because, depending on the application, they suppose
most of the die area, that is, it uses more transistors than its analog counterpart. Digital
electronics benefits strongly from the shrink of the semiconductor device fabrication, be-
cause transistors are able to switch faster due to that the value of their stray capacitors is
decreased, it is possible to reduce the area or to increase functionality on the same area
as before. However, although analog electronics also benefits of an increase on maxi-
mum operating frequency, it presents a series of disadvantages such as a decrease on the
intrinsic gain of the transistor, less transistors in series as the supply voltage decreases
faster than the threshold voltage, leading to power inefficient architectures. To fabricate
an integrated circuit means to integrate on a same waffer, analog and digital designs.
Consequently, it is desired that the ADC presents more digital than analog components.

In the last decade, because many advances in different areas of science have been
done, the performance of the ADC need also to improve:

-High-speed communications such as 4G or 5G need ADC with wide analog band-
witdh and high resolution.

-Devices related to Internet of Things, or just plain portable devices that require low
power circuits because battery life has become very important.

That is why audio and communication ADCs have been using more and more dig-
ital structures, such as voltage controlled oscillators (VCO) by means of ring oscilla-
tors, since they benefit from the aforementioned advantages. Moreover, the use of VCO-
based ADCs can improve instrumentation applications [1], they present a high sensitivity
and can possibly dismiss instrumentation amplifiers used for the conventional switched-
capacitor ADCs.

According to these precedents, this Master’s Thesis arises to develop a novel tech-
nique to implement VCO-based ADCs more efficiently, and its viability is studied at
system level. The idea behind this Master’s Thesis was conceived by the research group
of Microelectronics Design and Applications (DMA) within the Electronic Technology
Department of the Carlos III University. It was developed through a research scholarship
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with Intel Austria to develop a viability study, yielding in a new family of ADCs.

1.2. Goals

A list of objectives is listed below:

• The main goal is to present a theoretical study of the proposed bit-split technique
and study its validity for a selected cases of impairments.

• To emphasize the importance that VCO-based ADCs have gained in last years.

• To review and study thoroughly the VCO as a pulse frequency modulation encoder.

1.3. Structure of the document

This document is structured as follows:

• The second chapter presents the state-of-art, starting from the general, ADCs and
Continuous-Time Delta-Sigma (CT-∆Σ) to the specific, VCO-based ADC CT-∆Σ,
while devoloping a brief overview on the basic theory behind them. It also presents
the importance that VCO-based ADCs have gained last years.

• In the third chapter it is first reviewed the theoretical foundations of the VCO as a
pulse frequency modulator because it is the basis to understand this work. Then a
introduction to the technique Bit-split is presented for a classical CT-∆Σ and two
VCO-based ADCs.

• The fourth chapter develops the theory behind the bit-split technique for the selected
first and second order VCO-based ADCs architectures. It presents an analysis and
linear models. It is also presented an extension for any order of the previous selected
architectures.

• In the fifth chapter a study case is presented, where an architecture for the imple-
mentation of the bit-split is given. Different impairments such as, analog-digital
mismatch, delay in the loop among others are studied.

• The sixth chapter presents the conclusion of this work, the objectives that have been
reached and future work.
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2. STATE OF THE ART

There are several types of ADCs, as the successive approximation register (SAR),
flash, pipelined, dual-slope, ∆Σ, etc... Each one with its strengths and weaknesses. Figure
2.11 shows a graphical comparison in terms of bandwidth and resolution given in effective
number of bits (ENOB). ENOB is a measure in bits of the dynamic range of an ADC. It
can be observed that ∆Σ data converters are distributed within all frequencies presenting
high resolution for low frequencies.

The focus of this work is on applying a novel technique to VCO-based ADCs with
wide analog bandwidth which fall within the category of Continuous-Time ∆Σ converters.
For this reason, a brief overview on what is an ADC and specifically a ∆Σ modulator is
given.

Fig. 2.1. Comparison of various types of ADC. [2]

2.1. ADC Converters

The goal of an ADC is to take a physical signal that can present infinite values within
an interval, and to transform it at sampling instants into a digital signal which presents

1It is noted that the figure is slightly outdated because there are CT-∆Σ converters with bandwidth greater
than 100 MHz. The picture is used for comparison purposes.

4



discrete values. This is depicted in figure 2.2.

ADC𝑉𝑖𝑛
Analog input

𝑓𝑠

𝐵0
𝐵1

𝐵n-1

Fig. 2.2. A block diagram of an ADC.

2.1.1. Basics of an ADC converter

The input-output relationship of figure 2.2 is defined as:

Vin(kT s) = Dout[k] + Vx[k] = Vre f

n−1∑︂
m=0

Bm2m + Vx, (2.1)

where Dout represents the digital representation of Vin, Vre f is the voltage reference and
Bm represent the m2 bit and Vx is the quantization error, that is, the difference between
the input signal and its quantized version. Assuming that quantization steps are equally
distributed, each step is given by equation (2.2) and, assuming that the input signal is
bounded to the range of the ADC, the quantization error Vx is given by equation (2.3)

VLS B =
Vre f

2n . (2.2)

−
1
2

VLS B ≤ V x ≤
1
2

VLS B (2.3)

To model the quantization noise, usually an stochastic approach is used [3]. It is assumed
that the input varies rapidly so the error signal Vx can be approximated to a random vari-
able uniformly distributed between VLS B/2 and −VLS B/2. Therefore, the probability den-
sity function (PDF), P(ψ), is constant as shown in figure 2.3. It is observed that the noise
becomes independent from the input signal or sampling frequency. The average value of
such PDF is zero:

Vx =

∫︂ ∞

−∞

ψP(ψ)dψ =
1

VLS B

⎛⎜⎜⎜⎜⎜⎜⎝∫︂
VLS B

2

−VLS B
2

ψdψ

⎞⎟⎟⎟⎟⎟⎟⎠ = 0. (2.4)

Defining the rms value of Vx as:

Vx(rms) =

(︄∫︂ ∞

−∞

ψ2P(ψ)dψ
)︄1/2

=

⎡⎢⎢⎢⎢⎢⎢⎣ 1
VLS B

⎛⎜⎜⎜⎜⎜⎜⎝∫︂
VLS B

2

−VLS B
2

ψ2dψ

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

1/2

=
VLS B
√

12
(2.5)

2Bn−1 is the most significant bit (MSB) and B0 the least significant bit (LSB). The factor 2m indicates
the binary weight of each bit.
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Thus, for an input sinusoidal with peak-to-peak amplitude of Vpp = 2nVLS B, Vin(rms) is
defined as:

Vin(rms) =
2nVLS B

2
√

12
(2.6)

The relation between the power of the input and quantization error is called Signal-to-
Quantization Noise Ratio (SQNR):

SQNR = 20 log
(︄
Vin(rms)

Vx(rms)

)︄
= 20 log

⎛⎜⎜⎜⎜⎝VLS B2n/(2
√

2)

VLS B/
√

12

⎞⎟⎟⎟⎟⎠ = 6.02n + 1.76 dB (2.7)

Starting from section 2.3 the term Signal-to-Noise and Distortion Ratio (SNDR) will be
used instead of SQNR because it is more accurate for the purposes of this work, since it
takes into account not only the quantization noise but also distortion. It is observed that
the SQNR increases 6.02 dB for every extra bit of the converter.

1

𝑉𝐿𝑆𝐵

𝑃(𝜓)

𝑉𝐿𝑆𝐵
2

−
𝑉𝐿𝑆𝐵
2

𝜓

Fig. 2.3. Power distribution noise for the quantization error.

Classification of ADCs Typically, two types of converters are considered:

• Nyquist-rate Converters: The sampling rate is defined by the Nyquist rate, that is,
the double of the input bandwidth. However, it is often for they to operate at 1.5 to
10 times the Nyquist rate, because this eases the design of anti-aliasing filters.

• Oversampling Converters: The sampling rate is usually 10 to 512 times faster than
the Nyquist rate and thus the SQNR is increased because the noise that do not fall
within the band of interest can be filtered.

2.1.2. Oversampled Converters

The increase of the sampling frequency involves that the noise spectral density is defined
instead of between − fsN/2 and fsN/2, where fsN is the Nyquist sampling frequency, to fs,
being fs higher than fsN . Because the total power of the noise remains constant and it is
independent of the sampling frequency, the noise power density within the band of interest
is less for the sampling frequency fs. The Oversampling Ratio (OSR) is the relationship
between fs and fsN:

OSR =
fs

fsN
=

fs

2 fB
, (2.8)
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where fB is the input signal bandwidth. Therefore, assuming a brick-wall filter is used to
remove noise outside the bandwidth of interest, a new equation for the SQNR arises and
it is as follows:

SQNR = 6.02n + 1.76 + 10 log(OSR)dB. (2.9)

It is observed that every time the OSR is doubled, the SQNR is increased by 3dB.

2.2. Delta Sigma Data-Converters

In addition to the oversampling, it is possible to shape the noise spectrum. Architectures
that apply noise-shaping are usually referred to ∆Σ modulators. During the last decades,
the choice of design has been discrete-time ∆Σ modulators because the use of switched-
capacitors has proved to be the best in terms of efficiency and design. Yet recently, be-
cause the need to increase the bandwidth of the ADC, continuous-time ∆Σ ADCs have
gained popularity in both academia and industry. Furthermore, CT-∆Σ ADCs do not need
an explicit anti-aliasing filter at the input because they do present one implicitly [4]. Fig-
ure 2.4 shows a block diagram for a Discrete-Time ∆Σ (DT-∆Σ), the block “ ∆Σ” carries
out the noise-shaping. First and second order ∆Σmodulators will be presented. It is noted
that the noise can be filtered out in a low-pass, band-pass or high-pass way, depending on
the application; the focus on this work is on the low-pass modulators.

Fig. 2.4. Block diagram for a DT-∆Σ ADC [5].

2.2.1. First order Delta Sigma modulator

A first order DT-∆Σmodulator [6] and its equivalent linear model are shown in figure 2.5.
It is composed by a discrete-time filter acting as integrator, a quantizer and a negative
feedback path. Thus, the name of the modulator can be understood as Σ being the inte-
grator and ∆ the subtraction produced at the input of the filter. Because in the previous
section the noise has been supposed to be white, in the linear model, it is thought of as
an additive random sequence to the integrator output. It is considered that the impulse
response of the DAC is a non-return-to-zero (NRZ) pulse.

Being U(z) the input signal, Q(z) the quantization error and Y(z) the output of the
modulator, the following relationship yields:

Y(z) = z−1U(z) + (1 − z−1)Q(z). (2.10)
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Fig. 2.5. First-order ∆Σ modulator and its linear model.

The relationship between Y(z) and X(z) is called Signal Transfer Function (STF), and
Noise Transfer Function (NTF) to the relationship between Y(z) and E(z). The above
equation points out that STF is only a delay of one sample, this is why the anti-aliasing
filter is needed for the DT-∆Σmodulators. On the other hand, the NTF is a first difference,
thus the noise at the output presents a first-order high-pass shape. Due to this noise-
shaping, a new expression for the SQNR arises:

SQNR = 6.02n + 1.76 − 5.17 + 30 log(OSR) dB. (2.11)

It is observed that doubling the OSR yields in an increase of 9 dB instead of 3 dB as was
the case for plain oversampling (equation (2.9)).

2.2.2. Second and higher order Delta Sigma modulator

To build a generic second order ∆Σmodulator it is only needed to place another integrator;
another feedback path is needed to ensure system stability. Thus, the noise presents a
second-order high-pass shape. If the transfer function of the filter is considered to be
(1 − z−1)2, a new equation for the SQNR is found:

SQNR = 6.02n + 1.76 − 12.7 + 50 log(OSR) dB. (2.12)

It can be observed that now every time the OSR is doubled, the SQNR increases in 15
dB. This trend in which increasing the order results in a higher SQNR values is also
valid for higher order systems; however, as the order goes up, so it does its complexity
and it is more prone to different impairments, such as instability [7]. Figure 2.6 shows a
comparison of the noise-shaping for first and second order modulator and a Nyquist-rated
converter, it is noted that for OSR values greater than 2 the second-order always yields
better results.
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Fig. 2.6. Magnitude of a first and second order ∆Σ modulator and a Nyquist-rate converter [5].

2.2.3. Circuit implementations

Focusing on the CT-∆Σ modulators different implementations can be used. Continuous-
time implementations sample the signal within the loop and as it was the case for the
discrete-time they contain integrators. Traditionally, these integrators have been imple-
mented by means of an Opamp-RC, an OTA-RC or a Gm-C [6]. The difference is that two
first circuits work on a closed-loop, and thus they present a more linear response while
the last one is usually faster. However, in recent years CT-∆Σ modulators using VCOs
have gained popularity because the harmony VCOs present with the shrink of fabrication
technology [8]–[11].

Fig. 2.7. Three methods for implementing an integrator for CT-∆Σ modulators [6].

2.3. VCO-based ADCs

Even though the first ∆Σ modulator using VCOs was reported more than 20 years ago
[12], [13], it wasn’t until recently that the spotlight was on them. Several architectures
for audio, instrumentation and communication applications using VCOs are already well
developed and are very competitive because its mostly digital implementation and low
power consumption [14]–[17]. Figures 2.8 and 2.9 presents two plots in which two dif-
ferent of figures of merits (FOM) are represented for several ADCs [18]. FOM is used
to compare different ADCs performance; Schreier FOM and Walden FOM are the most
used for ADCs [19]. A few implementations using VCOs are remarked on these figures
and it can be observed that its performance has gotten better with years.
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Fig. 2.8. Walden FOM for several ADCs [18].
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Fig. 2.9. Schreier FOM for several ADCs [18].

Among the several configurations proposed using VCOs, the following are high-
lighted:

• VCO in open loop configuration: A VCO-based ADC can be built as depicted
in figure 2.10. The quantization and first difference blocks are implemented with
two flips flops and an XOR operation. Its equivalent but approximate linear model
assumes that the quantization noise is white. Then a first difference is applied, and
thus the noise present a first-order high-pass shape. The limit of this configuration
is the non-linearity of the gain of the VCO (kvco); however new techniques that try
to mitigate this issue are reported in [20], [21]. Another limit was the restraint to a
first-order noise-shaping, however recent publications have shown that it is possible
to extend the order or to implement band-pass modulators [22], [23].
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Fig. 2.10. Open loop VCO-based quantizer: block diagram and its linearized frequecy-domain
model.

• VCO in closed-loop configuration: The previous structure suffers from the non-
linearity of the VCO, therefore when placing it within a closed-loop configuration,
the input magnitude to the VCO decreases and thus it works in its linear region
producing harmonics with less power, and so the SNDR is not highly decreased.
Two structures are usually used for closed loop configurations, frequency and phase
feedback, each one with its advantages and disadvantages [24], [25]. Furthermore,
using a closed-loop configuration it is possible to increase the order of the modula-
tor by means of using a filter before the VCO, resulting in higher SNDR. This also
reduces its input magnitude. It is noted that whereas in the open-loop configuration
there was no need for a DAC, in closed-loop configuration DAC plays an important
role. The requirement of a low complexity thermometric DAC is an important limit
to exploit the possibility of having VCOs with a high number of inverters, because
in most of the cases the DAC is only of 5 bits while the number of inverters can
easily be over 90. Consequently, VCO taps3 are limited to the number of elements
of the DAC.

Fig. 2.11. Closed-loop ∆Σ ADC using VCO-based integrator [25].

• Time-interleaving sampling: Both previous configurations can also present time-
interleaving which can increase the resolution without increasing the order of the
noise-shaping or the sampling frequency. To that end, the effective sampling fre-
quency is increased by a digital delay line connected to the output of the VCO. The

3Taps and inverters will be used indistinctly.
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output is then decoded with an array of XOR that increases the oscillation frequency
of the VCO. This allows that the output data can be processed at a higher frequency
and so it presents a higher OSR and yields better SNDR [26]–[28].

Fig. 2.12. Open-loop VCO-based quantizer using time-interleaving sampling [26].

2.4. Summary

To use a VCO-based ADC has been proven to be a good choice for high bandwidth appli-
cations due to its mostly digital implementation and low power consumption as shown in
[27] or [15]. However, to fully exploit its capability, issues related to the non-linearity of
the ring oscillator must be solved because it is one of the main limitations for the SNDR.
Moreover, even though the first-order noise-shaping is easy to achieve circuit-wise, it
certainly gets complicated, and somewhat impractical, when extending the order in open
loop configurations. Thus, closed-loop architectures are needed, presenting advantages
such a reduced input level, but also disadvantages such as to deal with a DAC or problems
with stability and delays in the loop.
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3. THEORETICAL FOUNDATIONS OF THE VCO AND
INTRODUCTION TO THE BIT-SPLIT TECHNIQUE

In this chapter, the equations that describe the VCO as a Pulse Frequency Modulator
(PFM) encoder will be presented in order to set the theoretical basis for the correct ex-
planation and understanding of the proposed technique, bit-split. An introduction to this
method is given.

3.1. VCO and PFM

PFM is a technique to encode information and it has also been found to be present in
biological systems with a nervous system [29]. It represents an analog signal by means of
a two level representation as other type of modulations such as pulse-width modulation
(PWM), or pulse phase modulation. If any two consecutive pulses are defined by equa-
tion (3.1), such a system is called integral pulse frequency modulation (IPFM), but for
simplicity on the text it is used PFM instead.

r =
∫︂ ti+1

ti
[mo + x(t)] dt (3.1)

x(t) = A cos(2π fxt + ϕS ), (3.2)

where A, fx and ϕS are the amplitude, frequency and initial phase of the modulating signal
x(t), respectively. The unmodulated pulse repetition (x(t) = 0) is given by fo = mo/r; mo

is a constant. Now, diving equation 3.1 by r such that the left-hand side is 1, the following
equation yields:

1 =
∫︂ ti+1

ti

[︄
fo +

x(t)
r

]︄
dt. (3.3)

A charging function, c(t, α), is defined as the function equal to the right hand side of
the above equation, but each time the threshold, in this case 1, is reached it is reset and a
pulse is generated. Therefore, this function is also determined by where the time origin
t = 0 is considered. The parameter α is defined as the interval, in seconds, between the
first preceding pulse and the considered time origin. Figure 3.1 shows the modulating
signal, the charging function, the train of pulses and the equivalent block diagram that
describe the whole operation; α and ϕS are considered to be 0.
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Fig. 3.1. (a) Input modulating signal, (b) charging function, (c) pulse train, and (d) block diagram
of the IPFM [30].
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A VCO is a voltage-controlled oscilator whose output, VCOout(t), is given by the
equation (3.4); it is related to its phase, θ(t), that is described by equation (3.6). At the
same time, θ(t) depends on the current oscillation frequency, fosc(t) (equation (3.5)), that
also depends on the input signal, that from now on, unless otherwise is stated, it will be
considered to be the signal given by equation (3.2). These equations are now defined:

VCOout(t) = sin (θ (t) + θ0) , (3.4)

fosc(t) = fo + kvcox(t), kvco ≤ fo,−1 ≤ x(t) ≤ 1, (3.5)

θ(t) = 2π
∫︂ t

0
fosc(τ)dτ = 2π

(︄∫︂ t

0
fodτ + kvco

∫︂ t

0
x (τ) dτ

)︄
, (3.6)

where θ0 is the initial phase of the VCO, fo and kvco are the central frequency and gain of
the VCO.

By setting r = 1/kvco in equation (3.3) and plotting both c(t, α), with α = 0, and
VCOout(t) with θ0 = 0 it is observed that instants where the sine wave passes from negative
to positive, it matches the instants where a pulse is generated. This is represented in the
following figure:
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Fig. 3.2. Representation of the charging function and VCOout.

Therefore, the equivalence between a PFM encoder and a VCO is stated, enabling a
theoretical study of the VCO [31]. VCOout(t) is redefined as follows to be in harmony
with the actual working operation of a VCO implemented with ring oscillators:

VCOout(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩0, if sin (θ (t) + θ0) < 0

1, if sin (θ (t) + θ0) ≥ 0
(3.7)

As stated in [22], using an edge detector as an auxiliary block, the new output, d(t) is
now a stream of Dirac Deltas following equation (3.8). Figure 3.3 depicts the VCO-PFM
equivalence.

d(t) =
∞∑︂

k=0

δ(t − tk),∀tk | θVCO(tk) = 2πk (3.8)
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Using [30] it is possible to expand equation (3.8) into a trigonometric series as follows:

d(t, α) = fo+Akvco cos(2π fxt + ϕS )

+2 fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄ (︄
1 +

r fx

q fo

)︄
× cos

[︄
2π (q fo + r fx) t + rϕS

+ q
(︄
2π foα −

Akvco

fx
sin(ϕS − 2π fxα)

)︄ ]︄
,

(3.9)

where, Jr is a Bessel function of the first kind of order r. The value of alpha is given by
the following equation4 for θ0 ∈ (0, 2π]:∫︂ 0

−α

[︄
2π fo +

Akvco

fx
cos(2π fxt + ϕS )

]︄
dt =

2π fo +
Akvco

fx
sin(ϕS ) −

Akvco

fx
sin(ϕS − 2π fxα) = 2π − θ0,

(3.10)

𝑥(𝑡) 𝑤(𝑡) 𝑑(𝑡)𝛿(𝑡)

edge detector

VCO

PFM

Fig. 3.3. VCO-PFM equivalence.

Applying the Fourier Transform5 to equation (3.9), but only taking into account posi-
tive frequencies6 and with its power doubled, D( f ) is as follows:

D( f , α) = foδ( f )+AkvcoeiϕS δ( f − f x)

+2 fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄ (︄
1 +

r fx

q fo

)︄
×ei

(︂
rϕS+q

(︂
2πα− Akvco

fx
sin(ϕS−2π fxα)

)︂)︂
×δ( f − (q fo + r fx)).

(3.11)

This last equation presents a component at fx which depends linearly on kvco and the
amplitude of x(t). There is also modulation sidebands occurring at multiples of fo. These

4Actually, the equation (3.10) cannot be solved analytically but only by means of approximations, i.e.,
Newton’s method [32]

5The Fourier Transform and its applications can be reviewed in [33]–[35].
6It is assumed that the power contribution of sidebands centered at multiples of − fo that fall in positive

frequencies are negligible in comparison with the power produced by the sidebands centered at multiples
of fo. Consequently, such contributions are disregarded.
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sidebands are not symmetrical nor monotonically decaying [31]. These sidebands are
depicted in figure 3.4.

Fig. 3.4. Output spectrum according to (3.11) of the first six sidebands for a ϕS = 0, α = 0,
fx = fo/1024, (a) Akvco = fo/32, and (b) Akvco = fo/32 [31].

To build a VCO-ADC from this model, a pulse shape filter must be placed after d(t) as
depicted in figure 3.5, according to [31], the pulse shape filter must have periodic zeroes
at the sampling frequency, so the modulation sidebands that would fall into the signal-
band are attenuated. Using [30] again, the new signal, p(t), and its trigonometric series
expansion can be calculated. In this work, it is considered a first order filter H(s):

H(s) =
1 − e−sTs

sTs
(3.12)

𝑥(𝑡) 𝑤(𝑡) 𝑑(𝑡)𝛿(𝑡)

edge detector

VCO

PFM

h(𝑡) 𝑝(𝑡)

Fig. 3.5. VCO-PFM equivalence followed by a rectangular pulse, h(t).

p(t) =
∞∑︂

k=0

u(t − tk) − u(t − tk − Ts),∀tk | θVCO(tk) = 2πk (3.13)
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p(t, α) = Ts fo+TsAkvco
sin(πTs fx)
πTs fx

cos(2π fxt − πTs fx + ϕS )

+2Ts fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄
sin[πTs(q fo + r fx)]

πTsq fo

× cos
[︄
2π (q fo + r fx) t − π(q fo + r fx)Ts + rϕS

+ q
(︄
2π foα −

Akvco

fx
sin(ϕS − 2π fxα)

)︄ ]︄
.

(3.14)

Its Fourier Transform (again only positive frequencies with its power doubled) is as fol-
lows:

P( f , α) = Ts foδ( f ) + TsAkvcoeiϕS e−iπTs fx
sin(πTs fx)
πTs fx

δ( f − f x)

+ 2Ts fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄
sin[πTs(q fo + r fx)]

πTsq fo

× e−iπ(q fo+r fx)Ts

× eirϕS

× eiq
(︂
2π foα−

Akvco
f x sin(ϕS−2π fxα)

)︂
× δ( f − (q fo + r fx)).

(3.15)

The equation above represents the power spectrum for every frequency before sampling
is done, because otherwise alias would occur. Even though it looks like a non-intuitive
equation, in the next section P( f , α) will be of importance and its treatment is indeed
intuitive.

3.2. Multiphase ring oscillator based ADC

3.2.1. VCO-based quantizer

Figure 3.6 depicts the practical implementation of a multiphase ring oscillator based ADC.
There are two sets of ring oscillators, one being drived by the signal input as it is (VCOp),
and the other receives its negative (VCOn); each inverter output is sampled twice and
then a XOR operation is performed on those samples. Finally, summing all the lines from
VCOp and VCOn independently and then subtracting the latter on the former the output
is obtained. Equations of the previous section can be used to obtain an equivalent model
based on Pulse Frequency Modulation with single bits VCOs.
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Fig. 3.6. Practical differential implementation for a VCO-based ADC in a open loop
configuration.

The XOR operation does the following, whenever there is a change on an inverter,
that is, going from 0 to 1 or vice-versa, it produces a pulse of length Ts. Therefore,
each inverter produces two pulses per oscillation; this can be modeled as two single bit
VCOs, having both the same initial phase as the inverter but, one is shifted π radians. The
different phases of a ring oscillator presenting N inverters is given by:

θinv,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩−πk/N if mod(k, 2) = 0

−π (k/N + 1) if mod(k, 2) ≠ 0
(3.16)

Where k = 0, 1, 2, ...,N − 1; it represents the index of the different inverters. The ring
oscillator will present equidistant phases only if N is odd. As the equivalent model has
2N single-bit VCOs because the XOR-operation, being the first N VCOs the same phase
as in equation (3.16) and the rest of them having a phase shitf of π radians, the resultant
phases are equidistant as well. Moreover, due to the shift of π by the XOR operation, a
ring oscillator with even number of inverters, even though its phases are not equidistant,
its equivalent single bit VCO will be equidistant.

Focusing on the VCOp, its output spectrum will be given by the sum of the 2N single
bit VCOs, therefore summing their corresponding P( f , α) will yield the desired equation
for the spectrum. But before that, in order to gain insight about the final spectrum, it
is possible to substitute part of the last exponential in the equation (3.15) by part of the
equation (3.10):

2π foα −
Akvco

fx
sin(ϕS − 2π fxα) = 2π − θ0 −

Akvco

fx
sin(ϕS ) (3.17)

Now the last complex exponential can be thought of as a rotating vector whose angle
is given by the initial phase of the VCO and the input signal; because it is a complex
exponential, the term 2π can be omitted because it is mapped as 1. Therefore, summing
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each P( f ) the following yields:

P( f ) = 2NTs foδ( f ) + 2NTsAkvcoeiϕS e−iπTs fx
sin(πTs fx)
πTs fx

δ( f − f x)

+ 2Ts fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄
sin[πTs(q fo + r fx)]

πTsq fo

× e−iπ(q fo+r fx)TseirϕS e−iq
(︂

Akvco
fx

sin(ϕS )
)︂

×

2N∑︂
j=1

e−iqθVCO, j

× δ( f − (q fo + r fx)).

(3.18)

The first two terms are scaled by 2N, and now the last exponential term is a sum of
equidistant phases (the phase shift due to the ϕS is constant for all), therefore, it will can-
cel out unless q is equal to a multiple of 2N. This implies that sidebands that were before
around fo and its multiples (for a single bit VCO), are now at 2N fo and its multiples.
Therefore, it is expected a better result in regard to the maximum SNDR achievable be-
cause the infinite sum of the power of the sidebands falling into the signal band will be
much less. It should be noted that only sidebands are affected, the other terms of equation
(3.18) are just scaled.

Figure 3.7 shows 6 equidistant phases corresponding to use the circuit of figure 3.6
to a ring oscillator composed by three inverters. Because the equivalent model presents
6 single bit VCOs with equidistant phases, these phases will shift its position and keep
canceling out each other, unless q is a multiple of 6, only then they will all collapse in 0
(it is considered that the initial phase is 0).
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Fig. 3.7. Geometrical example for the cancellation of the phases when N = 3.

The equivalent spectrums of VCOp and VCOn are now known and its subtraction can
be calculated by means of inspection of equation (3.18) and noting that the difference
between the set of VCOs resides in ϕS . The first term will cancel out, the second one
will be doubled because the phase shift of π on the input signal, it can be thought of the
geometrical sum of the vectors on the complex plane, this is represented in figure 3.8,
where it is shown that the equivalent vector results in the first vector being doubled in
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both real and imaginary axis. The last term is less intuitive as it magnitude depends on
several values; however, it is noted that the importance is that the sidebands go to 2N.
Normalizing the final output to [1,−1] and assuming both set of VCOs have the same
initial phase, the spectrum Pn( f ) is finally given by:

Pn( f ) = 4TsAkvcoeiϕS e−iπTs fx
sin(πTs fx)
πTs fx

δ( f − f x)

+
2
N

Ts fo

∞∑︂
q=1

∞∑︂
r=−∞

Jr

(︄
qAkvco

fx

)︄
sin[πTs(q fo + r fx)]

πTsq fo

× e−iπ(q fo+r fx)Ts

× eirϕS e−iq Akvco
f x sin(ϕS )

(︃
1 − (−1)re2iq Akvco

f x sin(ϕS )
)︃ 2N∑︂

j=1

e−iqθVCO, j

× δ( f − (q fo + r fx)).

(3.19)

It is noted that if the initial phases of both set of VCOs are different, each set would
present an equation derived from (3.18). Subtracting one from the other, would yield
the same first two terms as (3.19) while the third one would be hard to reduce; however,
as shown in equation (3.18), each set of VCO would present its first sideband at 2N fo.
Because the Fourier Transform is linear, no additional components will be generated that
weren’t already present when subtracting one from the other.

Thus, the equations that describe a practical implementation of the open loop VCO-
based quantizer of figure 3.6 were given.
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Fig. 3.8. Geometrical demonstration for the doubled power for the component at fx of equation
(3.19) when input signals with a phase shift of π are subtracted one from the other.

3.2.2. VCO-based integrator

It is also possible to build an integrator with a VCO and understanding it by means of
the PFM model. The signal d(t) is now connected to an integrator (figure 3.9). It can be
seen that when integrating equation (3.9) it results in the first constant term mapped into a
growing term with time, thus, in order to cancel it a differential architecture can be used.
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Fig. 3.9. VCO as a pulse frequency modulator followed by an integrator.

1

2
𝑥(𝑡) 𝑤1(𝑡) rising edge

VCO counter

−
1

2
𝑥(𝑡) 𝑤2(𝑡) rising edge

VCO counter

+
-

𝑦(𝑡)

Fig. 3.10. PFM Integrator - Differential implementation using counters.

Figure 3.10 shows a possible implementation of the integrator, that it is, each counter
adds 1 on its corresponding VCO rising edge, and then a subtraction is performed, yield-
ing in the cancellation of the growing term. Assuming α = 0 and ϕS = 0, from [31] it is
known that the output y(t) is given by:

y(t) = kvco

∫︂ t

0
x(τ)dτ

+ fo

∞∑︂
q=1

∞∑︂
r=−∞

J2r+1

(︄
qAkvco

fx

)︄
1

π(q fo + (2r + 1) fx)

×

(︄
1 +

(2r + 1) fx

q fo

)︄
sin(2π(q fo + (2r + 1) fx)t).

(3.20)

It is observed that even modulation tones around each sideband are eliminated; however,
this only happens when ϕS = 0. If instead of using a single bit VCO differential architec-
ture, a N odd number of ring oscillators are connected to a counter structure, the phases
of the VCOs would be equidistant so it follows naturally that the sidebands, as it was the
case for the VCO-based quantizer, will cancel out but for multiples of qN. This architec-
ture will be used as a foundation to understand another architecture that will be studied in
chapter 4.
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3.3. Bit-Split - Introduction

As stated in the previous chapter, real implementations suffer from the non-linearity of the
VCO and the limit of a practical first-order noise shaping. Therefore, a closed-loop system
is used in order to mitigate issues related to non-linearity or just to increase the order of
the system and so the SNDR. However, closed-loop systems present some disadvantages
over the open loop ones: stability, jitter, DAC mismatch, etc... The proposed technique
has as objective to reduce the number of DAC elements, and thus the area and complexity
of it.

The Bit-Split technique was first proposed by [36] in order to solve issues related with
the DAC mismatch, as for then techniques to mitigate this issue for multibit DAC were
not so developed as they are now [37]–[39]. It was implemented in a discrete-time ∆Σ
modulator. Figure 3.11 shows a first order ∆Σ and its linear equivalent, both normalized
to Ts = 1 without loss of generality.

𝑧−1

1 − 𝑧−1

N-level quantizer

DAC

+
−

𝑈(𝑧) 𝑌(𝑧)

MSB

POST
PROCESSINGN

(a)

+𝑧−1

1 − 𝑧−1
+
−

𝑈(𝑧) 𝑌(𝑧)
𝑄𝑓(𝑧) 𝑄𝑐(𝑧)

+ +
−

1 − 𝑧−1

𝑌𝑎𝑢𝑥(𝑧)

+−
𝑌𝑓(𝑧)

(b)

Fig. 3.11. Leslie&Singh architecture for a discrete-time ∆Σ modulator and its linear model.

The output Y f (z) of the linear model is given by the following equation:

Y f (z) = U(z)z−1 + Q f (z)(1 − z−1) (3.21)

The system presents a fine and a coarse quantization (1 bit in [36]), being the latter
the one that goes into the feedback path; making some operations on the system, it is
possible to make the final output to be composed only by the fine quantization because
the coarse one can be eliminated. For that, it is mandatory to know the transfer function
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of the whole system because only then the coarse noise can be theoretically eliminated,
assuming white noise spectrum for both quantization errors and that the post-processing
filter (PPF) matches the transfer function seen by the noise. Actually, for practical pur-
poses, as it will be shown later, in most of the cases an approximation can be used. Hence,
as a VCO can be used within a ∆Σ modulator as a quantizer, it is possible to apply this
technique to VCO-based ADC architectures to reduce the number of DAC elements.

For instance, in order to use a 65 taps VCO in a closed-loop architecture, it is neces-
sary to have a DAC of 65 elements, that is, 6 bits. But, if instead of using all taps into the
feedback path, only few of them are used, this eases the DAC design, power consumption
and calibration. As it happens with the model of figure 3.11 it will also be expected to
improve the SNDR because the coarse noise is eliminated. Therefore, a study is necessary
on how this technique can be implemented on different architectures using VCOs.

Two architectures will be the scope of study, frequency-feedback and phase-feedback
architectures.

3.3.1. VCO-based quantizer

This architecture can be implemented as an open loop system as depicted in figure 3.6 or
within a closed-loop system as in figure 3.12. The former is of no interest because there
is no feedback path and therefore the bit-split technique cannot be applied. Thus, the
focus is on its use on a closed-loop architecture. It should be noted that the filter that goes
before the VCO will be considered to be at least an integrator-like. An implementation of
the bit-split technique to a first-order closed-loop architecture is presented in [40].

. . .

. . .

𝑉𝐶𝑂𝑝
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𝑁
𝐹(𝑠)+
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DAC 𝑀

POST
PROCESSING

Fig. 3.12. Closed-loop ∆Σ ADC using a VCO-based quantizer.

This architecture is also known as closed-loop ∆Σ using VCO-based quantizers. It
presents the following features:

- Advantages: nth order noise shaping but the loop is (n−1)th order. This implies that
higher SNDR values can be achieved in comparison to a conventional CT-∆Σ modula-
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tors which don’t use VCO-based quantizers, without sacrificing stability, as is known that
higher order loops are more prone to instability [6]. It presents intrinsic Data Weight Av-
eraging (DWA) [25], which means that it shapes the error produced by the DAC; however,
DWA is lost for differential architectures.

- Disadvantages: To exercise the full dynamic range, its input normally has to be large
and that produces distortion provoked by the VCO non-linearity that in some cases can
degrade seriously the SNDR performance. Its maximum oscillation frequency is limited
to fs/2 [31].

3.3.2. VCO-based integrator

Figure 3.13 presents an architecture called closed-loop ∆Σ using VCO-based integrator.
This architecture makes use of two set of VCOs receiving half the value of the input, be-
ing one also negative. Then, at sampling instants an XOR operation is performed to the
VCOs, the XOR acts as a phase detector. It is noted that whereas in the previous archi-
tecture, the output was the frequency, here it is the phase. Because phase is the integral
of frequency, the input voltage to the VCO-based integrator will be small in comparison
with the input to the VCO-based quantizer.

- Advantages: It presents Intrisic Clocked Averaging (CLA) [41] in differential archi-
tectures. Its input level is small and can avoid loss of SNDR due to the VCO non-linearity.

- Disadvantages: In comparison with the VCO-based quantizer, for the same number
of taps on the VCOs, its SNDR is about 6dB less and the order of the loop is not decreased.

Figures 3.12 and 3.13 will be referred from now on as frequency feedback and as
phase feedback architectures.
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Fig. 3.13. Closed-loop ∆Σ ADC using a VCO-based integrator.
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To apply this technique to these architectures implies using a feedback path that only
selects a few lines of the output. And with a post-processing filter and some operations,
it is desired to obtain an equivalent output spectrum as if all the taps were in the feedback
path. Achieving so would enable to build a system containing a VCO as large as possible.
However, such equivalence can never be reached, for as studied before, the sidebands
produced by the VCO, that would conform an alike white noise spectrum when sampling,
depends on the input and thus is not white as the assumption made for figure 3.11. Hence,
dynamic of the loop plays an important role because, in contrast to systems depicted in
figure 3.12 and 3.13, the VCOs considered do not the see the signal x(t), for they are in
a closed-loop system. Thus, if few taps are considered into the feedback loop, the input
to the VCOs will be larger than if all taps were used, and consequently the modulation
spectrum is worse on the former case but depending on the number of taps it can affect
more or less the SNDR that can be recovered by applying the bit-split technique. However,
the sidebands would be placed on the same frequencies although their magnitudes will
differ. The scope of the study is on: a second order frequency feedback architecture; first
and second order phase feedback architecture.
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4. THEORETICAL STUDY OF THE BIT-SPLIT TECHNIQUE

In this chapter, theoretical analysis is presented for a second order frequency feedback
bit-split architecture, and a first and second order phase feedback architectures, based
upon the previous study of the VCO-based quantizer and VCO-based integrator. Study
will focus onto how apply the bit-split technique for each architecture, regarding its linear
models and the criterion for the phase selection.

4.1. Frequency feedback architecture: second Order

A second order frequency feedback system is represented in figure 4.1, it consists of sub-
stituting the filter F(s) of figure 3.12 by an integrator with a given gain. As the objective
is to use less elements on the feedback path, instead of using a second feedback path, a
feedforward path is placed instead; it does not affect what on a conventional ∆Σ would
be the NTF, it only changes the STF. The block P(s) denotes the DAC response of the
system, that is, its output waveform and the time between a sample is received and an
output is produced. Thorough all the text, the output waveform will be considered to be a
NRZ pulse of width Ts, that is, no delay and each input value is mapped proportionally to
the output.
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Fig. 4.1. Second order ∆Σ modulator using a VCO-based quantizer.

4.1.1. Linear Model

In order to use the bit-split technique effectively, the loop filter transfer function must be
known. Going back to equation (3.19), one can realize that the second exponential term
and the sinc normalized function that are with the component at the frequency fx, are
indeed an integrator followed by a first difference (equation (4.1)). Also, by manipulating
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the sine and the first exponential of the second term, the equivalence of equation (4.2) is
found.

e−iπTs f sin(πTs f )
πTs f

=
1

sTs
(1 − e−sTs) (4.1)

2ie−iπTs f sin(πTs f ) = (1 − e−sTs) (4.2)

Defining E(s) as the sideband terms in equation (3.19) but applying the substitution of
equation (4.2), a linear model can be obtained. Taking into account the sampling, the
circuit of figure 3.6 can be decomposed as follows, the input X(s) is integrated with a gain
equal to k2, then it’s added E(s), sampling is performed and then the first difference is
applied. These transfer functions represent exactly the behavior of figure 3.6. It is noted
that the gain k2

7 is given by equation (4.3) when substituting equation (4.1) into (3.19).
E(s) can be thought of as the quantization noise in a conventional ∆Σ modulator. Thus,
once all the transfer function are known, it is possible to obtain NT F(z).

k2 = 4kvco (4.3)
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Continuous-Time
Discrete-Time

Fig. 4.2. Linear model for the second order ∆Σ ADC using a VCO-based quantizer when all the
phases are used in the feedback path.

Figure 4.2 depicts the equivalent linear model of figure 4.1. The NTF is the trans-
fer function seen by the noise, in this case E(s). Because it’s a hybrid system, that is,
continuous time but with clocked feedback, the output Y(z) only sees the response of the
continuous-time loop filter at sampling instants; such system is considered from right after
P(s) to before sampling is performed. Therefore, a continuous-to-discrete time transfor-
mation must be performed on the loop transfer function. As stated, the equivalent discrete
transfer function only needs to match the continous-time filter at sampling instants, this
transformation is called Symbol Pulse Invariance [42]. The continuous-time loop filter,
H(s), of figure 4.2 is the following:

H(s) = k2N
αs + k1N

s2 = k2N

(︄
α

s
+

k1N

s2

)︄
. (4.4)

7It is supposed that the full scale input amplitude is 1. If it weren’t the case, k2 needs to be scaled
following the full scale voltage of the input, that is, k2 = 4v f skvco.
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Assuming there is no ELD, the equivalent discrete-time loop filter is:

Hd(z) = k2N

(︂
α + k1N

2

)︂
z−1 +

(︂
−α + k1N

2

)︂
z−2

(1 − z−1)2 , (4.5)

where k1N and k2N refer to the 1 Hz normalization of k1 and k2. Hence, the equivalent
discrete-time transfer function needed for the post-processing is now known.

4.1.2. Selection of Phases

Before jumping into the post-processing, it is important to select the correct lines of the
VCO that will go into the feedback path. As seen in the previous chapter, the output of
a VCO-based quantizer consists of a fundamental component located at fx and infinity
sidebands centered at multiples of 2N fo. These sidebands were effectively located around
multiples of 2N fo because the equivalent single bit VCO model shows that only then their
components do not cancel out. Therefore, to understand this is key for it is what enables
a successful implementation of the bit-split technique.

Figure 4.3 shows the equivalent model from substituting the N inverters by a set of
2N single bit VCOs. This way, it is shown that it is possible to isolate those inverters that
are not going into the feedback path. Because it is a closed-loop system, it is desired that
the power of the sidebands produced by the VCOs is low, this implies that the first one
should be located the furthest possible, and this can only happen when the selected phases
are equidistant, otherwise these sidebands will only suffer from attenuation but not from
frequency shift 8.
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Fig. 4.3. PFM model as 2N single bit VCOs model for the second order frequency feedback
architecture.

8The term frequency shift when applied to the sidebands also implies a change in magnitude due to
equation (3.19)
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Consequently, if the loop does not see the inverters that are not selected, the equivalent
model in figure 4.4 differs from figure 3.11. Nevertheless, the post-processing analysis
is similar. EM(s) refers to the sidebands produced by the M taps going into the feedback
path, whereas EN(s) refers to the sidebands produced by all the taps of the VCO. It is
noted that the equivalent model implies that even though the same input signal is being
fed to all VCO inverters, only the spectrum of the sum of those that are in the feedback
path will present second-order noise shaping.
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Fig. 4.4. Linear model for the second order frequency feedback architecture when applying the
bit-split technique.

Given all the above, it follows that M must be a divisor of N, for only then it is possible
to select equidistant phases that would produce a frequency shift which results into less
power from the sidebands going into the feedback path. The minimum value of M needs
to assure system stability and it also should avoid saturation of the VCO input.

4.1.3. Post-Processing Analysis

The post-processing scheme is depicted in figure 4.5. It is desired that the final output
only presents spectrum components due to EN(s). Working out the operations, the signal
Y f (z) is found to be:

Y f (z) = [S T F(s)X(s)]∗ + NT F(z)[EM(s)]∗ − PPF(z)(1 − z−1)[−EN(s) + EM(s)]∗, (4.6)

where [.]* is the sampling operator. For the block diagram depicted figure 4.2, the NTF
is as follows:

NT F(z) =
1 − z−1

1 + Hd(z)(1 − z−1)
. (4.7)

Therefore, in order to eliminate EM(s) from the final output, it is necessary that PPF(z)
follows equation (4.8), because only then Y f (z) won’t present the sidebands produced by
EM(s) as shown in equation (4.9).

PPF(z) =
NT F(z)
1 − z−1 =

1
1 + Hd(z)(1 − z−1)

=
1 − z−1

1 +
(︂
1 + k2N

(︂
α + k1N

2

)︂)︂
z−1 + k2N

(︂
−α + k1N

2

)︂
z−2

.
(4.8)
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Y f (z) = [S T F(s)X(s)]∗ + NT F(z)[EN(s)] (4.9)

Consequently, Y f (z) will present sidebands at multiples of 2N fo instead of 2M fo, resulting
in better SNDR, the same expected SNDR for a system with N inverters in the feedback
path.

+𝑌(𝑧) 𝑃𝐹𝐹(𝑧)+
-

𝑌𝑎𝑢𝑥(𝑧)

- 𝑌𝑓(𝑧)

Fig. 4.5. Block diagram for the post-processing scheme.

As an example, figure 4.6 represents two FFT of 32768 points for two systems with
and without applying the bit-split technique whose parameters are in table 4.1. It is shown
that the post-processing scheme, as expected, recovers the SNDR and changes the output
spectrum magnitude at all frequencies, for they only contain now the power equivalent to
the sidebands being at 2N fo.

Parameter Value Parameter Value

fs 1 Hz kvco fs/4

OSR 32 fo fs/4

ELD 0 N 90

k1 1 M 6

α 0.5 fx BW/150

Table 4.1. SECOND ORDER FREQUENCY FEEDBACK
ARCHITECTURE PARAMETERS.

BW is the bandwidth. It should be noted that in practical applications, fo values
are similar to the one in table 4.1, implying that in most of the cases when using a
multiphase VCO, all the sidebands will be aliased and possibly no longer distinguishable
from a noise-shaped white noise spectrum. Moreover, taking into account that VCOs are
composed by several inverters that pushes further away the first sideband, only in certain
conditions these sidebands can be observed. For instace, for the parameters of table 4.1,
the first sideband will be located at 3 fs which alias into f s, that is, it will be suppressed
because the magnitude of equation (4.2) around multiples of fs is very low. Moreover, all
sidebands are located at multiples of fs.
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Fig. 4.6. Output spectrums for an input of −6 dBFS (a) when all taps are in the feedback path,
and (b) when only M taps in the feedback path with its corresponding post-processing

scheme. The SNDR is 97dB in both cases.

Parameter Value Parameter Value

fs 1 Hz kvco fs/64

OSR 32 fo fs/64

ELD 0 N 15

k1 1 M 5

α 0.5 fx BW/150

Table 4.2. ALTERNATIVE SECOND ORDER FREQUENCY
FEEDBACK ARCHITECTURE PARAMETERS.

To prove that the frequency shift only happens when an adequate filter following (4.8)
is used, figure 4.7 shows three output spectrums for a system whose parameters are in table
4.29. The first spectrum is obtained with all phases, the second and third ones present the
bit-split technique, the second using the PPF as in table 4.2 while the third uses a very

9Parameters of table 4.2 would never be used in a real system because its values are too low to get a
reasonable SNDR. The example has the only purpose to show the frequency shift of the sidebands; in a well
designed system, there would be no a first sideband to look at.
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rough approximation (1 − z−1). The results are evident, while the second spectrum shifts
its sidebands to 2N fo ≈ 0.45 Hz as expected when applying the post-processing scheme,
the third does not do so (first sideband is at 2M fo ≈ 0.15 Hz). Nevertheless, the SNDR
values obtained from the three spectrums are indeed similar as the in-band noise is similar
as well. This last observation will be discussed on the next chapter.
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Fig. 4.7. Output spectrums for a system following table 4.2 for an input of −40 dBFS.

4.2. Phase feedback architecture: first and second order

In this section the focus will be on the first and second order phase feedback architectures
as depicted in figure 4.8. As in the case for the frequency feedback architecture, for the
second order system it is considered a feedforward path instead of a feedback one. Again,
this only affects the STF and not the NTF.

4.2.1. Linear model

Even though the spectral behavior of this architecture is different from the frequency
feedback, crucial insight can be gained by starting from a simple case, that is, supposing
a single bit VCOp and VCOn. As depicted in figure 4.8 an XOR operation is performed
between each VCO, this operation if thought of as if it were in a open loop configuration,
it will be the absolute value of equation (3.20), but replacing each single bit VCO by 2
single bit VCOs having a phase shift of π one from the other. Therefore, the following
equation yields:

yXOR(t) = |y(t)| =

⃓⃓⃓⃓⃓
⃓2kvco

∫︂ t

0
x(τ)dτ + m1(t, θVCO1) + m2(t, θVCO2)

⃓⃓⃓⃓⃓
⃓ , (4.10)

where m1(t, θVCO1) represents the second term of equation (3.20) for an initial phase of the
VCO1 of 0, and m2(t, θVCO2) has an initial phase equal to π.
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Fig. 4.8. Phase feedback architecture of (a) first order and (b) second order

Figure 4.9 shows the equivalent model based on the PFM for the XOR operation for
a single bit VCO. It is observed that when applying the absolute value, the sine wave
resulting from the integrator operator over the considered signal, x(t) (input signal to the
VCO as in figure 4.9), will be transformed into a infinite sum of decaying sines. Thus, the
original signal is lost and an infinite number of harmonics are introduced. However, as
the XOR operation is within a loop, the signal that feeds the VCO makes the integration
to have no negative values, consequently, it is possible to omit the absolute value and just
use (3.20). Therefore, the VCO + XOR operation of figure 4.8 can be substituted by an
equivalent model of counters that react to the rising edges of 2N single bit VCOs.

If considering that the full scale voltage of the input signal is 1, the signal produced by
the DAC must be on the nominal range [−1, 1]. The XOR operation results in N signals
being 1 or 0 that for simplicity are assumed to be summed before reaching the DAC, thus,
the input signal to the DAC is bounded within [0, 30], therefore, in order to reach the
nominal range, the input signal to the DAC must be multiplied by 2/N and subtracted 1.
Hence, the equivalent linear model follows naturally and it is represented and depicted in
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Fig. 4.9. (a) Open loop VCO + XOR operation and (b) its equivalent model
based on pulse frequency modulation.

figure 4.10 and figure 4.11. It consists of substituting the VCO + XOR operation by an
integrator of gain k2 and then summed with the sidebands defined in equation (3.20). The
gain k2 is also defined by equation (4.3) even if such systems are different, because the
normalization to [−1, 1] and the equivalent 2N single bit VCOs model, the same equation
yields. As opossed to the frequency feedback architecture, now sidebands are now being
fed directly into the output. Denoting as H1(s) the continous-time loop filter for the first
order system and by H1d its discrete-time equivalent:

H1(s) =
k2

s
(4.11)

H1d(z) = k2N
z−1

1 − z−1 (4.12)

H2(s) denotes the continuous-time loop filter for the second order system, it follows
equation (4.4) and so its equivalent H2d(z). Both equivalent discrete transfer function have
been defined.
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Fig. 4.10. Linear models of (a) first-order and (b) second order phase feedback architectures.
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Fig. 4.11. Linear equivalent model when applying the bit-split technique for the second order
system.

4.2.2. Selection of Phases

Considering that this architecture can also be seen as 2N single bit VCOs per branch,
it follows naturally that sidebands are only present at multiples of 2N fo as it was the
case for the previous architecture. Therefore, the best results are met when there are
M taps present on the feedback path, being M a divisor of N. Also, the system can be
modeled as in figure 4.11, where the loop does not see the taps that are not in the feedback
loop. Hence, the same rules for the frequency feedback architecture do apply here: only
equidistant phases should be considered into the feedback loop, because otherwise no
frequency shift but only attenuation will occur. Therefore, the conclusions obtained from
the frequency feedback architecture hold. In this case the minimum value of M is critical,
not only because stability but for the correct operation of the XOR, because it acts as a
phase detector, if M is too low, system dynamics might lead to a desynchronization of
both VCOs.

4.2.3. Post-processing analysis

The post-processing scheme depicted in figure 4.5 is still valid for this architecture. It is
noted that the only difference with respect to the frequency feedback architecture is that
there is no first difference before the output and consequently the PPF matches the NTF.
Equation (4.13) represents Y f (z) which is the signal after the post-processing is performed.
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For the block diagram depicted in figure 4.10, the NTF is given by equation:

Y f (z) = [S T F(s)X(s)]∗ + NT F(z)[EM(s)]∗ − PPF(z)[−EN(s) + EM(s)]∗, (4.13)

NT F(z) =
1

1 + H(z)
(4.14)

Given that only first and second order systems are considered, and dealing with a null
ELD, the post-processing filters for the first and second order take the following expres-
sions:

PPF1(z) = NT F(z) =
1

1 + H1d(z)
= k2N

z−1

1 − z−1 . (4.15)

PPF2(z) = NT F(z) =
1

1 + H2d(z)
=

(1 − z−1)2

k2N

(︂(︂
α + k1N

2

)︂
z−1 +

(︂
−α + k1N

2 z−2
)︂)︂
+ (1 − z−1)2

(4.16)
Therefore, if the above equations are used when applying the post-processing scheme,
equation (4.9) will result.

As an example, figure 4.12 presents four 32768 point FFT plots for a first and second
order architectures whose parameters are defined in table 4.3. It is shown that the SNDR
is recovered, 68dB and 87 dB for the first and second order systems, the input level is
−6 dBFS and −10 dBFS respectively. A reduction of magnitude is produced at all fre-
quencies, implying that both, PPF1(z) and PPF2(z) are correct. Also, it is observed that
the modulation tones produced in figure 4.12b that are within the bandwidth of interest
are eliminated when applying the post-processing, implying that the bit-split technique
effectively produces the sidebands frequency shift.

Parameter Value Parameter Value

fs 1 Hz kvco fs/4

OSR 32 fo fs/4

ELD 0 N 90

k1 1 M {6, 10}

α 1.5 fx BW/300

Table 4.3. SECOND AND FIRST ORDER PHASE FEEDBACK
ARCHITECTURE PARAMETERS.
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Fig. 4.12. Output spectrums for (a) first order system with all taps in the feedback path, (b) when
only 6 taps are considered. (c) and (d) are the output spectrums for the second order

system when 90 and 10 taps are used in the feedback, respectively.
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4.3. Extension to a nth order system

So far, only up to second order systems were studied, however, it naturally follows to
extend the bit split technique to a nth order system. The insights and guidelines devel-
oped previously about linear models, phase selection and post-processing scheme still
hold whether the system order is 1, 2, or n. As long as the continuous-time open loop
transfer function is modeled correctly, and the loop is sufficiently stable for the number
of phases selected, there should be no issue in applying the bit split technique to higher
order systems. Even so, a brief discussion is given.

• Linear Model: Since only VCO-based quantizers and VCO-based integrators have
been considered on the previous study, the nth order system will only be composed
by them. Therefore, linear models were already presented. It is worth noting the
following: if a system is composed by both a VCO-based quantizer and a VCO-
based integrator10, the bit split technique would only be applied to the VCO-based
quantizer. Anyhow, for the sake of simplicity, given a n order system, all elements
but the last VCO stage can be put into a black box, HBB(s) which would represent
its transfer function and by doing so it is omitted whether it contains VCOs or
conventional integrators. Therefore, the system can be thought of as if it were the
second order case. However, this simplification when a VCO is not part of the last
stage is done just to calculate the PPF, its sidebands contributions must be taken
into account as for they can possibly affect the VCO on the last stage; furthermore,
its sidebands will also be shaped in a way that depends the stage they belong to.
Therefore, it is needed to work out its own NTF to be sure whether this arises a
problem or not.

• Selection of phases: As for the previous cases, only equidistant phases should be
in the feedback path. As the criterion for phase selection is the same whether the
last VCO is a based quantizer or integrator, the nth order system follows the already
settled rules.

• Post-processing analysis: Post-processing analysis: Scheme proposed in figure 4.5
is still valid because the bit split technique it is only applied to the last VCO. As
it was the case for the VCO-based integrator and VCO-based quantizer, the loop
dynamic is important for it can diminish the expected SNDR and taint the spectrum.

As an example, a third-order system with optimized NTF11 presenting a VCO-based
integrator and a VCO-based quantizer is chosen; this system is presented in [43]. To
apply the bit-split technique to this system is very interesting because it presents both

10The former being placed at the output, while the latter can be place anywhere for it acts as an integrator.
11An optimized NTF has complex zeros, thus, the in-band noise can be reduced in comparison to an NTF

with only simple zeros.
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systems previously presented. Therefore, linear models are of vital importance to mimic
the position of the complex zeros on the post-processing scheme.

A behavioral simulation is performed following the parameters of table 4.4. A FFT of
32768 points to a system with and without bit-split technique is presented in figure 4.13.
It is observed that the SNDR is recovered, and furthermore, the output spectrum is better
because there is no hump at high frequencies. The reason behind this is that because only
6 lines were selected, it results in the sidebands being at multiples of 6GHz (6·2· fo2), that
is, they are always coincident with the maximum attenuation of the first difference.

Parameter Value Parameter Value

fs 2 GHz kvco1 667 MHz/V

BW 60 MHz fo1 500 MHz

ELD 0.5Ts Elements of 1st VCO 5

k1 250 Mrads/s kvco2 500 MHz/V

α 0.375 fo2 500 MHz

β 0.182 N, elements of 2nd VCO 30

Table 4.4. SYSTEM PARAMETERS.
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Fig. 4.13. Output spectrums for an input of −6 dBFS(a) when all taps are in the feedback path,
and (b) when only 6 lines are in the feedback path with its corresponding

post-processing scheme. The SNDR is 76dB in both cases.
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5. IMPAIRMENTS AND IMPLEMENTATION STUDY

All presented analysis have been hitherto focused on an ideal system with its perfect
PPF, no mismatch between the analog and digital sides, no ELD, etc, for it was a theoret-
ical study. In this chapter the focus is on applying a set of impairments in order to know
the circuit implementation feasibility of the bit split technique, starting from those related
to the technique itself. These impairments will be studied on the second order frequency
feedback architecture. Its parameters, unless otherwise is stated, are given by table 5.1.
The input level magnitude is considered to be -6 dBFS unless otherwise is stated.

Parameter Value Parameter Value

fs 2 GHz kvco 500 MHz/V

BW 83 MHz fo 500 MHz/V

ELD 0 N 90

k1 2 Grads/s M 15

α 0.25 fx BW

Table 5.1. NOMINAL PARAMETERS FOR THE SECOND ORDER
FREQUENCY FEEDBACK ARCHITECTURE.
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Fig. 5.1. Output spectrum for nominal parameters for (a) no bit-split technique and (b) use of
bit-split. For both cases the SNDR is 76 dB.

44



5.1. Implementation of the post-processing scheme

The output data from the VCO presents a thermometric nature, therefore, because the
digital side will operate in binary, a thermometric to binary (T2B) converter is needed;
several architectures can be used [44]. Figure 5.2 represents a first approach to implement
the post-processing part that yields directly from the post-processing scheme. The PPF
can be of any order.

+
𝑌(𝑧) σ𝑖=0

𝐼 𝑎𝑖𝑧
−𝑖

σ
𝑗=0
𝐽

𝑏𝑗𝑧
−𝑗

+
-

𝑌𝑎𝑢𝑥(𝑧)

- 𝑌𝑓(𝑧)T2B

T2B

All VCO outputs

VCO outputs that go
into the feedback

𝑁/𝑀

Fig. 5.2. Generic block diagram for the post-processing scheme.

Linearizing the above figure, and using a first difference as the PPF can lead to some
serious simplifications on the digital side. Because the first difference has only zeros, that
is a Finite Impulse Response (FIR) filter, its implementation is way simpler than if the
adequate PPF was implemented, because it would also contain poles, that is a Infinite
Impulse Response filter (IIR). The T2B can be implemented using adders. The following
figure presents the aforementioned simplification.

+ out
T2B

T2B

N-M VCO outputs

M VCO outputs

15

75

6 − 5𝑧−1

𝑧−1

Fig. 5.3. Proposed block diagram for the implementation of the post-processing scheme.

The proposed scheme in comparison to the generic block diagram, it is observed that
instead of using a T2B converter that must take as an input 90 and 15 elements, the former
can be instead 75 by rearranging operations on the generic block diagram. Because T2B
converters are usually big structures of full adders, OR gates, the proposed scheme can
spare several transistor, thus, it is expected that the total area is reduced. Figure 5.4
shows the output spectrum for the system of table 5.1 when using a first difference. It is
observed that the SNDR is recovered and that the output spectrum is also recovered with
some discrepancies at high frequencies. Even though a possible implementation for the
digital circuit was given, to do so is out of the scope of this document.
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Fig. 5.4. Output spectrum for the system of table 5.1 with a first difference as the PPF. SNDR is
76 dB.

5.2. Analog and digital mismatch

A possible implementation of figure 4.1 is depicted in figure 5.5. The first integrator is
implemented by means of a fully differential operational amplifier using resistors and ca-
pacitors to obtain the values of table 5.1. However, since R, C and the VCO itself do vary
with process and temperature [5], [45], [46], the actual continuous-time loop filter might
be different from what it is expected, possibly affecting the post-processing if variations
on R, C and VCO do not compensate each other12, there will be a shift in poles and zeros
position and the gain value of the transfer function. Thus, the post-processing filter will
not be able to completely cancel the sidebands EM(s). However, considering that these
variations are within the range of 10%, such shift would only affect strongly high frequen-
cies because as the system is considered to be a low pass continuous-time ∆Σ modulator
with no optimized NTF [7], the poles of the NTF are located beyond the bandwidth of
interest. Hence, even though the gain shift affects all frequencies equally, differences at
low frequencies13 with the PPF, depending on the case, might not be enough to lower
considerably the SNDR, at least the sidebands EM(s) would be strongly attenuated.
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Fig. 5.5. Possible implementation for a second order frequency feedback architecture.

12The non-compensation should be expected.
13Low frequencies refers to frequencies below the bandwidth of interest.
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To prove this, several cases were simulated and the results are shown in figure 5.6.
It can be observed that in all cases the SNDR is recovered, as expected. It is also noted
that the color distribution is not totally kept passing from the un-processed to the post-
processed signal because the frequency responses of the used filter present differences
with respect to the adequate one for low OSR values, making the SNDR to differ; however,
the SNDR loss is about 1 dB at maximum.

𝑘1

𝛼 𝛼

𝑘1

SNDR (dB) SNDR (dB)

(a) (b)

Fig. 5.6. Color-bar representation of the SNDR when applying the bit-split technique. (a)
Post-processing and (b) before post-processing.

Figure 5.8 shows two output spectrums for a selected case from figure 5.6 in which α
and k1 are 0.92 and 1.06 times their nominal value respectively. It is shown that the output
spectrum for the post-processed signal is reduced at low frequencies but also at high
frequencies, being the latter not expected. If instead of using the filter that corresponds to
table 5.1, a PPF that takes into account α and k1 deviations is used, the output spectrum is,
as expected, fully recovered (figure 5.7). This lack of discrepancy can be seen explained
by means of the Bode plot of both post-processing filters as shown in figure (figure 5.9).
It can be observed that the difference between their frequency responses, magnitude and
phase wise, is not that enough to produce a difference in the post-processing scheme.
Therefore, a more evident difference between Bode plots are needed to produce a severe
degradation of the SNDR of the post-processed signal. Both post-processing SNDR are
76 dB.
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Fig. 5.7. Output spectrum when using the correct PPF.
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Fig. 5.8. Analog mismatch - Output spectrum for (a) no bit-split technique and (b) use of bit-split.

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

10-3 10-2 10-1 100
-45

0

45

90

P
h

a
s
e

 (
d

e
g

) Non-adeaquate PPF

Adequate PPF

Bode Diagram

Frequency  (Hz)

Fig. 5.9. Bode plot for wrong and correct PPFs.

A crucial insight is obtained from the previous example, the lower the bandwidth, the
less integrated error between the precise PPF and an approximate one, thus, as long as the
spectral shape is kept within the bandwidth of interest and the gain difference is small,
it is possible to substitute the possible complicated PPF by a simplified one if spectral
properties at high frequencies are not important. For instance, figure 5.10 shows three
output spectrums for a system following table 5.1 for which three different PPF are used,
one being the correct one (equation 5.1), and the other two having the second and third
coefficients on the denominator multiplied by 1.5 and 0.6 respectively. That is, now the
digital side presents a mismatch on gain and pole position.

PPF(z) =
1 − z−1

1 − 0.25z−1 + 0.25z−2 . (5.1)
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It is observed that SNDR is kept, but, as expected, at high frequencies the spectrum mag-
nitude is higher on the systems with the wrong PPF. Of course, a shift on zeros position
cannot be allowed because if they are not placed at 0, the post-processing scheme will not
work; however, that is highly unlikely to happen because the circuit to implement zeros
at 0 is very simple.
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Fig. 5.10. Comparison for a mismatch on the PPFs. SNDR is 76 dB for the three cases.

5.3. Excess Loop Delay

In every closed-loop ∆Σ modulator there is a delay in the output bit generation, it can be
modeled as if the DAC presents delay with respect to the ideal generation of bits, that is,
by introducing a delay term in the feedback path. Anyway, a different clock for the DAC
is used because it helps to avoid metastabilty issues. Figure 5.11 shows a diagram block
that represents the ELD. In the literature there are several techniques to compensate ELD
[47], [48]; however the scope of this document is not on its compensation but on how it
affects the post-processing scheme if the PPF does not take into account this ELD.

clk-Φ1 +
-

𝑦[𝑛]

𝑁

𝑁

𝑁

𝑁

𝑁

DAC 𝑀

clk-Φ2

POST
PROCESSING

REST OF THE 
LOOP

Fig. 5.11. Representation of the excess loop delay.
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To fulfill this purpose, a behavioral simulation with the parameters of table 5.1 was
performed, with an ELD equal to 0.5Ts, for three different cases (figure 5.12): N taps in
the feedback path, only M taps and using PFF as in equation 5.1, and the last one with
a PPF for the given ELD. It is shown that even though the SNDR is similar for the three
cases, due to that the ELD introduces new zeros in the open loop transfer function that
will be transformed into the poles of the NTF, therefore, differences at high frequencies
when the correct filter is not used are well defined. However, it is noted that whether
PPF values are ones or others, the system stability does not depend upon it. Hence, the
following conclusion can be stated: if a system presenting a given ELD with M taps in
the feedback path is not stable or if values to VCOs input start to surpass its maximum
values, and thus to saturate the VCOs, these conditions will produce effects that will not
be removed by the post-processing scheme. Moreover, this extends to not only to ELD
but for loop dynamic effects.
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Fig. 5.12. Output Spectrum when (a) all taps are used in the feedback path (SNDR = 76 dB), (b)
bit-split with a PPF that takes into account the ELD (SNDR = 76dB) and (c) bit-split

with a PPF designed for parameters of table 5.1 (SNDR = 75dB).
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Fig. 5.13. Output spectrum for a PPF equal to 1 − z−1 (SNDR = 74 dB).

For the parameters chosen in table 5.1 it is possible to replace the filter of equation 5.1
by a first difference, 1− z−1, as their gain are similar, and the spectral shape is kept within
the band of interests; figure 5.13 shows the output spectrum for this case and it can be
observed that the assumptions made are correct and SNDR is mostly recovered, a SNDR
loss of about 2 dB occurs when the first difference is used as a post-processing filter.

Hence, depending on the architecture, it might be possible to substitute a complicated
PPF by a simple one, because let’s not forget that this post-processing scheme is imple-
mented by means of digital logic, thus, there are multipliers, adders and so on, and thus
accuracy or the need for simplicity might be a limit to implement a perfect PPF.

5.3.1. Non-equidistant phases in the feedback path

As stated before, the best results are obtained when the feedback path contains only
equidistant phases of the VCO; this can only happens when N is a multiple of M. How-
ever, it is possible that the number of VCO inverters is not a multiple of the number of
elements in the DAC. Let’s suppose the following case: A system with the parameters on
table 5.1, but instead of having 90 inverters it can only present an odd number of those
(non-differential VCO). In order to get an equidistant distribution of phases, the number
of inverters should be decreased to 75 or increased to 105, but in the former case, the
SNDR would be diminished as the number of its quantization steps are decreased [22],
[49], while in the latter, fabrication technology can restrict the maximum oscillation fre-
quency because placing more inverters means that each inverter must delays less time
[46]. For instance, if the parameters and SNDR goal are in agreement with a VCO of
91 inverters, two possible options arises for the bit-split: to select 1314 equidistant phases
(M1), and other 2 that are not equidistant (M2 ), or select 15 pseudo-equidistant phases
M1pe

15. Whereas frequency shift will occur to the sidebands of M1, M2 sidebands will
only present attenuation because the output is normalized to [−1, 1], thus, its power con-
tribution is divided by 15 in this case. For the maximum attenuation of the first sideband,

1491 is a multiple of 13.
15Pseudo-equidistant means to select lines, not phases, that are evenly spaced while keeping a maximum

distribution, for this example, it means to take 1 output line every 6 up to a total of 15.
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M2 must present a phase difference close to π/2. M1pe sidebands will present strong at-
tenuation but for multiples of 30 fo. Even though the first option looks appealing due to
the perfect cancellation but for multiples of 2M1, this provokes that the other two phases
at best cancel each other sometimes. Because M2 presents a difference of almost π/2,
this results in the first sideband being attenuated, the second is almost fully amplified, the
third will be less attenuated, the fourth is less amplified than the second and so on... On
the other hand, it is expected for the pseudo-distribution to work better for small values of
q as there will be a pseudo-cancellation as well. Table 5.2 shows the denormalized mag-
nitude of the resultant rotating vector v⃗ for each case. Only multiples of 2 are considered
for q given that the model of each inverter as two single bit VCOs with a phase shift of
π has shown that the sidebands of each inverter cancel when q is odd, and this does not
depend on the selected inverters. It should be noted that as the value of q increases, the
magnitude of the frequency response of the first difference and the values of the Bessel
function of equation (3.19) decrease as well, resulting in that for large values of q it turns
out that the magnitude of v⃗ takes less importance, therefore, first sidebands will determine
whether there are visible sidebands at the output spectrum or not. Also, for this particular
case it is noted that, as it is shown in table 5.2, the magnitude of v⃗M1,3 is around 2 to 10
larger than the magnitude of v⃗Mpe for q < 14.

| v⃗M1 pe | | v⃗M1,3 | q | v⃗M1 pe | | v⃗M1,3 | q | v⃗M1 pe | | v⃗M1,3 | q

0.33 0.48 2 0.43 2.99 12 0.98 3.88 22

0.34 3.88 4 0.48 2.99 14 1.32 0.48 24

0.36 1.41 6 0.54 2.27 16 2 28.67 26

0.39 3.54 8 0.64 3.54 18 3.88 0.48 28

0.4 2.27 10 0.77 1.41 20 28.68 3.88 30

Table 5.2. MAGNITUDE OF THE ROTATING VECTORS v⃗m1,3 AND
v⃗m1 pe.

A behavioral simulation was performed to confirm the previous analysis. It is ob-
served that in figure 5.14 for the case of M1 and M2 there is a visible sum of sidebands
around 2 fo for it is the frequency when actually the sidebands at multiples of 2 fo are
amplified, whereas for the figure 5.15 there are no sidebands. It is noted that the prior
observation between the magnitude of v⃗Mpe and v⃗M1,3 is confirmed because the diference
between the black output spectrums at high frequencies, where the sidebands of M2 are
located at, goes from 6 to 20dB, as it was already anticipated. Hence, it is clear that
if an equidistant selection of phases is not possible, the alternative is to go for pseudo-
equidistant ones. For both systems the post-processing recovers SNDR and the spectral
shape; even the huge sideband as well as the several spikes around 100 MHz in figure
5.14 are eliminated. However, the first system will be more unstable than the second one.
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Fig. 5.14. Output spectrum for (a) 13 equidistant and 2 adjacent phases and (b) 15
pseudo-equidistant phases. Input magnitude = −6 dBFS, SNDR = 76 dB for both

cases.
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Fig. 5.15. Output spectrum when 91 taps are used in the feedback path for an input magnitude of
−6 dBFS. SNDR = 76 dB

The previous example shows that the bit-split technique can be also applied success-
fully to certain ratios between N and M, no matter if the former is a multiple of the latter.
For that matter, another case is simulated, but instead of 91 taps, a prime number, 89, is
used. Given the nature of prime numbers it is not possible to apply perfectly the bit-split
technique, however, as aforementioned, pseudo-equidistant phases achieve same practical
results; the bigger is N, the better will be this approximation because the phases will be
more indistinguishable ones from the others. A behavioral simulation for the case of 89
inverters is shown in figure 5.16 and it can be observed the are no visible sidebands and
that the post-processing scheme works fine.
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Fig. 5.16. Output spectrum for (a) all 89 taps the feedback path and (b) only 15 taps using
pseudo-equidistant phases. SNDR for both cases is 76 dB.

Thus, working out the values of the rotating vectors and where the sidebands fall, it
is possible to determine if a selected M will actually produce visible sidebands and so,
leading to a system more prone to instability.
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6. CONCLUSIONS

In this chapter, first, the conclusions based from the present document will be listed.
Then, future lines of work will be presented.

6.1. Objectives met

This work has presented a novel technique to implement VCO-based ADCs, and it has
studied its viability at system level. First, the state-of-art of ∆Σ ADC, specifically, VCO-
based ADC was presented, and a brief overview on the theory was revised as well; it
was shown that architectures using VCO are very promising. Later, on the next chapter,
theoretical foundations on the VCO as PFM were reviewed and extended to cover the
theoretical needs of the present work; the chapter concluded with a brief introduction to
the bit-split technique. Chapter 4 presented and developed the theory behind the bit-split
technique, the required linear models for the architectures selected were obtained based
upon theory on chapter 3; to prove its validity simulations were performed. Finally, the
last chapter presented a possible implementation for a selected case and studied different
impairments on it.

Following is a list of the objectives met:

• A thorough study of the VCO as PFM was reviewed and presented. Moreover,
applying such theory to study multiphase architectures was successfully presented
for it is on what this Master’s Thesis is built upon.

• Theoretical study of the bit-split technique was presented for two different archi-
tectures and verified by simulation. Linear models for the different architectures,
first order frequency feedback, and first and second order phase feedback, were suc-
cessfully developed. It was also shown that to build a system of nth order with such
VCO architectures it is just an extension of the first and second order.

• A study of how a selected cases of impairments affect the technique was presented.
The technique was shown to be robust against mismatch between analog and digital
sides, and ELD because such impairments mostly affect the system at high frequen-
cies, that is, out of the band of interest. It was also shown that an imperfect selection
of phases was also possible without loss of SNDR or resulting in the sidebands af-
fecting the output spectrum.

• Finally, main results of this work will be sent to the journal IEEE Transactions on
Circuit and Systems. Moreover, through this academic year, the author has pub-
lished and co-authored 2 different papers [50], [51] and has sent another one that is
under revision [43]; all related to the VCO-based ADC.
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6.2. Future lines of work

The focus on this work has been on the theoretical side of the implementation and has
dealt with some impairments. However, the amount of impairments that are present in
a system is high. Moreover, a circuit implementation to obtain measures from would be
great. Following is a list of possible future lines of work that are related to the presented
in this document:

• Study how the non-linearity of the VCO would affect the SNDR that is recovered
from the system. Because the non-linearity can be modeled as a polynomial func-
tion placed just before the input of the VCO, it would generate harmonics that would
degrade the performance whether all taps are used or not. Therefore, it shouldn’t
be the limiting factor; however, a study is mandatory to actually prove this.

• As stated before, more impairments can be added to the study, such as jitter in the
DAC, metastability within the flip flops of the circuit, mismatch in the elements
of the DAC, to use a real operational amplifier (non-infinite DC gain), mismatch
between each set of VCOs (central frequency and gain), thermal noise, etc...

• A circuit implementation for both analog and digital part, following for the latter
the simplification proposed in section 5. It would be interesting to study different
architectures in the T2B converters as well as the latency or problems related to
operate at frequencies of a few GHz.
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