40,790 research outputs found

    Color and Texture Feature Extraction Using Gabor Filter - Local Binary Patterns for Image Segmentation with Fuzzy C-Means

    Full text link
    Image segmentation to be basic for image analysis and recognition process. Segmentation divides the image into several regions based on the unique homogeneous image pixel. Image segmentation classify homogeneous pixels basedon several features such as color, texture and others. Color contains a lot of information and human vision can see thousands of color combinations and intensity compared with grayscale or with black and white (binary). The method is easy to implement to segementation is clustering method such as the Fuzzy C-Means (FCM) algorithm. Features to beextracted image is color and texture, to use the color vector L* a* b* color space and to texture using Gabor filters. However, Gabor filters have poor performance when the image is segmented many micro texture, thus affecting the accuracy of image segmentation. As support in improving the accuracy of the extracted micro texture used method of Local Binary Patterns (LBP). Experimental use of color features compared with grayscales increased 16.54% accuracy rate for texture Gabor filters and 14.57% for filter LBP. While the LBP texture features can help improve the accuracy of image segmentation, although small at 2% on a grayscales and 0.05% on the color space L* a* b*

    A Neural Approach for Color-Textured Images Segmentation

    Get PDF
    In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method

    Color-texture image segmentation based on multistep region growing

    Get PDF
    A new method for color image segmentation is proposed. It is based on a novel region-growing technique with a growth tolerance parameter that changes with step size, which depends on the variance of the actual grown region. Contrast is introduced to determine which value of the tolerance parameter is taken, choosing the one that provides the region with the highest contrast in relation to the background. Color and texture information are extracted from the image by means of a novel idea: the construction of a color distance image and a texture energy image. The color distance image is formed by calculating CIEDE2000 distance in the L*a*b* color space. The texture energy image is extracted from some statistical moments. Then, a novel texture-controlled multistep region-growing process is performed for the segmentation. One advantage of the method is that it is not designed to work with a particular kind of images. This method is tested on 80 natural color images of the Corel photo stock collection with excellent results. Numerical evidence of the quality of these results is provided by comparing them with the manual segmentation of five experts and with another color and texture segmentation algorith

    Texture Segmentation Using Optimal Gabor Filter

    Get PDF
    Texture segmentation is one of the most important feature utilized in practical diagnosis because it can reveal the changing tendency of the image. A texture segmentation method based on Gabor lter is proposed in the project. This method synthesis the information of location, color and texture features to be the wight, this can make satisfactory segmentation according to texture of image. The experiment shows that overall rate correctness for this method exceeds 81%

    A New Texture Based Segmentation Method to Extract Object from Background

    Get PDF
    Extraction of object regions from complex background is a hard task and it is an essential part of image segmentation and recognition. Image segmentation denotes a process of dividing an image into different regions. Several segmentation approaches for images have been developed. Image segmentation plays a vital role in image analysis. According to several authors, segmentation terminates when the observer2019;s goal is satisfied. The very first problem of segmentation is that a unique general method still does not exist: depending on the application, algorithm performances vary. This paper studies the insect segmentation in complex background. The segmentation methodology on insect images consists of five steps. Firstly, the original image of RGB space is converted into Lab color space. In the second step 2018;a2019; component of Lab color space is extracted. Then segmentation by two-dimension OTSU of automatic threshold in 2018;a-channel2019; is performed. Based on the color segmentation result, and the texture differences between the background image and the required object, the object is extracted by the gray level co-occurrence matrix for texture segmentation. The algorithm was tested on dreamstime image database and the results prove to be satisfactory

    Image processing by region extraction using a clustering approach based on color

    Get PDF
    This thesis describes an image segmentation technique based on watersheds, a clustering technique which does not use spatial information, but relies on multispectral images. These are captured using a monochrome camera and narrow-band filters; we call this color segmentation, although it does not use color in a physiological sense. A major part of the work is testing the method developed using different color images. Starting with a general discussion of image processing, the different techniques used in image segmentation are reviewed, and the application of mathematical morphology to image processing is discussed. The use of watersheds as a clustering technique in two- dimensional color space is discussed, and system performance illustrated. The method can be improved for industrial applications by using normalized color to eliminate the problem of shadows. These methods are extended to segment the image into regions recursively. Different types of color images including both man made color images, and natural color images have been used to illustrate performance. There is a brief discussion and a simple illustration showing how segmentation can be used in image compression, and of the application of pyramidal data structures in clustering for coarse segmentation. The thesis concludes with an investigation of the methods which can be used to improve these segmentation results. This includes edge extraction, texture extraction, and recursive merging

    Investigation on advanced image search techniques

    Get PDF
    Content-based image search for retrieval of images based on the similarity in their visual contents, such as color, texture, and shape, to a query image is an active research area due to its broad applications. Color, for example, provides powerful information for image search and classification. This dissertation investigates advanced image search techniques and presents new color descriptors for image search and classification and robust image enhancement and segmentation methods for iris recognition. First, several new color descriptors have been developed for color image search. Specifically, a new oRGB-SIFT descriptor, which integrates the oRGB color space and the Scale-Invariant Feature Transform (SIFT), is proposed for image search and classification. The oRGB-SIFT descriptor is further integrated with other color SIFT features to produce the novel Color SIFT Fusion (CSF), the Color Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG descriptors for image category search with applications to biometrics. Image classification is implemented using a novel EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) decision rule. Experimental results on four large scale, grand challenge datasets have shown that the proposed oRGB-SIFT descriptor improves recognition performance upon other color SIFT descriptors, and the CSF, the CGSF, and the CGSF+PHOG descriptors perform better than the other color SIFT descriptors. The fusion of both Color SIFT descriptors (CSF) and Color Grayscale SIFT descriptor (CGSF) shows significant improvement in the classification performance, which indicates that various color-SIFT descriptors and grayscale-SIFT descriptor are not redundant for image search. Second, four novel color Local Binary Pattern (LBP) descriptors are presented for scene image and image texture classification. Specifically, the oRGB-LBP descriptor is derived in the oRGB color space. The other three color LBP descriptors, namely, the Color LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF), and the CGLF+PHOG descriptors, are obtained by integrating the oRGB-LBP descriptor with some additional image features. Experimental results on three large scale, grand challenge datasets have shown that the proposed descriptors can improve scene image and image texture classification performance. Finally, a new iris recognition method based on a robust iris segmentation approach is presented for improving iris recognition performance. The proposed robust iris segmentation approach applies power-law transformations for more accurate detection of the pupil region, which significantly reduces the candidate limbic boundary search space for increasing detection accuracy and efficiency. As the limbic circle, which has a center within a close range of the pupil center, is selectively detected, the eyelid detection approach leads to improved iris recognition performance. Experiments using the Iris Challenge Evaluation (ICE) database show the effectiveness of the proposed method

    A novel real-time edge-preserving smoothing filter

    Get PDF
    The segmentation of textured and noisy areas in images is a very challenging task due to the large variety of objects and materials in natural environments, which cannot be solved by a single similarity measure. In this paper, we address this problem by proposing a novel edge-preserving texture filter, which smudges the color values inside uniformly textured areas, thus making the processed image more workable for color-based image segmentation. Due to the highly parallel structure of the method, the implementation on a GPU runs in realtime, allowing us to process standard images within tens of milliseconds. By preprocessing images with this novel filter before applying a recent real-time color-based image segmentation method, we obtain significant improvements in performance for images from the Berkeley dataset, outperforming an alternative version using a standard bilateral filter for preprocessing. We further show that our combined approach leads to better segmentations in terms of a standard performance measure than graph-based and mean-shift segmentation for the Berkeley image dataset.Peer ReviewedPostprint (author’s final draft
    corecore