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Abstract

Texture segmentation is one of the most important feature utilized in practical

diagnosis because it can reveal the changing tendency of the image. A texture

segmentation method based on Gabor filter is proposed in the project. This method

synthesis the information of location, color and texture features to be the wight, this

can make satisfactory segmentation according to texture of image. The experiment

shows that overall rate correctness for this method exceeds 81%.



Contents

1 Introduction 1

1.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Texture Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Band-Pass filters . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Window Function . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Traditional Linear Gabor Filters 10

2.1 GEF’s and Gabor Filter . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Filter Design Algorithm . . . . . . . . . . . . . . . . . . . . . 11

2.3 Algorithm Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Gabor-filter Application via WFT . . . . . . . . . . . . . . . . 12

2.4 Filter Design Algorithm Discussion . . . . . . . . . . . . . . . . . . . 13

2.4.1 Algorithm–1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Algorithm–2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Circular Gabor Filter & Rotation Invariance 16

3.1 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Circular Gabor Filter & Rotation Invariance . . . . . . . . . . . . . . 16

3.3 Selection of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Texture Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Invariant Texture Segmentation Using Circular Gabor filter . . . . . . 18

3.5.1 Proposed Algorithm - 3 . . . . . . . . . . . . . . . . . . . . . 18

3.6 Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



4 Implementation Results 20

4.1 Implementation of Traditional Linear Gabor filter . . . . . . . . . . . 20

4.2 Color Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Result from TBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Results from Circular Gabor Filter . . . . . . . . . . . . . . . . . . . 27

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33

ii



Chapter 1

Introduction

According to computer vision segmentation can be define as the process of partitioning

a digital image into multiple segments, where multiple segments are sets of pixels, in

other words super pixels. Main objective of segmentation is to change and, or simplify

the representation of a digital image into something that is much more significant

and easier to analyze. Objects and boundaries like lines, curves, etc. in images can

be normally located by using image segmentation. More accurately, the process of

assigning a tag to every pixel in an image such that pixels with the same label share

specific visual characteristics is known as image segmentation.

1.1 Image Segmentation

The outcome of image segmentation is a set of surface (especially of a curving

form) extracted from the image, a set of segments that as a group cover the entire

image. In a segment every pixels are similar with regard to computed property or

some characteristic, such as intensity, texture, or color. Neighboring segments are

considerably different with regard to the same characteristics.

Image segmentation can also be considered as partition of an image into set of non-

overlapping areas whose combination is the complete image, few rules to be followed

for regions resultant from the image segmentation can be confirmed as (Haralick,

1985):

• All segments should be uniform and homogeneous with regard to some

characteristics

• Region’s interiors should be uncomplicated and without many small holes
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• Neighboring segments should have significantly different values with regard to

the characteristic according which they are uniform

• Every segment’s boundaries should be simple, not blurring, and must be

spatially accurate.

Figure 1.1: Original Picture

Let this gray-scale lightning image be a original image. The value gray-scale for

this image is from 0 to 255.

What is a gray-scale? A gray-scale or grey-scale digital image is an image in

computing and photography in which a single sample is the value of each pixel, i.e., it

holds only intensity information. Images of this type are collected exclusively of gray

shades, varies to white at the strongest from black at the weakest.

Images are with two colors only, black and white also known as bi-level or binary

images in the context of computer imaging and grayscale images are different for

these one-bit images. Grayscale images contain many gray shades in between. Due

to the absence of any chromatic variation (no color) grayscale images are also known

as monochromatic.
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In a single band of the electromagnetic spectrum (infrared, visible light, ultraviolet,

etc.) grayscale images are frequently resulted from measuring the intensity of light at

each pixel, and in a case like this when only a given frequency is captured they are

monochromatic proper. They can also be created from full color image.

These are some segmented images of previous grayscale original image using

different values for segmentation. This proves an image cannot have one segmentation

that can be considered to be “accurate”. Only in the brain of the observer an

“accurate” segmentation exists, which can change not only among observers, but

also within the same observer at different instants. In many line of work like

Face Recognition, Medical Imaging, Machine Vision, Fingerprint Recognition, Script

Recognition etc. image segmentation is applied.

1.2 Texture Segmentation

For more than 50 years understanding of processes occurring in the early stages of

visual perception has been a primary research topic. For regular properties like color,

brightness, size and the slopes of lines composing figures preattentive segmentation

occurs strongly (Beck 1966, 1972, 1973, 1983; Olson and Attneave 1970). Research

into the statistical properties of preattentively discriminable texture was started by
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Julesz in early 1960’s. Complex topic where psychophysics meets physiology Beck

and Julesz were among the first to deep in.

What is a texture? A measurement of the variation of the intensity of a surface,

quantifying properties such as regularity, smoothness and coarseness. You can also

explain with term is color map. Texture is mapped onto an already available surface.

A surface texture is created by the regular repetition of an element or pattern, called

surface texel, on a surface.

In computer graphics there are deterministic (regular) and statistical (irregular)

texture It’s often used as a region descriptor in image analysis and computer vision.

The three principal approaches used to describe texture are structural, spectral

and statistical. Apart from the level of gray and color texture is a spatial belief

indicating what characterizes the visual homogeneity of given zone of an image in

a infinite(true) image which generate another image based on the original texture

and finally analyze these two fragments by classifying them in a different or a same

category. In other words we can also say that the main objective is to decide if texture

samples belong to the same family by comparing them.

By using filter-bank model the process is bring to conclusion, dividing and

decomposing of an input image into numerous output image is prepared by a set

of linear image filters working in parallel which is used by the filter-bank model.

These filters gives rise to concept of joint space/ spatial-frequency decomposition by

simultaneously concentrate on local spatial interactions and on particular range of

frequencies.

1.2.1 Filter

In optics, device that let light pass on which have certain properties like particular

range of wavelengths, i.e., range of colors of light, while blocking the rest. Mathemat-

ical operations carry out on an image represented as a sampled, discrete-time signal

to enhance or reduce certain aspects of that signal in digital image processing is a

Filter. Filtering is process which is used in Fourier transform for signal processing in

frequency domain. Depending upon the relationship between input and output, filter

may be linear or non-linear.

For the detection or removal of anomalous or unwanted frequencies from an input
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signal linear filters are used behaving according to the Gaussian statistical law. In

high frequency components like small details and edges blurring is caused by linear

filter.

Being derived from the neighboring pixels non-linear filters use estimates to

detect anomaly. When applied for edge detection or spike detection non-linear filters

normally provides better outcomes. Examples of filters are Long-pass, Polarizer,

Band-pass, Median, Laplacian, Sobel, Short-pass, etc.

1.2.2 Band-Pass filters

Filter that rejects frequencies outside given range by only allowing frequencies within

that range to pass is known as a band-pass filter. We can also create band-pass

filters by combining a high-pass filter with a low-pass filter. Band-pass is frequently

confused with passbad, which refers to the actual portion of exaggerates spectrum,

actually it is a adjective that describes a type of filtering or filter process. Bandpass

and passband are both compound words that follows English rules of formation: the

primary meaning of the later part of the compound, while modifier is the first part.

Therefore, we may acceptably say “A dual bandpass filter has two passbands”.

An ideal bandpass might have a complete passband with no gain/attenuation and

complete attenuate all frequency outside the passband. The passband out of the

transition might be instantaneous in frequency. Partically , ideal band-pass filter

do not exist. All frequencies outside the desired frequency range are not completely

attenuate by the filter; actually, frequencies are attenuated but not rejected in a

region just outside the intended passband. Normally, the roll-off are designed made

as narrow as possible, which only allows the filter to perform as close possible to its

intended design.
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Type Description

Low Pass Frequencies lower than specified frequency are allowed to pass

High Pass Frequencies higher than specified frequency are allowed to pass

Band Pass Frequencies in a limited range of are allowed to pass, it is a

combination of low and high pass filters.

Band Stop Frequencies outside a limited range of frequencies are allowed to

pass

All Pass The phase relationship is altered in all-pass filter

Categorize of Band-pass filters

1.2.3 Window Function

Zero-valued mathematical function outside of some chosen interval, in signal process-

ing, is known as window function which is also known as an apodization function or

tapering function. A function which is constant within the interval and zero outside

that interval is known as a rectangular window, that also demonstrates the shape

of its graphical representation. Outside the interval product is zero-valued when

another signal(data) or function is multiplied by window function, the part where

they overlapped is only left: “view through the window”. Spectral analysis, Beam

forming and Filter design are the application of window functions.

As long as the product of window multiplied by its argument is square integral,

i.e. the function goes sufficiently rapidly toward zero, general definition of window

functions does not need them to be equal to zero outside an interval.

Non-negative smooth “bell-shaped” curves are used by the window function in

typical applications, though other functions like rectangle and triangle are sometimes

used.

Gaussian windows

Eigen function of the Fourier Transform, a Gaussian is also the frequency response of

a Gaussian. Either Gaussian function windowed with another zero-ended window or

it must be truncated at the ends of the windows since it extends to infinity.

The log of a Gaussian can be used for exact quadratic interpolation in frequency

estimation since it produces a parabola.

w(n) = e−
1
2
(
n−(N−1)/2
σ(N−1)/2

)2
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Figure 1.2: Window function frequency response

where,

In sample N , represents the width of a discrete-time window function. Usually

it is an integer power-of-2, such as 210 = 1024

With values 0 ≤ n ≤ N−1, is an integer. The time-shifted forms of the windows

are: w(n) = w◦ where w◦(n) is maximum at n = 0 σ ≤ 0.5

Figure 1.3: Gaussian window function
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1.3 Gabor Filter

A Gabor filter is a linear filter used for edge detection in image processing which is

named after Dennis Gabor. Gabor filter frequency and orientation representations are

similar to those of human visual system, for texture representation and discrimination

it has been found to be remarkably appropriate. A sinusoidal plane wave has been

modulating a 2D Gabor filter which is a Gaussian kernel function in the spatial

domain. From one parent wavelet all filters can be generated by dilation and rotation,

thus the Gabor filters are self-similar.

A harmonic function multiplied by a Gaussian function gives Gabor filter’s

impulse response. The convolution of the Fourier transform of the Gaussian function

and the Fourier transform of the harmonic function is the Fourier transform of a

Gabor filter’s impulse response because of Convolution theorem (the multiplication-

convolution property. Orthogonal directions are represented by an imaginary and a

real component of the filter. The two components may be shaped into a complex

number or used individually.

Complex

g(x, y;λ, θ, ψ, σ, γ) = exp{−x
′2 + γ2y′2

2σ2
} exp{i(2πx

′

λ
+ ψ)}

Real

g(x, y;λ, θ, ψ, σ, γ) = exp{−x
′2 + γ2y′2

2σ2
} cos(2π

x′

λ
+ ψ)

Imaginary

g(x, y;λ, θ, ψ, σ, γ) = exp{−x
′2 + γ2y′2

2σ2
} sin(2π

x′

λ
+ ψ)

where, x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ

where,

λ is the wavelength of the sinusoidal factor,

θ is the direction of the normal to the parallel stripes of a Gabor function,

ψ is the phase offset,

σ is the sigma of the Gaussian envelope,

γ is the spatial aspect ratio and specifies the ellipticity of the cooperation of the

Gabor function.

Summary of Dennis Gabor article

C. Palm and T. M. Lehmann, Classification of Color Textures by Gabor Filtering,

Machine Graphics and Vision vol.11, no. 2/3, 2002, pp. 195-219.
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The study concentrates on 2 related questions:

• Does color enhance texture features?

• Are there color textures, which are intensity independent?

Resulting conclusions: color has been shown to enhance intensity texture features

as well as composing an intensity independent-pattern. Both RGB and HSL color

space are suitable for applying Gabor filters. Concerning the Gabor features, the phase

energy supplements the amplitude energy, showing similar discrimination capabilities.

Since the Fourier domain is used for filter bank design as well as its implementation,

the Fourier transform is the main element of the Gabor transform.
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Chapter 2

Traditional Linear Gabor Filters

2.1 GEF’s and Gabor Filter

Because of their good spatial and spatial frequency localization Gabor filters are

extensively used for texture segmentation.

Short synopsis of Gabor Elementary Functions (GEF’s) and Gabor filters are given

below. Daugman extended GEF to 2D but they were first defined by Dennis Gabor.

A GEF is given by

H(m,n) = g(m′, n′) exp[j2π(Pm+Qn)]

where,

(m′, n′) = (m cos θ+n sin θ,−m sin θ+n cos θ) represent rotated spatial domain

rectilinear coordinates. Letting (p, q) denote frequency-domain rectilinear

coordinated, (P,Q) represent a specific 2D frequency. At frequency the complex

exponential is a 2D complex sinusoid F =
√

(P2 +Q2) and φ = tan−1(P/Q)

specifies the orientation of the sinusoid. The function g(m,n) is the 2D Gaussian.

g(m,n) = (
1π

2
SmSn) exp{−1

2
[(n/Sn)2 + (n/Sn)2]}

where,

Sm and Sn characterize the spatial extent and bandwidth of the filter.

Therefore, the GEF is a Gaussian that is altered by a complex sinusoid. It

is shown that the Fourier transform of h(m,n) is

H(p, q) = exp{−1/2[(Sm[p− P ]′)2 + (Sn[q −Q]′)2]}

10



where,

[(p−P )′, (q−Q)′] = [(p−P ) cos θ+ (q−Q) sin θ,−(p−P ) sin θ+ (q−Q) cos θ]

Therefore, from 3, the GEF’s frequency retort has the shape of a Gaussian. The

Gaussian’s minor and major axis widths are determined by Sm and Sn, it is rotated

by and angle with respect to the positive p-axis, and is centered about the frequency

(P,Q) . Therefore, the GEF work as a band pass filter.

Letting Sm = Sn = S is a reasonable design choice in maximum case. If it is

assumed that Sm = Sn = S, then, the parameter θ is not required and the equation

(1) of GEF simplifies to

h(m,n) = (
1πσ2

2
) exp{−1

2
(m2 + n2/σ2)} exp[j2π(Pm+Qn)]

We now define the Gabor filter by t(m,n) = Oh(i(m,n)) = |i(m,n)× h(m,n)|
where, i is the image and t is the output.

2.2 Filter Design

Find the Gabor filter that best distinguishes B and A in the output t(m,n), given a

bipartite textured image i(m,n) consisting of known textures B and A. An output

image t(m,n) can be produce by a properly designed Gabor filter exhibiting some

kind of discontinuity at the texture boundaries.

Gabor filter is been design which produces a step in t(m,n) at texture boundaries

when the two textures differ from each other. Case in which two textures differ is

focused primarily. Therefore, the anticipated filter-design algorithm struggles to give

Gabor filter that produce step in t(m,n).The parameters P ,Q and (1) and (5) are the

one by which Gabor filters is determined.

The Gabor filters is determined by the factors P , Q and as per (2.4) and (2.5),

among the space of all possible Gabor filters .The space of all possible Gabor filters the

best Gabor filter must be found, as determined by (P,Q, S). To do this a metric for

assessing filter quality is required. By the amplitude and slope of the step it produces

in the case of a step signature the quality of a Gabor filter can be concluded.

2.2.1 Filter Design Algorithm

Filter Design Algorithm is based on the 2 things.

1. Based on the structure of the textures, select a value of S.
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2. Within each texture sample, to neighborhoods apply concurrently a huge

number of Gabor filters (P,Q, S) about a set of randomly selected points. More

exclusively, for each texture B and A:

(a) within a texture select randomly a set z of points.

(b) compute [FM,N (P,Q)] for each point (M,N) ε z

FM,N(U, V ) =

∫ +∞

−∞

∫ +∞

−∞
i(m,n) g(m−M, n−N)×exp[−j2π(Um+V n)]dmdn

where, g is the Gaussian (2) having parameters S1 = S2 = S and i is the

given texture sample of i centered at (M,N) let the Windowed Fourier

transform (WFT) as F and the window function as g.

Since (6) is implemented in exercise as an X × X DFT (Discrete Fourier

Transform), [FM,N (P,Q)] tally to the output of a Gabor filter (P,Q,S) applied

to point (M, N), the calculation of FMN is equivalent to concurrently applying

X × X different Gabor filters at the point (M,N). Hence, This computation

successfully extent or measure the range of filter center frequencies (P,Q).

2.3 Algorithm Issues

2.3.1 Gabor-filter Application via WFT

The second step in our design method needs the parallel of a family of Gabor filters

to an image at a point. This is a particular case of applying a Windowed Fourier

Transform at the image given by the equation as below:

FM,N(P,Q) =

∫ +∞

−∞

∫ +∞

−∞
i(m,n)w(m−M, n−N)× exp[−j2π(Pm+Qn)]dmdn

Where w is the window function, the image to be transformed is i, and a function

of frequency is f (P,Q) and window position (M,N). To show this, let u be the result

of convolution of an image i(m,n) with a GEF h(m,n):

u(m,n) =

∫ +∞

−∞

∫ +∞

−∞
i(m,n)× h(m,n) = i(α, β)h(m− α, n− β) dα dβ

Expanding h and considering one specific point in the convolve (M,N) gives

u(M,N) =

∫ +∞

−∞

∫ +∞

−∞
i(α, β)×g(M−α,N−β) exp[j2π(P (M−α)+Q(N−β))] dα dβ

12



After rearranging terms, and letting the window function w(m,n) = g(−m,−n)

u(M,N) =

∫ +∞

−∞

∫ +∞

−∞
i(α, β)g(α−M,β −N) exp[−j2π(Pα) +Qβ))] dα dβ

where, K = exp[j2π(PM +QN)] We can observe that, except for the constant K (8)

and (9) are comparable. Thus |u(M,N)| = |FMN(P,Q)|.
On continuous function the development above is based on. The WFT is estimated

as a DFT for the discrete case. Then (P,Q) refer to discrete special frequencies

and (M,N) refer to image pixels. An image and truncated Gaussian centered are

multiplied ate pixel (M, N) for the DFT implementation. To the image is estimated

by the DFT at pixel (M,N) the application of a family of Gabor filters, where center

frequency of each filter is tally to frequencies of the DFT. Therefore, at a single point

calculating a single discrete WFT is comparable to deciding the output from a family

of Gabor filters, the frequency domain of the image is span by the center frequencies

of the filters.

Obviously, the filter-selection algorithm does not consider all possible center

frequencies. Experience shows that this is not necessary because step quality degrades

gracefully with changes in Gabor-filter center frequency i.e., (Gabor filters having

center frequencies (U + δU, V + δV ) tend to perform nearly the same as filters having

center frequency (U, V ).

2.4 Filter Design Algorithm Discussion

Considering the two cases for H(m,n) which were discussed above, the following two

algorithms were developed. As per the requirement, it was assumed that, a bipartite

textured image I(m,n) was given and whose both corresponding textures B and A are

known . The under consideration algorithm will implement the Gabor filter, which

discriminates the texture B and A in the output image T (m,n). An output image

t(m,n) would be produced by a perfectly designed Gabor filter which exhibits any

kind of signature or else discontinuity at the boundary.

1. When the two textures are differing from each other, then at the texture

boundary the Gabor filter performs a step change in t(m,n).

2. When there is a case, if the two textures B and A may have same value but

have offset value different to each other.

13



Prior to that a case the correctly selected Gabor filter will create a valley of

discontinuity at the corresponding texture boundary. This very form of output is

referred as a valley signature.

The main objective is to focus on the case where the corresponding two textures

differ. Hence the suggested filter design algorithm strives to provide the Gabor filters

to produce step change in t(m,n). Mostly on theoretical basis a Gabor filter is

determined by the parameters (P,Q, S). Being careful while choosing the values

of these three parameters, this will design the optimal form of Gabor filter.

2.4.1 Algorithm–1

Step 1: Select values for P,Q, S

Step 2: Then Converting the input image into a 2D matrix, say I(m,n)

Step 3: Then Calculating the value of H i.e. the impulse response of the filter,(which is

also a 2D matrix) by the following formula given below:

H(m,n) =
1

/
2πS exp{−(x2 + y2)/2S2]} {exp[j2π(Pm+Qn)]}

Step 4: Computation of the convolution of I(m,n) with H(m,n), say it is t(m,n), which

is corresponding matrix to the output image.

t(m,n) = Oh(i(m,n)) = |I(m,n)×H(m,n)|

where, Oh represents the filter.

Step 5: Print the output image. If it cleanly discriminates the two textures good, stop.

Otherwise go to Step 1 to select other values for P,Q, S & repeat the procedure.

2.4.2 Algorithm–2

Step 1: Select values for U, V, Sm, Sn

Step 2: Then Converting the input image into a 2D matrix, say I(m,n)

Step 3: Then Calculating the value of H i.e. the impulse response of the filter,(which is

also a 2D matrix) by the following formula given below:

H(x, y) =
1

2πSmSn
exp{−(1/2)[(m/Sm)2 + (n/Sn)2]} {exp[j2π(Pm+Qn)]}

Step 4: Computation of the convolution of I(m,n) with H(m,n), say it is T (m,n),

which is corresponding matrix to the output image.

T (m,n) = Oh(i(m,n)) = |I(m,n)×H(m,n)|

14



where, Oh represents the filter.

Step 5: Print the output image. If it cleanly discriminates the two textures good, stop.

Otherwise go to Step 1 to select other values for P,Q, S & repeat the procedure.

15



Chapter 3

Circular Gabor Filter & Rotation

Invariance

3.1 Preview

Gabor filter is a powerful tool in texture analysis. Traditional Gabor function (TGF)

represents a Gaussian function modulated with the help of an oriented complex

sinusoidal signal. It is mathematically represented as

G(x, y) = g(x, y)× exp(2πif(x cos θ + y sin θ))

Here g(x, y) = (1/2πS2) × exp(−(x2 + y2)/2S2) (it is assumed that g(x, y) is

isotropic). The parameter f & θ represent the frequency and the orientation of the

sinusoidal signal respectively.g(x, y) is the Gaussian function with scale parameter

S, f, θ and S constitute the parameter space of Gabor filters where θ lies in the

interval [θ◦ − 360◦]. Gabor filters have many advantages over the Fourier transform.

So it can get the best possible location in both the frequency and spatial domain.

3.2 Circular Gabor Filter & Rotation Invariance

The Gabor filters are very useful for the detection of texture direction. This is the

main advantage of the traditional Gabor filters. Whereas when we consider rotation

invariant texture analysis, then the orientation of texture becomes insignificant. Thus

the traditional Gabor filters are very much less suitable for the specific purpose.

The variation of sinusoidal grating of the TGF is in only one direction. If then the

sinusoidal variation is in all orientations, it is known as circular symmetric. These
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results in a new version of Gabor filter called Circular Gabor filter (CGF). The circular

Gabor filter is defined as follows:

G(x, y) = g(x, y) exp{2πiF (
√

(x2 + y2)}

Where F represents the central frequency for a circular Gabor filter. The properties

of the circular Gabor filters can be more explicit in their frequency domain. The

Fourier representation of the circular Gabor filter is as follows:

Fourier(u, v) =

√
(2π)

2
α exp{−

(
√

(u2 + v2)− F )2

2α2
}

where α = 1/piS

In case of Gabor based texture, the analysis of the texture property of every single

pixel is provided by the projection of the textured surface I(x, y) onto a complex

Gabor wavelet. That is (here it is used circular Gabor filter):

P =

∫ ∫
I(x, y) g(x, y) exp{i2πF

√
x2 + y2}dx dy

Consider a rotation of texture image I(x′, y′) by an amount of 4θ. The projection

of I(x′, y′) becomes

P =

∫ ∫
I(x′, y′) g(x, y) exp{i2πF

√
x2 + y2}dx dy

where, ∣∣∣∣∣∣ xy
∣∣∣∣∣∣ =

∣∣∣∣∣∣ cos4θ sin4θ
− sin4θ cos4θ

∣∣∣∣∣∣
∣∣∣∣∣∣ xy
∣∣∣∣∣∣

We have dx.dy = dx′dy′ and x2 + y2 = x′2 + y′2

Thus the above equation can be represented as follows

P ′ = P =

∫ ∫
I(x′, y′) g(x′, y′)exp({i2πF

√
x′2 + y′2} dx′ dy′

From equation (3.4) and (3.5) it is obtained that p = p′. Therefore it can be proved

that, when we rotate an image, its very projection onto a circular Gabor wavelet never

changes but remains the same. So this property provides the rotation invariance.

3.3 Selection of Parameters

When we consider circular Gabor filter, F and S should satisfy the condition with

respect to bandwidth b as

F × S = λ(2b+ 1)/(2b− 1)
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where, B = log2 f1/f2, λ =
√

(2ln2)/2π with f1 and f2 the frequencies

corresponding to the half peak magnitude of circular Gabor Fourier response. For

a texture image of size N ∗N , the frequency F is often selected as follows:

√
2 {1, 2, 4, 8, 16, N/4}/N

This choice implies that finer frequency resolutions are in lower frequencies than in

higher frequencies, i.e. it emphasizes the lower frequencies. This choice may result in

very good texture representation. However may be the good reconstruction it does

not proved to be a good segmentation.

When we consider lower frequencies they may provide good texture segmentation

results. Frequency can be chosen from the interval of [−0.5− 0.5] by an image of size

N . The lowest and the highest frequency being FH and FL respectively.

FH = 0.25 + 2(I − 0.5)/N 0.25 ≤ FH < 0.5

FL = 0.25 + 2(I − 0.5)/N 0 < FL < 0.5

3.4 Texture Segmentation

When it comes to recognizing the textures, the texture features were calculated from

the filtered image as per the following equation

Ψ(x, y) = r2(x, y)⊗m(x, y)

Where r2(x, y) represents how much is the energy of the filtered image and ⊗ shows

the convolution . m(x, y) represents the mask to obtain the texture segments. Finer

texture measurements can be detected by mask windows of minute size. For the

local texture energy a Gaussian window is being used. We require Pattern clustering

algorithm for identifying the regions.

3.5 Invariant Texture Segmentation Using Circu-

lar Gabor filter

3.5.1 Proposed Algorithm - 3

Step 1: Selecting the value of F.

18



Step 2: Then Converting the input image into a 2D matrix respectively.

Step 3: Computing the impulse response of the filter by using the following formula

G(x, y) = g(x, y)× exp{2πif(x cos θ + y sin θ)}

where, g(x, y) = (1/2πS2)× exp{−(x2 + y2)/2S2}
Step 4: Then the Filtering the input image by passing it through the filter whose impulse

response is as calculated in Step 3, say r(x, y) is the filtered output.

Step 5: Compute the energy E of the filtered image as follows E = r2(x, y)

Step 6: Calculate the segmented image from the corresponding filtered image as follows.

ϕ(x, y) = E⊗m(x, y), wherem(x, y) is the mask window. The size of the window

was calculated by its standard deviation Ss, we choose Ss = S/sigma

So , m(x, y) = (1/8πσ2) ∗ exp{−((n12 + n22)/4σ2)}
Step 7: Print the output image φ(x, y)

3.6 Assessments

• When we compare with the traditional Gabor filters, the circular Gabor filters

certainly produces better results for texture segmentation.

• We found that the circular Gabor filter is kind of rotation invariant, whereas

the traditional Gabor filters are not, and this was proved mathematically.

• When it comes to the traditional selection scheme, two frequencies are chosen.

But in the case of central frequency scheme for the circular Gabor filter produces

better segmentation results as compared to the other.
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Chapter 4

Implementation Results

4.1 Implementation of Traditional Linear Gabor

filter

Figure 4.1: Original Image
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Figure 4.2: sx = 1, sy = 2, f = 8, θ = π/4(CGF )

Figure 4.3: sx = 2, sy = 4, f = 16.θ = π/3(CGF )
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4.2 Color Example

Figure 4.4: Orginal Image

Figure 4.5: Traditional Gabor Filter
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Figure 4.6: CircularGaborF ilter
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4.3 Result from TBF

Figure 4.7: Orginal Image

Figure 4.8: σx = 1, σy = 2, U = 0.8, V = 1.0
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Figure 4.9: σx = 2, σy = 4, U = 1.2, V = 1.6

Figure 4.10: U = 1.8, V = 2.4, σx = 3, σy = 4
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Figure 4.11: σx = 4, σy = 5, U = 2.7, V = 3.6
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4.4 Results from Circular Gabor Filter

Figure 4.12: Orginal Image
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Figure 4.13: σ = 0.3, F = 0.8
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Figure 4.14: σ = 0.6, F = 1.2
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Figure 4.15: σ = 0.7, F = 1.4
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Figure 4.16: σ = 0.8, F = 1.5
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4.5 Conclusion

An essential step in analysis applications and pictorial pattern is Image segmentation.

Accuracy the failure or success of analysis procedures is determined by segmentation.

Texture segmentation is established on partitioning an image into different regions of

similar texture based on particular criteria.

We have successfully implemented the algorithms associated to segmentation using

Gabor filter.

Algorithm 1 separates two texture absolutely for some exact values of u, v, σ.

Algorithm 2 also splitting different texture depending on the values of u, v, σx, σy.

All these parameter are called finest parameter for Traditional Gabor Filter. In case

of the Algorithm 3 the texture are recognized easily for particular values of central

frequency F and doesn’t differ with rotation. The segmentation results are more

accurate in case of Circular Gabor Filter than Traditional Gabor Filter
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