1,168 research outputs found

    A system dynamics approach to evaluate advanced persistent threat vectors.

    Get PDF
    Cyber-attacks targeting high-profile entities are focused, persistent, and employ common vectors with varying levels of sophistication to exploit social-technical vulnerabilities. Advanced persistent threats (APTs) deploy zero-day malware against such targets to gain entry through multiple security layers, exploiting the dynamic interplay of vulnerabilities in the target network. System dynamics (SD) offers an alternative approach to analyze non-linear, complex, and dynamic social-technical systems. This research applied SD to three high-profile APT attacks - Equifax, Carphone, and Zomato - to identify and simulate socio-technical variables leading to breaches. By modeling APTs using SD, managers can evaluate threats, predict attacks, and reduce damage by mitigating specific socio-technical cues. This study provides valuable insights into the dynamics of cyber threats, making it the first to apply SD to APTs

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    The Effect of Malaysia General Election on Financial Network: An Evidence from Shariah-Compliant Stocks on Bursa Malaysia

    Get PDF
    Instead of focusing the volatility of the market, the market participants should consider on how the general election affects the correlation between the stocks during 14th general election Malaysia. The 14th general election of Malaysia was held on 9th May 2018. This event has a great impact towards the stocks listed on Bursa Malaysia. Thus, this study investigates the effect of 14th general election Malaysia towards the correlation between stock in Bursa Malaysia specifically the shariah-compliant stock. In addition, this paper examines the changes in terms of network topology for the duration, sixth months before and after the general election. The minimum spanning tree was used to visualize the correlation between the stocks. Also, the centrality measure, namely degree, closeness and betweenness were computed to identify if any changes of stocks that plays a crucial role in the network for the duration of before and after 14th general election Malaysia

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2014

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    2018 Faculty Excellence Showcase, AFIT Graduate School of Engineering & Management

    Get PDF
    Excerpt: As an academic institution, we strive to meet and exceed the expectations for graduate programs and laud our values and contributions to the academic community. At the same time, we must recognize, appreciate, and promote the unique non-academic values and accomplishments that our faculty team brings to the national defense, which is a priority of the Federal Government. In this respect, through our diverse and multi-faceted contributions, our faculty, as a whole, excel, not only along the metrics of civilian academic expectations, but also along the metrics of military requirements, and national priorities

    Location prediction and trajectory optimization in multi-UAV application missions

    Get PDF
    Unmanned aerial vehicles (a.k.a. drones) have a wide range of applications in e.g., aerial surveillance, mapping, imaging, monitoring, maritime operations, parcel delivery, and disaster response management. Their operations require reliable networking environments and location-based services in air-to-air links with cooperative drones, or air-to-ground links in concert with ground control stations. When equipped with high-resolution video cameras or sensors to gain environmental situation awareness through object detection/tracking, precise location predictions of individual or groups of drones at any instant possible is critical for continuous guidance. The location predictions then can be used in trajectory optimization for achieving efficient operations (i.e., through effective resource utilization in terms of energy or network bandwidth consumption) and safe operations (i.e., through avoidance of obstacles or sudden landing) within application missions. In this thesis, we explain a diverse set of techniques involved in drone location prediction, position and velocity estimation and trajectory optimization involving: (i) Kalman Filtering techniques, and (ii) Machine Learning models such as reinforcement learning and deep-reinforcement learning. These techniques facilitate the drones to follow intelligent paths and establish optimal trajectories while carrying out successful application missions under given resource and network constraints. We detail the techniques using two scenarios. The first scenario involves location prediction based intelligent packet transfer between drones in a disaster response scenario using the various Kalman Filtering techniques. The second scenario involves a learning-based trajectory optimization that uses various reinforcement learning models for maintaining high video resolution and effective network performance in a civil application scenario such as aerial monitoring of persons/objects. We conclude with a list of open challenges and future works for intelligent path planning of drones using location prediction and trajectory optimization techniques.Includes bibliographical references
    corecore