6,059 research outputs found

    A technique for parallel share-frequent sensor pattern mining from wireless sensor networks

    Get PDF
    WSNs generate huge amount of data in the form of streams and mining useful knowledge from these streams is a challenging task. Existing works generate sensor association rules using occurrence frequency of patterns with binary frequency (either absent or present) or support of a pattern as a criterion. However, considering the binary frequency or support of a pattern may not be a sufficient indicator for finding meaningful patterns from WSN data because it only reflects the number of epochs in the sensor data which contain that pattern. The share measure of sensorsets could discover useful knowledge about numerical values associated with sensor in a sensor database. Therefore, in this paper, we propose a new type of behavioral pattern called share-frequent sensor patterns by considering the non-binary frequency values of sensors in epochs. To discover share-frequent sensor patterns from sensor dataset, we propose a novel parallel technique. In this technique, we develop a novel tree structure, called parallel share-frequent sensor pattern tree (PShrFSP-tree) that is constructed at each local node independently, by capturing the database contents to generate the candidate patterns using a pattern growth technique with a single scan and then merges the locally generated candidate patterns at the final stage to generate global share-frequent sensor patterns. Comprehensive experimental results show that our proposed model is very efficient for mining share-frequent patterns from WSN data in terms of time and scalability

    A Survey on Behavioral Pattern Mining from Sensor Data in Internet of Things

    Get PDF
    The deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area. © 2013 IEEE

    Framework for cost-effective analytical modelling for sensory data over cloud environment

    Get PDF
    In order to offer sensory data as a service over the cloud, it is necessary to execute a cost-effective and yet precise data analytical logic within the sensing units. However, it is quite questionable as such forms of analytical operation are quite resource dependent which cannot be offered by the resource constraint sensory units. Therefore, the proposed paper introduces a novel approach of performing cost-effective data analytical method in order to extract knowledge from big data over the cloud. The proposed study uses a novel concept of the frequent pattern along with a tree-based approach in order to develop an analytical model for carrying out the mining operation in the large-scale sensor deployment over the cloud environment. Using a simulation-based approach over the mathematical model, the proposed model exhibit reduced mining duration, controlled energy dissipation, and highly optimized memory demands for all the resource constraint nodes

    Sequential Behavior Pattern Discovery with Frequent Episode Mining and Wireless Sensor Network

    Full text link
    [EN] By recognizing patterns in occupants' daily activities, building systems are able to optimize and personalize services. Established technologies are available for data collection and pattern mining, but they all share the drawback that the methodology used for data collection tends to be ill suited for pattern recognition. For this research, we developed a bespoke WSN and combined it with a compact data format for frequent episode mining to overcome this obstacle. The proposed framework has been evaluated with both synthetic data from a smart home simulator and with real data from a self-organizing WSN in a student's home. We are able to demonstrate that the framework is capable of discovering sequential patterns in heterogeneous sensor data. With corresponding scenarios, patterns in daily activities can be deduced. The framework is self-contained, scalable, and energy-efficient, and is thus applicable in multiple building system settings.The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (no. 51408442 and no. 61572231).Li; Li, X.; Lu, Z.; Lloret, J.; Song, H. (2017). Sequential Behavior Pattern Discovery with Frequent Episode Mining and Wireless Sensor Network. IEEE Communications Magazine. 55(6):205-211. https://doi.org/10.1109/MCOM.2017.160027620521155

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed
    • …
    corecore