

A Technique for Parallel Share-Frequent Sensor
Pattern Mining from Wireless Sensor Networks

Md. Mamunur Rashid, Iqbal Gondal and Joarder Kamruzzaman
Faculty of Information Technology

Monash University, Melbourne Australia
{md.rashid, iqbal.gondal, joarder.kamruzzaman}@monash.edu

Abstract
WSNs generate huge amount of data in the form of streams and mining useful knowledge from these
streams is a challenging task. Existing works generate sensor association rules using occurrence
frequency of patterns with binary frequency (either absent or present) or support of a pattern as a
criterion. However, considering the binary frequency or support of a pattern may not be a sufficient
indicator for finding meaningful patterns from WSN data because it only reflects the number of epochs
in the sensor data which contain that pattern. The share measure of sensorsets could discover useful
knowledge about numerical values associated with sensor in a sensor database. Therefore, in this
paper, we propose a new type of behavioral pattern called share-frequent sensor patterns by
considering the non-binary frequency values of sensors in epochs. To discover share-frequent sensor
patterns from sensor dataset, we propose a novel parallel technique. In this technique, we develop a
novel tree structure, called parallel share-frequent sensor pattern tree (PShrFSP-tree) that is
constructed at each local node independently, by capturing the database contents to generate the
candidate patterns using a pattern growth technique with a single scan and then merges the locally
generated candidate patterns at the final stage to generate global share-frequent sensor patterns.
Comprehensive experimental results show that our proposed model is very efficient for mining share-
frequent patterns from WSN data in terms of time and scalability.

Keywords: Wireless sensor networks, data mining, knowledge, share-frequent sensor pattern, parallel processing,
distributed system

1 Introduction
A WSN consists of a large number of heterogeneous or homogeneous nodes usually called as

sensor nodes which communicates through wireless media to the concentrator node called as sink
node and works cooperatively to monitor the environment. Sensors are integrated as an ad-hoc fashion
to originate a network that is able to deliver the detected event in a multi-hop transmission to the sink
periodically or if they meet a particular predicate [2]. In general, in this mode of transmission WSNs

Procedia Computer Science

Volume 29, 2014, Pages 124–133

ICCS 2014. 14th International Conference on Computational Science

124 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213008369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.012&domain=pdf

generates a large amount of data in the form of stream. Data mining techniques have recently received
a great deal of attention to extract interesting knowledge from these stream data. As a result, the
stream nature of the data, the limited resources, and the distributed nature of sensor networks bring
new challenges for the mining techniques that need to be addressed.

Data mining techniques have shown to be a promising tool to improve WSN performance and
quality of services (QoS) [3]. Knowledge discovery in WSN has been used to extract information
about the surrounding environment, that are deduce from the data reported by sensor nodes and
behavioral patterns about sensor nodes, which are evolved from meta-data describing sensor’s
behaviors. Loo et al. [7] and Romer et al. [8] have focused on extracting pattern regarding the
phenomenon monitored by the sensor nodes, where the mining techniques are applied to the sensed
data received from the sensor nodes and stored in a central database. Recently proposed sensor-
association rules in [6], where patterns are extracted regarding the sensor nodes rather than the area
monitored by the WSN. An example of sensor association rules could be (s1, s2 => s3, 85%, λ) which
means that if sensor s1 and s2 detect events within time λ, then there is 85% of chance that s3 detects
events within same time interval. Support metric-based sensor association use occurrence frequency of
pattern as criteria, but, the occurrence frequency of a pattern may not be an appropriate criterion for
finding significant patterns because it only reflects the number of epochs in the database which contain
that pattern. Share-frequent sensor pattern mining can find more useful and realistic knowledge from
sensor database by considering the non-binary frequency values of sensors in epochs. For example, for
a particular time slot sensor s1 trigger 4 times, sensor s2 trigger 3 times and sensor s3 trigger 5 times.
But the support measure value cannot analyze the exact number of trigger per time slot. Share measure
can provide useful knowledge about the numerical values that are typically associated with the epoch
sensors. Though mining share-frequent sensor patterns from sensor stream data is extremely important
in real-time applications, no such mining technique is proposed yet. Moreover, since WSNs generate a
large amount of data, therefore, when mining such kind of vast data, more efficient approaches such as
parallel and distributed computing (besides serial approach) are needed.

 Motivated from the above demand, it is necessary to develop analytically the share-frequent
sensor patterns that will generate time share relations among the sensors in the sensor networks.
Therefore, in this paper, we develop a novel parallel technique for mining share-frequent sensor
patterns from WSNs that overcomes the single processor and main memory based computation. In this
technique, we construct a single-pass tree structure, called the parallel share-frequent sensor pattern
tree (PShrFSP-tree) that can capture important knowledge from the stream contents of sensor data of
each local site in a very compact manner. Then, using FP-growth [5] like pattern-growth approach,
PShrFSP-tree can efficiently mine the candidate patterns from the sensor dataset of each local site
independently. Finally, the global share-frequent sensor patterns are computed from the locally
generated candidate patterns. Extensive performance study shows that our proposed technique is very
efficient in discovering share-frequent sensor patterns over sensor data stream.

The remainder of this paper is organized as follows. In Section 2, we describe the related works. In
section 3, we discuss the problem of mining share-frequent sensor patterns in parallel and distributed
environment over sensor data stream. In Section 4, we represent our proposed parallel and distributed
framework. In Section 5, our experimental results are presented and analyzed. Finally, Section 6
concludes the paper.

2 Related Works
Association rule mining [4], to generate patterns from sensor nodes in WSN, finds correlations

among the objects that occur in the same context in transactional database. Initially mining association
rules was proposed for transactional database, but recently it has been applied to various domains. Loo

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

125

et al. [7] studied the problem of mining the associations among sensor values that co-exist temporally
in large-scaled wireless sensor networks. Romer [8] addressed the problem of mining spatial temporal
event patterns from sensor data.

Several algorithms in the literature have been proposed to mine frequent patterns from
transactional databases. Han et al. [5] proposed a tree structure named FP-tree (Frequent Pattern-tree)
and an algorithm called FP-growth which removes the candidate generation-and-test problem of
Apriori algorithm. It needs only two database scans. Boukerche et al. [6] presented Positional
Lexicographic tree (PLT) to store a sensor’s event detecting status. PLT follows FP-growth like
pattern growth mining technique. However, the requirement of two database scans for this kind of
trees (e.g., FP-tree and PLT) is not suitable for generating association rules from WSN data. On the
other hand, mining PLT needs an extra mapping mechanism to transform sensor meta-data to a
position vector. Since, in real scenario the data mining methods need to process large databases,,
therefore, researchers focused on large-scale parallel and distributed frequent pattern mining
techniques [14, 15, 16]. In frequent pattern mining problem only the binary occurrence of the patterns
are considered. However, the non-binary values of the patterns can discover useful knowledge from
the database.
 Carter et al. [9] first presented a share-confidence framework to detect share-frequent itemsets. The
ShFSM (Fast Share Measure) algorithm used level closure property instead of downward property
which to improve the past algorithms [10]. But, ShFSM generates too many candidates at each pass so
it is time consuming approach. The DCG (Direct Candidate Generation) algorithm [11] overcomes the
ShFSM algorithms problem by generating candidate directly without the pruning and joining steps in
each scan, and it generates less candidates than ShFSM. Although, DCG can conserve downward
closure property, its main problem is related to number of database scans, which depends on the
maximum number of candidate length and it drives extremely large additional candidate patterns.
Ahmed et al. [12] proposed ShrFP-Tree (Share–frequent pattern tree) for share-frequent pattern
mining approach which deletes the problems of DCG algorithms and finds more effective than
candidate set generation-and-test approach ,which still needs three database scans. In [13], a novel
tree structure was proposed which needs only two database scan to calculate the complete set of
share-frequent mining and have “build once and mine many” property for interactive mining [17].
 Existing all share-frequent pattern mining techniques [10-13] are single processor based techniques
and they need multiple database scans to mine share-frequent patterns from transactional database.
Since, WSNs generate huge amount of data, none of the existing algorithm can effectively mine share-
frequent sensor patterns from the stream of sensor data. Therefore, here we propose a parallel and
distributed framework to mine share-frequent sensor patterns from sensor dataset only with one
database scan.

3 Share-Frequent Sensor Pattern Mining Problem in WSNs
Definition of share-frequent patterns for transactional databases, [9-11] can be enhanced to define
share-frequent sensor patterns for WSNs in which the sensors themselves are the main objects.
 Let S = {s1,s2,…,sp}be a set of sensor in a particular wireless sensor network. We assume that the
time is divided into equal-sized slots t = {t1,t2,…,tq} such that tj+1 – tj = λ, j [1, q-1], where λ is the
size of the each time slot. A set P = {s1, s2,….,sn} S is called a pattern of a sensors. A sensor
database, SD, is defined to be a set of epochs where each epoch is a tuple E(Ets, X) such that X is a
pattern of the event detecting sensors that report events within the same time slot and Ets is the epoch’s
time slot. Let size(E) be the size of E i.e., the number of sensors in E. An epoch E(Ets, X) supports a
pattern Y if X Y. Frequency of the pattern Y in SD is defined to be the number of epochs in SD that
support it, i.e., Freq(Y, SD) = |{ E(Ets, X) |X Y }|.

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

126

Definition 1: The measure value MV(sp, Eq), represents the trigger number of sensor sp in epoch Eq.
For example, in Table 1, MV(s1, E1) = 2.

 Table 1: A Sensor database (SD)

Definition2: The epoch measure value of an epoch Eq denoted as eMV(Eq) means the total measure
value of an epoch Eq and it is defined by

 (1)
For example, E2 E4 E2 2 in Table 1.
Definition 3: The total measure value TMV (SD) represents the total epoch measure value of all the
epochs in SD. It is defined as,

 (2)
For example,TMV(SD) = 62 in Table 1.

Definition 4: The sensorset measure value of an sensorset X in epoch , is defined as
 (3)

For example, sMV(s2 s3, E2) = 3 + 2 = 5 in Table 1.
Definition 5: The measure value of a sensorset X is defined as,

 (4)
For example,

in Table 1.
Definition 6: The share value of a sensorset X is defined as,

 (5)

For example, in Table 1.
Definition 7: If is a given minimum share threshold, then a sensorset is called share-
frequent if . Let for the SD in Table 1 minshare is 0.25, then s1s3 is share-frequent
sensorset as = 0.29.
Definition 8: The minimum measure value , is defined as,

 (6)
If in Table 1, then .

 So for a sensorset X, if , then we can say that X is a share-frequent sensorset.
 The main challenge of facing share-frequent pattern mining area is the sensorset share does not
have the downward closure property. For example, = 0.2096 in Table 1, so s1 is a share-
infrequent sensor in Table 1 for minshare = 0.25, but = 0.29, so s1s3 is a share-frequent
sensorset. Therefore, the downward closure property does not satisfy. We can maintain downward
closure property by epoch-weighted measure value.

We consider a homogeneous distributed system of n nodes, denoted as N1, N2,…,Nn. The sensor
database SD is horizontally divided into n partitions as SD1, SD2,…,SDn. We assume that each

TS Epoch Trigger Total trigger Partition
1 s1 s2 s6 s7 2,1,2,1 6

P1

2 s2 s3 s8 3,2,2 7
3 s1 s3 s5 5,3,3 11
4 s3 5 5
5 s2 s3 s4 4,3,2 9

P2

6 s1 s3 s5 s6 s7 1,3,1,2,1 8
7 s1 s4 1,3 4
8 s1 s3 s5 s6 4,2,1,5 12

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

127

partition SDi is assigned to a node N1. Therefore, for a pattern X, local weighed epoch-measure value
and global epoch measure value is denoted as lewMV(X) and gewMV(X).
Definition 9: The local epoch-weighted measure value of a sensorset X, defined as lewMV(X), is the
sum of the eMV values of all epochs containing X in the local partion P.

 (7)
For example, lewMV(s1s3) = eMV(E2) = 7, since s1s3 appears only in E2 in the local partition P1.
Definition 10: The global epoch measure value of a sensorset X, defined as gewMV(X), is the sum of
the eMV values of all epochs containing X in the SD.

 (8)
For example, gewMV(s1s3) = eMV(E2) + eMV(E5) = 7 + 9 = 16.

4 Proposed Technique
Assume a parallel and distributed-memory framework where each node consists of a processor, local
memory and other available resources. The database is divided into n non-overlapping partitions in
such a way that each node handles almost equal number of epochs. This ensures that similar amount of
workload is assigned to each processor. The block diagram of our proposed technique is shown in
Figure. 1. Discovering share-frequent sensor patterns in parallel and distributed environment can be
performed in the following steps.

 Step 1: Scan the local database only once and construct initial local PShrFSP-Tree in
lexicographic order of sensors for each site. Local PShrFSP-tree maintains the local epoch-weighted
measure values (lewMV) in the header table and sends it to the master node.

Figure 1: Block diagram of the proposed technique

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

128

s1 17
s2

s3

s4

s5
s6

s7

s8

13
23
0
11
6
6
7

S lewMV { }

s1:17 s2:7 s3:5

s2:6 s3:11 s3:7

s6:6 s5:11 s8:7

s7:6

(a) Initial PShrFSP-

24
9
29
13
20
20
8
0

lewMV { }

s1:24 s2:9

s3:20 s4:4 s3:9

s5:20 s4:9

s6:20

s7:8

(b) Initial PShrFSP-

17
13
23
0
11
6
6
7

lewMV
of

24
9
29
13
20
20
8
0

lewMV
of

41
22
52
13
31
26
14
7

gewMV
s1

s2

s3

s4

s5
s6

s7

s8

S

s1

s2

s3

s4

s5
s6

s7

s8

S

23
17
11
6
13
6
0
7

lewMV
of

29
24
20
20
9
8
13
0

lewMV
of

52
41
31
26
22
14
13
7

gewMV

s3

s1

s5
s6

s2

s7

s4

s8

S

(c) Global Header
Table (GH-table)

(d) Descending
order (GH-table)

23
17
11
6
13
6
0
7

lewMV
of

29
24
20
20
9
8
13
0

lewMV
of

52
41
31
26
22
14
13
7

gewMV

s3

s1

s5
s6

s2

s7

s4

s8

S { }

s1:6 s3:23

s1:11 s2:7

s2:6

s6:6

s5:11 s8:7

s7:6

23
17
11
6
13
6
0
7

lewMV
of

29
24
20
20
9
8
13
0

lewMV
of

52
41
31
26
22
14
13
7

gewMV

s3

s1

s5
s6

s2

s7

s4

s8

S { }

s3:29 s1:4

s1:20 s2:9 s4:4

s5:20 s4:9

s6:20

s7:8
(e) Restructured PShrFSP- (f) Restructured PShrFSP-

 Step 2: The global epoch-weighted measure value (gewMV) table is built by master node by
accumulating all the lewMV available at each local site header table and broadcasted to each local site.
 Step 3: Each local PShrFSP-tree is reconstructed according to the gewMV descending order.
 Step 4: The candidate of share-frequent sensor patterns are compute for each site. Then, generate the
all set of global share-frequent sensor patterns.

4.1 The PShrFSP-tree Construction and Reconstruction
The construction process of a PShrFSP-tree consists of two phases: insertion and restructuring.

The insertion phase captures the local database contents into the tree according to a lexicographic
order where lewMV values of the sensors are maintain in the header table and tree nodes and when the
global epoch-weighted measure value (gewMV) is available the restructuring phase restructures the
tree into the gewMV descending order. Consider the sensor database shown in Table 1. Also consider
that the system consists of two nodes, i.e., there are two processors P1 and P2 one in each node. The
database is partitioned into two parts and assigned to each respective processor, as shown in Table 1.
Then all the local PShrFSP-tree executes the insertion phase in parallel. During the insertion phase, all
the epochs in the local database are inserted into the respective PShrFSP-tree in lexicographic order.
PShrFSP-tree maintains a header table, called H-table which consists of sensor id and lewMV of each
local site. To facilitate the tree traversals, adjacent links are also maintained in our tree structure like
those in FP-tree [4], but are not shown in figures for simplicity. Figures 2(a) and (b) respectively show
both of the local PShrFSP-trees (i.e., PShrFSP-tree1 and PShrFSP-tree2) and local header tables (i.e.,
H-table1 and H-table2) after the insertion phase at processors P1 and P2. On can see that, PShrFSP-tree1
and PShrFSP-tree2 are complete representations of respective local database, and H-table1 and H-
table2 carry the lewMV for each local sensor.

 To start the restructuring phase, the gewMV for each sensor is calculated by collecting all the
lewMV for each sensor available at each H-table. This is a relatively small sequential step and any one

Figure 2: Parallel Construction of PShrFSP-tree

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

129

of the processors can be allocated to do this task. This processor is collated master processor, Pm (i.e.
node). The gewMV calculated by the Pm (GH-table) is shown in Figure 2 (c). Once the gewMV of all
sensors are calculated, sensors in the GH-table are shorted according to the gewMV descending order,
which is called as GH-tabled is shown in Figure 2 (d). The GH-tabled is then broadcast by the Pm to all
the local PShrFSP-trees in order to facilitate the restructuring phase and mining phase. When the GH-
tabled is available to all local sites the PShrFSP-tree starts the restructuring phase. The purpose of the
restructuring phase is to achieve a highly compact PShrFSP-tree which will utilize less memory and
facilitate a fast mining process. In the restructuring phase, we reorganize all the local PShrFSP-tree
structures according to GH-tabled order. For restructuring our PShrFSP-tree, we use BSM (branch
sorting method) proposed in [17]. BSM uses the merge sort to sort every path of the prefix tree. This
approach, first remove the unsorted paths and then sorted the paths and reinserted to the tree. After
restructuring phase the structures of the PShrFSP-trees in Figure 2 (a) and (b) are shown in Figures 2
(e) and (f) respectively.

From the construction mechanism of PShrFSP-tree, we explore the following important properties
and lemmas of an PShrFSP-tree.

Property 1: The ewMV value of any node in PShrFSP-tree is greater than or equal to the sum of
total ewMV value of its children.

Property 2: PShrFSP-tree for each local node can be constructed in a single database scan.
Lemma 1: Given a local sensor database SDi where [1,]i n∈ and n = number of nodes, the

complete set of all sensor projections of all epochs in SDi can be derived from PShrFSP-treei.
 Proof: Based on the PShrFSP-tree construction process, all sensor projections of each epoch in
SDi are mapped to only one path in the PShrFSP-treei, and any path from the root up to a sensor
maintains the complete projection for exactly z epochs, where z is the difference between the ewMV of
the sensor itself and the ewMV summation for all of its children nodes. Therefore, PShrFSP-treei
maintains a complete set of all sensor projections of each epoch for sdi only once.■

 Lemma 2: Given a local sensor database SDi where [1,]i n∈ and n = number of nodes, the size of

an PShrFSP-treei (without considering the root) is bounded by ∑ ∈ ||
|)(|

isdE
Esize , where E is an

epoch in SDi.

Proof: According to property 3, an epoch E contributes at best one path in an PShrFSP-treei. It’s
maximum size in PShrFSP-treei is |size(E)|. Therefore, the total size contribution of all epochs in SDi
is at best ∑ ∈ ||

|)(|
iSDE

Esize . Even for worst-case, where PShrFSP-treei does not get any prefix-

sharing in any node, the maximum size of PShrFSP-treei is ∑ ∈ ||
|)(|

iSDE
Esize .■

4.2 Mining of the PShrFSP-tree
Using property 1, we can apply a pattern growth mining in each local PShrFSP-tree to mine the
candidate of share-frequent pattern from each site. Consider the mining process on PShrFSP-tree1in
Figure 2(e) and minshare = 0.25.
 Since the min_MV for the example SD in Table 1 is 16, therefore, we start our mining process from
sensor s1. Considering s2 as a suffix, its corresponding two prefix paths are {s1s6: 6} and {s3 :7}, which
form its prefix-tree. The prefix-tree and conditional-tree of s2 is shown in Figure 3 (a). Sensors s1 and
s6 cannot be candidate patterns with sensor s2 as they have low gweMV (i.e., ewMV) with it. s1 and s6
ewMV value with sensor s2 is 6 and minimum ewMV value must be 16 to be a candidate pattern.

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

130

(a) Prefix and Conditional-tree for ‘s2’

7
6
6

lewMV
of

9
9
9

Min. lewMV
of

16
15
15

gewMV

s3

s1

s6

S
{ }

s1:6 s3:7

s6:6

7

lewMV
of

9

Min. lewMV
of

16

gewMV

s3

S
{ }

s3:7 6

lewMV
of

20

Min. lewMV
of

26

gewMV

s1

S
{ }

s1:6

(b) Conditional-tree for ‘s6’

11
11

lewMV
of

20
20

Min. lewMV
of

31
31

gewMV

s3

s1

S
{ }

s3:11

s1:11
(c) Conditional-tree for ‘s5 ’

11

lewMV
of

20

Min. lewMV
of

31

gewMV

s3

S
{ }

s3:11

(d) Conditional-tree for ‘s5s1 ’

11

lewMV
of

24

Min. lewMV
of

35

gewMV

s3

S
{ }

s3:11

(e) Conditional-tree for ‘s1 ’

Therefore, the conditional-tree of sensor s2 does not contain the sensors s1 and s6. So, the candidate
pattern {s2 s3} and {s2} is generated here. The similar process is recursively occurs for other sensor
which is shown in Figure 3.

In this way, each node locally generates the candidates’ patterns in parallel without any inter-
processor communications. Then, all local PShrFSP-tree send locally generated candidate patterns to
the master node Pm. Finally, relatively small sequential step the master node accumulated the share
value of each pattern and pruned if the patterns do not satisfied the given threshold. The resultant
global share-frequent sensor patterns are {s1 s6}, {s1 s3 s5}, {s1 s3 s6}, {s1 s3 s5 s6}, {s1 s3} and {s3}.

5 Experimental Results
In this section, we present the experimental results on mining share-frequent sensor patterns by our

proposed technique. To evaluate the performance of our proposed approach, we have performed
experiments on IBM synthetic dataset (T10I4D100K) and real life dataset mushroom and kosarak
from frequent itemset mining dataset repository [18]. Context and objects in these datasets are similar
to the epochs and sensors in the terminology of this paper. These datasets maintains binary quantity of
each item for each transaction. We generated random numbers for the quantity of each item in each
transaction, ranging from 1 to 10 like [10, 11]. We consider identical configuration for all nodes. Each
node consists of a 2.4 GHz CPU with 4 GB memory and running on Windows 7. Communications
among nodes are assured through a message passing interface. Our programs are written in Microsoft
Visual C++. We assume that each database is distributed among the nodes, and that the processor in
the node has complete access to its portion of the database.

At first, we examined the scalability of our proposed parallel algorithm by varying the number of
processors over all above datasets. The results of the experiments are shown in Figure 4 for fixed
minshare threshold. The y-axis of the Figure 4 shows the total execution time which includes the local
PShrFSP-tree construction time, restructuring time, GH-tabled construction and broadcasting time,
mining time of local PShrFSP-tree and the global share-frequent sensor patterns generation time. From
Figure 4, we can see that total execution time with PShrFSP-tree decreases when the number of
processors increases.

Secondly, we evaluated the effectiveness of our proposed method by varying the minshare
threshold but keeping the number of processors fixed. Figure 5 shows the result of the experiments for
the above datasets. The parameter ‘P’ in the graph indicates the number of processors which is fixed as
4 for each datasets. It is observed from the Figure 5 that if we increase the minshare value, the less
execution time is needed to mine share-frequent patterns.

Figure 3: Mining Process of PShrFSP-tree1

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

131

 Finally, we compared the efficiency of PShrFSP-tree with that of ShrIO-Tree [13] by varying the
minshare threshold. ShrIO-tree is a single processor based technique that was proposed to mine share-
frequent pattern from transactional database. In this experiment, for PShrFSP-tree the number of
processors is fixed as 4 for each dataset. The result of the experiments is shown in Figure 6, where we
can see that PShrFSP-tree is significantly outperforms ShrIO with respect to execution time. The
reason is that PShrFSP-tree used high degree of parallelism.

Figure 4: Execution time variation with number of processor on PShrFSP-tree. a) T10I4D100K, b)
musroom, and c) kosarak

Figure 5: Execution time variation with minshare on PShrFSP-tree. a) T10I4D100K, b) musroom,
and c) kosarak

Figure 6: Execution time comparison: PShrFSP-tree v/s ShrIO-Tree on a) T10I4D100K, b)
musroom, and c) kosarak

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

132

6 Conclusion
This paper presents a novel parallel technique for mining share-frequent sensor patterns from WSNs
which overcomes the single processor based computation and is highly scalable for large sensor
dataset. The PShrFSP-tree proposed in this framework significantly reduces the I/O cost by capturing
the local database contents with a single scan and facilities by a fully parallelizing pattern growth
mining technique with reduced inter-processor communication overhead. Extensive performance
analyses show that our proposed framework is very efficient for mining share-frequent pattern from
WSNs. Future research will explore ways to use the extracted knowledge to improved operational
efficiency of WSN.

References
[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE

Communications Magazine, 40(8), pp. 102–114, 2002.
[2] Boukerche, A., Pazzi, R.W., Araujo, R.B.: A fast and reliable protocol for wireless sensor

networks in critical conditions monitoring applications, in Proc. MSWiM, 2004.
[3] Tan , P.-N.: Knowledge discovery from sensor data. Sensors, vol. 23, no. 3, pp. 14–19, 2006.
[4] Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets of Items in

large Databases. Proc. ACM SIGMOD Conference on Management of Data, pp. 207-16, 1993.
[5] Han, J., Pei, J., Yin, Y.: Mining Frequent Pattern without Candidate Generation. In Proceedings

of the 2000 ACMSIGMOD international conference on Management of data, pp. 1-12, May 2000.
[6] Boukerche, A., Samarah, S.A.: Novel Algorithm for Mining Association Rules in Wireless Ad-

hoc Sensor Networks. IEEE Trans, on Para. & Dis. Systems, vol.19, no. 7, pp. 865-877, 2008.
[7] Loo, K.K., Tong, I., Kao, B.: Online Algorithms for Mining Interstream Associations from Large

Sensor Networks. PAKDD, pp. 143-149, 2005.
[8] Romer, K.: “Distributed Mining of Spatio-Temporal Event Patterns in Sensor Networks”,

EAWMS / DCOSS 2006, pp. 103-116, San Francisco,USA, June 2006.
[9] C. L. Carter, H. J. Hamilton and N. Cercone, “Share based measures for itemsets”, in Proc. PKDD

1997.
[10] Y.-C. Li, J.-S. Yeh and C.-C. Chang, “A fast algorithm for mining share-frequent itemsets”, in

Proc. AP Web, pp. 417-428, 2005.
[11] Y.-C. Li, J.-S. Yeh and C.-C. Chang, “Direct candidates generation: a novel algorithm for

discovering complete share-frequent itemsets”, in Proc. FSKD, pp. 551-560. 2005.
[12] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K.Lee, “ShrFP-Tree: An Efficient Tree Structure

for Mining Share-Frequent Patterns”, AusDM ‘08, 2008.
[13] M.M. Rashid, M.Hossain, M.R. Karim, and B.-S. Jeong. ShrIO-Tree: A Share-Frequent Pattern

Mining Approach without Candidate Generation, Proc. ICACT 2011.
[14] S.K Tanbeer, C.F Ahmed and B.S Jeong. “Parallel and Distributed Algorithms for Frequent

Pattern Mining in Large Database”, IETE technical review, vol 29, issue 1, 2009.
[15] Hu. Jand X. Yang-Li, “A Fast Parallel Association Rules Mining Algorithm Based on FP-

Forest,” Proc. 5th Int. Symposium on Neural Networks, pp. 40–49, 2008.
[16] A. Javed and A. Khokhar, “Frequent Pattern Mining on Message Passing Multiprocessor

Systems,” Distributed and Parallel Databases, vol. 16, pp. 321–334, 2004.
[17] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong and Y.-K.Lee, “Efficient single pass frequent pattern

mining using a prefix-tree”, Information Sciences, vol. 179, no. 5, pp. 559-583, 2009.
[18] Frequent itemset mining repository. Available at <http://fimi.cs.helsinki.fi/data/>.

A Technique for Parallel Share-Frequent Sensor Pattern Mining ... Rashid et al.

133

