207 research outputs found

    Hybrid Variable Neighborhood HyperHeuristics for Exam Timetabling Problems

    Get PDF
    This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems

    Hybrid Variable Neighborhood HyperHeuristics for Exam Timetabling Problems

    Get PDF
    This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    Ant algorithm hyperheuristic approaches for scheduling problems

    Get PDF
    For decades, optimisation research has investigated methods to find optimal solutions to many problems in the fields of scheduling, timetabling and rostering. A family of abstract methods known as metaheuristics have been developed and applied to many of these problems, but their application to specific problems requires problem-specific coding and parameter adjusting to produce the best results for that problem. Such specialisation makes code difficult to adapt to new problem instances or new problems. One methodology that intended to increase the generality of state of the art algorithms is known as hyperheuristics. Hyperheuristics are algorithms which construct algorithms: using "building block" heuristics, the higher-level algorithm chooses between heuristics to move around the solution space, learning how to use the heuristics to find better solutions. We introduce a new hyperheuristic based upon the well-known ant algorithm metaheuristic, and apply it towards several real-world problems without parameter tuning, producing results that are competitive with other hyperheuristic methods and established bespoke metaheuristic techniques

    Genetic algorithms with guided and local search strategies for university course timetabling

    Get PDF
    This article is posted here with permission from the IEEE - Copyright @ 2011 IEEEThe university course timetabling problem (UCTP) is a combinatorial optimization problem, in which a set of events has to be scheduled into time slots and located into suitable rooms. The design of course timetables for academic institutions is a very difficult task because it is an NP-hard problem. This paper investigates genetic algorithms (GAs) with a guided search strategy and local search (LS) techniques for the UCTP. The guided search strategy is used to create offspring into the population based on a data structure that stores information extracted from good individuals of previous generations. The LS techniques use their exploitive search ability to improve the search efficiency of the proposed GAs and the quality of individuals. The proposed GAs are tested on two sets of benchmark problems in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed GAs are able to produce promising results for the UCTP.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grant EP/E060722/1

    Hybridizations within a graph based hyper-heuristic framework for university timetabling problems

    Get PDF
    A significant body of recent literature has explored various research directions in hyper-heuristics (which can be thought as heuristics to choose heuristics). In this paper, we extend our previous work to construct a unified graph-based hyper-heuristic (GHH) framework, under which a number of local search-based algorithms (as the high level heuristics) are studied to search upon sequences of low-level graph colouring heuristics. To gain an in-depth understanding on this new framework, we address some fundamental issues concerning neighbourhood structures and characteristics of the two search spaces (namely, the search spaces of the heuristics and the actual solutions). Furthermore, we investigate efficient hybridizations in GHH with local search methods and address issues concerning the exploration of the high-level search and the exploitation ability of the local search. These, to our knowledge, represent entirely novel directions in hyper-heuristics. The efficient hybrid GHH obtained competitive results compared with the best published results for both benchmark course and exam timetabling problems, demonstrating its efficiency and generality across different problem domains. Possible extensions upon this simple, yet general, GHH framework are also discussed

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research
    corecore