
O'Brien, Ross (2008) Ant algorithm hyperheuristic
approaches for scheduling problems. MPhil thesis,
University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/10540/1/RossOBrien_FinalMPhilThesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Ant Algorithm Hyperheuristic Approaches for

Scheduling Problems

by Ross F. J. O’Brien, BSc (Hons)

Thesis submitted to The University of Nottingham

for the degree of Master of Philosophy, August 2007

Abstract

For decades, optimisation research has investigated methods to find optimal solutions to

many problems in the fields of scheduling, timetabling and rostering. A family of ab-

stract methods known as metaheuristics have been developed and applied to many of these

problems, but their application to specific problems requires problem-specific coding and

parameter adjusting to produce the best results for that problem. Such specialisation makes

code difficult to adapt to new problem instances or new problems. One methodology that

intended to increase the generality of state of the art algorithms is known as hyperheuristics.

Hyperheuristics are algorithms which construct algorithms: using “building block”

heuristics, the higher-level algorithm chooses between heuristics to move around the solu-

tion space, learning how to use the heuristics to find better solutions. We introduce a

new hyperheuristic based upon the well-known ant algorithm metaheuristic, and apply it

towards several real-world problems without parameter tuning, producing results that are

competitive with other hyperheuristic methods and established bespoke metaheuristic tech-

niques.

ii

iii

Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 The Compromise of Optimisation Research 1
1.2 Hyperheuristic Intent 2
1.3 Thesis Organisation 4
1.4 Contributions 4
1.5 Publications 5

2 The State of the Art: Hyperheuristic Literature 6
2.1 Heuristics 6
2.2 Metaheuristics 9
2.3 Generality in Methods 14
2.4 Hyperheuristics 16
2.5 The Future of Hyperheuristics 32
2.6 Conclusion 33

3 Hyperheuristic Framework and Optimisation Problems 34
3.1 Introduction 34
3.2 Project Presentation Scheduling Problem (PPSP) 35
3.3 Travelling Tournament Problem (TTP) 42
3.4 Interface 49
3.5 On the Nature of Experiments 54
3.6 Conclusion 56

4 The Ant Algorithm Hyperheuristic: Transliteration 57
4.1 Introduction 57
4.2 Methodology 59
4.3 Pseudocode 63
4.4 Experiments and Results 70
4.5 Analysis 73
4.6 Conclusions 97

CONTENTS iv

5 Conclusions and Future Work 99

References 102

v

List of Tables

3.1 Averaged results of approaches to the Project Presentation Scheduling Problem. 40
3.2 The NL6 Dataset . 44
3.3 An NL6 solution. In the first section of the table, each team (rows) plays its

home matches against the away teams (columns) in the specified timeslots.
In the second section, this corresponds to a schedule where each team will
be located at the specified venue at each timeslot (columns), thus each team
is at home when playing home matches and at other venues when playing
away. In the third section, each team’s schedule has a corresponding distance
travelled. 45

3.4 Best results of approaches to the Travelling Tournament Problem, data pro-
vided at [Tri07], with results from hyperheuristic approach by Chen provided
at [Che07]. “Van Hentenryck” is Anagnostopoulos, Michel, Van Hentenryck
and Vergados . 47

4.1 Results of hyperheuristic experiments on PPSP csit0 74
4.2 Results of hyperheuristic experiments on PPSP csit1 75
4.3 Results of hyperheuristic experiments on PPSP csit2 76
4.4 Results of hyperheuristic experiments on TTP NL6 77
4.5 Results of hyperheuristic experiments on TTP NL8 78
4.6 Results of hyperheuristic experiments on TTP NL10 79
4.7 Results of hyperheuristic experiments on TTP NL12 80
4.8 Results of hyperheuristic experiments on TTP NL14 81
4.9 Results of hyperheuristic experiments on TTP NL16 82
4.10 Averaged results of approaches to the Project Presentation Scheduling Prob-

lem. Results from other papers are above the horizontal dividing line; results
from this thesis are below that line. 83

4.11 Best results of approaches to the Travelling Tournament Problem, available
at [Tri07], with hyperheuristic approaches from Chen [Che07]. Results from
other papers are above the first horizontal dividing line, followed by other
hyperheuristic results above the second line, followed by results from this
thesis. “Van Hentenryck” is Anagnostopoulos, Michel, Van Hentenryck and
Vergados . 83

vi

List of Figures

3.1 The Hyperheuristic Framework . 35
3.2 The Hyperheuristic Decision Cycle . 51

4.1 The information available at a decision point to guide the search to heuristic
hj . 60

4.2 Beginning of cycle (t = 0): Three ants (small squares, numbered) located at
current best solution S in the solution space (bottom right of diagonal line
in figures) and the heuristic h1 (top-left numbered vertex of graph) in the
heuristic space (top left of diagonal line in figures) which discovered solution
S. 66

4.3 The ants explore (t = m): Ants a1 and a2 choose heuristic h2 and ant a3

chooses heuristic h3. Ant a1 discovers a new best solution (indicated by
crosshairs). Visibility is updated for heuristics h2 and h3. 66

4.4 The ants explore (t = 2m): Ant a1 stays at heuristic h2, a2 moves to h3

and a3 moves to h2. a2 discovers a new best solution (indicated by relocated
crosshairs). Visibility is updated for heuristics h2 and h3. 66

4.5 End of cycle (t = 3m = ml): Ants a1 and a2 returns to h1 while ant a3

returns to h3. Visibility is updated for heuristics h1 and h3. No new best
solution is found. Pheromone is laid on paths a1 (1-2-2-1), a2 (1-2-3-1) and a3

(1-3-2-3). The ants relocate to new best solution S discovered in the solution
space and the heuristic which discovered S, h3, in the heuristic space. . . . 66

4.6 Beginning of next cycle (t = ml): Three ants at current best solution S in the
solution space and the heuristic which discovered S in the heuristic space, h3. 66

4.7 Instance NL6 (a): Moves accepted: Solution Quality and Improvement . . . 87
4.8 Instance NL6 (b): Moves Accepted, Improving and Improving Absolutely . 87
4.9 Instance NL6 (c): Confidence and Convergence 87
4.10 Instance NL6 (d): Proportion of Heuristic Calls per Heuristic per Step . . . 87
4.11 Instance NL6 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . . 87
4.12 Instance NL6 (f): Proportion of Heuristic Calls per Heuristic in the 100 Calls

prior to each Absolute Improvement . 87
4.13 Instance NL8 (a): Moves accepted: Solution Quality and Improvement . . . 88
4.14 Instance NL8 (b): Moves Accepted, Improving and Improving Absolutely . 88
4.15 Instance NL8 (c): Confidence and Convergence 88

LIST OF FIGURES vii

4.16 Instance NL8 (d): Proportion of Heuristic Calls per Heuristic per Step . . . 88
4.17 Instance NL8 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . . 88
4.18 Instance NL8 (f): Proportion of Heuristic Calls per Heuristic in the 100 Calls

prior to each Absolute Improvement . 88
4.19 Instance NL10 (a): Moves accepted: Solution Quality and Improvement . . 89
4.20 Instance NL10 (b): Moves Accepted, Improving and Improving Absolutely . 89
4.21 Instance NL10 (c): Confidence and Convergence 89
4.22 Instance NL10 (d): Proportion of Heuristic Calls per Heuristic per Step . . 89
4.23 Instance NL10 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 89
4.24 Instance NL10 (f): Proportion of Heuristic Calls per Heuristic in the 100

Calls prior to each Absolute Improvement 89
4.25 Instance NL12 (a): Moves accepted: Solution Quality and Improvement . . 90
4.26 Instance NL12 (b): Moves Accepted, Improving and Improving Absolutely . 90
4.27 Instance NL12 (c): Confidence and Convergence 90
4.28 Instance NL12 (d): Proportion of Heuristic Calls per Heuristic per Step . . 90
4.29 Instance NL12 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 90
4.30 Instance NL12 (f): Proportion of Heuristic Calls per Heuristic in the 100

Calls prior to each Absolute Improvement 90
4.31 Instance NL14 (a): Moves accepted: Solution Quality and Improvement . . 91
4.32 Instance NL14 (b): Moves Accepted, Improving and Improving Absolutely . 91
4.33 Instance NL14 (c): Confidence and Convergence 91
4.34 Instance NL14 (d): Proportion of Heuristic Calls per Heuristic per Step . . 91
4.35 Instance NL14 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 91
4.36 Instance NL14 (f): Proportion of Heuristic Calls per Heuristic in the 100

Calls prior to each Absolute Improvement 91
4.37 Instance NL16 (a): Moves accepted: Solution Quality and Improvement . . 92
4.38 Instance NL16 (b): Moves Accepted, Improving and Improving Absolutely . 92
4.39 Instance NL16 (c): Confidence and Convergence 92
4.40 Instance NL16 (d): Proportion of Heuristic Calls per Heuristic per Step . . 92
4.41 Instance NL16 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 92
4.42 Instance NL16 (f): Proportion of Heuristic Calls per Heuristic in the 100

Calls prior to each Absolute Improvement 92
4.43 Instance csit0 (a): Moves accepted: Solution Quality and Improvement . . . 93
4.44 Instance csit0 (b): Moves Accepted, Improving and Improving Absolutely . 93
4.45 Instance csit0 (c): Confidence and Convergence 93
4.46 Instance csit0 (d): Proportion of Heuristic Calls per Heuristic per Step . . . 93
4.47 Instance csit0 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 93
4.48 Instance csit0 (f): Proportion of Heuristic Calls per Heuristic in the 100 Calls

prior to each Absolute Improvement . 93
4.49 Instance csit1 (a): Moves accepted: Solution Quality and Improvement . . . 94
4.50 Instance csit1 (b): Moves Accepted, Improving and Improving Absolutely . 94
4.51 Instance csit1 (c): Confidence and Convergence 94
4.52 Instance csit1 (d): Proportion of Heuristic Calls per Heuristic per Step . . . 94
4.53 Instance csit1 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 94

LIST OF FIGURES viii

4.54 Instance csit1 (f): Proportion of Heuristic Calls per Heuristic in the 100 Calls
prior to each Absolute Improvement . 94

4.55 Instance csit2 (a): Moves accepted: Solution Quality and Improvement . . . 95
4.56 Instance csit2 (b): Moves Accepted, Improving and Improving Absolutely . 95
4.57 Instance csit2 (c): Confidence and Convergence 95
4.58 Instance csit2 (d): Proportion of Heuristic Calls per Heuristic per Step . . . 95
4.59 Instance csit2 (e): Proportion of Heuristic Calls per Heuristic per Cycle . . 95
4.60 Instance csit2 (f): Proportion of Heuristic Calls per Heuristic in the 100 Calls

prior to each Absolute Improvement . 95

ix

Acknowledgements

“If you’re dumb, surround yourself with smart people. And if you’re smart,
surround yourself with smart people who disagree with you.”

– Isaac Jaffee, Sports Night

I’m not sure which category I fit into but I’ve managed to surround myself with a

lot of smart people during my course, and I’d like to thank them here.

I would like to give thanks to the members, past and present, academic and ad-

ministrative, of the Automated Scheduling, optimisAtion and Planning Research Group for

their enduring support during the last five years, providing a rich multitude of voices and

perspectives on life and work, always able to find something interesting to keep my own

interest piqued and my fingers typing.

To the EPSRC for funding my research (under Grant number GR/N36387/01)

during this time, and the University of Nottingham for assisting in that funding during the

first couple of months.

To the members of the Document Engineering Laboratory Research Group for

their comradery and encouragement.

To my parents and siblings for their love and patience.

To my best friends, for their tolerance, and for the bravery they’ve shown in the

LIST OF FIGURES x

journeys of their lives, reminding me of the potential I can yet achieve with mine.

To anyone who chooses to read this. I hope you find something of use.

xi

Dedication

Dedicated to the memories of Frederick and Joan Jones, and Jim and Gladys O’Brien.

xii

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different

form, to this or any other university for a degree.

signature:

1

Chapter 1

Introduction

“We have serious problems to solve, and we need serious people to solve them.”

– President Andrew Shepherd, The American President

1.1 The Compromise of Optimisation Research

Much of combinatorial optimisation is compromise. Many real-world problems are not

especially difficult to understand but they are sufficiently large and complex as to be com-

putationally intractible (i.e. it would take an impractically large quantity of resources to

find the globally optimal solution to a given problem formulation, which itself may be a

compromise between criteria). A compromise is usually made to find as good a solution as

possible with a reasonable amount of resources.

Considerable resources over the last half century or so have been devoted to the

task of discovering and exploring methods which make use of problem-specific knowledge

to reduce the solution space in order to make the search more manageable and efficient. A

large number of simple heuristics and complex metaheuristics have been devised, presented

and compared. While this is progress, there has been an ongoing concern that the field con-

1. introduction 2

centrates a great deal on benchmark problems and competitive advances, and has perhaps

drifted away from real-world problems [Hoo96, McC06].

There is still a need for more general optimisation algorithms which can perform

robustly on a set of problem instances or class of problems. Those who need such algorithms

do not necessarily have the resources to sponsor researchers to spend years analysing their

problems and fine-tuning algorithms which find good solutions to those problems in a rea-

sonable period of time. A “rough and ready” approach is required: there is a need for more

modular algorithms which can be “plugged in” and implemented with a minimum of fuss.

Hyperheuristics have relatively recently been focused upon as a more generic ap-

proach towards optimisation software. As opposed to methods which directly seek good

solutions to individual problems, hyperheuristics work indirectly by managing the use of

different direct methods to get the best from each.

In this thesis we investigate hyperheuristic approaches to several real-world prob-

lems: the Travelling Tournament Problem and a Project Presentation Scheduling Problem.

Our intent is to reinforce the hypothesis that hyperheuristics are suitable for more general

use.

1.2 Hyperheuristic Intent

As Ross [Ros05] phrased it,

“The broad aim (of Hyper-heuristic) is to discover some algorithm for solving
a whole range of problems that is fast, reasonably comprehensible, trustable in
terms of quality and repeatability and with good worst-case behaviour across
that range of problems.”

1. introduction 3

A common ‘slogan’ associated with hyperheuristics is “good enough, fast enough,

cheap enough” [BHK+03]. The intent is not simply to possess software capable of producing

a solution of adequate quality in a reasonable period of time; its costs should also be low,

meaning that much of the code can be reused easily and that what remains should be easy to

develop or adapt for new problems. Transferability between problems means that the core

framework, sometimes termed the hyperheuristic black box, should contain no problem-

specific knowledge, and a hyperheuristic interface must exist to allow specific problems

to relate to the framework. It naturally follows that an investigation into hyperheuristic

methods must explore algorithms which use problem-generic information to make decisions.

It does not, however, naturally follow that we are seeking less than optimal solu-

tions, or have lower expectations of solution quality; we aim for at least competitive results,

qualified by the compromise that where a problem-specific algorithm may perform better

on one given problem, or even one problem instance, and may not perform as well on an-

other problem or instance (at least, not without significant – and costly – modification), the

hyperheuristic algorithm will be readily applicable to both and produce competitive results

for both.

One direction of the ongoing investigation into hyperheuristics has explored the use

of well-known metaheuristic techniques, whose generic principles have generally been ap-

plied in problem-specific ways, as hyperheuristic techniques. This thesis presents a body of

work exploring a hyperheuristic form of one such technique: the ant algorithm metaheuristic

introduced by Dorigo [DMC96] and its contributions towards hyperheuristic learning.

1. introduction 4

1.3 Thesis Organisation

In Chapter Two we survey hyperheuristic literature, presenting the reasons for explor-

ing generic optimisation methods as alternatives to specific methods and overviewing the

ways in which the term “hyperheuristic” has been interpreted and applied. Chapter Three

presents the black-box hyperheuristic framework, describing two real world test problems

to which we will apply hyperheuristic methods, and describing the interface which allows

hyperheuristic methods to perceive the problem in a domain-generic way.

In Chapter Four we present the Ant Algorithm Hyperheuristic, detailing its translit-

eration from metaheuristic to hyperheuristic, and testing it against several problems. In

Chapter Five we conclude the thesis.

1.4 Contributions

The contributions of this thesis are:

- We introduce a new hyperheuristic technique to the literature, comparing its effec-

tiveness against previously known hyperheuristics, and to some known metaheuristics

in the literature.

- We demonstrate that hyperheuristics are capable of producing competitive results

when applied to several real-world problems, without problem-specific parameter tun-

ing.

- We present complete algorithms, with the full intent that future researchers may

reproduce the results of this thesis and compare fairly.

1. introduction 5

1.5 Publications

As a result of the research reported in this thesis, the following paper has been published:

1.5.1 Conference Papers

E. Burke, G. Kendall, J. D. Landa Silva, R. O’Brien & E. Soubeiga, An Ant Algorithm

Hyperheuristic for the Project Presentation Scheduling Problem, Proceedings of the IEEE

2005 Congress on Evolutionary Computation, Edinburgh, Scotland, Volume 3, pp. 2263-

2270, September 2-5, 2005. [BKS+05]

6

Chapter 2

The State of the Art: Hyperheuristic Literature

“Ultimately, of course, the only important question is, ‘How do I find good
solutions for my given cost function f?’ The proper answer to this question
is to start with the given f , determine certain salient features of it, and then
construct a search algorithm, a, specifically tailored to match those features.
The inverse procedure - far more popular in some communities - is to investigate
how specific algorithms perform on different f ’s. This inverse procedure is only
of interest to the degree that it helps us with our primary procedure, of going
from (features concerning) f to an appropriate a.”

– D. Wolpert and W. G. MacReady, No Free Lunch Theorems for
Optimisation [WM97]

In this chapter we survey the field of optimisation techniques, and hyperheuristic

methods in particular. Our intent is to review the generality of approaches of optimisa-

tion software towards combinatorial optimisation problems, and present the need for more

generic software, and the means by which hyperheuristics are currently trying to fulfil that

need.

2.1 Heuristics

Many real-world situations involve the creation of schedules, including transport schedul-

ing [WR95, Aro96], sports scheduling [ENT01, Ken07], school, course and examination

2. the state of the art: hyperheuristic literature 7

timetabling [BJKW97] and staff rostering [EJKS01], and research into the automation of

creating good schedules has interested the academic community of Artifical Intelligence and

Operations Research for decades [Wre95, Bow03].

Wren [Wre95], while deliberating the term scheduling and the many meanings it

has acquired in the literature, considered the objective of scheduling to be:

to solve practical problems relating to the allocation, subject to constraints, of
resources to objects being placed in space-time, using or developing whatever
tools may be appropriate. The problems will often relate to the satisfaction of
certain objectives.

Such objectives often take the form of constraints which must be maintained or

penalties which must be minimised. Constraints are often grouped into two types: hard con-

straints and soft constraints. Hard constraints cannot be violated under any circumstances,

and solutions which satisfy these constraints are feasible. Soft constraints are desired but

not essential, and mathematical formulations often assign weights to these soft constraints

so as to quantify the cost of the solution. The optimal solution satisfies all hard constraints

and minimises the accumulated penalty cost of all violations of soft constraints.

Optimisation problems are often complex, or have large (or infinite) solution

spaces. The solution space of a problem is essentially the set of all solutions to that prob-

lem, irrespective of whether the solutions are complete or feasible, arranged in some complex

topology which will be navigated by search algorithms. These issues of complexity and size

make exhaustive searches impractical; exact methods such as linear programming methods

and Lagrange multipliers are popular mathematical techniques, but they have difficulty

scaling with NP-hard problems, which are characterised by the exponential increase in

computational time needed to solve them to optimality as the size of the data increases.

2. the state of the art: hyperheuristic literature 8

Heuristic methods are often more practical, being derived from prior experience

with the particular problem domain or otherwise specifically designed for it. They are

therefore easily understood both by the developer of the optimisation software and those

involved with the domain, which facilitates implementation, and they are capable of finding

good solutions in a reasonable amount of time. This comes at the cost of certainty: heuristic

methods do not (by definition) guarantee optimality or feasibility.

A heuristic method can often be described as a repeated use of one or more heuristic

operators, often simply termed heuristics, which take an existing solution and modify it in

some way. Heuristics are often grouped into two types: constructive heuristics which take

an incomplete solution and typically choose the next element to schedule, producing a

solution one element nearer to completeness, and local-search heuristics (also called repair

heuristics) which take a complete solution and change it in some way, hoping to produce a

solution which is more feasible or more optimal1.

Heuristics are also often described by the means by which they modify the solu-

tion. The ‘operator’ aspect of the heuristic determines the nature of the modification, and

the heuristic’s neighbourhood is defined as being the set of ‘neighbouring’ solutions which

can be reached within one operation: for example, the set of solutions with one more el-

ement scheduled, or the set of solutions which are only different by the swapping of two

elements. Some heuristics are described as greedy heuristics, exploring all neighbours before

selecting the neighbour which best satisfies the problem’s objectives. Other heuristics use

problem-specific information to pick a neighbour which best satisfies a particular objective

or guideline or short-term need.

1respectively, has fewer hard or soft constraint violations

2. the state of the art: hyperheuristic literature 9

However, where a heuristic operator always seeks to find immediate improvement,

the heuristic method is at risk of quickly finding a local optimum: a sub-optimal (and

possibly infeasible or incomplete) solution which the heuristic operator cannot improve. In

such cases it is often desirable to guide the heuristic search by employing a strategy known

as a metaheuristic.

2.2 Metaheuristics

The term metaheuristic has come to be used in reference to a family of well-known search

strategies. The essential qualities of each strategy are to encourage the discovery of better

solutions in the search space by tightening a focus on “good” solutions and improving upon

them (intensification), and to encourage the exploration of the solution space by broadening

the focus of the search into new areas (diversification).

These two qualities are complementary, and necessary. A purely intensification-

based search cannot accept poorer solutions and therefore cannot escape from local optima;

a purely diversification-based search has no ‘quality control’ by which to reject poorer

solutions and achieve good results.

We present a number of the better known metaheuristics. This is not intended

to be a comprehensive review; the intent is to understand the principles behind these

successfully applied techniques, so as to later explore the application of these principles to

hyperheuristic techniques. In particular we present literature regarding the ant algorithm

metaheuristic. Other reviews of metaheuristic literature can be found at [CDM+96, BK05].

2. the state of the art: hyperheuristic literature 10

2.2.1 Simulated Annealing

The simulated annealing metaheuristic was proposed by Kirkpatrick et al. in 1983 [KGV83].

The principle is to guide a search by automatically accepting better solutions (intensifica-

tion) and probabilistically accepting poorer solutions (diversification), with the probability

decreasing according to how poor the new solution is and how far the search has progressed.

The technique is inspired by, and named after, the cooling schedules for annealed metals:

early in the technique, with the temperature still high, the metals are very malleable and

impurities can be more easily removed, whereas later the temperature is cooler and the

metals are more resistant to change; by analogy, early in a search the simulated annealing

metaheuristic allows a great deal of latitude in solution quality, hoping to remove the “im-

purities” from the solution before finally intensifying and accepting only improving moves,

whereupon it converges. The cooling schedule, which determines the temperature/latitude

at each decision point, may be static (i.e. pre-defined) or dynamic (adaptive, changing ac-

cording to information gathered while the algorithm is run); such dynamics may include

“re-heating”, periodically increasing the probabilities of selecting poorer solutions at given

times in order to diversify a search after a convergence. Since the method retains no memory

of solutions or solution areas explored in its search, it has the advantage of being easy to

implement. Similar metaheuristics include Monte Carlo, Threshold Acceptance and Nois-

ing : each accepts better solutions automatically, and poorer solutions according to some

dynamic criterion.

2. the state of the art: hyperheuristic literature 11

2.2.2 Tabu search

Tabu search was proposed by Glover in 1977. The principle is to encourage a more diverse

search by remembering solutions which have recently explored and excluding them (“making

them tabu”) from its current search. Considerable research had explored the scope of the

“tabu list”, i.e. the list of solutions or moves which are tabu at any time, in order to

determine optimal ways of managing it. For example, a short list may be insufficient to

prevent a cycling behaviour while a longer length costs more computational power (in terms

of space, to store the tabu solutions or moves, and time to check the list) and may prevent

the metaheuristic from moving to a good solution in order to find new parts of the solution

space. The principle of tabu search has proven sufficiently useful that it is often hybridised

with other metaheuristics. Glover and Laguna’s book [GL97] is often cited as a key reference

for users of tabu search.

2.2.3 Variable Neighbourhood Search

Variable Neighbourhood Search was proposed by Hansen and Mladenovic in 1995. To an

extent the method is a precursor to hyperheuristic methods. The method proposes a search

of a particular neighbourhood in hopes of finding a better solution. After sampling a

neighbourhood for a time and not finding an improved solution, the method moves to

the next neighbourhood in sequence and samples from it. If a better solution is found,

the search begins anew from the better solution; this may simply involve returning to

the first neighbourhood in the sequence, or it may re-order the heuristics according to

identified characteristics of the solution. The nature and ordering(s) of the neighbourhoods

2. the state of the art: hyperheuristic literature 12

is manually defined, with each neighbourhood tending to have a broader scope or different

neighbourhood to the previous neighbourhood. For example, a neighbourhood may explore

all the ways in which a single event may be reassigned within a solution (1-opt). If the

solution state is such that relocating a single event cannot produce an improvement, the

method may move onto a second neighbourhood in which two events are moved (2-opt),

perhaps swapping the events or otherwise moving one to make legal ‘room’ for the other.

A survey can be found in [HM01].

2.2.4 Genetic Algorithms

Each of the metaheuristics described so far constructs or maintains a single solution, and

may be considered point-based techniques. Population-based techniques construct or main-

tain many solutions.

Genetic algorithms are inspired by the natural processes of reproduction and evo-

lution. The technique has been used since the late 1950s, though the seminal work is often

attributed to Holland [Hol75]. At key decision points between cycles, termed as generations,

poorer members of a population of solutions are removed and replaced by the “offspring” of

the population, created by perturbing (“mutating”) or breeding (“crossing over”) the better

members (usually as determined by their solution quality) in some way. The characteristic

of genetic algorithms is its crossover operators, which in some fashion take components

from two (or more) solutions and use them to create a third solution, theoretically taking

good component parts of each solution and combining them to create a better whole; such

operators must be specifically designed for the particular problem.

2. the state of the art: hyperheuristic literature 13

2.2.5 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is the umbrella term for a number of techniques which

have been developed during the last decade or so, beginning with the ant algorithm systems

proposed by Colorni et al. [DMC96]. They are inspired by the real life means by which

ant colonies find routes to food sources and communicate them to each other: they lay

a substance called pheromone where they travel, which other ants can detect and follow.

ACO techniques correspondingly employ a set of artificial agents (ants) to navigate a search

space, laying a correspondingly artificial pheromone trail where they go and making their

decisions based upon the pheromone trails left by other ants. The search space is usually

represented by a network in which vertices represent assignments and decision points and

arcs represent choices.

Ant colony techniques have been successfully applied to many problems. The

standard technique, known as the ant algorithm technique, is usually a constructive one: A

colony of ants begins with no solutions. Each ant constructs a solution by making decisions

stochastically, using existing problem constraints and heuristics combined with experience

(which is analogous to a substance called pheromone). The colony then reinforces decisions

in the construction process according to their successes by adding pheromone, which also

decays to mitigate against poorer decisions.

An example of a non-standard ACO technique is presented in [CO98], as an ap-

plication for the graph colouring problem [CO98]. A colony of ants is released upon an

existing (and not necessary feasible) solution. Each ant traverses the graph, moving from

vertex to vertex, making local-search repair efforts by identifying the most conflicted neigh-

2. the state of the art: hyperheuristic literature 14

bouring vertex and randomly choosing a new colour for that vertex such that it no longer

conflicts. No pheromone is laid down, but the simple nature of each ant is consistent with

ACO methods.

2.2.6 Asynchronous Teams

Asynchronous teams, also called A-Teams, were introduced in [TBGS98]. The team is a

group of co-operating autonomous agents which operate upon a communal set of solutions

which circulate around a network. Each agent’s operator is free to transform a solution

in any way, making it feasible or infeasible, complete or incomplete, and the solution is

moved to a corresponding area of the network where further agents can transform them

again. For example, events in a solution may be unscheduled and the the solution is moved

to an ‘incomplete’ area where agents which take incomplete solutions as inputs may work

upon them. Convergence occurs when a solution appears persistently; there is no overall

co-ordination which determines which agents operate on each solution. ‘Operations’ in this

context may be considered synonymous with ‘heuristics’.

2.3 Generality in Methods

The cornucopia of established optimisation techniques naturally prompts the question for

any new problem instance, ‘which algorithm is the best for this problem?’. Indeed, there

has been criticism of the competitiveness of the academic community in the ongoing pre-

sentation of algorithms whose major contribution appears only to be a slight improvement

in objective satisfaction for some problem instance in a perhaps fractionally smaller period

of computational time [Hoo96, SG06].

2. the state of the art: hyperheuristic literature 15

Such competitiveness was to some extent mollified by the publication of the No

Free Lunch Theorem [WM97] by Wolpert and MacReady. The theorem states that all search

algorithms have the same average performance when averaged over all problems defined on

a finite search space. In other words, if an algorithm outperforms another on a given class of

problems, another class of problem exists for which the algorithm is inferior: no individual

algorithm is ‘best’.

The authors cite as an example in [WM97] that generic methods (such as simulated

annealing and the genetic algorithm) do not perform as well as specialised tailor-made

methods for the Travelling Salesman Problem. The intent is to encourage the identification

of salient features in the problem instance in order to properly match the instance with an

appropriate algorithm, rather than to continue seeking an algorithmic ‘holy grail’ which is

superior to all.

Several areas of operations research have developed over the years to tailor ap-

proaches to problem features, even before the No Free Lunch Theorem was published.

Under human supervision, expert systems and knowledge-based systems have developed

to reproduce the experienced manual approaches to particular problems such as educa-

tional timetabling. Case-based reasoning has developed more recently as a more adaptive

framework for identifying the salient features for a given new instance of a problem class

and matching the features with a particular algorithm, and deciding from the result of the

match (the ‘case’) to reinforce or penalise its matching, and whether or not to remember

the specific case to aid in identifying future problem instances. Interested readers may find

[LKW97] useful.

2. the state of the art: hyperheuristic literature 16

However, such systems require an investment of interest and effort. A ‘typical’

set of problems must be considered in building and training the system’s initial state, and

such systems are designed in the knowledge that they will be expected to encounter new

problem instances of the same class and adapt to incorporate the peculiarities of each new

instance into the approach to the instances which follow it. The significant disadvantages

of ‘automated specialisation techniques’ are their inapplicability to problems outside their

specialised class, and their impracticality for ‘one-off’ problems.

The publications for the No Free Lunch Theorem advocate the identification of

salient problem features in order to select the most appropriate algorithm, but the theorem

does not discourage the use of generic techniques. Indeed, the theorem clearly indicates

that if a specialised technique is better solving problems for its specific class than a generic

method then problem classes must exist for which the generic method is superior – in

fact, the specialisation of a method towards one problem class may guarantee its inferiority

towards other problem classes simply because it is not practically applicable. A generic

algorithm may not produce results which are superior to any algorithm tailored for its

problem, but by being applicable to many different problems it may perform better on

average than each tailored algorithm across the range.

2.4 Hyperheuristics

Hyperheuristic methods have been present in the literature since the early 1960s [FT61]

but focus upon them has only really developed in the past decade or so. The term itself

was coined in 2000 by Cowling et al. [CKS01a], to refer to a “heuristic which chooses

2. the state of the art: hyperheuristic literature 17

between heuristics”, operating “at a level of abstraction above that of a metaheuristic”,

and proposed as an approach to increase “the level of generality at which optimisation

systems can operate” [BHK+03], with which it is becoming synonymous.

The methodology was motivated by the awareness of many different approaches

to different problems, each with different relative performances, particular advantages and

individual flaws. In [BHK+03], Burke et al. reproduce an example (attributed to Ron

Graham at AT&T Labs) of a one-dimensional bin packing problem for which a particular

heuristic produces the optimal solution. The example presented is such that the removal of

one particular object from the set to be packed, technically creating a smaller and intuitively

easier instance, results in the heuristic counter-intuitively producing a worse solution.

In [LLP01], Lagoudakis et al. present a simple conundrum to illustrate the difficul-

ties in selecting a particular algorithm to solve a problem. The conundrum is that of linear

sorting, and choosing one of three well-known sorting algorithms based upon efficiency:

insertion sort, merge sort, and quicksort. Quicksort is generally considered the fastest, ow-

ing to its better performance with increasing sizes of input, but its relative performance is

poorer on smaller instances due to overheads of set-up. Lagoudakis exploit the recursivity

of the merge sort and quicksort to create a hybrid technique which considers the size of the

list to be sorted at each level and decide which to use to create two smaller instances, each

upon which to choose another of the three sorting methods, with insertion sort, or a list

of one element, being the terminal case. The hybrid, identifying ‘ideal’ input sizes for each

algorithm, performs better than either of the three individual techniques did alone.

The principle of the hyperheuristic is similarly to manage a set of “low-level”

2. the state of the art: hyperheuristic literature 18

heuristics, each of which has its strengths and drawbacks when applied individually to a

problem instance, to create an algorithm which is better than the sum of its parts. Cowling

et al. describe it as managing “the choice of which lower-level heuristic method should be

applied at any given time, depending on the characteristics of the region of the solution

space currently under exploration” [CKS01a]. The further level of abstraction “above that

of a metaheuristic” referred to by Cowling et al. is that of the “higher-level” heuristic,

the hyperheuristic, being applied to the choice of heuristics rather than directly to the

problem being solved: in a sense the hyperheuristic dynamically creates an algorithm to

solve the problem, rather than solving it itself; as Hart et al. describe it, “Against the

grain of most scheduling work, we are not interested in optimising any particular objective

whilst producing the schedules, but in producing a fast and robust system that can produce

high-quality practical schedules that satisfy a large number of constraints” [HRN98].

Overviews of hyperheuristics can be found at [BHK+03, Ros05].

We categorise various hyperheuristic approaches from the literature by their gener-

ality: the first category consist of domain-knowledgable hyperheuristics which are designed

for specific problem classes, either mapping heuristics to solution states or evolving heuristic

sequences for particular problem classes; the second category consists of black box hyper-

heuristics designed without any particular problem class in mind.

2.4.1 Domain-Knowledgeable Hyperheuristics

The category of domain-knowledgeable hyperheuristics could itself be divided into two fur-

ther sub-categories. In one category, approaches are made involving specific problem in-

stances. However, rather than directly create a solution for the instance, the algorithm

2. the state of the art: hyperheuristic literature 19

develops an ‘approach’: a solution constructor which combines heuristic information with

solution state information. In the second category the “approach” is exclusively defined by

heuristic steps to take and can be applied to any of a class of problem instances.

The earliest example of a technique resembling hyperheuristics is considered to

have been published by Fisher and Thompson in 1961 [FT61]. They describe their algorithm

for the job-shop scheduling problem as combining rules in a probabilistic learning way. Two

simple rules for loading operations are presented. A control called unbiased random process

picks either rule uniformly at random and applies the choice. The probabilistic learning

method adapts its probabilities according to the performance of each rule, increasing the

probability of selection if the rule performs well and decreasing the probability if it does

not. The probabilistic learning system proves to be superior to the unbiased system, which

in turn is superior to either of the individual rules.

In [FRC93, FRC94], Fang et al. develop an algorithm they term ‘evolving heuristic

choice’. Their intent is to improve the applicability of genetic algorithms, since effective

crossover operators which ensure legal solution states are difficult to formulate and some-

times require complex encoding schemes to get the best from the genetic algorithm frame-

work. They decide that a more flexible and intuitive approach, with respect to benchmark

test job-shop scheduling problem and open-shop scheduling problem instances, is to develop

chromosomes which encode sequences of (heuristic, operation) pairs, which instead of rep-

resenting a solution, represents an ordering by which the operations are scheduled, each

according to its respective constructive heuristic. The approach outperforms a number of

solution-based genetic algorithms and in some instances (where the optimal solutions are

2. the state of the art: hyperheuristic literature 20

not known) finds new best solutions.

The problem Hart et al. approached in [HRN98] was of creating daily schedules for

a Scottish chicken catching company. The approach divides the problem into two stages:

in the first, orders are split into tasks to be assigned to squads of workers who can then

catch the appropriate number of chickens for later transportation (the assignment sub-

problem), and in the second each task is assigned a time interval such that the squads can

co-ordinate with transportation vehicles and deliver their orders at the correct times (the

timing sub-problem). A genetic algorithm handles these sub-problems simultaneously, using

a chromosome made up of a permutation of orders and a sequence of splitting and assigning

heuristics to apply to each order. The heuristics are based on domain-specific knowledge

identified by examining the company’s established practices, which created schedules by

hand, in order to replicate the decision-making process of a human scheduler, and thereby

create schedules which are more easily integratable with the company’s established practices.

Not all heuristics are valid when applied to particular orders; a repair mechanism replaces

each invalid assignment heuristic with a random valid assignment heuristic, but where a

timing heuristic produces an infeasible solution the chromosome is simply penalised. The

genetic algorithm ultimately always found a feasible solution to each of its test cases.

Ross et al. continue their exploration of hyperheuristic techniques with the one-

dimensional bin-packing problem, recognising the many heuristics identified for the well-

known problem as an interesting demonstration of the potential of hyperheuristics. In

[RSMBH02] a learning classifier system is used to classify different solution states and

suggest a heuristic to place the next object into a bin. The heuristics are constructive

2. the state of the art: hyperheuristic literature 21

heuristics, drawn from previous literature: no new heuristics are introduced. The solution

features to be identified with specific heuristics describe the proportion of remaining items of

particular sizes, and the percentage of items remaining. The system is trained and tested on

sets of benchmark problems from two operational research libraries. The resulting system

performs no worse than the worst of the individual heuristics, and has a better overall

performance than the best of them. The authors observe limitations of their method: the

hyperheuristic does not take into account the current status of the already open bins, and

provides rewards after every step, perhaps overemphasising the contributions of individual

heuristics and not considering the collective contributions of several.

In [RSMBH03], Ross et al. develop a ‘messy’ genetic algorithm in which each

chromosome in the population is a series of classifer blocks, each representing a set of

circumstances in which to apply a particular heuristic. The results indicate a greater pro-

portion of problem instances being solved to optimality but the emphasis of the results is

on the reduced wastage of bins used by the algorithm: the genetic algorithm uses at most

three more bins than the optimal reported solutions, and up to four bins less than any of

the individual heuristics used.

In each of these cases the intent is to produce a system which uses a number of

simple heuristics to offset any weakness any individual heuristic may possess. The heuristics

are simple ones, based upon previous literature or previous manual experience with the

problem domains and easily understandable to those who must use the resulting schedules

(or oversee the hyperheuristic’s performance), and therefore relatively easy to program

and implement. However, while the heuristics themselves are relatively independent of the

2. the state of the art: hyperheuristic literature 22

system (as the chromosomes and classifers recognise them only as an encoded response for

each chromosome block or classifer, the parameters of the solution state which trigger the

heuristic via the chromosome or classifer must be identified prior to implementation and

directly encoded, limiting the system’s generality.

Hart and Ross also investigate a ‘heuristically-guided genetic algorithm’ as an

approach to a job-shop scheduling problem [HR98]. In this case the chromosome directly

represents a series of instructions to be applied in scheduling operations. The ith gene in

the chromosome represents a (method, heuristic) pair in which at the ith decision point

the corresponding method (from a choice of two) is employed to reduce the unscheduled

events to a set of potential events to be scheduled next, and the heuristic chooses the one

to be scheduled. The algorithm outperforms the genetic algorithm developed by Fang et al.

[FRC93]. The authors also suggest a limitation of their own method that their sequences

of heuristics depend heavily upon the performance of the first heuristics implemented, as

these decisively determine the early shape of the schedule, and suggest that their method

might be better employed in evolving a crucial partial schedule whose remainder might be

solved by other means.

Rossi-Doria and Paechter employ a similar evolutionary algorithm to course time-

tabling problems, evolving sequences of pairs of heuristics which respectively choose a course

to assign and then choose a timeslot to assign the course to [RDP03]. Their populations are

seeded with a combination of single-heuristic chromosomes (which are considered to per-

form reasonably) and random mixtures, and the final sequences are reported as producing

competitive results on two medium-sized instances and poorer results on the three others of

2. the state of the art: hyperheuristic literature 23

the set, with the discrepancy attributed to the possible absence of heuristics more appropri-

ate for those instances from the heuristic sets. The heuristics used are based on well-known

graph-colouring heuristics, with some of them weighting particular characteristics to better

reflect the nature of the timetabling problem. The authors reflect that these heuristics are

more computationally expensive than other possibilities since they must re-evaluate their

graphs at every decision point.

In [TMFAR05], Terashima-Marin et al. extend the domain-specific classifier/GA

hyperheuristic to two-dimensional cutting stock problems (which resembles a bin-packing

problem, with bins substituted for standard-sized sheets). Terashima-Marin et al. develop

the less specific genetic algorithm hyperheuristic, evolving chromosomes of pairs of heuristics

[TMFZRVR06]. The first heuristic of each pair picks an object shape to be cut, and a sheet

for it to be cut from, and the second heuristic determines the placement of the shape on the

sheet. The two models were compared in [TMFZRVR07] using the two-dimensional bin-

packing problem, with the ‘pure’ genetic algorithm appearing slightly better on average.

A concluding thought from this final example [TMFZRVR07] is that the result of

each genetic algorithm is not simply a solution to a problem instance but an algorithm to

approach any instance of that problem class whose average performance is hopefully better

than any of its constituent parts (though individual heuristics may still perform better on

particular instances). One of the common features of this problem class is that of size: each

instance must have the same number of objects to assign since each heuristic pair in the

chromosome encoding represents a single assignment. The genetic algorithm must therefore

be rerun for problem classes of smaller or larger sizes, limiting the system’s generality.

2. the state of the art: hyperheuristic literature 24

2.4.2 Black Box Hyperheuristics

This second category of hyperheuristic is defined by its indifference to problem structures,

and its subsequent applicability to entirely different problem classes. In contrast to most

domain-knowledgeable hyperheuristics, these mostly employ local-search/repair methods.

Nareyek employs a system for the Orc Quest problem and a Logistics Domain

problem in [Nar03]. The system iteratively chooses a constraint to enforce and the constraint

chooses from a range of problem-specific heuristics in order to reduce violations of the

constraint. Reinforcement learning is employed to try and select the most appropriate

heuristic at each decision point: each heuristic is assigned a utility weight which is rewarded

and penalised as the heuristic respectively finds improving or non-improving solutions. The

investigation considers many different combinations of reward/penalty schemes as well as

whether to select the heuristic with the maximal weight or stochastically between heuristics

according to their weights. General trends indicate that selecting the heuristic of maximal

weight and providing small rewards and large penalties produces stronger results.

While Nareyek’s reward system is based upon whether the heuristic simply pro-

duces an improvement or not, Cowling et al. [CKS01a] introduce a choice function hyper-

heuristic which uses the quantitative information of how much improvement of solution

quality each heuristic produces in order to assign weighting values. The choice function

is an aggregate of three values which evaluate each heuristic’s relative merits. For the

jth heuristic, the function will evaluate its recent solo intensification performance f1(j),

its recent sequential intensification performance f2(i, j) (where i is a directly preceding

heuristic move in the search) and a diversification factor f3(j) which reflects the CPU

2. the state of the art: hyperheuristic literature 25

time since the heuristic was previously used; the overall choice function is presented as

F (j) = f1(j) + f2(i, j) + f3(j). Other than access to limited information about the eval-

uation function (i.e. what the current evaluation values are (for one or more objectives)

and whether they should be maximised or minimised) and knowledge of how much CPU

time has passed, the hyperheuristic possesses no domain specific information. The hyper-

heuristic is successfully applied to a sales summit problem and its autonomy is developed

from a method with manually-tuned parameters to an autonomous method with adaptive

parameters [CKS01b], with no training period or initial weights to manually pre-determine.

In [CKS01b] it was observed that the quality of solutions produced was slightly disappoint-

ing in comparison to earlier tuned hyperheuristics, but that the solutions produced were

still better than those produced by manual techniques, greedy heuristics, greedy and ran-

dom hyperheuristics2 and a simulated annealing metaheuristic developed for comparison

purposes.

The choice function hyperheuristic’s abilities are further demonstrated upon a

project presentation scheduling problem and a nurse rostering problem [CKS02, KSC02,

BKS03, Sou03]. The formulation and implementation of the approach to the presentation

scheduling problem (beyond that of the pre-existing hyperheuristic framework) were mea-

sured at an equivalent of 101 man-hours, as an indication of how quickly the hyperheuristic

method can be applied. The results for this problem were described as excellent compared

to previous manual methods; the results of the hyperheuristic’s application to the nurse ros-

tering instances were shown to be competitive with an existing tabu search metaheuristic

2Probably the simplest of the random hyperheuristic class is the Simple Random Hyperheuristic, which
chooses a heuristic at random with uniform probability at each decision point and applies it to the current
solution. It is used in several hyperheuristic publications, including this thesis, [Sou03], and [AK03] as a
control. A more detailed description of ‘control’ hyperheuristics can be found in Chapter 4, Section 4.2.

2. the state of the art: hyperheuristic literature 26

technique [Dow98].

Inspiration for further hyperheuristic techniques is derived from the metaheuristic

family. Cowling et al. propose a genetic algorithm -based hyperheuristic (which they term

‘HyperGA’) in which chromosomes represent sequences of local-search heuristics [CKH02].

During each generation, chromosomes of heuristics are applied to the best known solution,

and the best new solution of the generation becomes the starting point for the next gener-

ation. Chromosomes are evaluated according to the overall improvement generated by the

sequence; variants divide this by the CPU time taken by the sequence to promote heuristics

with shorter durations, and/or adapt the probability of mutation to the overall success of

the generation. The intent is not to produce a specific sequence of heuristics which can

produce good solutions (as is the case with various domain-knowledgable hyperheuristics)

since the characteristics of the local solution space change from generation to generation,

but to dynamically identify and reuse good sequences of heuristics to find better solutions.

As applied to a trainer scheduling problem, the hyperheuristics perform better than any

of the individual heuristics, and better than a genetic algorithm and memetic algorithm

implemented for comparison purposes. Again, the parameter-tuned variant hyperheuris-

tic performs slightly better than the adaptive variant. The fitness function variants which

encourage the use of quicker heuristics perform less well. Though this is not commented

upon in the paper, it seems possible that since the stopping condition of the experiment

is a fixed number of generations (i.e. heuristic calls), the duration of any heuristic’s imple-

mentation is not an issue and the performance of the hyperheuristic may be compromised

by the emphasis of efficient heuristics over effective heuristics.

2. the state of the art: hyperheuristic literature 27

The HyperGA is experimented upon in further publications. In [HK02] Han and

Kendall suggest that a fixed chromosome length is a possible limitation of the method,

and propose an ‘adaptive-length chromosome’ hyperGA. Mutation operators are employed

which identify good sub-sequences of heuristics in particular chromosomes to be inserted

into other chromosomes, or identify poor sub-sequences of heuristics to be removed. In

[HK03a] the chromosome incorporates a tabu value for each gene (heuristic): to improve

the efficiency of the algorithm, heuristics which perform poorly are made tabu for the

next several generations rather than being removed and possibly reinserted. Finally in

[HK03b] the mutation operators provided by the adaptive-length chromosome hyper-GA

are modified to guide the hyperheuristic towards good chromosome lengths, preventing

chromosomes from becoming too short or too computationally expensive. In each case an

improvement is generated over the previous best technique, and the best technique almost

always uses fixed probabilities for crossover and mutations rather than adaptive values.

The HyperGA’s generality is demonstrated in [HK03b, Han05] as it is applied to the same

project presentation scheduling problem as in [CKS02], the course timetabling problem (as

approached in [BKS03], and some of whose instances are approached in [RDP03]) and an

aircraft scheduling problem in [Han05].

Soubeiga initially considers simulated annealing as a comparison for his choice

function hyperheuristic in [Sou03] when applied to the sales summit problem. The tem-

perature is set at a fraction of the initial solution quality and follows a geometric path,

decreasing each iteration by a fraction which is determined by prior experimentation. Ex-

cept in the most difficult instances, the simulated annealing hyperheuristic produces better

2. the state of the art: hyperheuristic literature 28

results than the choice function for the real-world instances of the sales summit problem

examined. This is attributed to its more frequent acceptance of poorer solutions early in

the search, though the simulated annealing hyperheuristic makes all its heuristic choices

uniformly at random. Bai applies a similar technique in [BK03, Bai05] to a shelf space allo-

cation problem with a different temperature function. A number of monte-carlo acceptance

criterions are explored by Ayob et al. [AK03] upon a route-planning problem involving

the layout of printed circuit boards, with some better results than a choice function hy-

perheuristic. All temperature/monte-carlo functions appear to be tuned to their specific

problems, exploiting details of the respective evaluation functions and heuristics (such as a

known goal evaluation value of zero, or an known range of improvement values each heuris-

tic can achieve in one application). In [DSB07] the formulation of a particular problem

suggests that simulated annealing may be useful and this is used to guide the development

of the hyperheuristic technique so as to make best use of the heuristics; while this under-

cuts the ‘black-box’ nature of the technique, the hyperheuristic framework allows for ease

of implementation of the domain-knowledgeable components.

A number of different approaches have been described as ‘tabu search hyperheuris-

tics’. One approach is presented in [BKS03] by Burke et al.. In this system heuristics are

applied and rewarded or penalised according to whether or not they produced an improve-

ment, in a similar fashion to Nareyek, [Nar03]. During every cycle the highest ranked heuris-

tic is applied. A heuristic which performs poorly is also added to a tabu list which prevents

it from being applied until enough other heuristics have performed poorly enough that the

hyperheuristic considers the new area of the solution space to be sufficiently different that

2. the state of the art: hyperheuristic literature 29

the heuristic might now be more appropriate. Since this mechanism takes control of tabu

heuristics away from the learning aspects of the algorithm, it can no longer be considered

simply a reinforcement learning technique. The paper demonstrates the hyperheuristics’

performances on two different problems: the nurse rostering problem as approached in

[BKS03] and the course timetabling problem approached by [Han05]. Bai considers this

approach for bin packing problems in [Bai05].

A second ‘tabu search hyperheuristic’ approach is presented in [KH04a, KH04b] by

Mohd Hussin and Kendall. At each decision point every available heuristic is implemented,

with the best solution of those discovered being accepted as best. The heuristic which

discovered the solution is added to a tabu list. This seems counterintuitive if one pursues

the hypothesis that a good heuristic continues to be good in the near future, but the intent

is to prevent the following cycle from exploring neighbourhoods which would return the

search to already known solutions. The publications consider the size of the tabu list to

be a parameter3, though the application is only implemented upon a single problem class

with a single set of heuristics, so no suggestions are made for adjusting the parameter to

different problems. An extension is considered whereby the best heuristic of the cycle is

repeated until it no longer produces an improvement. The hyperheuristic is tested upon

a number of educational timetabling problems including benchmark instances and new

instances encountered at a Malaysian University.

Cowling and Chakhlevitch consider several hyperheuristic approaches from a par-

ticular perspective: that a problem may have many potentially applicable heuristics and

3A tabu list of 0 naturally means every heuristic will be applied in every cycle, which constitutes a greedy
hyperheuristic.

2. the state of the art: hyperheuristic literature 30

that the hyperheuristic should be able to manage a large number [CC03], where Soubeiga

previously suggests in [Sou03] that a low number (around 10) is good. A number of basic

hyperheuristics are considered with random (which always selects one heuristic uniformly

at random) and greedy (which applies all, then selects the best) at the extremes. Several

peckish hyperheuristics are described which maintain a candidate list of heuristics to be

chosen from, and several tabu search heuristics are described which select good heuristics

and make tabu any non-improving ones (and possibly a set of actual moves). The sizes of

the candidate and tabu lists are adaptive in order to find a balance between intensification

and diversification, and the peckish and tabu hyperheuristics deviate less from a given up-

per bound than the extreme hyperheuristics. In [CC05] further strategies are considered

for determining the composition of the list of heuristics which can be considered during the

cycle.

Burke et al. [BPQ06] and Petrovic and Qu [PQ02] consider a different approach

to providing a manageable set of heuristics for the hyperheuristic. A case database is

developed in which characteristics of timetabling problems are associated with an injection

ratio for two graph-based heuristics (largest degree and saturation degree) to be applied

in educational timetabling problems. The hyperheuristic creates a heuristic list in which

solutions are constructed by iterating through the list and performing the corresponding

heuristic; the injection ratio determines what portion of the heuristic list corresponds to

the largest degree heuristic. The hyperheuristic runs the sequence of heuristics and then

mutates the list in successive iterations. In [BDPQ05, QB08], Burke et al. and Qu and Burke

explore hybridisations of their technique. A tabu list is constructed, containing heuristic

2. the state of the art: hyperheuristic literature 31

lists which lead to infeasible solutions. These lists are thus avoided by the list mutation

operators. The variant algorithms also integrate local search during or after the solution

construction. The case database was applied to randomly created and real-world problem

instances and shown to produce better results than either of the individual heuristics alone

or a previously well-considered probability weighting. Its results were consistently feasible (a

quality not met by the individual heuristics) but were outperformed by a hybrid tabu search

technique and state-of-the-art techniques. It was conjectured that with more sophisticated

characteristic recognition and more learning time, the case-base system could yet perform

better.

Many hyperheuristic publications focus on demonstrating the versatility and com-

petitiveness of hyperheuristic methods with other methods in the literature, but most of

these also propose new hyperheuristic techniques, in part to also explore the diversity of

hyperheuristic techniques. Few studies exist with the intent of directly comparing hyper-

heuristic methods. Bilgin et al. [BOK06] initially consider a simple framework in which a

hyperheuristic consists entirely of a heuristic selection mechanism (one of seven) and an

acceptance criterion (one of five). Experimental results indicated that no particular combi-

nation was dominant over the others, though the acceptance criterion which accepted only

solutions of equal or greater quality performed well and the Choice Function’s performance

was slightly better than other selection mechanisms4.

Later, Ozcan et al. [OBK06] consider more complex frameworks recognising mu-

tational and hill-climbing heuristics as distinct sets of heuristics. The intent is to explore

4No comment is made in the paper to the hyperheuristic framework illustrated in [Sou03], in which the
Choice Function hyperheuristic is presented as a whole algorithm rather than a mere heuristic selection
mechanism

2. the state of the art: hyperheuristic literature 32

whether or not the hyperheuristics benefit from being programmed with this knowledge and

to gain a better understanding of the interactions of heuristic sets. The frameworks are ap-

plied to a set of benchmark functions representing a broad range of optimisation problems,

with several of the new frameworks significantly outperforming the simple framework, and

the paper concludes with the thought that a variety of heuristics, ‘combined underneath a

decent framework might generate a synergy, yielding a better performance’.

2.5 The Future of Hyperheuristics

The hyperheuristics described in this chapter so far, for all their differences, retain at least

one common property: they are all designed to use only the heuristics with which they are

provided, whether they are useful or not. Soubeiga demonstrated that hyperheuristics can

adapt to the presence of problematic heuristics by introducing two extreme examples of poor

heuristics to the Sales Summit Problem [Sou03], and Cowling et al. [CC03] demonstrated

that an abundance of heuristics could still be managed, but very little work has been directed

towards automating the process of creating new heuristics to cover any roles the provided

set of heuristics do not fulfil.

Burke et al. [BHK06] have made a promising beginning in this direction by using

Genetic Programming techniques to evolve heuristics for an online bin packing problem.

Each evolved heuristic is evaluated in isolation, being iteratively presented with a new

object, which it must place either into a new bin or a bin it has already placed objects

into; in this online problem, these objects cannot be rearranged later and the heuristic has

no knowledge of the objects it must yet place. The heuristic evaluates each existing bin in

2. the state of the art: hyperheuristic literature 33

turn, placing the object into the first bin for which the heuristic’s evolved function exceeds

a given threshold. The function is created from a limited number of terminal variables (the

capacity and spare capacity of the bin and the size of the object) and simple operators (+,

−, ×, %, <), and is solely responsible for the choice of bin: the system allows heuristics

to place objects illegally into bins which do not have room for them, rather than forcing

a choice between only those bins with spare capacity. This means that the quality of the

final solution is entirely the result of the heuristic. As this final quality is used as a fitness

function, heuristics which do not overfill bins are more likely to be kept into successive

generations. It was observed that simple heuristics, i.e. those with small function trees,

performed very well, and this prevented code-bloat from becoming a significant issue; the

system succeeded in evolving the first-fit heuristic.

Further work in this area has developed towards identifying qualities about a

given problem instance and providing a heuristic to match [BHKW07a], and expanding the

scope of the algorithm to more complex problems: a 2D bin-packing problem [BHKW07b].

It remains to be seen whether genetic programming can be employed in a hyperheuristic

framework to create and adapt a set of heuristics to the problem instance they are trying to

solve. Until then it seems that hyperheuristics must continue to manage human-designed

heuristics.

2.6 Conclusion

We have reviewed some of the principles of existing and developing heuristic, metaheuristic

and hyperheuristic techniques in the literature, and identified reasons why problem-generic

2. the state of the art: hyperheuristic literature 34

software is useful and gaining popularity. In the next chapter we examine the black-box

hyperheuristic as it is applied to two problem classes.

35

Chapter 3

Hyperheuristic Framework and Optimisation

Problems

3.1 Introduction

The black box hyperheuristic framework is often diagrammatically represented in a form

resembling Figure 3.1 [Bai05]. A problem class, together with its solution representations,

low-level heuristics and evaluation functions, constitutes the domain-specific side of the

framework and this must be implemented afresh for each new problem class. A hyperheuris-

tic, which regards solutions, heuristics and evaluation functions as more abstract concepts,

is an entire module which may be re-used without modification for each new problem class.

An interface connects the two sides, ensuring that the hyperheuristic has access to all the

information it can be reasonably expected to use.

In this chapter we expand upon this diagram. Two real-world optimisation prob-

lems, both already described in published literature, are presented as the hyperheuristic

framework will perceive them. The interface is described to aid the understanding of how

3. hyperheuristic framework and optimisation problems 36

Figure 3.1: The Hyperheuristic Framework

further problems can be similarly represented for the framework. Finally we remark on the

experiments we will be performing upon these two problems.

3.2 Project Presentation Scheduling Problem (PPSP)

3.2.1 Introduction and Formulation

The Project Presentation Scheduling Problem is a small real-world problem introduced in

2002 [CKS02]. The formulation and instances we use are specific to the School of Computer

Science at the University of Nottingham, though no doubt variations on this problem exist

elsewhere in other academic facilities, and other real world applications such as conference

presentation scheduling use the same principles.

3. hyperheuristic framework and optimisation problems 37

Final year students undertaking the Computer Science undergraduate degree at the

University of Nottingham are required to complete a year-long project under supervision

from a member of staff. One aspect of their assessment is an individual fifteen-minute

presentation (including five minutes for questions) given before at least three members of

academic staff, who are identified as the First marker, Second marker and Observer. It is

preferred that the student’s supervisor is among the three markers and that the markers all

have interests in the subjects of each presentation.

For the purposes of the scheduling, presentations are grouped into hour-long ses-

sions which correspond to an hour of the working week. Students are assumed to be able

to present at any session, though individual members of staff or rooms may be unavailable

for particular sessions; some sessions are also identified as bad (for example the 9-10am and

5-6pm sessions). The mathematical formulation of the problem seeks to fairly distribute

the numbers of presentations, sessions and bad sessions that each staff member is assigned

to attend. A survey is made of the subject of each presentation to determine which fields

of Computer Science the presentation might appeal to, and a similar survey is made of the

staff members to determine which fields each is interested in, to assist the matching of staff

members to interesting presentations.

A solution to the problem is represented as a series of presentation assignments:

each presentation is assigned a session number, a room, and three staff members. This allows

some flexibility, in that potentially more than three members of staff may be assigned to a

particular session/room pair. The solution and heuristics maintain feasibility by ensuring

that no more than four presentations can be assigned to a particular session/room pair and

3. hyperheuristic framework and optimisation problems 38

that no staff member is assigned to presentations in more than one room during a session

in which they are available, or to any presentations in a session they are unavailable for.

We use three instances of the problem, labelled csit0, csit1 and csit2. Instance

csit0 (from the 2000-2001 academic year) seeks to schedule 151 presentations and 26 staff

members between 80 sessions and 2 rooms; instance csit1 (from the 2001-2002 academic

year) seeks to schedule 240 presentations and 24 staff members between 36 sessions and

2 rooms. Instance csit2 is almost identical to csit1, differing only to declare two staff

members absent during the presentation timetable; they are therefore unable to mark the

presentations of students they have supervised, and the fair distribution of assessment to

staff members is unbalanced.

The problem instances are considered to progress in increasing difficulty as the

constraints tighten in later instances, with more presentations to schedule into less sessions.

The optimal solution(s) for each instance have not been provably identified.

The problem is formulated as a minimisation problem, as follows:

I is the set of students

S is the set of staff members

Q is the set of sessions, with subset Qbad being the set of bad sessions

R is the set of rooms

xijklqr is an assignment of value

1 if student i presents at session q in room r

before First Marker j, Second Marker k and
Observer l

0 otherwise
where i ∈ I, j, k, l ∈ S, q ∈ Q, r ∈ R, j 6= k, j 6= l, k 6= l

yjqr is an assignment of value

1 if staff member j is in attendance at session q

in room r

0 otherwise
where j ∈ S, q ∈ Q, r ∈ R

pij is the number of common interests between presentation i and staff member j,

3. hyperheuristic framework and optimisation problems 39

and Supij =

{

1 if staff member j is the supervisor of project i

0 otherwise
where i ∈ I,

j ∈ S

The objective is to:

Minimise EP = A + 0.5B + 0.3C − D

such that

Σj,k,l∈SΣq∈QΣr∈Rxijklqr = 1, (i ∈ I)

Σi∈I,Σj,k,l∈Sxijklqr ≤ 4, (q ∈ Q, r ∈ R)

Σr∈Ryjqr ≤ 1, (j ∈ S, q ∈ Q)

xijklqr ∈ 0, 1, i ∈ I, j,k,l ∈ S, j 6= k, j 6= l, k 6= l, q ∈ Q, r ∈ R

A represents the fair distribution of the total number of presentations per staff

member, B represents the fair distribution of the total number of sessions per staff member,

C represents the fair distribution of “bad” sessions per staff member and D represents the

level of interest the assigned staff members have in the presentation, i.e.

A = Σj∈S

(

Σq∈QΣr∈RΣi∈IΣk,l∈S(xijklqr + xikjlqr + xikljqr) −
3|I|
|S|

)2

B = Σj∈S

(

Σq∈QΣr∈Ryjqr −
4|Q|
|S|

)2

C = Σj∈S

(

Σq∈Qbad
Σr∈Ryjqr −

4|Qbad|
|S|

)2

D = Σj∈S (Σq∈QΣr∈RΣi∈IΣk,l∈S(pij + 10Supij)(xijklqr + xikjlqr + xikljqr))

where Q (respectively Qbad) is the set of sessions (bad sessions) used in the schedule.

3|I|
|S| ,

4|Q|
|S| and 4|Qbad|

|S| respectively are the fair number of presentations, sessions and bad

sessions each staff member should attend. We note that since staff members are assigned

to presentations, not sessions, it is possible for more than three staff members to attend

a session, though only three at any time count as markers. This occasional redundancy

means that the average number of sessions per staff member is sometimes more than the

fair number; better solutions resolve the redundancy.

3. hyperheuristic framework and optimisation problems 40

3.2.2 Other Approaches

This particular problem was originally solved manually by a course convener. The objectives

in this manual process emphasised a fair distribution of staff members across presentations,

sessions and bad sessions, but did not take preferences for project topics into account.

The intent of Cowling et al. [CKS02] in automating the process was to demonstrate that

hyperheuristic techniques could be quickly applied to new problems with minimal devel-

opment time. The problem was modelled, incorporating project subject preferences, in

collaboration with the course conveners. They recorded the development of this problem

formulation, a constructive heuristic to produce good initial solutions and a set of low-level

heuristics to interface with their existing hyperheuristic framework at 101 hours, equivalent

to two-and-a-half ordinary working weeks. They set a running time of ten minutes for the

hyperheuristic to develop its initial solution. The course convener described the results of

the algorithm as “excellent”; publications by the authors include a much poorer evaluation

value from a solution created by the manual process, but do not elaborate on that process

or how long it took. A solution produced by the hyperheuristic was put into practice, and

one of the authors confirms the schedule ran smoothly [Sou03], and that the hyperheuristic

was used again the following year to schedule presentations.

The problem formulation, the constructive heuristic used to create the initial feasi-

ble solution, and the eight local-search heuristics presented here were all initially presented

in [CKS02]. The Choice Function and several simple hyperheuristics were presented and

applied to the problem, with the Choice Function producing the best results. Further ap-

proaches to this problem were explored in [KSC02, Sou03], in which it was determined

3. hyperheuristic framework and optimisation problems 41

that a Choice Function derived from the compound objective function (described above)

performed better than an amalgamation of Choice Functions derived from the individual

objectives. The problem was also used to demonstrate the versatility of Han and Kendall’s

Genetic Algorithm -based Hyperheuristic, the Hyper-GA [HK03b], and the most recent vari-

ation on that technique, the Tabu-assisted Adaptive-Length-Chromosome hyper-GA with

guided operators, produced improvements upon those results.

To date these specific instances have only been attempted by hyperheuristic meth-

ods.

Approach csit0 csit1 csit2 Time

Manual Process -90.1
Soubeiga, Random HH [Sou03] -1193.19 -2880.93 -1614.11 600

Soubeiga, Choice Function HH [Sou03] -1444.99 -2963.37 -1724.15 600
Han and Kendall, HyperGA [HK03b] -1453.32 924

Table 3.1: Averaged results of approaches to the Project Presentation Scheduling Problem.

3.2.3 Hyperheuristic Approach

We use the same constructive heuristic to create an initial feasible solution as Soubeiga

[Sou03]; this heuristic is non-deterministic. Unfortunately this also means that we do not

have access to the same initial solution(s); for comparative purposes we ran the algorithm

twenty times, and used the solution whose evaluation value was closest to the published

initial evaluation value to initialise our hyperheuristics. Nevertheless, we present the algo-

rithm:

• This algorithm iterates through a number of nested loops, assigning presentations
until none remain.

• The outermost loop iterates through the available staff members, selecting the first
staff member at random.

3. hyperheuristic framework and optimisation problems 42

• The second loop iterates through sessions which the staff member is available for
(there may be particular timeslots which the staff member is unavailable for). The
loop first iterates through sessions which are not bad, then sessions which are bad.

• The third loop iterates through available rooms. A room may be unavailable during
a given session, or the first staff member may already be assigned to presentations
during that session in a different room, or it may not be possible to assign any more
presentations to that session for that room.

• The fourth and fifth loops then select two further distinct staff members who are avail-
able for presentations during that session in that room. There is no effort made, at this
stage or in the outermost loop, to optimise the ‘fairness’ objectives of the evaluation
function by preferring staff members with fewer assigned presentations/sessions/bad
sessions.

• Within this innermost fifth loop, the algorithm evaluates unscheduled presentations,
preferring the presentations of any students whose supervisor is one of the three staff
members. If there are any such presentations, the rest of the list is ignored. The
list is then reduced to a target size, equivalent to the number of presentations which
could be scheduled to a session, by selecting those with the highest match between
presentations and staff interests.

• The reduced list of presentations are then scheduled. If a student’s supervisor is
one of the three staff members, then the supervisor is automatically the Observer of
that presentation; the staff members otherwise respectively take on the roles of First
marker, Second marker, and Observer.

We also use the same eight non-deterministic low-level heuristics:

Ph1 Replace a random lecturer j1 in a random session in which he/she is scheduled for

presentations with a second random lecturer j2.

Ph2 The same as Ph1 but j1 has the largest number of scheduled sessions.

Ph3 The same as Ph2 but the session chosen is the one where j1 has the smallest number

of presentations.

Ph4 Move a random presentation i from its current room-session assignment to another.

Ph5 The same as Ph4 but presentation i is that for which the sum of presentations involving

all three involved lecturers is smallest of all sessions.

3. hyperheuristic framework and optimisation problems 43

Ph6 The same as Ph5 but the new session is one in which at least one of the involved

lecturers is already scheduled to mark presentations.

Ph7 Swap the 2nd marker of one random presentation with the observer of a random other

(a supervisor may not be removed).

Ph8 Swap the 1st marker of one random presentation with the 2nd marker of a random

other (a supervisor may not be removed).

We observe that heuristics Ph1 and Ph4 intuitively prove that the entire solution

space is available to the hyperheuristic.

3.3 Travelling Tournament Problem (TTP)

3.3.1 Introduction and Formulation

The Travelling Tournament Problem is a relatively new real-world problem introduced by

Easton, Nemhauser and Trick [ENT01] in 2001. Inspired by professional sports tourna-

ments, specifically the American NFL baseball league, the task is to generate a double

round-robin tournament schedule for a given number of teams n (where n is even).

Each team has a home venue, and is required to play against every other team

twice during the schedule, once at their own home venue (known as a home match), and

once at their opponent’s home venue (known as an away match). During each timeslot,

each team will play exactly one match; therefore there are n
2 matches per timeslot and the

schedule takes 2n − 2 timeslots to complete.

Each team’s personal schedule consists of a permutation of n − 1 home matches

3. hyperheuristic framework and optimisation problems 44

and n− 1 away matches. Teams travel between timeslots, from the venue where one match

is held directly to the venue where the next match is held. The teams always begin the

schedule at their own home venues and always return there at the end of the schedule1.

Consecutive home matches, during which a team remains at their home venue and does not

travel, are known as home stands. Consecutive away matches, during which a team travels

directly from opponent’s venue to opponent’s venue between matches, are known as road

trips. A matrix of size n · n provides the distances between each pair of venues.

Hard constraints are placed on the lengths of home stands and road trips. Typ-

ically, a home stand or road trip cannot consist of fewer than one match or more than

three matches. Each occurrence of a stand or trip consisting of fewer or more matches than

permitted constitutes a hard constraint violation in the schedule. In addition, a team is not

permitted to play against any opponent twice in consecutive timeslots (alternating home

and away venues): such occurrences are known as repeaters and also constitute a violation.

The objective of the problem is thus to produce a schedule in which all matches

are played, no hard constraints are violated and in which the total distance travelled by the

teams is minimised.

The inputs are therefore: n, the number of teams; D, an n · n distance matrix; L,

U , the lower and upper boundaries for the lengths of home stands and road trips.

The problem is formulated as a minimisation problem. The objective is to:

Minimise ET = ((H · W) + 1) ·
∑n

t=1 TDt

where H is the number of hard constraint violations in the schedule, W is the weight of a

1Easton et al. observe in [ENT02] that the logical extremes of such a schedule, for each team, are an
arbitrary alternation of home and away matches or a long stretch of home matches followed by a Travelling
Salesman Problem -route through all away venues.

3. hyperheuristic framework and optimisation problems 45

Table 3.2: The NL6 Dataset

Match Distance to Match Venue
Venue 1 2 3 4 5 6

1 0 745 665 929 605 521
2 745 0 80 337 1090 315
3 665 80 0 380 1020 257
4 929 337 380 0 1380 408
5 605 1090 1020 1380 0 1010
6 521 315 257 408 1010 0

hard constraint violation relative to one unit of distance (W = 100 is common) and TDt is

the total distance travelled by team t during the schedule.

Sixteen instances of the problem exist. The real-world sports league which inspired

the formulation of the TTP had sixteen teams, and the first seven problem instances were

generated in 2001 by progressively removing fewer teams from this league; these instances

are labelled for the number of teams involved: NL4, NL6, NL8, NL10, NL12, NL14 and

NL16. In 2006, following an increase in interest in the problem, nine further instances were

generated, including a second instance with 16 teams (NL16-2) and eight instances with

progressively more teams added: NL18, NL20, NL22, NL24, NL26, NL28, NL30 and NL32.

The distance matrix of instance NL6 appears in Table 3.2.

Instances with four teams (such as NL4) are considered trivial (since only two

matches can occur each timeslot, and there are thus only 6! × 2 solutions to consider).

Instance NL6 has been solved to optimality, but is still considered a difficult problem; the

other instances have not been solved.

An example solution for instance NL6 appears in Table 3.3. For each match, the

home team is given by the row number and their opponent by the column number; the

3. hyperheuristic framework and optimisation problems 46

Home Away Team / Timeslot Timeslot / Match Venue Distance
Team 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 Travelled

1 - 8 3 4 7 5 3 2 1 1 1 5 1 1 6 4 4558
2 2 - 6 1 9 4 2 2 4 2 5 2 3 1 2 6 4974
3 1 7 - 9 10 2 3 3 1 5 4 2 3 6 3 3 3581
4 10 3 5 - 8 7 2 5 4 1 4 6 4 4 3 4 6241
5 6 5 4 2 - 1 5 5 6 5 5 5 1 4 2 3 4991
6 9 10 8 6 3 - 5 3 6 2 1 6 4 6 6 6 4684

Total Distance Travelled 29029

Table 3.3: An NL6 solution. In the first section of the table, each team (rows) plays its
home matches against the away teams (columns) in the specified timeslots. In the second
section, this corresponds to a schedule where each team will be located at the specified
venue at each timeslot (columns), thus each team is at home when playing home matches
and at other venues when playing away. In the third section, each team’s schedule has a
corresponding distance travelled.

corresponding table value is the number of the timeslot in which the match occurs. Thus

team 1 plays at home against team 2 in timeslot 8. It can be seen that teams 1 and 5 play at

team 5’s home venue in timeslot 6 and team 1’s home venue in timeslot 7, thus constituting

a repeater - in fact, timeslots 6 and 7 comprise three repeaters, involving all six teams. It

can also be seen that team 3 has four consecutive away matches in timeslots 3-6 (playing

against, in order, teams 1, 5, 4, and 2) and team 5 has four consecutive away matches in

timeslots 7-10 (against teams 1, 4, 2 and 3), thus breaching the upper boundary of the road

trip constraint. There are thus 5 hard constraint violations.

The final column of the table is the distance travelled by each team. The total

distance travelled is thus 29029 units.

The fitness of the initial solution in Table 3.3 is

ET = ((H · 100) + 1) ·
∑n

t=1 TDt = ((5 · 100) + 1) · 29029 = 14543529

3. hyperheuristic framework and optimisation problems 47

3.3.2 Other Approaches

The Travelling Tournament Problem was presented in [ENT01]. Easton et al. comment on

the applicability of exact methods, commenting that the Problem’s feasibility issues suggest

constraint satisfaction techniques as interesting while its optimisation techniques suggest

integer programming techniques, but that both approaches (summarised in the paper) have

difficulty with it.

Easton et al. continue in [ENT02] to present an integer programming and con-

straint programming hybrid approach. The approach begins with an analysis of each team’s

individual tour possibilities, producing a subset of optimal team tours which are branched-

and-priced and recombined.

Anagnostopoulos et al. successfully applied a simulated annealing approach to

the problem [AMHV03], producing for a long while some of the most optimal solutions

to several problem instances (NL8, NL12, NL14 and NL16). The approach utilises five

neighbourhoods to explore the search space (re-used in the approach presented here), and

reheats and objective function adjustments to reinvigorate the search. More recently Van

Hentenryck et al. have improved further on these solutions [Tri07].

Di Gaspero and Schaerf later applied a tabu search approach to the problem

[GS05]. An initial solution is created by randomly assigning teams and timeslots to a

tournament pattern generated from a so-called canonical pattern. Two recover-chain neigh-

bourhoods, borrowed from Anagnostopoulos et al., are used to explore the search space and

the tabu list takes into account all possible combinations of random values which result in

the same neighbourhood move.

3. hyperheuristic framework and optimisation problems 48

A hyperheuristic method based upon the ant algorithm hyperheuristic presented

in this thesis (as described in [BKO+03, BKS+05]) has also been successfully applied to the

problem [CKB07, Che07].

Approach NL6 NL8 NL10 NL12 NL14 NL16

Cardemil 40416 66037 118955 205894 308413
Dorrepaal 66369 119990 189759
Easton 23916 39721 312623

Langford 59436 112298 190056 272902
Lanchi, Lapierre and Laporte 138850 262010
Rottembourg and Laburthe 68691 143655 301113

Shen 281660
Trick 23978

Van Hentenryck 59583 110729 188728 261687
Zhang 39947 61608 119102 207075 293175

Chen 23916 40391 65168 123752 225169 321037

Table 3.4: Best results of approaches to the Travelling Tournament Problem, data provided
at [Tri07], with results from hyperheuristic approach by Chen provided at [Che07]. “Van
Hentenryck” is Anagnostopoulos, Michel, Van Hentenryck and Vergados

3.3.3 Hyperheuristic Approach

We represent a solution to the problem as an assignment of matches to timeslots. We are

able to guarantee partial feasibility in that we ensure all matches are always scheduled

in such a way that every team plays exactly one match per timeslot, but the absence of

repeaters, home stands and road trips is not guaranteed. A solution is considered fully

feasible if no hard constraints are violated.

We use a simple recursive algorithm to construct a partially feasible tournament

pattern (to borrow Di Gaspero and Schaerf’s term [GS05]) for the appropriate number of

teams, presented as follows:

• This algorithm creates a tournament pattern Pn for n teams (remember, n is even) by

3. hyperheuristic framework and optimisation problems 49

recursively producing a tournament pattern P ′
n for n

2 teams. At each level the teams
are halved and a mirrored schedule is created for both halves, and the remaining
timeslots of the schedule are created by rotating each team from one half with each
team from the other. Where n

2 is odd, we insert a “blank team” into each half, creating
a schedule for n

2 + 1 teams, and recombine them to remove the blanks.

• If n = 2, let the two teams play during the first timeslot. This is the terminal schedule.

• If n 6= 2, create a pattern P ′
n for n

2 or n
2 + 1 teams, as described here.

• Mirror pattern P ′
n, such that for any timeslot t and any pair of teams i and j playing

each other in pattern P ′
n, teams i + n

2 and j + n
2 also play each other at timeslot t.

• If n
2 is odd, remove the blanks from the mirrored half-schedules. This is done by

identifying, for all timeslots, the two teams scheduled to play against blank teams,
and pairing them against each other.

• Fill in the rest of the schedule by creating a rotation for each timeslot: In the first
timeslot, have team i play team i + n

2 + 1; in the second timeslot, have team i play
team i + n

2 + 2 and so on. If n
2 is even, the final week will be made up of matches

where team i plays team i + n
2 ; if n

2 is odd, these matches will already be scheduled
where teams initially scheduled to play blank teams have been scheduled against each
other.

This algorithm creates a schedule in which every team plays every other team

exactly once. A random permutation of the teams is created and assigned, such that teams

earlier in the ordering will be assigned as the home team in any match they must play against

a team later in the ordering, and the timetable is then mirrored for the corresponding away

matches. The timeslots are similarly permutated.

We use the same five low-level heuristics as Aganostopoulos et al. [AMHV03] in

our hyperheuristic framework. All five heuristics are non-deteministic.

Th1 selects two random teams, Ti and Tj , and swaps the scheduling of the two matches

in which these teams play, i.e. the operator finds the match in which Ti would play

at home against Tj and has Tj play at home instead, and similarly with the match in

which Tj had played at home against Ti.

Th2 selects two timeslots at random and swaps their matches over.

3. hyperheuristic framework and optimisation problems 50

Th3 selects two teams at random and swaps their schedules such that where Ti was assigned

to play a given opponent at a given venue in a given timeslot, Tj must now do so,

and vice versa (except during those timeslots in which the two teams would play each

other).

Th4 selects two timeslots at random, as in h2, and moves one random match from one

timeslot to the other. A recovery chain of swaps occur to restore partial feasibility.

At the extremes, this may mean that a match is swapped with its repeater, duplicating

the effect of Th1, or that every match between the timeslots is swapped, duplicating

the effect of Th2.

Th5 selects two teams at random and swaps part of their schedules across, with a recovery

chain effect similar to Th4, and logical extremes of Th1 and Th3.

Di Gaspero and Schaerf used only heuristics Th4 and Th5 in their approach.

Chen’s hyperheuristic approach [Che07] adds five greedy heuristics, corresponding to these

five, which consider every combination of timeslots and teams before choosing the best move.

We can infer that heuristics Th1 and Th2 must be able to explore all possible solutions to

instances involving four teams (such as NL4), but as such instances are trivial we do not

explore them here. However, we note that it is not intuitively apparent from these heuristics

that the entire solution space of the larger instances is available to the hyperheuristic.

3.4 Interface

The generic module of the hyperheuristic framework is termed the learning mechanism by

Soubeiga [Sou03], though several of the hyperheuristics described in that work involve no

3. hyperheuristic framework and optimisation problems 51

learning. This module is aware of solutions, evaluation functions and heuristics, but only in

a limited sense; solutions are objects; evaluation functions are means to determine whether

one solution is “better” (more complete, more feasible, more optimal) than another, but the

hyperheuristic has no means of analysing the evaluation function to determine how much

better; heuristics can be applied to solutions, discovering new solutions. The generic module

decides which of its available heuristics should be applied to any of its known solutions at

any given decision point.

We can express this process as a cycle, represented in Figure 3.2. A hyperheuristic

is provided with inputs including a set of initial solutions and must produce an output set of

solutions. A decision is made iteratively to either end the search or continue it; this decision

may be made based on the hyperheuristic achieving a certain level of solution quality (e.g.

optimality, feasibility) or on some pre-specified stopping condition (e.g. a given period of

time, a given number of heuristic calls, a given duration in which no absolute improvement

is made).

The decision phase of the cycle (the aforementioned decision point) is the phase in

which a combination of heuristics are selected and solutions are selected for those heuristics

to be applied to. It comprises both the processes of making the new choice and the learning

from previous choices.

The application phase of the cycle is outside the hyperheuristic’s control; it is the

phase of interaction between heuristics and the solution space which discovers new solutions

and new information about each heuristic to be assimilated during the next decision point.

These interactions are domain-dependent; sections 3.2 and 3.3 describe two domains and

3. hyperheuristic framework and optimisation problems 52

Figure 3.2: The Hyperheuristic Decision Cycle

the interaction each given heuristic will have with a given solution from that same domain.

The hyperheuristic does not have access to this domain-specific information.

The amount of domain-free information available is limited. Knowing the evalua-

tion values of the solutions encountered, the hyperheuristic can determine which of them is

most optimal2, whether a given heuristic has led the hyperheuristic to a better solution or

not, and by how much the solution quality has changed.

The hyperheuristic may know whether any given solution is complete or partial,

2or which might constitute a member of a Pareto front, in the event of multiple criteria, which we do not
consider in this thesis

3. hyperheuristic framework and optimisation problems 53

feasible or infeasible, and possibly optimal or sub-optimal. The problems we have described

earlier all involve complete solutions. It has been remarked that such factors should be taken

into account by the hyperheuristic. The Boundary Problem, first remarked upon by Gaw

et al. (authors of [GRK04]), points out that a compound evaluation function (such as the

that of the Travelling Tournament Problem) applies a large weight to the hard constraint

violations component, but the hyperheuristic has no way of knowing this. The danger is

that a heuristic may cross the boundary (e.g. by finding a feasible neighbour of an infeasible

solution) and be rewarded by a quantity corresponding to the quality improvement. The

following search iterations may then be confused: the rewarded heuristic may be expected

to produce an improvement of the same quantity which it can no longer achieve (and if

the heuristic is designed to only find more feasible solutions, the heuristic may never be

capable of producing an improvement), and equally the scale of the reward may prevent the

hyperheuristic from selecting any other heuristics for a time. The magnitude of the reward

may determine how long it will take for the hyperheuristic to adapt to its new environment.

Such adaptation may be more costly if the search requires the hyperheuristic to reconsider

solutions with hard constraint violations as means to escape local optima.

Not necessarily finally, the hyperheuristic may know how much processing time

was spent applying the heuristic to the solution, and therefore which heuristics might be

deemed quicker than others; the use of such heuristics might be promoted on the basis

that more heuristic calls can be made in an equivalent time period, and conceivably more

progress through a search space can be made. However, this has several drawbacks, not

least of which that a heuristic which requires more processing time might find better specific

3. hyperheuristic framework and optimisation problems 54

moves in the search space, justifying the time required for its use.

Furthermore, the amount of time taken does not depend on the nature of the

heuristic, but on its implementation by a programmer and the programming language,

compiler, operating system and hardware the program is to be run with. The heuristics used

in the problems presented in this thesis are such that the CPU time required to implement

most of them is recorded at less than 1 millisecond, which is the smallest unit of time this

programmer could find to measure such things by (using the C++ clock() function).

The importance of each of these factors is difficult to determine. Certainly the

knowledge of which solutions are most optimal is paramount to the overall running of the

program, but as the solution space remains unknowable to the hyperheuristic, it cannot be

known which (individual or combination) of the available heuristics, combined with which

of the known solutions, is best suited to encounter the next most optimal solution.

The choice of which solution to further explore at any point is also difficult. The-

oretically the hyperheuristic may memorise all the solutions it encounters and apply a valid

heuristic upon any of them, but memory may be limited3. Many of the hyperheuristics de-

scribed in Chapter 2 limit themselves to just a ‘current’ solution and one of its neighbours,

which it may accept or reject. If the neighbour is accepted it becomes the ‘current’ solution

of the following iteration.

The hypothesis of the choice function posits that different areas of a solution space

might possess characteristics making some heuristics more useful than others, and that this

usefulness would be measured in improvement. It can be readily imagined that heuristics

3A discussion of several facets of memory management in hyperheuristics, mostly concerning the relative
importance placed on decisions made and solutions found recently as opposed to long ago in a search, can
be found in [BBG+07]; the authors express concern that tuning an optimal importance parameter is a
time-consuming task, sensitive to the problem instances under examination.

3. hyperheuristic framework and optimisation problems 55

which intend to make infeasible solutions more feasible (by removing constraint violations,

for example) will be more useful in areas of the solution space where solutions are infeasible,

and these heuristics will be less useful in feasible areas.

3.5 On the Nature of Experiments

The primary objective of optimisation software is to find a solution of highest possible

quality or lowest possible penalty, with the secondary objective that it must be found in

a reasonable period of time. This remains true of software produced by hyperheuristic re-

search. It is, however, very difficult to compare the performance of different algorithms,

particularly where those algorithms have been written by different programmers with dif-

ferent levels of skill and different specific intentions, or where they are presented in papers

with page limits and compromised priorities and perhaps there is only enough space for

an objective value or CPU time for the best or average solution over a given number of

experiments.

These data are misleading. Papers often do not specify the initial solutions (except

where the technique is constructive, and the initial solution is implicitly empty, or the

construction technique is deterministic), so it is difficult to begin within the same ‘vicinity’

as the discovered best solution. Equally, the duration of an experiment is dependent to

some extent upon the speed of the computer running the program and the efficiency of the

compilation. For example, it may be more efficient to evaluate the effect of a heuristic upon

a solution and modify an objective value accordingly than to reevaluate the entire solution.

The process of outputting data accumulated by a program to text files also significantly

3. hyperheuristic framework and optimisation problems 56

extends the runtime of the program.

The platform on which the experiments are run is also a factor. The experiments

described in this thesis are executed on Pentium IV 1.8GHz 256MB RAM machines running

Windows XP Professional 2002 with Service Pack 2, using code written on and compiled

with Visual Studio C++ .NET (version 7.1.3088). This platform is incapable of calculat-

ing a measurement of duration to a more exact precision than milliseconds; some of our

heuristics appear to take less than one millisecond to run, but their durations appear as

0. Certain hyperheuristics must be adapted to avoid mathematical problems; the choice

function hyperheuristic, for example, evaluates heuristics by dividing their improvement by

their duration, so dividing by a duration of 0 is clearly impossible; we therefore assume

that where results of applications of the choice function have been presented [Sou03], the

program’s heuristics were slower than ours. Where necessary a duration is assumed to be

1 (millisecond) to avoid mathematical upsets.

This leads us to a crucial decision for our experiments: what should our stopping

criteria be? The slogan of hyperheuristics is “good enough, fast enough, cheap enough”,

directly implying that good results within a set reasonable amount of time are desired, and

that a time limit is an appropriate stopping condition; this is corroborated by [CKS01a,

KSC02], where a time limit was applied. But as already noted, a time limit is not of

greatest use when we wish to reproduce the results of others, or present work which can

be reproduced. The significant alternative is an evaluation limit, i.e. the hyperheuristic

must produce its result within a given number of heuristic calls, or must terminate when a

set number of heuristic calls fail to produce any better solutions; this provides reasonable

3. hyperheuristic framework and optimisation problems 57

replicability at the cost of not knowing exactly when the experiment will end. This means

that every heuristic call becomes more important; the experiments favour short sequences

of heuristics which may be take a long time to apply over long sequences of heuristics which

may be applied in a short period of time.

This makes it difficult to compare approaches with the literature. For example, we

notice that in [Sou03], variations in parameters meant that experiments involving the Sales

Summit Scheduling problem varied between 2300 and 9000 heuristic calls (Soubeiga does

not specify) in the 600 second time limit. Soubeiga’s results with the Project Presentation

Scheduling problem also had a 600 second stopping condition, as examined in [CKS02],

which was compared with Han’s HyperCLGA’s results following a preset number of gen-

erations [HK03b]; though a CPU time for the latter algorithm was provided, the variable

length of the chromosomes in that algorithm mean that the total number of heuristic calls

is impossible to determine. We use heuristic calls so that future researchers may replicate

the results presented here.

3.6 Conclusion

We have presented two scheduling problems from the literature, as they will be acknowledged

by the hyperheuristic framework. Results from previous approaches are presented as a

measure of the competitiveness of our hyperheuristics. In the next chapter we present the

algorithm of our new hyperheuristic.

58

Chapter 4

The Ant Algorithm Hyperheuristic:

Transliteration

4.1 Introduction

Chapter 2 describes several hyperheuristics inspired by popular metaheuristic methods.

In this chapter we introduce the first new hyperheuristic of this thesis, one based upon

another popular metaheuristic method: the ant algorithm technique introduced by Dorigo

et al. [DMC96].

As presented in that paper, the ant algorithm metaheuristic is inspired by the

real-life means by which ants adaptively derive the shortest route between important loca-

tions such as their nest and their current food sources, and communicate this information

between each other. The essential element of this communication is a substance known as

pheromone which the ants lay as they travel, and therefore the presence of greater quantities

of pheromone indicates a path well travelled; the pheromone decays over time, so a colony

must continue to traverse the route in order to maintain it; routes which become poor (e.g.

4. the ant algorithm hyperheuristic: transliteration 59

if a food source runs out) can be left to decay and other routes will become more prominent.

The paper applied the technique to the Travelling Salesman Problem, a well known

problem in the literature. Presented with a number of cities n and the n×n matrix d which

provides the travelling cost between every pair of cities, the objective is to find the shortest

route which visits every city once, returning to the starting city. Since even a symmetrical

n-city TSP instance1 has n−1!
2 possible routes2, the problem is NP-hard.

The ant algorithm metaheuristic created a network in which vertices represented

cities and the arcs between vertices represented the routes between cities. A colony of

ants is then distributed among the vertices of the network, and they traverse the arcs of

the network creating routes which can be evaluated at the end of the cycle when all of

the tours are complete, i.e. comprise every city. Each ant uses the distance matrix d to

probabilistically favour nearby cities over far away cities (as a heuristic evaluation of the

problem domain, this is known as “visibility”), and they use pheromone laid down by the

colony in previous cycles to favour arcs which were components of good tours over arcs

which were not. The ants are aided in their navigation by the ability to recall which cities

they have already visited and avoid them, restricting their choices and ensuring every cycle

ends with feasible if poor solutions. As the cycles continue, it is hoped that the colony’s

“experience” directs the ants towards good long-term component arcs and away from poor

arcs which appear good according to the domain information.

Our interest in the ant algorithm metaheuristic is its apparent qualities for cre-

1i.e., an instance with n cities and in which between every pair of cities i, j the travelling cost is the same
in both directions, dij = dji

2Any city can be first since the tour is circular. There are n− 1 potential second cities followed by n− 2
potential third cities, etc., but since the problem is symmetrical dij = dji and the tour can be navigated in
either direction, we divide by 2n

4. the ant algorithm hyperheuristic: transliteration 60

ating good sequences of moves. As a hyperheuristic is a constructor of algorithms, we are

interested in exploring and building good sequences of heuristics to apply. To begin our

investigation, we transliterate the ant algorithm metaheuristic as closely as we can to create

our first ant algorithm hyperheuristic.

4.2 Methodology

We create a network in which vertices represent heuristics, and directional transitional arcs

exist between heuristics if it is possible to apply one immediately after the other. We then

create a number of ants, each of which represents a hyperheuristic agent supplied with an

initial solution in the solution space and access to the heuristics and evaluation functions.

The ants are scattered uniformly among the vertices of the network, with any excess ants

being distributed randomly.

The ants then construct a sequence of heuristics by traversing the network. At each

decision point (or step), each ant selects the next vertex it will visit, traverses the arc to that

vertex, and applies the heuristic represented by that vertex to its current solution. Vertices

and arcs may freely recur within the sequence (i.e. in graph terminology, the sequence is a

walk).

After each ant has visited a certain number of heuristics, the ant pauses to analyse

the walk it has just traversed and to lay an amount of pheromone on each arc in that

path according to the improvement in the quality of the solution during the entire path.

Each ant proceeds to generate its next path. We use the term cycle to specify the time

taken between all ants beginning their paths and all ants completing their paths, and the

4. the ant algorithm hyperheuristic: transliteration 61

algorithm continues for as many cycles as is required.

The choice of heuristic at each step is determined by the combination of visibility

information and pheromonal experience, which, if we follow Dorigo’s example, are defined

by the domain. This is problematic, since our hyperheuristic framework has no domain

knowledge. The domain is of low-level heuristics and their ability to improve a solution,

which cannot be known in advance and must be predicted. We therefore choose to apply the

terms visibility and pheromone to their short- and long- term potential, respectively: the

visibility of heuristic j, which we write as ηj , represents the uniformly distributed current

confidence that heuristic j will lead to a good solution, and the pheromone on the arc

between heuristics i and j, which we write as τij , represents the confidence that applying

heuristics i and j in that order will lead to a good solution (illustrated in 4.1).

Figure 4.1: The information available at a decision point to guide the search to heuristic
hj .

Each cycle becomes an exploration of many heuristic routes through the solution

space, one route per ant. By the end of the cycle, a set of new solutions will have been

discovered, and a new best solution may have been found. Unlike the metaheuristic, the

4. the ant algorithm hyperheuristic: transliteration 62

ants cannot simply reset to a blank solution and a random vertex from which to begin a new

route at the beginning of the new cycle; since each sequence begins with a known solution,

we must continue to evaluate further moves from that solution and the vertex representing

the heuristic which discovered it, which becomes the starting point for new routes from that

solution.

Initial experiments assumed that all ants kept their solutions from cycle to cycle,

but taking their direction from the colony’s accumulated visibility and pheromone expe-

riences. These experiments performed rather poorly, and it was supposed that a colony

widespread across a large area of the solution space might in fact be providing contradic-

tory information on the heuristics they encountered because of their differing experiences.

Better results were found when the ants regrouped at the end of each cycle to the best

solution found by the colony in that cycle, and it was hypothesised that by restricting the

colony to a given area their collective information was being kept relevant and productive

to all. In practice this means that at the beginning of a cycle, the ants all relocate in the

solution space to the best solution found during the previous cycle and in the heuristic space

to the heuristic which discovered that solution.

We also consider that at the decision level an ant may find it useful to choose to

reject a new solution it discovers if the new solution is poorer than the ant’s current solution,

and backtrack: the walk taken by the ant through the heuristic space is less important than

the exploration of the solution space, and if a walk is poor then this ability may be required

to direct the ant to better places. For terminology purposes we refer to the ant’s movements

through the heuristic space as a journey which may be one walk, as intended, or may be

4. the ant algorithm hyperheuristic: transliteration 63

several branched walks if decisions have been backtracked. A cycle is measured by the size

of the journeys, not walk-lengths: the solutions at the end of the cycle may be one - or

not even one - heuristic move away from the solution at the beginning of the cycle if the

solutions discovered are poor.

For the purposes of learning, if a solution is rejected, we punish the visibility of

the heuristic which caused the detriment of solution quality but for the purposes of laying

pheromone we ignore the arc. That is, if an ant performs heuristics hx and hy, and hy leads

to a worse solution, the solution is rejected and the visibility of heuristic hy is punished.

If a third heuristic hz is chosen and leads to a better solution, pheromone will be laid on

journey arc (x, z) and not (x, y) or (y, z).

We use improvement as our acceptance criterion: if the new solution is an improve-

ment, the solution is accepted; if the new solution is not an improvement, the solution is

rejected. Without this criterion each ant / hyperheuristic agent is effectively an Any Moves

(AM) Hyperheuristic, i.e. the hyperheuristic accepts any heuristic move, regardless of any

improvement, at the decision level. With this criterion the ant / hyperheuristic agent is an

Only Improving (OI) Hyperheuristic. We distinguish here between hyperheuristic agents

and the overall hyperheuristic since the new cycle always begins from the best solution of

the previous cycle, allowing an Any Moves Ant Algorithm Hyperheuristic some form of

quality control. Previous research [Sou03] indicates that OI hyperheuristics may be more

restricted and more likely to be trapped within local optima, while at the decision level

there is nothing to prevent AM hyperheuristics from exploring areas of the solution space

of progressively lower quality; the difference in performance is sensitive to the problem

4. the ant algorithm hyperheuristic: transliteration 64

domain and the available heuristics.

4.3 Pseudocode

The ant algorithm hyperheuristic is outlined in the following pseudo-code:

1. Initialise
Initialise all variables.
Initialise a solution S0, and set best solution Sb := Si.

Set t := 0. {t is the heuristic calls counter}.

Set c := 0. {c is the cycle counter}.

Set n to be the number of available low level heuristics. Create a connected network
with n corresponding vertices.

Set m to be the number of ants. Scatter the ants uniformly on the n vertices.

For every vertex j := 1 to n do

- Set the initial value of ηj = 0. {Initialise visibility.}

Set LJ to be the length of an ant’s journey, and set p := 0. {Each cycle after the first
cycle can be measured as LJ · m heuristic calls in duration. p counts the number of
heuristic calls that each ant has taken.}

2. First Cycle

We seek to create initial visibility values, and find a solution S1 to begin the search.
The ants have no involvement in this cycle.

For j := 1 to n do

- Apply heuristic j to solution S0. Let the resulting solution be Sj .

- Update the visibility of heuristic j by updating ηj according to equation 4.1.

- If j = 1 or if Sj is better than S1, let S1 := Sj , such that S1 is the best solution
one heuristic move from S0. Let the starting vertex of the new cycle h1 := j.

- If S1 is better than Sb let Sb := S1.

For k := 1 to m do

- Provide the kth ant with a solution Sk such that Sk := S1.
- Move the kth ant to vertex hk := h1.

Set t := t + m.
Set c := 1.
Create a null solution Sc and null heuristic value hc to store the heuristic which
discovered solution Sc.

For every pair of vertices i, j, set an initial pheromone value to edge (i, j), τij(t) := 0.

3. Heuristic Exploration

In this phase, heuristics are chosen and applied, and solutions are accepted for further
exploration or rejected. All decisions use the same pheromone and visibility informa-
tion.
For k := 1 to m do

4. the ant algorithm hyperheuristic: transliteration 65

- If (t = tmax)

- Go to step 6.

- At decision point t, the kth ant is on vertex hk. Set vertex i := hk.

- Choose the heuristic j for ant k to move to, with probability probabilityijk(t)
given by equation 4.7.

- Apply heuristic j to solution Sk to produce S′
k.

The new solution is then evaluated for further exploration by this ant and by the
colony, and also saved if it is the best solution found so far.

- If (Sc is null or S′
k is better than Sc)

- Set Sc := S′
k. Set hc := j

- If (Only Improvement & S′
k is worse than Sk)

then
- Reject S′

k.

else
- Accept S′

k.

- Move ant k to vertex j {i.e. set hk := j}.

- Set Sk := S′
k.

- If (S′
k is better than Sb)

- Set Sb := S′
k.

4. Visibility Update

- For k := 1 to m do
- Update ηj according to equation 4.1.

- Set p := p + 1. {The ants have moved one step along their path.}

- Set t := t + m.

5. Pheromone Update

- If (LJ = p) {The ants have reached the end of their path.}

- Update τij(t) for all accepted arcs (i, j) according to equation 4.2.

- Set Sc := Sb {Select the best solution found during this cycle, for further
exploration in the next cycle}.

- For all ants, set hk := hb. {All ants begin the next cycle at the vertex which
produced their new current solution}.

- Set c := c + 1.
- Set p := 0. {Reset for new cycle.}
- Go to step 3.

6. Stopping Condition

7. Output best solution Sb.

8. Stop.

4. the ant algorithm hyperheuristic: transliteration 66

The approach is illustrated in Figures 4.2, 4.3, 4.4, 4.5 and 4.6. The colony arrives

in an area of the solution space, explores outwards in many different directions, communicate

their findings, and swarm to the most interesting (best quality) area found. If such an area

is not found the colony remains where they are and continues to explore. The higher the

number of ants, or the longer the colony remains in one area, the more intense the search

in that area, and equally the less the hyperheuristic sees of the overall search space.

4. the ant algorithm hyperheuristic: transliteration 67

Figure 4.2: Beginning of cycle (t = 0):
Three ants (small squares, numbered) lo-
cated at current best solution S in the solu-
tion space (bottom right of diagonal line in
figures) and the heuristic h1 (top-left num-
bered vertex of graph) in the heuristic space
(top left of diagonal line in figures) which
discovered solution S.

Figure 4.3: The ants explore (t = m): Ants
a1 and a2 choose heuristic h2 and ant a3

chooses heuristic h3. Ant a1 discovers a new
best solution (indicated by crosshairs). Vis-
ibility is updated for heuristics h2 and h3.

Figure 4.4: The ants explore (t = 2m): Ant
a1 stays at heuristic h2, a2 moves to h3 and
a3 moves to h2. a2 discovers a new best solu-
tion (indicated by relocated crosshairs). Vis-
ibility is updated for heuristics h2 and h3.

Figure 4.5: End of cycle (t = 3m = ml):
Ants a1 and a2 returns to h1 while ant a3 re-
turns to h3. Visibility is updated for heuris-
tics h1 and h3. No new best solution is found.
Pheromone is laid on paths a1 (1-2-2-1), a2

(1-2-3-1) and a3 (1-3-2-3). The ants relocate
to new best solution S discovered in the solu-
tion space and the heuristic which discovered
S, h3, in the heuristic space.

Figure 4.6: Beginning of next cycle (t =
ml): Three ants at current best solution S

in the solution space and the heuristic which
discovered S in the heuristic space, h3.

4. the ant algorithm hyperheuristic: transliteration 68

We use a visibility function inspired by the choice function hyperheuristic [CKS01a,

CKS02, Sou03], which uses information based on solo and sequential performance of the

different heuristics. As pheromone corresponds to the sequential performance, we use a

visibility function ηj corresponding to heuristic j’s individual performance, and update this

value after all ants have completed their moves:

ηj(t) = γηj(t − m) +
m

∑

k

Ikj(t)

Tkj(t)
(4.1)

where m is the number of ants in the colony (i.e. the number of heuristic calls made since the

last update), Ikj(t) is the improvement produced by heuristic j on ant k’s current solution

at decision point t (which could be negative), Tkj(t) is the amount of CPU time heuristic

j took to run on ant k’s current solution at decision point t and γ is a constant weight

valued between 0 and 1 which emphasises recent performance as a weight emphasising

recent performance. (The notation α is sometimes used (e.g. [Sou03]) within the solo factor

of the choice function. However, since both the choice function hyperheuristic and ant

algorithm technique make use of the symbols α and β to weigh contributing aspects, we use

γ and ρ for the corresponding aspects of the choice function hyperheuristic given here and

use α and β for aspects of the ant algorithm technique given below.)

Our visibility function draws upon the fact that all ants moving to a specific vertex

or traversing a specific arc add their visibility contributions together and with equal weight.

The choice function hyperheuristic [Sou03] also usually includes a diversification

contributor which encourages the use of heuristics which have not been recently used. Since

we use several ants, a probabilistic selection procedure and not many heuristics (in this

case, eight) we anticipate that there will already be sufficient diversity.

4. the ant algorithm hyperheuristic: transliteration 69

The ants share their confidence in the sequences of heuristics using pheromone,

which also decays to clear away older preferences and emphasise recent performance of low-

level heuristics. Once all ants have completed their paths (i.e. when the cycle is completed;

there are n heuristics and therefore n heuristic calls in a path for each ant, so this occurs

every m ·n heuristic calls), the amount of pheromone on each arc (denoted by τij(t) for the

arc between heuristic i and heuristic j at decision point t) is adjusted as follows:

τij(t) = (1 − ρ)τij(t − m · n) +
m

∑

k

#ij(Pk(t)) · I(Pk(t))

T (Pk(t))
(4.2)

where ρ is the pheromone evaporation coefficient, Pk(t) is the path ant k traversed during

the cycle ending at decision point t, #ij(Pk(t)) is the number of times the arc (i, j) occurs

during path Pk(t), I(Pk(t)) is the improvement produced by the heuristics ant k used during

its last path (i.e. the difference between the best solution quality found during this path

and the best solution quality found at the end of the previous cycle), and T (Pk(t)) is the

duration of that path in CPU time. Thus, for a given ant’s path, an arc traversed twice

in that path receives twice the amount of pheromone as an arc traversed once in the same

path.

The ant’s actual decision-making process requires the algorithm to combine the

visibility and pheromone values for each of the arcs the ant could potentially traverse into

a single positive value, in order to be properly used in a roulette probability system. This

becomes an issue when it is possible for one or more heuristics to find a solution of poorer

quality to the current solution, whether to escape local optima or otherwise encourage a

diverse search of the solution space. The issue is concerned with negative values of ηj or τij .

Our conversion process is borrowed from the choice function variant “RouletteFunction”

4. the ant algorithm hyperheuristic: transliteration 70

[CKS01a]. We first calculate a value V for each heuristic j, from the previous heuristic i,

using the formula:

Vij(t) = αηj(t) + βτij(t) (4.3)

From this we calculate a positive value (PV) using the formula

PVij(t) = max{Vij(t), QσVij(t)} (4.4)

where

Q =

∑

h max{0, Vih(t) + ǫ}

10 · n
(4.5)

(where h ∈ H, the set of low-level heuristics, and n = |H|), and ǫ and σ are constants

included to ensure that poor-performing heuristics have a small non-zero probability of

being selected, proportionally enhanced by Q if other heuristics are performing particularly

well. We set ǫ to 0.001 to give a small boost to heuristics whose value V = 0, and σ to

1.001 to ensure that is a monotonic conversion of V values to positive V values: negative

V values to the range 0 to 1, zero values to 1, and positive values to the range 1 to ∞.

We include two further safeguards to promote the choosing of heuristics and to

promote the exploration of arcs which may not yet have been selected:

If arc (i, j) has not yet been selected, i.e. PVij(t) = 0, we temporarily assign to

PVij(t) the value of PVih(t), where h ∈ H and (i, h) is the current highest-ranking arc in

the set of arcs beginning at vertex i and having been previously selected.

PVij(t) = max{maxh∈HPVih(t), 0} (4.6)

If none of the heuristics are performing well (Q = 0), we set all PV values to 1, such that

all heuristics have an equal probability of selection. Finally, the probability of any arc (i, j)

4. the ant algorithm hyperheuristic: transliteration 71

being selected is

probabilityijk(t) =
PVij(t)

∑

h∈H PVih(t)
(4.7)

4.4 Experiments and Results

4.4.1 Stopping Condition

The stopping condition used for the Project Presentation Scheduling Problem in [CKS02,

Sou03] was 600 seconds of CPU time on PC Pentium III 1.0GHz with 128MB RAM. In

[HK03b] the stopping condition was 200 generations of a genetic algorithm hyperheuristic in

which chromosome length was variable (the average CPU time came to 924 seconds). Since

in neither case was the number of heuristic calls made clear, we set a stopping condition

which can be easily duplicated by interested future researchers: 2000 heuristic calls, which

corresponded to 25-100 seconds using our current implementation. The disparity can be

accounted for by the output files our code produces in proportion to the number of heuristic

calls the hyperheuristics accept; without such output the experiments last approximately

13-24 seconds. The number of heuristic calls was determined by experimentation; it was

observed at 1000 calls that this number was insufficient to assess the learning capabilities

of the hyperheuristics.

There is no set stopping condition in the literature for the Travelling Tournament

Problem; most comparisons between approaches consider the best results found for each

problem instance. [Che07] provides a series of stopping conditions measured in seconds of

CPU time, but no arguments are provided as to why these times are considered “reasonable”;

however, in at least one instance (NL6) the optimal solution is found within 250 cycles,

4. the ant algorithm hyperheuristic: transliteration 72

which in that approach corresponds to 25,000 heuristic calls. Since our approach does not

utilise the greedy heuristics used by [Che07], we set a uniform stopping condition of 50,000

heuristic calls for all problem instances. This corresponds to a CPU time of 10-120 seconds

using our current implementation.

The question of what constitutes a ‘reasonable time’ has no easy answer. We set

an arbitrarily uniform number of heuristic calls for all instances rather than an a series

of arbitrary times to more easily compare the hyperheuristics’ performance with different

problem sizes.

4.4.2 Parameters

The networks traversed by the ants correspond in size to the number of heuristics used by

the hyperheuristic. As a default we use a number of ants equal to the number of vertices in

the theory that this will allow each heuristic to be explored equally at first, and a journey

length equal to the number of vertices in the theory that each ant may visit each heuristic

equally during a cycle. We then vary these two parameters.

In the ant algorithm metaheuristic the journey length is often specifically related

to the problem being solved, so we cannot use the metaheuristic as a predictor of how the

hyperheuristic’s performance will vary as its journey length varies. The number of ants,

however, has been explored in the literature to determine how well they converge in the

metaheuristic method [DMC96, BF03]. It is commonly understood that an optimal number

of ants will exist to converge upon good solutions in fewer cycles: if the colony is smaller

than this number, convergence will take longer (or may never occur); if the colony is larger,

convergence takes longer simply because of the extra processing requirements of the extra

4. the ant algorithm hyperheuristic: transliteration 73

ants.

We might predict, however, that a larger number of ants will find better solutions

than a smaller number of ants. Certainly we can anticipate that a larger number of ants

will intensify the search around a particular area of the solution space, and a larger journey

length will diversify the search area, considering many options in some definition of depth,

meaning the colony can cross the solution space with some higher measure of confidence in

its progress. However, both variables are constrained by the stopping condition of the search,

and the nature of the solution space: a search with fewer ants or shorter journey lengths

will be more directed, perhaps taking better advantage of areas of the search space where

improvement is easy and there is less need to intensify or diversify. The unpredictability of

the solution space also means that the heuristic network may never converge.

We use as variables the values 1, 2, 3, 4, 5, 6, 8, 10, 12 and 15. For each experiment

this value will correspond to either the journey length or the number of ants, with the other

variable assuming the number of heuristics as its value (8 for the PPSP, 5 for the TTP).

Every hyperheuristic was run 25 times on each of the problem instances described

for the Project Presentation Scheduling Problem and Travelling Tournament Problem in

chapter 3.

The hyperheuristics are the Simple Random Hyperheuristic (SR) presented in

[CKS02, Sou03] for comparative purposes and our Ant Algorithm Hyperheuristic with jour-

ney lengths of 1-15 heuristic calls, or 1-15 ants, using the above parameter range. The

hyperheuristics were also distinguished by their solution acceptance criteria: either the

hyperheuristic accepts Any Move (AM), or it accepts only improving moves (OI)3.

3Two probabilistic acceptance criterions were considered. The first was a simulated annealing criterion,

4. the ant algorithm hyperheuristic: transliteration 74

We assign to α, β, γ, ρ respectively the values 1, 1, 1
nb ,

1
nb . Early experiments did

not show any discernable patterns between the weights of visibility and pheromone, so we

assign both equal weights. We use a recency weight equal to 1
n

raised to the power of b,

where b is the number of heuristics not used during that particular step or cycle respectively:

this is intended to curb any excessive convergence towards particular heuristics or arcs.

The results presented in Tables 4.1-4.9 show the worst, mean average and best

results, with standard deviation, from each algorithm applied to the three problem instances.

The initial solution quality for each instance is provided at the top of the respective problem

instance’s column.

4.5 Analysis

It is evident that our results are an improvement upon previous results with the Project

Presentation Scheduling Problem, and they are competitive with prior results with the

Travelling Tournament Problem. It is also evident that the Ant Algorithm Hyperheuristic

results are not significantly better than the Simple Random Only Improving Hyperheuristic.

The most significant parameter seems to be the acceptance criterion. For smaller

instances of the Travelling Tournament Problem (NL6, NL8), better results were produced

by the Ant Algorithm Hyperheuristic variants which accepted Any Move. We hypothesise

that in smaller instances, where each heuristic move has a more significant effect upon the

whole solution, that navigating between poor and good solutions may be a less gradual and

more complex process (since it is more difficult to rearrange combinations of matches) and

using the same temperature function used by Bai and Kendall [BK03], but the results were not promising,
perhaps because the evaluation functions for our problems are not similar to those investigated by Bai and
Kendall. The second considered a uniform 0.1 probability of accepting a poorer solution, but this also did
not perform well. We therefore present the ‘extreme’ criteria in more detail.

4. the ant algorithm hyperheuristic: transliteration 75

Table 4.1: Results of hyperheuristic experiments on PPSP csit0

PPSP csit0 Initial Solution Quality -923.5

Algorithm Worst Average Best Std Dev

Simple Random
AM -1435.2 -1501.91 -1572.3 40.8726
OI -1577.5 -1628.31 -1679.5 25.8409

Ant Algorithm
Walk 1 AM -1591.7 -1651.09 -1705.5 28.8323
Walk 2 AM -1571.5 -1633.3 -1706.5 28.6762
Walk 3 AM -1556.6 -1625.38 -1685.5 27.3817
Walk 4 AM -1540.5 -1604.09 -1656.6 22.8344
Walk 5 AM -1526.5 -1599.48 -1647. 36.5515
Walk 6 AM -1544.5 -1605.94 -1654.7 27.1519
Walk 8 AM -1510.5 -1585.21 -1634.6 28.3266
Walk 10 AM -1535.7 -1592.14 -1634.8 24.1182
Walk 12 AM -1552.6 -1591.65 -1621.9 19.5958
Walk 15 AM -1517.5 -1573.03 -1601.7 21.0011

Walk 1 OI -1568.5 -1631.02 -1706.5 32.0964
Walk 2 OI -1594.5 -1634.64 -1676.5 23.1991
Walk 3 OI -1596.5 -1630.14 -1674.5 20.2975
Walk 4 OI -1578.5 -1621.6 -1684. 27.0170
Walk 5 OI -1583.5 -1624.6 -1670.5 20.3726
Walk 6 OI -1587.5 -1622.62 -1682.5 27.3242
Walk 8 OI -1541.5 -1608.3 -1644.5 25.9487
Walk 10 OI -1550.5 -1607.71 -1651.5 23.6604
Walk 12 OI -1544.5 -1599.02 -1654.5 27.5774
Walk 15 OI -1526.5 -1595.67 -1628.6 25.5680

Ants 1 AM -1444.8 -1527.07 -1626.6 47.1358
Ants 2 AM -1501.4 -1562.39 -1620. 29.8085
Ants 3 AM -1556.6 -1587.5 -1639.9 23.2994
Ants 4 AM -1562.6 -1591.33 -1624.9 18.7289
Ants 5 AM -1567.3 -1595.91 -1636.8 19.4275
Ants 6 AM -1564.5 -1598.46 -1646.5 20.4436
Ants 8 AM -1510.5 -1585.21 -1634.6 28.3266
Ants 10 AM -1542.5 -1589.34 -1628.7 20.8125
Ants 12 AM -1543.5 -1589.98 -1626.7 19.7295
Ants 15 AM -1507.6 -1569.45 -1608.7 21.7556

Ants 1 OI -1571.5 -1638.62 -1694.5 29.0174
Ants 2 OI -1581.5 -1637.27 -1689.5 25.7529
Ants 3 OI -1588.5 -1627.56 -1711. 29.2148
Ants 4 OI -1551.5 -1623.06 -1686.5 31.7321
Ants 5 OI -1563.5 -1618.66 -1707.6 32.3414
Ants 6 OI -1557.5 -1615.42 -1669.5 23.4018
Ants 8 OI -1541.5 -1608.3 -1644.5 25.9487
Ants 10 OI -1562.5 -1601.42 -1642.5 20.4047
Ants 12 OI -1553.5 -1591.34 -1633.5 20.0347
Ants 15 OI -1529.6 -1582.14 -1622.5 20.6793

4. the ant algorithm hyperheuristic: transliteration 76

Table 4.2: Results of hyperheuristic experiments on PPSP csit1

PPSP csit1 Initial Solution Quality -2569.2

Algorithm Worst Average Best Std Dev

Simple Random
AM -2565.2 -2640.36 -2733.4 41.4692
OI -2979.5 -3014.97 -3057.2 20.8223

Ant Algorithm
Walk 1 AM -2948.9 -2994.38 -3042.4 24.9487
Walk 2 AM -2940.4 -2996.28 -3045.8 28.4924
Walk 3 AM -2898.3 -2977.08 -3018.5 28.474
Walk 4 AM -2910.8 -2970.38 -3009.9 28.9758
Walk 5 AM -2917.9 -2971.33 -3007.2 19.5272
Walk 6 AM -2898.8 -2956.28 -2999.5 25.3555
Walk 8 AM -2903.8 -2958.22 -3011.2 26.4597
Walk 10 AM -2897.5 -2946.39 -3019.7 27.4118
Walk 12 AM -2886.2 -2938.35 -2973.8 22.0361
Walk 15 AM -2891.8 -2932.19 -2963.7 20.2987

Walk 1 OI -2985.1 -3018.64 -3055.1 19.8189
Walk 2 OI -2965.8 -3014.63 -3051.4 23.0934
Walk 3 OI -2971.4 -3016.72 -3048.1 20.4465
Walk 4 OI -2988.7 -3017.58 -3043.8 15.4106
Walk 5 OI -2946.5 -3002.6 -3035.8 22.7509
Walk 6 OI -2966.4 -3011.83 -3038.6 17.7385
Walk 8 OI -2958.1 -3007.08 -3046.5 23.6488
Walk 10 OI -2951.5 -3004.02 -3033.5 18.5417
Walk 12 OI -2926.6 -2999.24 -3046.9 24.7890
Walk 15 OI -2925.6 -2988.78 -3049.9 26.6906

Ants 1 AM -2696. -2788.36 -2912.6 55.1199
Ants 2 AM -2818.6 -2884.95 -2930.4 30.9963
Ants 3 AM -2875.7 -2922.73 -2986.1 30.2043
Ants 4 AM -2899. -2929.41 -2976.6 21.8730
Ants 5 AM -2894.5 -2946.56 -2993.9 21.8722
Ants 6 AM -2893.9 -2942.77 -2990.5 19.6484
Ants 8 AM -2903.8 -2958.22 -3011.2 26.4597
Ants 10 AM -2892.5 -2948.15 -2982.0 24.2996
Ants 12 AM -2884.1 -2951.58 -2991.1 22.9304
Ants 15 AM -2902.1 -2952.02 -3002.9 24.6677

Ants 1 OI -2972. -3012.42 -3053.1 21.0041
Ants 2 OI -2972.8 -3009.88 -3043.3 19.3318
Ants 3 OI -2966.5 -3011.8 -3045.9 21.4388
Ants 4 OI -2963.8 -3014.28 -3043.5 20.6366
Ants 5 OI -2962.8 -3014.47 -3045.2 20.7113
Ants 6 OI -2940.3 -3009. -3046.9 25.193
Ants 8 OI -2958.1 -3007.08 -3046.5 23.6488
Ants 10 OI -2952.4 -3004.11 -3028.9 19.6163
Ants 12 OI -2969.7 -3000.06 -3048.8 20.7332
Ants 15 OI -2952.4 -2997.97 -3040.2 20.1767

4. the ant algorithm hyperheuristic: transliteration 77

Table 4.3: Results of hyperheuristic experiments on PPSP csit2

PPSP csit2 Initial Solution Quality -950.1

Algorithm Worst Average Best Std Dev

Simple Random
AM -947.1 -1227.42 -1459.1 110.7607
OI -1769.0 -1805.61 -1849.7 23.4332

Ant Algorithm
Walk 1 AM -1772.1 -1812.11 -1852. 22.6337
Walk 2 AM -1758.8 -1802.94 -1868.7 30.4228
Walk 3 AM -1742. -1799.47 -1854.5 24.2981
Walk 4 AM -1709.5 -1787.78 -1862. 36.1648
Walk 5 AM -1726.6 -1784.28 -1846.1 33.8598
Walk 6 AM -1689.2 -1777.11 -1837.8 37.8003
Walk 8 AM -1732.5 -1783.29 -1824.7 23.0408
Walk 10 AM -1655.1 -1768.45 -1821.9 39.1636
Walk 12 AM -1658.7 -1756.64 -1828.4 38.3514
Walk 15 AM -1696.7 -1753.28 -1780.2 21.7413

Walk 1 OI -1774.4 -1822.76 -1853.5 18.4260
Walk 2 OI -1798.3 -1832.47 -1863.1 18.3761
Walk 3 OI -1798.4 -1830.57 -1869.2 17.7299
Walk 4 OI -1776.1 -1828.49 -1884.7 24.4283
Walk 5 OI -1754.2 -1818.01 -1870.8 27.1554
Walk 6 OI -1755.4 -1818.52 -1860.4 26.2754
Walk 8 OI -1726.4 -1805.9 -1871.9 35.1381
Walk 10 OI -1715. -1807.11 -1872.7 38.1785
Walk 12 OI -1631.1 -1805.08 -1860.9 49.2653
Walk 15 OI -1732.2 -1807.68 -1860.5 33.7839

Ants 1 AM -1425.6 -1562.18 -1690.1 67.4259
Ants 2 AM -1624.5 -1692.21 -1789.1 44.1620
Ants 3 AM -1669.3 -1730.62 -1786. 28.0092
Ants 4 AM -1634.8 -1743.1 -1801.8 39.5615
Ants 5 AM -1698.5 -1761.58 -1817.1 29.4995
Ants 6 AM -1748.7 -1772.91 -1808.1 17.2012
Ants 8 AM -1732.5 -1783.29 -1824.7 23.0408
Ants 10 AM -1718.4 -1779.78 -1848.7 34.6732
Ants 12 AM -1708.8 -1786. -1841.7 33.5877
Ants 15 AM -1728. -1780.16 -1827.1 27.1093

Ants 1 OI -1732. -1798.1 -1836.4 24.8418
Ants 2 OI -1781. -1815.52 -1849.7 18.7222
Ants 3 OI -1773.5 -1821.26 -1873.4 24.0217
Ants 4 OI -1768.4 -1819.25 -1854.7 20.8857
Ants 5 OI -1744.9 -1819.62 -1883.3 28.4655
Ants 6 OI -1727.3 -1813.94 -1879.7 32.8732
Ants 8 OI -1726.4 -1805.9 -1871.9 35.1381
Ants 10 OI -1706. -1805.8 -1861.1 39.5718
Ants 12 OI -1781.4 -1827.64 -1863.7 19.5716
Ants 15 OI -1696.2 -1804.83 -1858.4 35.3243

4. the ant algorithm hyperheuristic: transliteration 78

Table 4.4: Results of hyperheuristic experiments on TTP NL6

TTP NL6 Initial Solution Quality 14543529

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 1 28079 27476.88 26624 437.2495
OI 1 27751 25830.4 24764 795.2817

Ant Algorithm
Walk 1 AM 1 26003 25320. 24863 255.2966
Walk 2 AM 1 25638 25138.96 24414 318.4340
Walk 3 AM 1 25752 25146.52 24073 398.1296
Walk 4 AM 1 25915 25245.76 24482 369.6499
Walk 5 AM 1 25876 25130.92 24174 346.7888
Walk 6 AM 1 25814 25317.16 24819 294.4586
Walk 8 AM 1 26056 25385.44 24341 392.8626
Walk 10 AM 1 25848 25290.72 24482 315.7063
Walk 12 AM 1 26365 25461.68 24467 367.7022
Walk 15 AM 1 26019 25454.76 24568 403.2211

Walk 1 OI 1 28312 26364.56 24912 876.5729
Walk 2 OI 1 27514 26203.48 25111 656.0087
Walk 3 OI 1 28772 26332.56 24702 1082.375
Walk 4 OI 1 27898 26187.16 24897 697.3544
Walk 5 OI 1 28032 26136.8 25024 790.8755
Walk 6 OI 1 28647 26313.88 24660 953.6941
Walk 8 OI 1 28756 26464.24 24872 1137.7692
Walk 10 OI 1 27374 25976.92 24085 1001.0698
Walk 12 OI 1 28148 26307.52 24691 847.4637
Walk 15 OI 1 28237 26174.32 24498 928.7251

Ants 1 AM 1 27564 26800.56 25673 521.7133
Ants 2 AM 1 26865 26085.52 25308 343.0368
Ants 3 AM 1 26216 25763.56 25217 282.3181
Ants 4 AM 1 26176 25477.16 24787 329.7352
Ants 5 AM 1 25876 25130.92 24174 346.7888
Ants 6 AM 1 25541 25033.8 24122 350.5503
Ants 8 AM 1 25241 24904.56 24101 286.3545
Ants 10 AM 1 25155 24768.92 24101 235.8917
Ants 12 AM 1 24994 24567.88 23916 376.2859
Ants 15 AM 1 24895 24508.04 24073 338.5663

Ants 1 OI 1 29738 26474. 24930 1104.9491
Ants 2 OI 1 28443 26462.68 25226 846.0113
Ants 3 OI 1 28170 26189.68 24757 905.6618
Ants 4 OI 1 27147 26010.48 24316 752.8346
Ants 5 OI 1 28032 26136.8 25024 790.8755
Ants 6 OI 1 28248 26154. 24122 969.1071
Ants 8 OI 1 28897 26235.44 24764 947.4623
Ants 10 OI 1 28212 26133.36 24961 918.9631
Ants 12 OI 1 28642 26464.76 24660 868.2422
Ants 15 OI 1 28170 26213.28 25008 760.5940

4. the ant algorithm hyperheuristic: transliteration 79

Table 4.5: Results of hyperheuristic experiments on TTP NL8

TTP NL8 Initial Solution Quality 37843485

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 0.88 64066 54563.31818 51458 1971.1537
OI 1 49276 46762.4 44597 1468.8997

Ant Algorithm
Walk 1 AM 1 49744 48496.04 46978 708.375
Walk 2 AM 1 49337 48482.2 47029 548.7991
Walk 3 AM 1 49820 48649.48 47415 593.0757
Walk 4 AM 1 49654 48549.48 46961 623.9252
Walk 5 AM 1 50004 48825.28 48109 393.2408
Walk 6 AM 1 49161 48450.64 47023 541.109
Walk 8 AM 1 50386 48786.72 46523 858.3282
Walk 10 AM 1 50197 49123.48 47861 671.3261
Walk 12 AM 1 50478 49361.92 48132 644.4752
Walk 15 AM 1 50386 49151.32 47857 625.111

Walk 1 OI 1 49539 46337.72 43367 1357.758
Walk 2 OI 1 49282 46484.56 44120 1412.441
Walk 3 OI 1 49063 46517.24 44105 1336.479
Walk 4 OI 1 49428 46870.36 43583 1360.237
Walk 5 OI 1 49632 46806.24 43851 1569.536
Walk 6 OI 1 50036 47154. 43495 1939.19
Walk 8 OI 1 49092 46166. 43918 1376.718
Walk 10 OI 1 48560 46466.6 44543 1110.464
Walk 12 OI 1 48074 46441.76 44340 1125.66
Walk 15 OI 1 48444 46342.64 43999 1090.929

Ants 1 AM 1 53277 51924.12 49866 1007.496
Ants 2 AM 1 52276 50451.6 49005 827.0229
Ants 3 AM 1 50594 49650.44 48232 730.5825
Ants 4 AM 1 50607 49242.16 48003 556.4624
Ants 5 AM 1 50004 48825.28 48109 393.2408
Ants 6 AM 1 49558 48511.32 47319 512.2413
Ants 8 AM 1 48841 47732.12 46392 652.8189
Ants 10 AM 1 48038 46999.76 45259 604.0355
Ants 12 AM 1 47899 46528.68 44352 792.7951
Ants 15 AM 1 46543 45549.32 43799 661.0142

Ants 1 OI 1 48554 46379.72 43418 1355.602
Ants 2 OI 1 49992 46987.96 45344 1053.496
Ants 3 OI 1 50543 46516.6 43617 1798.061
Ants 4 OI 1 50019 46565.92 42268 1663.134
Ants 5 OI 1 49632 46806.24 43851 1569.536
Ants 6 OI 1 48889 46503.56 43875 1473.801
Ants 8 OI 1 48629 46439.6 43475 1299.068
Ants 10 OI 1 48157 46452.56 43231 1272.165
Ants 12 OI 1 51140 46721.96 41927 1919.073
Ants 15 OI 1 49133 46699.88 44567 1244.145

4. the ant algorithm hyperheuristic: transliteration 80

Table 4.6: Results of hyperheuristic experiments on TTP NL10

TTP NL10 Initial Solution Quality 109205729

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 0 N/A N/A N/A N/A
OI 1 78223 74621.44 71751 1430.4891

Ant Algorithm
Walk 1 AM 1 82888 81461.36 78501 1069.2986
Walk 2 AM 1 82148 80747.28 78791 903.4730
Walk 3 AM 1 82016 80919.12 79534 564.0752
Walk 4 AM 1 82790 80996.08 78849 1179.3563
Walk 5 AM 1 83761 81527.04 78013 1200.7146
Walk 6 AM 1 82985 81485.92 79049 890.6493
Walk 8 AM 1 83867 81623.64 78834 1277.2395
Walk 10 AM 1 83980 82038.88 78825 1331.2025
Walk 12 AM 1 83696 82102.76 79608 1146.6463
Walk 15 AM 1 84429 82842.84 80644 984.6959

Walk 1 OI 1 78122 74416.88 70398 1926.2356
Walk 2 OI 1 77711 74035.84 71844 1525.2572
Walk 3 OI 1 77894 74800.64 70862 1804.0835
Walk 4 OI 1 79248 74977.84 71822 2072.2391
Walk 5 OI 1 78451 73896.44 70326 2289.2381
Walk 6 OI 1 78034 74842.8 69371 2332.5750
Walk 8 OI 1 77335 74845.76 70590 1900.7698
Walk 10 OI 1 76976 74367.36 70944 1764.5179
Walk 12 OI 1 77355 73746.68 69232 2004.0665
Walk 15 OI 1 80661 75120.56 70350 2350.3205

Ants 1 AM 0.4 91732 88827.9 85445 2187.8354
Ants 2 AM 1 87958 85769.96 81536 1730.7096
Ants 3 AM 1 86225 83836.56 81190 1272.6047
Ants 4 AM 1 84075 82340.72 80651 994.3796
Ants 5 AM 1 83761 81527.04 78013 1200.7146
Ants 6 AM 1 82124 80117.12 77757 1017.1860
Ants 8 AM 1 80757 79291.64 77296 943.5420
Ants 10 AM 1 79573 78430.2 76825 833.2785
Ants 12 AM 1 78885 77522.96 75218 1038.3874
Ants 15 AM 1 79047 76225.68 72427 1486.4667

Ants 1 OI 1 78335 74523.52 69524 1903.2437
Ants 2 OI 1 77628 74273.12 70962 2142.0537
Ants 3 OI 1 77753 73574.04 70183 1891.2578
Ants 4 OI 1 79495 74811.08 71225 1865.0947
Ants 5 OI 1 78451 73896.44 70326 2289.2381
Ants 6 OI 1 79131 74401.48 70288 1906.7778
Ants 8 OI 1 78373 74185.04 70847 1800.6708
Ants 10 OI 1 78125 74369.6 71767 2034.4617
Ants 12 OI 1 78555 74686.32 69393 2216.9293
Ants 15 OI 1 79526 74175.84 71343 1910.7094

4. the ant algorithm hyperheuristic: transliteration 81

Table 4.7: Results of hyperheuristic experiments on TTP NL12

TTP NL12 Initial Solution Quality 167249082

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 0 N/A N/A N/A N/A
OI 1 144821 140142.2 133971 2901.7612

Ant Algorithm
Walk 1 AM 1 160721 157864.2 152670 1993.1797
Walk 2 AM 1 158541 156242.4 153635 1318.5318
Walk 3 AM 1 159236 156084.44 153843 1441.4126
Walk 4 AM 1 159049 156760.68 152946 1369.3619
Walk 5 AM 1 160472 157357. 152909 2074.8852
Walk 6 AM 1 160616 157727.56 153612 2071.5457
Walk 8 AM 1 161347 157935.68 151735 2467.7512
Walk 10 AM 1 163183 158600.88 154358 2093.9785
Walk 12 AM 1 162303 157606.76 152306 2659.6714
Walk 15 AM 1 163849 159371.36 155344 2325.8013

Walk 1 OI 1 146630 139251.44 134774 2863.1470
Walk 2 OI 1 147061 139637.96 134336 3183.1573
Walk 3 OI 1 142344 138548.52 134429 2366.4988
Walk 4 OI 1 148479 139167.04 131119 3274.1683
Walk 5 OI 1 144252 138678.52 132967 3674.3645
Walk 6 OI 1 143802 138417.16 132888 2910.0837
Walk 8 OI 1 145831 138708.92 132840 3584.3257
Walk 10 OI 1 143760 140214.76 135529 2208.0302
Walk 12 OI 1 142494 138506.04 130882 2976.8130
Walk 15 OI 1 144524 138785.88 133113 3051.4636

Ants 1 AM 0 N/A N/A N/A N/A
Ants 2 AM 0.16 171488 168276. 166142 2305.6416
Ants 3 AM 0.84 170518 164881.43 157580 3613.3551
Ants 4 AM 1 164495 159903.96 156491 1747.5693
Ants 5 AM 1 160472 157357. 152909 2074.8852
Ants 6 AM 1 158210 155279.04 150988 1944.6478
Ants 8 AM 1 155828 152892.68 148559 1717.3584
Ants 10 AM 1 155149 151441.68 148283 1573.6915
Ants 12 AM 1 152201 149359.2 144314 1730.4543
Ants 15 AM 1 149643 147006.52 143758 1646.5030

Ants 1 OI 1 146778 139879.28 133900 3257.8374
Ants 2 OI 1 145335 139368.24 133451 3064.0604
Ants 3 OI 1 146228 139000.56 133627 3231.2777
Ants 4 OI 1 145466 139482.08 133650 2980.9798
Ants 5 OI 1 144252 138678.52 132967 3674.3645
Ants 6 OI 1 144624 139155.08 133368 2881.0030
Ants 8 OI 1 144597 138814.64 133314 2725.8786
Ants 10 OI 1 146226 139072.2 133987 2715.8464
Ants 12 OI 1 144786 139465.4 134473 2652.3808
Ants 15 OI 1 143150 139020.48 134073 2486.4675

4. the ant algorithm hyperheuristic: transliteration 82

Table 4.8: Results of hyperheuristic experiments on TTP NL14

TTP NL14 Initial Solution Quality 1119914601

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 0 N/A N/A N/A N/A
OI 1 269110 257624.04 240682 6145.0393

Ant Algorithm
Walk 1 AM 0.88 329540 312675.55 297199 7990.8335
Walk 2 AM 1 321097 308688.24 299710 4948.4843
Walk 3 AM 0.92 321148 307239.83 295465 5846.6848
Walk 4 AM 0.88 322563 310875.5 302231 5946.5912
Walk 5 AM 0.96 327442 311170.17 297808 6663.6552
Walk 6 AM 0.84 321105 310955.33 302521 4953.0762
Walk 8 AM 0.84 319789 311672.81 302571 4707.1812
Walk 10 AM 0.6 325199 310111.93 298132 7634.9510
Walk 12 AM 0.68 328056 313715.41 297267 8070.8762
Walk 15 AM 0.52 334736 314578.92 300959 9413.9231

Walk 1 OI 1 268793 254862.2 241725 6331.9080
Walk 2 OI 1 267338 257314.72 243799 5419.4586
Walk 3 OI 1 273663 259026.24 245097 6692.8835
Walk 4 OI 1 268897 255737.48 248115 5230.1004
Walk 5 OI 1 262681 255873.16 244899 4624.9625
Walk 6 OI 1 265322 256470.04 247415 5268.5600
Walk 8 OI 1 269456 257231.36 243732 6694.7915
Walk 10 OI 1 267115 258187.04 245384 5390.0410
Walk 12 OI 1 267935 256747.36 244833 5694.0958
Walk 15 OI 1 275047 258472.88 248274 7008.8409

Ants 1 AM 0 N/A N/A N/A N/A
Ants 2 AM 0 N/A N/A N/A N/A
Ants 3 AM 0.04 315147 315147. 315147 0.
Ants 4 AM 0.4 323916 314374.2 308499 4926.0399
Ants 5 AM 0.96 327442 311170.17 297808 6663.6552
Ants 6 AM 1 314173 303469.48 293544 5754.3674
Ants 8 AM 1 303214 295779.04 288797 4299.8869
Ants 10 AM 1 300707 292246.64 281884 3963.0758
Ants 12 AM 1 293063 288161.56 284608 2317.0944
Ants 15 AM 1 289398 284169.92 274064 3309.9727

Ants 1 OI 1 268188 256387.28 244933 5102.6474
Ants 2 OI 1 272436 258657.24 247986 5695.1191
Ants 3 OI 1 265604 256585.04 250861 4103.1104
Ants 4 OI 1 266821 256285.52 240420 6837.4183
Ants 5 OI 1 262681 255873.16 244899 4624.9625
Ants 6 OI 1 267337 256445.12 242379 5424.9703
Ants 8 OI 1 269558 256110.52 244421 6406.7977
Ants 10 OI 1 269383 257691.08 248553 5523.0908
Ants 12 OI 1 269668 255773.56 243812 6336.7079
Ants 15 OI 1 263088 254581.48 243301 4944.9591

4. the ant algorithm hyperheuristic: transliteration 83

Table 4.9: Results of hyperheuristic experiments on TTP NL16

TTP NL16 Initial Solution Quality 1221354386

Algorithm Feasible Worst Average Best Std Dev

Simple Random
AM 0 N/A N/A N/A N/A
OI 1 375219 360151.36 347867 7522.4159

Ant Algorithm
Walk 1 AM 0.08 453696 449849. 446002 5440.4796
Walk 2 AM 0.2 469496 454039.2 445269 9480.6150
Walk 3 AM 0.16 469819 461689.25 450980 7892.8782
Walk 4 AM 0.2 479047 458948.8 449390 11893.9033
Walk 5 AM 0.16 460596 452720.75 436083 11485.0679
Walk 6 AM 0.16 460684 452629.5 443601 7006.1469
Walk 8 AM 0.04 460593 460593. 460593 0.
Walk 10 AM 0 N/A N/A N/A N/A
Walk 12 AM 0.04 465525 465525. 465525 0.
Walk 15 AM 0.08 453636 448560.5 443485 7177.8409

Walk 1 OI 1 379950 359985.24 347806 7619.6647
Walk 2 OI 1 380596 358714.12 347282 8350.9690
Walk 3 OI 1 365361 356255.76 344383 6195.7061
Walk 4 OI 1 382754 359725.32 336559 9949.1627
Walk 5 OI 1 375577 357308.08 345735 7526.1796
Walk 6 OI 1 369571 355987.4 343016 6204.9955
Walk 8 OI 1 389185 362115.68 345895 8863.5678
Walk 10 OI 1 381162 357676.32 343614 9056.1298
Walk 12 OI 1 374744 360188.16 344976 7156.3800
Walk 15 OI 1 369129 356472.52 339960 9137.9080

Ants 1 AM 0 N/A N/A N/A N/A
Ants 2 AM 0 N/A N/A N/A N/A
Ants 3 AM 0 N/A N/A N/A N/A
Ants 4 AM 0 N/A N/A N/A N/A
Ants 5 AM 0.16 460596 452720.75 436083 11485.0679
Ants 6 AM 0.32 463674 450990.94 441726 6260.1382
Ants 8 AM 0.96 452532 437044.38 418541 7224.3063
Ants 10 AM 1 440205 427446.28 414560 6321.8593
Ants 12 AM 1 427413 420330.32 410945 3934.5627
Ants 15 AM 1 422898 412065.48 405400 4903.7795

Ants 1 OI 1 367191 356433. 341186 7961.3168
Ants 2 OI 1 368269 357106.4 345306 7608.7133
Ants 3 OI 1 373484 358680.56 338989 7825.1795
Ants 4 OI 1 372243 356575.44 340575 8182.2554
Ants 5 OI 1 375577 357308.08 345735 7526.1796
Ants 6 OI 1 367063 355508.68 335959 8492.8521
Ants 8 OI 1 375775 357903.4 343265 8436.6125
Ants 10 OI 1 389207 359623.04 342688 9349.3469
Ants 12 OI 1 369670 357023.8 340097 7837.6556
Ants 15 OI 1 366642 356533.52 343522 5979.5856

4. the ant algorithm hyperheuristic: transliteration 84

Approach csit0 csit1 csit2 Time

Soubeiga, Random HH [Sou03] -1193.19 -2880.93 -1614.11 600
Soubeiga, Choice Function HH [Sou03] -1444.99 -2963.37 -1724.15 600
Han and Kendall, HyperGA [HK03b] -1453.32 924

O’Brien, Random HH -1628.31 -3014.97 -1805.61 24-13
O’Brien, Ant Algorithm HH -1651.09 -3018.64 -1832.47 24

Table 4.10: Averaged results of approaches to the Project Presentation Scheduling Prob-
lem. Results from other papers are above the horizontal dividing line; results from this
thesis are below that line.

Approach NL6 NL8 NL10 NL12 NL14 NL16

Cardemil 40416 66037 118955 205894 308413
Dorrepaal 66369 119990 189759
Easton 23916 39721 312623

Langford 59436 112298 190056 272902
Lanchi, Lapierre and Laporte 138850 262010
Rottembourg and Laburthe 68691 143655 301113

Shen 281660
Trick 23978

Van Hentenryck 59583 110729 188728 261687
Zhang 39947 61608 119102 207075 293175

Chen 23916 40391 65168 123752 225169 321037

O’Brien, Ant Algorithm HH 23916 41927 69232 130882 240420 335959

Table 4.11: Best results of approaches to the Travelling Tournament Problem, available
at [Tri07], with hyperheuristic approaches from Chen [Che07]. Results from other papers
are above the first horizontal dividing line, followed by other hyperheuristic results above
the second line, followed by results from this thesis. “Van Hentenryck” is Anagnostopoulos,
Michel, Van Hentenryck and Vergados

that being able to explore poor moves enables the hyperheuristics to avoid local optima.

However, for larger instances the Any Moves hyperheuristics struggle to reach

feasible solutions, and we note that while the journey length has no apparent effect on

whether the hyperheuristic finds feasible solutions, a large colony seems to be better at

finding feasible solutions than a small colony. Since that the Any Moves Ant Algorithm

always relocates to the best solution found during the previous cycle (not the best solution

4. the ant algorithm hyperheuristic: transliteration 85

found so far in the whole search), the hyperheuristic is still capable of choosing continually

poorer solutions, or cycling between degrees of quality. A greater number of ants during

each given cycle increases the chance of one of them maintaining a solution of similar quality

to the current solution, whereas a greater path length only increases the likelihood of an

ant finding a different solution regardless of how many ants there are.

This hypothesis may be reinforced by the single instance in which the hyperheuris-

tics presented here discovered the optimal solution to the NL6 instance: the Ant Algorithm

Hyperheuristic variant which accepted any move and which employed 12 ants.

The Only Improving Hyperheuristics, however, find feasible solutions every time.

This does suggest that finding feasible solutions may not be complicated if the heuristics

choose the correct combinations of teams and timeslots, but that the randomness of all

heuristics used for this problem work against the hyperheuristic (a theory perhaps reinforced

by the strong performance of Chen’s version of the hyperheuristic, which employed five

additional greedy heuristics which always move to better solutions where a better solution

is available).

For the Project Presentation Scheduling Problem, trends are more difficult to

identify. The Any Moves criterion appears to serve just as well in the csit0 instance,

suggesting that good moves are not that difficult to find during each cycle, whereas the Only

Improving criterion performs better in the more difficult instances. With the exception of

Table 4.1, the better results in each category all occur to hyperheuristics which use short

journey lengths, which may indicate that longer journey lengths are unnecessarily long.

We examine the best runs from each instance to further determine the Ant Algo-

4. the ant algorithm hyperheuristic: transliteration 86

rithm Hyperheuristic’s behaviour, including any evidence of its learning. For each instance,

we present six images. In the first image (a), the solution quality of all accepted moves are

presented in green with their respective improvements upon the prior solution marked in

red (for the Travelling Tournament Problem images this quality only represents the distance

aspect of the solution, not how feasible it is).

In the second and third images (b, c), we attempt to present several ongoing

statistics about the hyperheuristic’s selection mechanism. Each mark represents a cycle

of the run. “Acceptence”, “Improvement” and “Absolute” indicates what fraction of the

moves made during each cycle respectively were accepted, produced an improvement, and

produced an absolute improvement (i.e. found a new best overall solution). “Convergence”

indicates how much the hyperheuristic favours some heuristics more than others, by totalling

the proportions used above that which would be expected by using each equally and scaling

to the range 0...1: thus, a hyperheuristic which calls every heuristic uniformly during a

cycle will maintain a convergence of 0, and a hyperheuristic which uses only one heuristic

every cycle will maintain a convergence of 1. “Confidence” measures the average selection

of heuristics, by scaling between 0...1 the probability of selecting a heuristic between the

probabilities of selecting the currently-believed worst and best heuristics, and averaging the

selection over a cycle.

The fourth, fifth and sixth images (d, e, f) display the proportion of heuristic calls

each heuristic received per step, per cycle and per prior hundred moves (in the latter case,

again, marked at the first and last hundred moves and each absolute improvement).

The NL6 graphs (Figures 4.7-4.12) are understandably erratic. Since this is the

4. the ant algorithm hyperheuristic: transliteration 87

only problem instance of the nine in which the best result was produced by an “Any Moves”

hyperheuristic, the Improvement/Quality graph (Figure 4.7) shows no clear route from

the initial solution to the best solution. The proportion of acceptances in Figure 4.8 is

naturally close to 1 throughout4. It can be seen that many of the heuristic calls produced

an improvement (12,083 of them), and while very few make an absolute improvement it

does appear that the flexibility of the Any Moves criterion is important: the best solution

is the result of the 32,668th heuristic call, a total of 705 heuristic moves from the initial

solution.

4The reason that the acceptance is not exactly 1 throughout is because the Any Moves criterion does
actually reject some solutions: those which are exactly the same. The principle is to not reward a heuristic
which makes no difference whatsoever.

4. the ant algorithm hyperheuristic: transliteration 88

Figure 4.7: Instance NL6 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.8: Instance NL6 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.9: Instance NL6 (c): Confidence
and Convergence

Figure 4.10: Instance NL6 (d): Proportion
of Heuristic Calls per Heuristic per Step

Figure 4.11: Instance NL6 (e): Proportion
of Heuristic Calls per Heuristic per Cycle

Figure 4.12: Instance NL6 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 89

Figure 4.13: Instance NL8 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.14: Instance NL8 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.15: Instance NL8 (c): Confidence
and Convergence

Figure 4.16: Instance NL8 (d): Proportion
of Heuristic Calls per Heuristic per Step

Figure 4.17: Instance NL8 (e): Proportion
of Heuristic Calls per Heuristic per Cycle

Figure 4.18: Instance NL8 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 90

Figure 4.19: Instance NL10 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.20: Instance NL10 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.21: Instance NL10 (c): Confi-
dence and Convergence

Figure 4.22: Instance NL10 (d): Propor-
tion of Heuristic Calls per Heuristic per Step

Figure 4.23: Instance NL10 (e): Propor-
tion of Heuristic Calls per Heuristic per
Cycle

Figure 4.24: Instance NL10 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 91

Figure 4.25: Instance NL12 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.26: Instance NL12 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.27: Instance NL12 (c): Confi-
dence and Convergence

Figure 4.28: Instance NL12 (d): Propor-
tion of Heuristic Calls per Heuristic per Step

Figure 4.29: Instance NL12 (e): Propor-
tion of Heuristic Calls per Heuristic per
Cycle

Figure 4.30: Instance NL12 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 92

Figure 4.31: Instance NL14 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.32: Instance NL14 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.33: Instance NL14 (c): Confi-
dence and Convergence

Figure 4.34: Instance NL14 (d): Propor-
tion of Heuristic Calls per Heuristic per Step

Figure 4.35: Instance NL14 (e): Propor-
tion of Heuristic Calls per Heuristic per
Cycle

Figure 4.36: Instance NL14 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 93

Figure 4.37: Instance NL16 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.38: Instance NL16 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.39: Instance NL16 (c): Confi-
dence and Convergence

Figure 4.40: Instance NL16 (d): Propor-
tion of Heuristic Calls per Heuristic per Step

Figure 4.41: Instance NL16 (e): Propor-
tion of Heuristic Calls per Heuristic per
Cycle

Figure 4.42: Instance NL16 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 94

Figure 4.43: Instance csit0 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.44: Instance csit0 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.45: Instance csit0 (c): Confidence
and Convergence

Figure 4.46: Instance csit0 (d): Proportion
of Heuristic Calls per Heuristic per Step

Figure 4.47: Instance csit0 (e): Proportion
of Heuristic Calls per Heuristic per Cycle

Figure 4.48: Instance csit0 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 95

Figure 4.49: Instance csit1 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.50: Instance csit1 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.51: Instance csit1 (c): Confidence
and Convergence

Figure 4.52: Instance csit1 (d): Proportion
of Heuristic Calls per Heuristic per Step

Figure 4.53: Instance csit1 (e): Proportion
of Heuristic Calls per Heuristic per Cycle

Figure 4.54: Instance csit1 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 96

Figure 4.55: Instance csit2 (a): Moves ac-
cepted: Solution Quality and Improvement

Figure 4.56: Instance csit2 (b): Moves Ac-
cepted, Improving and Improving Absolutely

Figure 4.57: Instance csit2 (c): Confidence
and Convergence

Figure 4.58: Instance csit2 (d): Proportion
of Heuristic Calls per Heuristic per Step

Figure 4.59: Instance csit2 (e): Proportion
of Heuristic Calls per Heuristic per Cycle

Figure 4.60: Instance csit2 (f): Proportion
of Heuristic Calls per Heuristic in the 100
Calls prior to each Absolute Improvement

4. the ant algorithm hyperheuristic: transliteration 97

The Travelling Tournament Problem instances seem to have many similarities in

their best runs. The portion of Absolute Improvement moves is high early in each run, as

the hyperheuristic works through the feasible area of the search space. The “Confidence” for

each run is 1, virtually throughout, indicating that the hyperheuristic is always choosing

the heuristic it thinks is best, while the “Convergence” remains low, indicating that the

heuristics are chosen with almost equal probability; this is reinforced by figures (d) and (e),

which indicate that heuristic Th5 is favoured most. The ‘best heuristic’ therefore changes

from step to step, and the visibility and pheromone components of the hyperheuristic are

therefore very erratic, drastically changing the probabilities for each heuristic from step to

step. While it appears that the hyperheuristic is unstable, it should also be noted that

the heuristics are unstable, always choosing random moves rather than moves designed to

improve a solution.

The Project Presentation Scheduling Problem instances are more interesting, as

befits a set of heuristics where some heuristics are designed to improve. We observe that for

instance csit0, the Confidence in Figure 4.45 is initially 1, varies a great deal in the early

part of the search, and returns to 1; in the later instances (Figures 4.51, 4.57) the Confidence

is more erratic, indicating that the probability distribution across the set of heuristics is

more fair. As these instances are all Only Improving variations, it is not surprising that all

accepted moves (indicated by the green line) are improvements (and therefore subsumed

by the dark blue); however, as the instances progress, we observe fewer improving moves

which are not absolute improvements as the searches progress, reinforcing the theory that

the instances progress in difficulty.

4. the ant algorithm hyperheuristic: transliteration 98

We also note several significant convergences: in the first 500 heuristic calls, heuris-

tic Ph3 is implemented most often; beyond that point, for instances csit0 and csit1, this

early convergence fades and other heuristics are called more prominently. For instance

csit2, however, the hyperheuristic converges upon heuristic Ph6. We note that both of

these heuristics are the most specialised of their type in the heuristic set, intended to pro-

duce better solutions.

4.6 Conclusions

We have created a hyperheuristic algorithm by hybridising the ant algorithm technique

with the choice function hyperheuristic and applied it to two problems. The results of

our experiments are superior to the Project Presentation Scheduling Problem published in

[CKS02, KSC02, HK02, Sou03] (see Table 4.10) and competitive with prior experiments

for the Travelling Tournament Problem (see Table 4.11). In both cases the hyperheuristic

produces results in less running time than previous efforts, though it is unclear how much

credit should be given to the hyperheuristic rather than the constructive heuristic or the

initial solution.

We have analysed the progress of the hyperheuristic during its experiments by

creating and analysing several measurements which assess how much each selected heuristic

is favoured at the decision point. We have observed that the ant algorithm hyperheuris-

tic can identify certain heuristics’ performances as being good and then converge upon

those heuristics. We have observed that the ant algorithm hyperheuristic can also identify

when those same heuristics’ performances worsen (relative to those of other heuristics) and

4. the ant algorithm hyperheuristic: transliteration 99

then diverge from them. We conclude that the ant algorithm hyperheuristic learns as it

progresses.

However, we also observe that the visibility and pheromone combination is volatile,

making it difficult to identify the contribution of each specific component so the selection

mechanism of the hyperheuristic can be better understood and perhaps improved.

We have tested this ant algorithm hyperheuristic by experimentation with vari-

ables: the number of ants in the colony, the number of heuristic calls each ant must explore

in each cycle, and the criterion by which the ant chooses to accept or reject a discovered

solution. We observe that the acceptance criterion is generally more significant to the per-

formance of the hyperheuristic than the other variables. An interesting future research

direction could be to create an ant algorithm hyperheuristic in which the colony can be

divided between ants using different acceptance criteria.

However, we note that it may be the structure of the hyperheuristic technique -

the mechanism by which multiple paths of heuristic calls are explored and analysed, and the

mechanism which returns the colony to the best solution of that cycle for further exploration

- which is the most signficant part of the hyperheuristic. Efforts have been made in the

literature [BOK06] to explore the effect of the heuristic selection mechanism and acceptance

criterion of hyperheuristics, but more effort could be devoted to exploring the effect of

different mechanisms in hyperheuristic structures: the metaheuristic component.

100

Chapter 5

Conclusions and Future Work

“The data about Earth speaks for itself–” Selv’s thin, angry voice came back.

“No data speaks for itself,” McCoy said, forceful. “Data just lies there. People
speak.”

–Star Trek: Spock’s World, by Diane Duane

The contributions of this thesis are as follows:

• We have presented a new hyperheuristic technique based upon the ant algorithm

metaheuristic.

• We have demonstrated the generality of the technique by applying it to two distinct

problem classes.

• We have demonstrated the capabilities of the hyperheuristic framework by producing

competitive or superior results to those previously published in the literature for both

real-world problems, though the ant algorithm hyperheuristic did not significantly

outperform a random hyperheuristic.

We have considered a range of values considered to possibly effect the performance

of the hyperheuristic. These were shown to have little effect upon the hyperheuristic’s

5. conclusions and future work 101

results, in the case of these two problem classes considered. There may be some merit

to developing an adaptive variant of the hyperheuristic to dynamically alter these values

depending on how ‘difficult’ the solution space seems to be at a given point.

A more promising direction may be to pursue lines of work presented by Cowling

and Chaklevitch [CC03, CC05]. A large set of heuristics may be available to the hyper-

heuristic, restricted to a ‘promising’ subset of heuristics during each cycle. Other means

of strategising the hyperheuristic’s choice of heuristics at the beginning of a cycle may be

considered, as the heuristic selection mechanism we use does not seem particularly stable.

Combining the method with a more relaxed acceptance criterion such as simulated

annealing may also produce better results. A number of probabilistic acceptance criteria

were experimented with but not considered in depth, as the temperature function of the

simulated annealing technique would also involve some domain-specific knowledge and tun-

ing. One possibility is to diversify the roles of the ants by assigning different acceptance

criteria to different ants.

An investigation of aspects of the hyperheuristic algorithms which do not include

heuristic selection or acceptance criteria may be very interesting. The decision point at

which the ant algorithm hyperheuristic branches into considering multiple heuristic se-

quences are presently arbitrary, determined only by the number of calls made until that

point, and the best solution of the cycle is always accepted (this is also the case for the

HyperGA technique). The choice function hyperheuristic presented in [Sou03] uses a qual-

ity control mechanic which restores a solution to a previously saved point if no absolute

improvement is generated within a specific number of heuristic calls; in [Che07] a similar

5. conclusions and future work 102

mechanic knowingly alters the weights of hard constraint violations in its solutions in order

to facilitate diversification of search.

Finally, we demonstrate that even simple hyperheuristics may be competitive with

real-world problems, and that there remains a need to analyse the strengths of different

hyperheuristics as applied to different problems, identifying salient features which support

the use of one black-box hyperheuristic over another.

103

References

[AK03] M. Ayob and G. Kendall. A monte-carlo hyperheuristic to optimise com-

ponent placement sequencing for multi head placement machine. In Pro-

ceedings of the International Conference on Intelligent Technologies (In-

Tech’03), pages 132–141, Chiang Mai, Thailand, December 17-19 2003.

[AMHV03] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A

simulated annealing approach to the traveling tournament problem. In

Proceedings of CPAIOR’03, 2003.

[Aro96] L. D. Aronson. Algorithms for vehicle routing - a survey. Technical report,

Delft, The Netherlands, 1996.

[Bai05] R. Bai. An Investigation of Novel Approaches for Optimising Retail Shelf

Space Allocation. PhD thesis, School of Computer Science, University of

Nottingham, 2005.

[BBG+07] R. Bai, E. K. Burke, M. Gendreau, G. Kendall, and B. McCollum. Mem-

ory length in hyper-heuristics: An empirical study, a combined construc-

tive improvement heuristic for examination timetabling. In Proceedings

REFERENCES 104

of the 2007 IEEE Symposium on Computational Intelligence in Scheduling

(CISched2007), Hilton Hawaiian Village, Honolulu, Hawaii, USA, 1-5 April

2007.

[BDPQ05] E. Burke, M. Dror, S. Petrovic, and R. Qu. Hybrid graph heuristics in a

hyper-heuristic approach to exam timetabling problems. In The Next Wave

in Computing, Optimization and Decision Technologies (eds. B.L. Golden,

S. Raghavan and E.A. Wasil), pages 79–92. Springer, 2005.

[BF03] A. Badr and A. Fahmy. A proof of convergence for ant algorithms. Infor-

mation Sciences, 2003.

[BHK+03] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg.

Handbook of Metaheuristics, chapter 16, Hyperheuristics: An Emerging

Direction. In: Modern Search Technology, pages 457–474. Kluwer Academic

Publishers, 2003.

[BHK06] E. K. Burke, M. R. Hyde, and G. Kendall. Evolving bin packing heuristics

with genetic programming. In Proceedings of the 9th International Con-

ference on Parallel Problem Solving from Nature (PPSN IX), LNCS 4193,

Reykjavik, Iceland, September 9-13 2006. Springer.

[BHKW07a] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. Automatic

heuristic generation with genetic programming: Evolving a jack-of-all-

trades or a master of one. In H. Lipson and D. Thierens, editors, Proceedings

REFERENCES 105

of the 2007 Genetic and Evolutionary Computation Conference (GECCO

’07), London, UK, July 7-11 2007. ACM 2007.

[BHKW07b] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. The scalabil-

ity of evolved online bin packing heuristics. In Proceedings of the Congress

on Evolutionary Computation (CEC 2007), Swissotel The Stamford, Sin-

gapore, September 25-28 2007.

[BJKW97] E. Burke, K. Jackson, J.H. Kingston, and R. Weare. Automated university

timetabling: The state of the art. The Computer Journal, 40(9):565–571,

1997.

[BK03] R. Bai and G. Kendall. An investigation of automated planograms using

a simulated annealing based hyper-heuristics. In T. Ibaraki, K. Nonobe,

and M. Yagiura, editors, Proceedings of The Fifth Metaheuristics Interna-

tional Conference (MIC 2003), Kyoto International Conference Hall, Kyoto,

Japan, 23-25 August 2003. Springer.

[BK05] E. Burke and G. Kendall, editors. Search Methodologies: Introductory Tuto-

rials in Optimisation and Decision Support Methodologies. Springer, 2005.

[BKO+03] E. Burke, G. Kendall, R. O’Brien, D. Redrup, and E. Soubeiga. An ant

algorithm hyper-heuristic. In Proceedings of the Fifth Metaheuristics Inter-

national Conference 2003 (MIC 2003), Kyoto, Japan, 25-28 August 2003.

[BKS03] E. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyperheuristic for

timetabling and rostering. Journal of Heuristics, 9(6):451–470, 2003.

REFERENCES 106

[BKS+05] E. Burke, G. Kendall, J.D. Landa Silva, R. O’Brien, and E. Soubeiga.

An ant algorithm hyperheuristic for the project presentation scheduling

problem. In Proceedings of the Congress for Evolutionary Computation

2005 (CEC2005), volume 3, pages 2263–2270, 2005.

[BOK06] B. Bilgin, E. Ozcan, and E. E. Korkmaz. An experimental study on

hyper-heuristics and exam timetabling. In Proceedings of the 6th Inter-

national Conference on the Practice and Theory of Automated Timetabling

(PATAT), pages 123–140, Brono, Czech Republic, August 30-September 1

2006.

[Bow03] K. Bowen. Sixty years of operational research. European Journal of Oper-

ational Research, 153(3):618–623, 16 March 2003.

[BPQ06] E. Burke, S. Petrovic, and R. Qu. Case based heuristic selection for

timetabling problems. Journal of Scheduling, 9:115–132, 2006.

[CC03] P. Cowling and K. Chakhlevitch. Hyperheuristics for managing a large

collection of low level heuristics to schedule personnel. In Proceedings of

the 2003 IEEE Congress on Evolutionary Computation (CEC’2003), pages

1214–1221, Canberra, Australia, 2003. IEEE Computer Society Press.

[CC05] K. Chakhlevitch and P. Cowling. Choosing the fittest subset of low level

heuristics in a hyperheuristic framework. In Proceedings of the Fifth Euro-

pean Conference on Evolutionary Computation in Combinatorial Optimi-

sation (EvoCOP2005), Lausanne, Switzerland, 2005.

REFERENCES 107

[CDM+96] A. Colorni, M. Dorigo, F. Maffioll, V. Maniezzo, G. Righini, and M. Tru-

bian. Heuristics from nature for hard combinatorial optimisation problems.

International Transactions in Operational Research, 3:1–21, 1996.

[Che07] P-C. Chen. An Investigation of a Hyper Heuristic Ant Algorithm for the

Travelling Tournament Problem, MRes Thesis. School of Computer Science,

University of Nottingham, 2007.

[CKB07] P-C. Chen, G. Kendall, and G. Vanden Berghe. An ant based hyper-

heuristic for the travelling tournament problem. In G. Kendall, E. K. Burke,

S. Smith, and K. C. Tan, editors, Proceedings of IEEE Symposium of Com-

putational Intelligence in Scheduling (CI-Sched 2007), pages 19–26, Hawaii,

2007. IEEE Press.

[CKH02] P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic

genetic algorithm applied to a trainer scheduling problem. In Proceedings of

the Congress on Evolutionary Computation 2002, CEC 2002, pages 1185–

1190, 2002.

[CKS01a] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to

scheduling a sales summit. In Selected papers of Proceedings of the 3rd Inter-

national Conference on the Practice And Theory of Automated Timetabling,

LNCS 2079, pages 176–190. Springer, 2001.

[CKS01b] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic

REFERENCES 108

for scheduling a sales summit. In Proceedings of the Fourth Metaheuristics

International Conference (MIC 2001), pages 127–131, 2001.

[CKS02] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool for

rapid prototyping in scheduling and optimisation. In Proceedings of the

2nd European Conference on EVOlutionary computation for Combinatorial

OPtimisation, EvoCop 2002, LNCS 2279, pages 1–10. Springer, 2002.

[CO98] F. Comellas and J. Ozon. An ant algorithm for the graph colouring problem.

In ANTS’98 - From Ant Colonies to Artificial Ants; in proceedings of the

First International Workshop on Ant Colony Optimization, Brussels, 1998.

[DMC96] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by

a colony of cooperating agents. IEEE Transactions on Systems, Man and

Cybernetics - Part B, 26(1):1–13, 1996.

[Dow98] K. Dowsland. Nurse scheduling with tabu search and strategic oscillation.

European Journal of Operational Resarch, 106:393–407, 1998.

[DSB07] K. Dowsland, E. Soubeiga, and E. Burke. A simulated annealing hyper-

heuristic for determining shipper sizes. European Journal of Operational

Research, 179:759–774, 2007.

[EJKS01] A.T. Ernst, H. Jiand, M. Krishnamoorthy, and D. Sier. Staff scheduling

and rostering: a review of applications, methods and models. European

Journal of Operational Research, 2001.

REFERENCES 109

[ENT01] K. Easton, G. Nemhauser, and M. Trick. The travelling tournament prob-

lem description and benchmarks. In T. Walsh, editor, Principles and Prac-

tice of Constraint Programming (CP 2001), LNCS 2239, pages 580–584.

Springer, 2001.

[ENT02] K. Easton, G. Nemhauser, and M. Trick. Solving the travelling tournament

problem: A combined integer programming and constraint programming

approach. In E. Burke and P. De Causmaecker, editors, Practice And The-

ory of Automated Timetabling (PATAT 2002), LNCS 2740, pages 100–112.

Springer, 2002.

[FRC93] H-L. Fang, P. Ross, and F. Corne. A promising genetic algorithm approach

to job shop scheduling, rescheduling and open-shop scheduling problems.

In S. Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 375–382, San Mateo, 1993. Morgan Kaufmann.

[FRC94] H-L. Fang, P. Ross, and F. Corne. A promising hybrid ga/heuristic ap-

proach for open-shop scheduling problems. In A. Cohn, editor, Proceedings

of ECAI 94: 11th European Conference on Artificial Intelligence, pages

590–594. John Wiley and Sons Ltd, 1994.

[FT61] H. Fisher and G. L. Thompson. Probabilitistic learning combinations of

local job-shop scheduling rules. In Factory Scheduling Conference, Carnegie

Institute of Technology, May 10-12 1961.

REFERENCES 110

[GL97] F. Glover and M. Laguna, editors. Tabu search. Kluwer Academic Publish-

ers, 1997.

[GRK04] A. Gaw, P. Rattadilok, and R. Kwan. Distributed choice function hyper-

heuristics for timetabling and scheduling. In Proceedings of the 5th Inter-

national Conference on the Practice and Theory of Automated Timetabling

(PATAT’04), pages 495–497, 2004.

[GS05] L. Di Gaspero and A. Schaerf. A tabu search approach to the traveling

tournament problem. In Proceedings of the 6th Metaheuristics International

Conference (MIC-2005), pages 23–27, Vienna, Austria, 2005.

[Han05] L. Han. An Investigation of a Genetic Algorithm Based Hyper-heuristic

applied to Scheduling Problems. PhD thesis, School of Computer Science,

University of Nottingham, 2005.

[HK02] L. Han and G. Kendall. An adaptive length chromosome hyperheuristic

genetic algorithm for a trainer scheduling problem. In SEAL2002, pages

267–271, 2002.

[HK03a] L. Han and G. Kendall. An investigation of a tabu assisted hyper-heuristic

genetic algorithm. In Proceedings of the Congress of Evolutionary Compu-

tation (CEC 2003), 2003.

[HK03b] L. Han and G. Kendall. Guided operators for a hyper-heuristic genetic

algorithm. In T. D. Gedeon and L. C. C. Fung, editors, Proceedings of AI-

2003: Advances in Artificial Intelligence. The 16th Australian Conference

REFERENCES 111

on Artificial Intelligence (AI’03), pages 807–820, Perth, Australia, 3-5 Dec

2003.

[HM01] P. Hansen and N. Mladenovic. Variable neighborhood search: Principles

and applications. European Journal of Operational Research, 130:449–467,

2001.

[Hol75] J.H. Holland, editor. Adaptation in natural and artificial systems. Univer-

sity of Michigan Press, 1975.

[Hoo96] J. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics

33-42, 1996.

[HR98] E. Hart and P. Ross. A heuristic combination method for solving job-shop

scheduling problems. In A.E. Eiben, T. Back, M. Schoenauer, and H.P.

Schwefel, editors, Parallel Problem Solving from Nature V, LNCS 1498,

pages 845–854. Springer, 1998.

[HRN98] E. Hart, P. Ross, and J. A. D. Nelson. Solving a real-world problem using a

heuristically driven evolving schedule builder. In Evolutionary Computing,

volume 6, pages 61–81, 1998.

[Ken07] G. Kendall. Scheduling english football fixtures over holiday periods. Jour-

nal of the Operational Research Society, pages 1–13, 2007.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated

annealing, 1983.

REFERENCES 112

[KH04a] G. Kendall and N. Mohd Hussin. Tabu search hyper-heuristic approach

to the examination timetabling problem at university technology mara.

In E. Burke and M. Trick, editors, Proceedings of the 5th international

conference on the Practice and Theory of Automated Timetabling (PATAT),

pages 199–217, Pittsburgg, USA, 18-20 August 2004.

[KH04b] G. Kendall and N. Mohd Hussin. An investigation of a tabu search based

hyper-heuristic for examination timetabling. In G. Kendall, E. Burke, and

S. Petrovic, editors, Selected papers from MISTA 2003. Kluwer Publication,

2004.

[KSC02] G. Kendall, E. Soubeiga, and P. Cowling. Choice function and random

hyperheuristics. In Proceedings of the 4th Asia-Pacific Conference on Sim-

ulated Evolution And Learning (SEAL 2002), pages 667–671, Singapore,

November 2002.

[LKW97] D. B. Leake, A. Kinley, and D. C. Wilson. A case study of case-based CBR.

In ICCBR, pages 371–382, 1997.

[LLP01] N. Lagoudakis, M. Littman, and R. Parr. Selecting the right algorithm. In

Proceedings of the 2001 Fall Symposium Series: Using Uncertainty within

Computation, Cape Cod, MA, USA, November 2001.

[McC06] B. McCollum. A perspective on bridging the gap between research and

practice in university timetabling. In Proceedings of the 6th International

REFERENCES 113

Conference on the Practice and Theory of Automated Timetabling, PATAT

2006, Brno, August 2006. LNCS 3867.

[Nar03] A. Nareyek. Choosing search heuristics by non-stationary reinforcement

learning. In Metaheuristics: Computer Decision-Making, pages 523–544.

Kluwer Academic Publishers, 2003.

[OBK06] E. Ozcan, B. Bilgin, and E. E. Korkmaz. Hill climbers and mutational

heuristics in hyperheuristics. In R. Poli, C. Cotta, C. A. C. Coello, M. Pe-

likan, H. Ishibuchi, K. Sastry, D. Whitley, E. Zitzler, M. Sebag, and B. Send-

hoff, editors, Parallel Problem Solving from Nature - PPSN IX: Selected

Papers from the 9th International Conference, LNCS 4193, pages 202–211,

Berlin, 2006. Springer.

[PQ02] S. Petrovic and R. Qu. Case-based reasoning as a heuristic selector in

a hyper-heuristic for course timetabling problems. In Proceedings of the

6th International Conference on Knowledge-Based Intelligent Information

Engineering Systems and Applied Technologies (KES’02), volume 82, pages

336–340, Milan, Italy, September 16-18 2002. IOS Press.

[QB08] R. Qu and E. K. Burke. Hybridisations within a graph based hyper-heuristic

framework for university timetabling problems. Journal of the Operational

Research Society, 2008.

[RDP03] O. Rossi-Doria and B. Paechter. An hyperheuristic approach to course

REFERENCES 114

timetabling problem using an evolutionary algorithm. Technical report,

Napier University, Edinburgh, Scotland, 2003.

[Ros05] P. Ross. Hyper-heuristics. In E. Burke and G. Kendall, editors, Search

Methodologies: Introductory Tutorials in Optimisation and Decision Sup-

port Methodologies, chapter 17, pages 529–557. Springer, 2005.

[RSMBH02] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart. Hyper-

heuristics: learning to combine simple heuristics in bin-packing problems.

In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’02), pages 942–948, 2002.

[RSMBH03] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart. Learning a

procedure that can solve hard bin-packing problems: a new ga-based ap-

proach to hyper-heuristics. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO’03), pages 1295–1306, 2003.

[SG06] A. Schaerf and L. Di Gaspero. Measurability and reproducibility in

timetabling research: State-of-the-art and discussion. In Practice And The-

ory of Automated Timetabling VI (PATAT 2006), pages 53–62, 2006.

[Sou03] E. Soubeiga. Development and Application of Hyperheuristics to Personnel

Scheduling. PhD thesis, School of Computer Science, University of Not-

tingham, 2003.

[TBGS98] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. Asynchronous

REFERENCES 115

teams: Cooperation schemes for autonomous agents. Journal of Heuristics,

4(4):295–321, 1998.

[TMFAR05] H. Terashima-Marin, E. J. Flores-Alvarez, and P. Ross. Hyper-heuristics

and classifier systems for solving 2d-regular cutting stock problems. In

Proceedings of the Genetic and Evolutionary Computation Conference 2005,

pages 637–643, 2005.

[TMFZRVR06] H. Terashima-Marin, C. J. Farias-Zarate, P. Ross, and M. Valenzuela-

Rendon. A ga-based method to produce generalized hyper-heuristics for

the 2d-regular cutting stock problem. In Proceedings of the Genetic and

Evolutionary Computation Conference 2006, pages 591–598, 2006.

[TMFZRVR07] H. Terashima-Marin, C. J. Farias-Zarate, P. Ross, and M. Valenzuela-

Rendon. Comparing two models to generate hyper-heuristics for the 2d-

regular bin packing problem. In Proceedings of the 9th Annual Conference

on Genetic and Evolutionary Computation (GECCO 2007), pages 2182–

2189, 2007.

[Tri07] M. Trick. http://mat.gsia.cmu.edu/tourn/, 2007.

[WM97] D. Wolpert and W. G. MacReady. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1:67–82, 1997.

[WR95] A. Wren and J.-M. Rousseau. Bus driver scheduling - an overview. In J.R.

Daduna, I. Branco, and J.M.P. Paixao, editors, Computer Aided Transirt

Scheduling, pages 173–187. Springer-Verlag, 1995.

REFERENCES 116

[Wre95] A. Wren. Scheduling, timetabling and rostering - a special relationship? In

Proceedings of the International Conference on the Practice and Theory of

Automated Timetabling (ICPTAT ’95), pages 475–495. Napier University,

1995.

