129 research outputs found

    Satisfiability Calculus: An Abstract Formulation of Semantic Proof Systems

    Get PDF
    The theory of institutions, introduced by Goguen and Burstall in 1984, can be thought of as an abstract formulation of model theory. This theory has been shown to be particularly useful in computer science, as a mathematical foundation for formal approaches to software construction. Institution theory was extended by a number of researchers, José Meseguer among them, who, in 1989, presented General Logics, wherein the model theoretical view of institutions is complemented by providing (categorical) structures supporting the proof theory of any given logic. In other words, Meseguer introduced the notion of proof calculus as a formalisation of syntactical deduction, thus ?implementing? the entailment relation of a given logic. In this paper we follow the approach initiated by Goguen and introduce the concept of Satisfiability Calculus. This concept can be regarded as the semantical counterpart of Meseguer?s notion of proof calculus, as it provides the formal foundations for those proof systems that resort to model construction techniques to prove or disprove a given formula, thus ?implementing? the satisfiability relation of an institution. These kinds of semantic proof methods have gained a great amount of interest in computer science over the years, as they provide the basic means for many automated theorem proving techniques.Fil: Lopez Pombo, Carlos Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Castro, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Aguirre, Nazareno M.. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Computación; ArgentinaFil: Maibaum, Thomas S.E.. Mc Master University; Canad

    Deductive Systems in Traditional and Modern Logic

    Get PDF
    The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic

    The logic of isomorphism and its uses

    Get PDF
    We present a class of first-order modal logics, called transformational logics, which are designed for working with sentences that hold up to a certain type of transformation. An inference system is given, and com- pleteness for the basic transformational logic HOS is proved. In order to capture ‘up to isomorphism’, we express a very weak version of higher category theory in terms of first-order models, which makes tranforma- tional logics applicable to category theory. A category-theoretical concept of isomorphism is used to arrive at a modal operator nisoφ expressing ‘up to isomorphism, φ’, which is such that category equivalence comes out as literally isomorphism up to isomorphism. In the final part of the paper, we explore the possibility of using trans- formational logics to define weak higher categories. We end with two informal comparisons: one between HOS and counterpart semantics, and one between isomorphism logic, as a transformational logic, and Homo- topy Type Theory

    Boundary Algebra: A Simpler Approach to Boolean Algebra and the Sentential Connectives

    Get PDF
    Boundary algebra [BA] is a algebra of type , and a simplified notation for Spencer-Brown’s (1969) primary algebra. The syntax of the primary arithmetic [PA] consists of two atoms, () and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting, indifferently, the presence or absence of () into a PA formula yields a BA formula. The BA axioms are A1: ()()= (), and A2: “(()) [abbreviated ‘⊥’] may be written or erased at will,” implying (⊥)=(). The repeated application of A1 and A2 simplifies any PA formula to either () or ⊥. The basis for BA is B1: abc=bca (concatenation commutes & associates); B2, ⊥a=a (BA has a lower bound, ⊥); B3, (a)a=() (BA is a complemented lattice); and B4, (ba)a=(b)a (implies that BA is a distributive lattice). BA has two intended models: (1) the Boolean algebra 2 with base set B={(),⊥}, such that () ⇔ 1 [dually 0], (a) ⇔ a′, and ab ⇔ a∪b [a∩b]; and (2) sentential logic, such that () ⇔ true [false], (a) ⇔ ~a, and ab ⇔ a∨b [a∧b]. BA is a self-dual notation, facilitates a calculational style of proof, and simplifies clausal reasoning and Quine’s truth value analysis. BA resembles C.S. Peirce’s graphical logic, the symbolic logics of Leibniz and W.E. Johnson, the 2 notation of Byrne (1946), and the Boolean term schemata of Quine (1982).Boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; G. Spencer-Brown; C.S. Peirce; existential graphs

    leanEA. A poor man\u27s evolving algebra compiler

    Get PDF
    The Prolog program term_expansion((define C as A with B), (C=>A:-B,!)). term_expansion((transition E if C then D), ((transition E):-C,!,B,A,(transition _))) :- serialize(D,B,A). serialize((E,F),(C,D),(A,B)) :- serialize(E,C,B), serialize(F,D,A). serialize(F:=G, ([G]=>*[E],F=..[

    A method for rigorous design of reconfigurable systems

    Get PDF
    Reconfigurability, understood as the ability of a system to behave differently in different modes of operation and commute between them along its lifetime, is a cross-cutting concern in modern Software Engineering. This paper introduces a specification method for reconfigurable software based on a global transition structure to capture the system's reconfiguration space, and a local specification of each operation mode in whatever logic (equational, first-order, partial, fuzzy, probabilistic, etc.) is found expressive enough for handling its requirements. In the method these two levels are not only made explicit and juxtaposed, but formally interrelated. The key to achieve such a goal is a systematic process of hybridisation of logics through which the relationship between the local and global levels of a specification becomes internalised in the logic itself.This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia within projects POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013. The first author is further supported by the BPD FCT Grant SFRH/BPD/103004/2014, and R. Neves is sponsored by FCT Grant SFRH/BD/52234/2013. M.A. Martins is also funded by the EU FP7 Marie Curie PIRSESGA-2012-318986 project GeTFun: Generalizing Truth-Functionality

    Boundary Algebra: A Simple Notation for Boolean Algebra and the Truth Functors

    Get PDF
    Boundary algebra [BA] is a simpler notation for Spencer-Brown’s (1969) primary algebra [pa], the Boolean algebra 2, and the truth functors. The primary arithmetic [PA] consists of the atoms ‘()’ and the blank page, concatenation, and enclosure between ‘(‘ and ‘)’, denoting the primitive notion of distinction. Inserting letters denoting the presence or absence of () into a PA formula yields a BA formula. The BA axioms are "()()=()" (A1), and "(()) [=?] may be written or erased at will” (A2). Repeated application of these axioms to a PA formula yields a member of B= {(),?} called its simplification. (a) has two intended interpretations: (a) ? a? (Boolean algebra 2), and (a) ? ~a (sentential logic). BA is self-dual: () ? 1 [dually 0] so that B is the carrier for 2, ab ? a?b [a?b], and (a)b [(a(b))] ? a=b, so that ?=() [()=?] follows trivially and B is a poset. The BA basis abc= bca (Dilworth 1938), a(ab)= a(b), and a()=() (Bricken 2002) facilitates clausal reasoning and proof by calculation. BA also simplifies normal forms and Quine’s (1982) truth value analysis. () ? true [false] yields boundary logic.G. Spencer Brown; boundary algebra; boundary logic; primary algebra; primary arithmetic; Boolean algebra; calculation proof; C.S. Peirce; existential graphs.

    Bunched logics: a uniform approach

    Get PDF
    Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style interpretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the literature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics. We also extend our duality theorems to the categorical structures suitable for interpreting predicate versions of the logics, in particular hyperdoctrinal structures used frequently in Separation Logic
    corecore