
Science of Computer Programming 132 (2016) 50–76
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A method for rigorous design of reconfigurable systems

Alexandre Madeira a,∗, Renato Neves a, Luís S. Barbosa a, Manuel A. Martins b

a INESC TEC and Universidade do Minho, Portugal
b CIDMA and Department of Mathematics, Universidade de Aveiro, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 April 2014
Received in revised form 7 February 2016
Accepted 5 May 2016
Available online 20 May 2016

Keywords:
Software specification
Reconfigurable systems
Hybrid logic

Reconfigurability, understood as the ability of a system to behave differently in different
modes of operation and commute between them along its lifetime, is a cross-cutting
concern in modern Software Engineering. This paper introduces a specification method
for reconfigurable software based on a global transition structure to capture the system’s
reconfiguration space, and a local specification of each operation mode in whatever logic
(equational, first-order, partial, fuzzy, probabilistic, etc.) is found expressive enough for
handling its requirements.
In the method these two levels are not only made explicit and juxtaposed, but formally
interrelated. The key to achieve such a goal is a systematic process of hybridisation of
logics through which the relationship between the local and global levels of a specification
becomes internalised in the logic itself.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation: the insulin infusion pump

Diabetes mellitus is one of the most rapidly growing diseases in modern times, predicted by many to become one of the
most challenging health problems of this century. There is, currently, no known cure for diabetes. Moreover, in its most
severe forms, the standard treatment still boils down to insulin injections, a method that hinders a patient’s normal life
and carries risks. For this reason, new, more convenient, less expensive and safer technologies helping patients to pursue a
better quality of life, are in order.

The insulin infusion pump (IIP) is an alternative to the usual treatment. To compensate for eventual insulin disequilibri-
ums the IIP measures at regular intervals the patient needs and injects insulin through a subcutaneous catheter at different
rates. As an alternative to insulin injections, it brings greater dosing precision and quicker adjustments on the fly.

The operation of a IIP is, of course safety critical in the sense that a small error in, for example, administrating the
correct dose of insulin, may cause severe harm, or even death. Potential risks are well-studied (cf. [111,110]), but can be
mitigated through rigorous design, able to enforce implementations to obey to (suitably formalised) safety requirements. Not
surprisingly the design of a safe IIP is regarded as a challenge in the engineering of safety critical systems. Specific strategies
have been proposed resorting to, and even combining, different formalisms. Among several others one may cite the work
reported in [7], in which state-based specifications are validated in Uppaal, and [108] or [99], both based on Event-B, the
later being a rather extensive and complete account of the problem. In [76], the authors resort to PVS to generate executable

* Corresponding author.
E-mail addresses: amadeira@inesctec.pt (A. Madeira), lsb@di.uminho.pt (L.S. Barbosa).
http://dx.doi.org/10.1016/j.scico.2016.05.001
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:amadeira@inesctec.pt
mailto:lsb@di.uminho.pt
http://dx.doi.org/10.1016/j.scico.2016.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.05.001&domain=pdf

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 51
code from the formalisation of an interface provided by a legal document. The popularity of the insulin pump example as
a specification case study is also witnessed by the discussion of a Z specification in the recent edition of I. Sommerville’s
classic on Software Engineering [100].

To the best of our knowledge all those approaches fix, from the outset, a specification logic, entailing a particular per-
spective on the IIP system. The strategy put forward in this paper has a different starting point:

(a) Firstly, we recognise that the project of an IIP device involves different classes of requirements which are better
expressed through different logic formalisms. For example, requirement “at all times the insulin flow cannot surpass
a given limit” calls for some sort of quantification and an ordering relation, whereas the statement ‘‘if the insulin
reservoir is almost empty then alarm must sound higher” suggests the use of a fuzzy language to capture the intended
meaning of almost and higher. On the other hand, some variant of temporal logic becomes necessary to express
properties over long-term executions of the device, including typical safety and liveness requirements.

(b) Secondly, we regard an IIP as a prime example of a reconfigurable device, i.e. one whose execution modes, and
not only the values stored in its internal memory, may change in response to the continuous interaction with
the environment. Such systems behave differently in different modes of operation, or configurations, and commute
between them along their lifetime.

Clearly, the dynamics of reconfiguration of a software system, understood here in the sense of statically programmed
change of operation mode, can be described by some sort of transition system, whose states represent configurations and
transitions are triggered by whatever conditions enforce the move from a configuration to another. Indeed, requirement (b)
above entails the need for a design method able to express such a local/global dichotomy, by specifying both the individual
configurations and the reconfiguration dynamics. However, one needs also to capture the specific, local requirements which
characterise each configuration and distinguish one from the others. Formally, such different behaviours can be modelled by
imposing additional structure upon states in the transition system which expresses the overall dynamics. Requirement (a),
on its turn, suggests such a method to be agnostic w.r.t. whatever logic is used to specify the system configurations: the
nature of the requirements relevant for a particular view should lead the choice of a suitable base logic.

1.2. The approach

The method proposed in this paper aims at being a step in this direction, by addressing the following research question:
can a rigorous approach to the design of reconfigurable systems be developed based on the hybridisation of the logics used for their
local specifications? The notion of hybridisation and its methodological use are explained below. For the moment, note that
the motto of the envisaged approach

reconfigurations as transitions, configurations as local models

embodies a two-layered abstraction between a local specification stage (that of the system’s individual configurations) and
a global one (concerning the dynamics of reconfiguration). In short, models for reconfigurable software are structured tran-
sition systems described within appropriate logical systems. Their states are the individual configurations with whatever
structure they have to bear in concrete applications. Transitions correspond to the admissible reconfigurations.

Regarding reconfigurations as transitions suggests some sort of modal logic as the language to express them. A modal
logic, however, has no ability to explicitly refer to individual configurations. This view justifies the use of hybrid logic [63,
17,22,6] as the basic language to express evolution (through modalities) and locality (through nominals). Actually, a spec-
ification for this sort of system should be able to make assertions both about the transition dynamics and, locally, about
each particular configuration. This leads to the adoption of hybrid logic as the specification lingua franca for the envisaged
methodology.

In general, hybrid logic adds to a modal language the ability to name, or to explicitly refer to specific states of the
underlying Kripke structure. This is done through the introduction of propositional symbols of a new sort, called nominals,
each of which is true at exactly one possible state. The sentences are then enriched in two directions. On the one hand,
nominals are used as simple sentences holding exclusively in the state they name. On the other hand, explicit reference
to states is provided by sentences @i ρ , stating the validity of ρ at the state named i. One may therefore specify (local)
properties of specific configurations in the system or even to assert the equality between two particular configurations,
something which is beyond what can be said in a modal language. Modalities, however, capture state transitions, providing
a way to specify the global dynamics of reconfigurability.

Historically, hybrid logic was introduced by A. Prior in his book [91]. However, its seminal ideas emerged by the end
of the 50’s, in a discussion of C.A. Meredith [17]. The theme was latter revisited, in the school of Sofia, by S. Passy and
T. Tinchev [89]. It achieved global interest within the modal logic community on the 90’s, being contributed by P. Blackburn,
C. Areces, B. ten Cate, T. Braüner, T. Bolander, among many others (see, e.g., [5,31,22,20]). This lifted the status of hybrid logic
to an independent branch of modern logic. For an historical account we suggest [17,22], as well as [18] for a comparison
with the original perspective of A. Prior.

52 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
Fig. 1. Specification of reconfigurable systems: the approach.

On the other hand, identifying configurations, or operation modes, as local models emphasises that no special restrictions
should be put to their specification. This means that it would not be enough to take a particular version of hybrid logic
for writing specifications. Actually, the relevant research question is how to combine a hybrid language with whatever logic
seems appropriate to express local requirements for each configuration. Specific problems may require specific logics to
describe their configurations (e.g., equational, first-order, fuzzy, etc.). Therefore, instead of choosing a particular version of
hybrid logic, the method proposed here starts by choosing a specific logic for expressing requirements at the configuration
level. This is later taken as the base logic on top of which the characteristic features of hybrid logic are developed.

This process is called hybridisation [75,45] and was introduced in the first author’s PhD thesis [69]. The basic idea is
quite simple: to develop, on top of a given logic, called the base logic and framed as an institution [52,41], the characteristic
features of hybrid logic, both at the level of syntax (i.e. modalities, nominals, etc.) and semantics (i.e., possible worlds),
together with first-order encodings of such hybridised institutions. In particular, given a base institution ‘encodable’ in the
institution of theories in first-order logic, the hybridisation method provides a systematic construction of a similar encoding
for the corresponding hybridised institution.

To proceed in a completely generic way, the whole approach is framed in the context of the theory of institutions of
Goguen and Burstall [28,41], each logic (base and hybridised) treated abstractly as an institution. Institutions provide a
precise way to transport specifications and proofs from one logic to another, which allows us to seek for appropriate tool
support for simulating and validating our conjectures. The Hets framework offers such a support as discussed in [86] and
exemplified later in the paper.

As it will become clearer along the paper, the general idea underlying the design method proposed here is depicted in
Fig. 1. The upper part refers to the global level of a specification; the lower one to the local description of configurations.
The line in the middle emphasises the role of hybrid features: in a formula they provide a way to name evaluation states,
whereas in a model they index the relevant configuration. Actually, each configuration is characterised by a local model
capturing its functionality and behaviour.

1.3. Contribution and paper’s structure

The hybridisation process mentioned above, conducted in an institutional setting, is the foundational work on top of
which the specification method proposed in this paper was developed. The paper itself is devoted to the detailed intro-
duction of the specification method, illustrated with fragments of the IIP case study. In this sense, it extends the authors’
previous work [70,72]. The former reference is a first introduction to the use of hybrid logics for specification of reconfig-
urability, whereas the latter discusses an important, but somehow complementary aspect of the design method proposed
here — that of requirements elicitation through the use of a suitable set of boilerplates.

In this setting the paper’s contributions are twofold:

• The introduction, in a detailed way, of a method, based on hybridisation, for the design of reconfigurable systems
(Sections 3 and 4).

• The technical development of a mechanism for capturing a system’s enduring temporal properties (Section 5).

Sections 3, 4 and 5 contain, as explained above, the paper’s original contributions. In all of them fragments of the IIP

design are used for illustration purposes. Before that an introduction to the systematic construction of hybrid(ised) logics
is provided in Section 2. This includes a brief summary to the institutional rendering of logics. Such a background section
seems necessary to set the scene for the paper, exemplifying the generation of several logics used in later sections, and

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 53
providing relevant pointers to the literature. Finally, related work and perspectives for further research are discussed in
Section 6.

2. Background: hybrid(ised) logics

2.1. Logics as institutions

The development of a systematic process for hybridising logics entails the need for a mathematical framework where log-
ics are suitably handled as generic objects. The theory of institutions [52] provides such a framework in a category theoretic
setting. The notion of an institution formalises that of a logical system, encompassing syntax, semantics and satisfaction. It
was put forward by J. Goguen and R. Burstall, in the late seventies, in response to the “population explosion among the logical
systems used in Computing Science” [52].

The theory proved effective and resilient as witnessed by the wide number of logics formalised in this framework.
Examples range from classical logics (propositional, equational, first order, etc.), to the ones underlying specification and
programming languages or used for describing particular systems from different domains. Well-known examples include
probabilistic logics [13], quantum logics [29], hidden and observational logics [27,14], coalgebraic logics [32], as well as logics for
reasoning about process algebras [85], functional [97,98] and imperative programing languages [97].

Seeking for abstract characterisations of basic conceptual tools, e.g., translations and combination of logics, the theory had
a relevant impact in theoretical Computer Science. In particular, it led to the development of a solid institution-independent
specification theory, on which, structuring and parameterisation mechanisms, required to scale up software specification
methods, are defined ‘once and for all’, irrespective of the concrete logic used in each application domain [102].

Some basic definitions are recalled below and illustrated with a few examples to which we return later in the paper.
Most of the technical details presented are not essential for an appreciation of the design method proposed in the paper,
and can be skipped on a first reading. The interested reader, however, is referenced to [41] for an extensive account of the
theory.

An institution

I = (
SignI ,SenI ,ModI , (|=I

�)
�∈|SignI |

)
consists of

• a category SignI whose objects are signatures and arrows signature morphisms;
• a functor SenI : SignI → Set giving for each signature a set of sentences over that signature;
• a functor ModI : (SignI)op → CAT , giving for each signature � a category whose objects are �-models, and arrows

are �-(model) homomorphisms; each arrow ϕ : � → �′ ∈ SignI , (i.e., ϕ : �′ → � ∈ (SignI)op) is mapped into a functor
ModI(ϕ) : ModI(�′) → ModI(�) called a reduct functor, whose effect is to cast a model of �′ as a model of �;

• a relation |=I
�⊆ |ModI(�)| × SenI(�) for each � ∈ |SignI |, called the satisfaction relation,

such that for each morphism ϕ : � → �′ ∈ SignI , the satisfaction condition

M ′ |=I
�′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

� ρ (1)

holds for each M ′ ∈ |ModI(�′)| and ρ ∈ SenI(�). Graphically,

�

ϕ

ModI(�)
|=I

� SenI(�)

SenI (ϕ)

�′ ModI(�′)

ModI (ϕ)

|=I
�′

SenI(�′)

A presentation in I consists of a pair (�, �) where � is a I-signature and � is a set of �-sentences.
The whole theory of institutions was developed to provide a sound way of relating logics and transporting specifications

between them. Technically, this is achieved through comorphisms which are a special kind of mappings between institutions.
Formally, a comorphism between I an I ′ consists of a triple (�, α, β) : I → I ′ where � is a functor between SignI and
SignI

′
and α : Sen ⇒ �; Sen′ and β : �op; Mod′ ⇒ Mod, two natural transformations which map sentences and models

between both institutions assuring the following satisfaction condition – for any signature � ∈ |Sign|, for any �(�)-model
M ′ and, for all the �-sentences ρ:

β�(M ′) |=I
� ρ iff M ′ |=I′

�(�) α�(ρ).

A comorphism is conservative if its β component is a surjection. This being the case one has that for any set of sentences
{ρ} ∪ � ⊆ SenI (�)

54 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
� |=I
� ρ iff α�(�) |=I′

�(�) α�(ρ).

In practice, the existence of a conservative comorphism connecting two logics allows the transport of proof support mecha-
nisms from one to the other. In the context of the design method proposed Section 3, this is used to allow for the verification
of properties expressed in whatever specification logic was found appropriate for a given problem using standard theorem
provers for more popular logics.

Another relevant issue for the hybridisation process is the way quantifications are dealt with in institutional terms. In
the light of the lemma on constants of first order logic, (see e.g. [61]), a set of variables X for a signature can be regarded as
a set of constants in its X-expansion. Hence,

M |=FOL
(S,F ,P) (∀X)ρ iff M ′ |=FOL

(S,F+X,P) ρ,

for any (S, F + X, P)-expansion M ′ of M . In an institutional setting these expansions can be understood as models M ′
such that M = ModFOL(i)(M ′) for i : (S, F , P) ↪→ (S, F + X, P) an inclusion morphism. This motivates the introduction of the
following quantification principle: given a morphisms χ : � → �′ ,

M |=I
� (∀χ)ρ iff M ′ |=I

�′ ρ,

for any M ′ ∈ ModI(�′) such that ModI(χ)(M ′) = M .
In order to assure the functoriality of SenI , the quantification morphism needs to be carefully introduced. In the context

of first order logic this means that SenFOL(ϕ)(∀X ρ) = (∀Xϕ) SenFOL(ϕ′)(ρ), where Xϕ and ϕ′define the pushout:

(S, F , P)
ϕ

X

(S, F ′, P ′)

Xϕ

(S, F
 X, P)
ϕ′ (S, F ′
 Xϕ, P ′)

where Xϕ = {x : ϕst(s)|x : s ∈ X}, and ϕ′ is the canonical expansion of ϕ mapping each x : s in x : ϕst(s).

2.2. The hybridisation process

As mentioned in the Introduction, the hybridisation process [75,45,69] which underlies the design method proposed in
this paper, is based on the representation of logics as institutions. It enriches a base (arbitrary) institution I with hybrid
logic features and the corresponding Kripke semantics. The result is still an institution, HI — the hybridisation of I . This
subsection reviews a simplified version of this process, i.e., quantifier-free and non-constrained, in order to convey the basic
intuitions.

At the syntactic level the base signatures are enriched with nominals and polyadic modalities. Therefore, the category
of I-hybrid signatures, denoted by SignHI , is defined as the direct (cartesian) product of categories of the original category
of signatures SignI and that of signatures of REL, the sub-institution of (the institution of) first order logic, without non-
constant operation symbols, SignREL . Signatures of the hybridised institution combine those of I with a family of constants
Nom for nominals and a set of relational symbols � to represent modalities. HI signatures are, thus, triples (�, Nom, �),
with signature morphisms ϕ = (ϕSign, ϕNom, ϕMS) : (�, Nom, �) → (�′, Nom′, �′), defined component-wise: inherited from
I for the first component, given as maps relating nominals and modalities, and preserving the arities of the latter as ex-
pected.

The second step in the method is to enrich the base sentences accordingly. The sentences of the base institution I
and the nominals in Nom are taken as atoms and composed with the Boolean connectives, the modalities given in �,
and satisfaction operators indexed by nominals. For example, for a n-ary modality λ, a nominal i and ρ, ρ1, ρ2 . . . , ρn HI
sentences, the following are also sentences in HI: [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) and @iρ .

Given a HI-signature morphism ϕ , the translation of sentences SenHI(ϕ) is defined structurally: e.g., SenHI(ϕ)(i) =
ϕNom(i), SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ) and SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . , SenHI(ρn)).

Turning to semantics, models of HI can be regarded as (�-)Kripke structures whose worlds are I-models. Formally,
they are pairs (M, W) where W is a (Nom, �)-model in REL and M is a function which assigns to each state w ∈ |W | a
model in Mw ∈ |ModI(�)|.

In each model (M, W), Wn provides interpretation for nominal n, whereas relation Wλ interprets modality λ. The reduct
definition is lifted from the base institution: the reduct of a ′-model (M ′, W ′) along with a signature morphism ϕ : → ′
is the -model (M, W) such that W is the (ϕNom, ϕMS)-reduct of W ′ (i.e., |W | = |W ′|, Wn = W ′

ϕNom(n) , for each nominal n,
and Wλ = W ′

ϕMS(λ) for each modality in �) and for each w ∈ |W |, Mw = ModI(ϕSign)(M ′
w).

Finally, the satisfaction relation for the hybridised institution resorts to the one in the base institution for sentences in
I , i.e.,

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 55
• (M, W) |=w ρ iff Mw |=I ρ when ρ ∈ SenI(�),

captures the semantics of nominals

• (M, W) |=w i iff W i = w , when i ∈ Nom,

• (M, W) |=w @iρ iff (M, W) |=W i ρ,

and modalities, as in

• (M, W) |=w [λ](ξ1, . . . , ξn) iff, for any (w, w1, . . . , wn) ∈ Wλ , (M, W) |=wi ξi for some 1 ≤ i ≤ n,

and is defined as usual for the Boolean connectives. Note that, whenever the base institution has Boolean connectives, there
is a replication of these connectives in its hybridisation: those in the base institution sentences (that we denote by ∧© ,
∨© , ⇒© and ¬©) and those introduced by the hybridisation method (∧, ∨, ⇒ and ¬). However, as shown in [45,69], they
semantically collapse, in the sense that for any ρ, ρ ′ ∈ SenI(�) we have that (M, W) |=w ¬ρ iff (M, W) |=w ¬©ρ and that
(M, W) |=w ρ � ρ ′ iff (M, W) |=w ρ �©ρ ′ for any � ∈ {∧, ∨, ⇒}. In virtue of this fact, we will not make any denotational
distinction between these two levels of connectives

The main result is that HI effectively constitutes an institution [75]. The next step is the systematic characterisation of
encodings of HI into the institution of many sorted first-order logic (FOL) building on existent encodings of into FOL of the
base institution I .

Quantified hybridisation. Extending this procedure to quantified sentences requires the introduction of an adequate quan-
tification space DHI for ModHI such that, its projection in the first component belongs in a quantification space DI

adequate for ModI . This is regarded as an additional parameter in the hybridisation process.
As a subclass of SignHI , the quantification morphisms consists of triples χ = (χSign, χNom, χMS) : (�, Nom, �) →

(�′, Nom′, �′). Each of these components is responsible for a particular kind of quantification. For example, considering
χNom : Nom ↪→ Nom + Y , for Y a finite set of constants, and considering χMS the identity morphism, we obtain the standard
state quantification of the literature.

The hybridisation process is adjusted to the quantified version as follows: the set SenHI() is enriched, for any χ : →
′ ∈ DHI and ρ ∈ SenHI(′), with the sentence (∀χ)ρ; the translation of sentences is extended, in each morphism
ϕ : → 1, by SenHI(ϕ)

(
(∀χ)ρ

) = (∀χ(ϕ))SenHI(ϕ[χ])(ρ); finally, for the satisfaction, we consider

• (M, W) |=w (∀χ)ρ iff (M ′, W ′) |=w ρ for any (M ′, W ′) such that ModHI(χ)(M ′, W ′) = (M, W).

Existential quantification is introduced in a similar way.
Observe that, in these cases, it is necessary to distinguish between quantification coming from the base institution and

the one introduced by the hybridisation process, itself. The relation between both levels is given by

• (M, W) |=w (∀©χ)ρ implies that (M, W) |=w (∀(χ, 1Nom, 1�))ρ, and
• (M, W) |=w (∃(χ, 1Nom, 1�))ρ implies that (M, W) |=w (∃©χ)ρ.

Constrained models. Introduced in [43], represent a third parameter in the hybridisation process, providing a precise way to
put constraints upon models of the hybridised logics. Typical constraints come from sharing among local universes or the
rigidification of the variables. They are particularly important to ensure the existence of proper encodings.

Formally, a constrained models functor for HI consists of a subfunctor ModC ⊆ ModHI (i.e., such that ModC () is a
subcategory of ModHI(), for any ∈ |SignHI |) that reflects weak amalgamation, i.e., such that any pushout in SignHI

which forms an amalgamation square for ModHI , is also a weak amalgamation square for ModC . The models of ModC ()

are called constrained model of HI . Replacing ModHI by ModC in HI we obtain an institution, denoted by HIC [43].

2.3. Hybridisation examples

Example 2.1 (The trivial institution). The simplest institution one can think of is TRIV . Its category of signatures, SignTRIV , is
the final category, i.e., the category whose class of objects is the singleton set {∗} and morphisms reduce to the identity
1∗(∗) = ∗. The sentences functor, SenTRIV , sends object ∗ into the empty set ∅ and, morphism 1∗ , into the empty function.
The models functor, ModTRIV , sends the signature ∗ to the final category. Since the set of sentences is empty, the satisfaction
condition holds trivially.

Let us consider the free-hybridisation of TRIV . The signature category corresponds to

SignTRIV × SignREL ∼= SignREL.

56 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
Since SenTRIV(∗) = ∅, SenHTRIV (∗, Nom, �) is the set of sentences built up from nominals in Nom by the application of
modalities in � and Boolean connectives. This kind of formulas are called pure hybrid formulas in [19,63]. Models of
ModHTRIV(∗, Nom, �) are relational structures (W , M), where M is the constant function Mw = ∗, for any w ∈ |W |.

It is an usual assumption to consider initial states in the models. For this case, we may consider the ‘pointed’ version
of HTRIV , denoted by HTRIVP as the institution obtained considering by taking SignHTRIVP = SignHTRIVP , SenHTRIVP =
SenHTRIVP and assuming for each ∈ |SignHTRIVP |, the category whose objects |ModHTRIVP ()| = {(

(M, W), s
)|(M, W) ∈

ModHTRIV and s ∈ |W |} and whose morphisms are the morphisms of ModHTRIV() that map initial states to initial states.
Then, (

(M, W), s
) |=HTRIVP ρ iff (M, W)(|=HTRIV)sρ.

An interesting institution for the specification of hierarchical state transition systems is obtained through the hybridi-
sation of HTRIVP , which we denote (simply) by H2TRIV . Models of this institution are “Kripke structures of Kripke
structures”. Thus H2TRIV signatures are triples ((∗, Noml, �l), Nomu, �u) with Noml ,�l and Nomu , �u denoting the
nominals and the modalities of the lower and upper layers of hybridisation, respectively. Hence, the set of sentences
SenH

2TRIV ((∗, Noml, �l), Nomu, �u) is defined by the grammar

� � φ | I | @I� | 〈M〉 (�, . . . ,�) | [M] (�, . . . ,�) | ¬� |� � �, (2)

where

φ � i | @iφ | 〈m〉 (φ, . . . , φ) | [m] (φ, . . . , φ) | ¬φ |φ � φ, (3)

for I ∈ Nomu , M ∈ �u
n , i ∈ Noml , m ∈ �l

n and � ∈ {∧, ∨, →}. In order to prevent ambiguities, we use upper and lower
case letters to distinguish the nominals and modalities symbols of these two levels. Since they collapse, we do not need to
make denotational distinction in the two levels of Boolean connectives. Our tagging convention is extended also to H2TRIV
models: a ((∗, Noml, �l), Nomu, �u)-model is denoted by (Mu, W u) where, for any w ∈ |W u |, the models Mu

w are denoted
by

(
(W l

w , Ml
w), sw

)
.

Example 2.2 (EQ, FOL, PL and PA). Signatures in the institution EQ of equational logic are pairs (S, F) where S is a set of sort
symbols and F = {Far→s | ar ∈ S∗, s ∈ S} is a family of sets of operation symbols indexed by arities ar (for the arguments)
and sorts s (for the results). Signature morphisms map both components in a compatible way: they consist of pairs ϕ =
(ϕst, ϕop) : (S, F) → (S ′, F ′), where ϕst : S → S ′ is a function, and ϕop = {ϕop

ar→s : Far→s → F ′
ϕst(ar)→ϕst(s) | ar ∈ S∗, s ∈ S} is

a family of functions mapping operations symbols respecting arities.
A model M for a signature (S, F) is an algebra interpreting each sort symbol s as a carrier set Ms and each operation

symbol σ ∈ Far → s as a function Mσ : Mar → Ms , where Mar is the product of the arguments’ carriers. Model morphisms
are homomorphisms of algebras, i.e., S-indexed families of functions {hs : Ms → M ′

s | s ∈ S} such that for any m ∈ Mar,
and for each σ ∈ Far→s , hs(Mσ (m)) = M ′

σ (har(m)). For each signature morphism ϕ , the reduct of a model M ′ , say M =
ModEQ (ϕ)(M ′) is defined by (M)x = M ′

ϕ(x) for each sort and function symbol x from the domain signature of ϕ . The models
functor maps signatures to categories of algebras and signature morphisms to the respective reduct functors.

Sentences are universally quantified equations (∀X)t = t′ . Sentence translations along a signature morphism ϕ : (S, F) →
(S ′, F ′), i.e., SenEQ (ϕ) : SenEQ (S, F) → SenEQ (S ′, F ′), replace symbols of (S, F) by the respective ϕ-images in (S ′, F ′). The
sentences functor maps each signature to the set of its sentences and each signature morphism to the respective sentences
translation.

The satisfaction relation is the usual Tarskian satisfaction defined recursively on the structure of the sentences as follows:

• M |=(S,F) t = t′ when Mt = Mt′ , where Mt denotes the interpretation of the (S, F)-term t in M defined recursively by
Mσ(t1,...,tn) = Mσ (Mt1 , . . . , Mtn).

• M |=(S,F) (∀X)ρ when M ′ |=(S,F+X) ρ for any (S, F + X)-expansion M ′ of M .

Signatures of HEQ are triples ((S, F), Nom, �) and the sentences are defined as in (2) but taking (S, F)-equations
(∀X)t = t′ as atomic base sentences. Models are Kripke structures with a (local)-(S, F)-algebra per world.

The institution of (multi-sorted) first-order logics, denoted by FOL, is defined as EQ but considering also an S∗-family
of symbols P interpreted as predicates in the models. The models are defined as in EQ but interpreting any π ∈ Par
as a predicate Mπ ⊆ Mar. The sentence of FOL is defined as usual, taking beyond the equations, predicate formulas, its
compositions through Boolean connectives and quantified sentences. The satisfaction extends the satisfaction of EQ by taking

• M |=FOL
S,F ,P π(t1, . . . , tn) iff (Mt1 , . . . , Mtn) ∈ Mπ and

• M |=FOL
(S,F ,P) (∀X)ρ if M ′ |=FOL

(S,F+X,P) ρ for any (S, F + X, P)-expansion M ′ of M (see discussion in the above section).

The hybridisation of FOL constrained to the models with sharing in the universes shared and variables realisation was
suggested in [70] as suitable logic for the reconfigurable systems specification. Observe that the institution of propositional

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 57
logic PL can be formalised as the fragment of FOL obtained by restricting the signatures with empty sets of sorts (see [41]).
The fragment of the quantified free hybridisation of PL with an unique binary modality, i.e., �1 is a singleton and �n = ∅ for
n �= 1, corresponds to the standard propositional hybrid logic of the literature. Another useful hybridisation in this ‘family’
is the hybridisation of the institution PA of partial algebras. Models of this institution are defined as above, but considering
partial, instead of total, functions. Versions of hybridisations FOL and PA with sharing and rigidification of components are
carefully treated in [69] and are denoted in the sequel by HFOLR and HPAR.

Example 2.3 (MVLL). Multi-valued logics [54] generalise classic logics by replacing, as its truth domain, the 2-element Boolean
algebra by larger sets structured as complete residuate lattices. They were originally formalised as institutions in [3] (see also
[42] for a recent reference).

Residuate lattices are tuples L = (L, ≤, ∧, ∨, �, ⊥, ⊗), where

• (L, ∧, ∨, �, ⊥) is a lattice ordered by ≤, with carrier L, with (binary) infimum (∧) and supremum (∨), and biggest and
smallest elements � and ⊥;

• ⊗ is an associative binary operation such that, for any elements x, y, z ∈ L,
– x ⊗ � = � ⊗ x = x,
– y ≤ z implies that (x ⊗ y) ≤ (x ⊗ z),
– there exists an element x ⇒ z such that y ≤ (x ⇒ z) iff x ⊗ y ≤ z.
The residuate lattice L is complete if any subset S ⊆ L has infimum and supremum denoted by

∧
S and

∨
S , respec-

tively.

Given a complete residuate lattice L, the institution MVLL is defined as follows.

• MVLL -signatures are PL-signatures.
• Sentences of MVLL consist of pairs (ρ, p) where p is an element of L and ρ is defined as a PL-sentence over the set of

connectives {⇒ ∨, �, ⊥, ⊗}.
• A MVLL -model M is a function M : F Prop → L.

• For any M ∈ ModM V LL (F Prop) and for any (ρ, p) ∈ SenM V LL (F Prop) the satisfaction relation is

M |=MVLL
F Prop (ρ, p) iff p ≤ (M |= ρ),

where M |= ρ is inductively defined as follows:
– for any proposition p ∈ F Prop, (M |= p) = M(p)),

– (M |= �) = �,

– (M |= ⊥) = ⊥,

– (M |= ρ1 � ρ2) = (M |= ρ1) � (M |= ρ2), for � ∈ {∨, ⇒, ⊗}.

This institution captures many multi-valued logics in the literature. For instance, taking L as the Łukasiewicz arithmetic
lattice over the closed interval [0, 1], where x ⊗ y = 1 − max{0, x + y − 1)} (and x ⇒ y = min{1, 1 − x + y}), yields the
standard propositional fuzzy logic.

The institution obtained through the hybridisation of MVLL , for a fixed L, is similar to the HPL institution defined above,
but for two aspects,

• sentences are defined as in (2) but considering MVL F Prop-sentences (ρ0, p) as atomic;
• to each world w ∈ |W | is associated a function assigning to each proposition its value in L.

It is interesting to note that expressivity increases along hybridisation, even if one restricts to the case of a (one-world)
standard semantics. For instance, differently from the base case where each sentence is tagged by an L-value, one may now
deal with more structured expressions involving several L-values, as in, for example, (ρ, p) ∧ (ρ ′, p′).

Example 2.4 (P P L). The probabilised propositional logic (P P L), obtained from the application of the probabilisation method
[9], assigns a probability value to each PL-sentence. Formally,

• P P L-signatures are PL-signatures,
• P P L-sentences are defined by the grammar,

ρ � t < t | ¬ρ | ρ ⇒ ρ,

where

t � r |
∫

β | t + t | t . t,

for r ∈ R and β a PL-sentence.

58 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
• and P P L-models are tuples (S, F , P , V) where (S, F , P) is a probability space and V a function from the possible
outcomes (elements of S) to PL-models.

Then, the probability value of a given PL-sentence (
∫

β) is equal to the sum of all the probabilities assigned to the
outcomes that, through function V , point to a PL-model satisfying β .

Through hybridisation P P L gives rise to the HP P L logic where,

• HP P L-signatures are triples (Prop, Nom, �),
• HP P L-sentences are generated by the grammar

ρ � ρ0 | i | @iρ | ρ � ρ | ¬ρ | 〈λ〉(ρ, . . . , ρ) | [λ](ρ, . . . , ρ),

where ρ0 is a P P L-sentence, � ∈ {∧, ∨, →}, i is a nominal and λ is a modality,
• and HP P L-models are Kripke structures with a (local) P P L-model per world.

Note that along this process two levels of Boolean connectives are added, which, as expected, semantically collapse. It is
interesting to notice, however, that the atomic connectives cannot be collapsed into the new ones because the latter only
act outside the scope of the

∫
operator, while the former only apply within.

2.4. First-order encodings

The first steps in defining a method for generating first-order encodings for hybridised institutions were presented in
[75] and further extended to presentations, constrained and quantified models in [45,69]. In particular, for any institution
‘encodable’ in presentations in FOL, the method constructs an encoding from its hybridisation to FOL. Therefore, a wide
variety of computer assisted provers for FOL can be ‘borrowed’ to reason about specifications in the new, hybridised logics.
Technically such encodings are achieved by extending the classical standard translation of modal logic into the (one-sorted)
first order logic [103], more precisely, for its hybrid version [17], to the encodings of hybridised institutions into FOL.

The general idea of the standard translation from HPL into the (one-sorted) first-order logic, is to consider a sort to
denote the state space, where nominals are interpreted as constants, modalities as binary relations, and propositions as
unary predicates (where p(w) means that the proposition p holds at state w). The idea underlying the standard transla-
tion HFOL2FOL (e.g. [22]), is to extend this encoding by considering a new universe ST as an extra sort in the signature,
and ‘flattening’ the universes, operations and predicates of the (local) FOL-models into a unique (global) FOL-model. Local
functions and predicates become parametric over states, and the state universes distinguished with a sort-family of defin-
ability predicates. Intuitively, whenever m belongs to the universe of w , π(w, m) and σ(w, m) = b means that π(m) and
σ(m) = b hold in the state w . Moreover, restricting this global model M to the local universes, operations and predicates
of a fixed world w , we obtain a “slice of M”, say M|w , which consists of a local FOL-model representing (and coinciding
with) Mw .

The general method is based on the application of a state-parametrisation construction of HFOL2FOL to lift I2FOL to
HI2FOL, where I in these acronyms stands for an arbitrary institution — that of the base logic to be hybridised. Thus,
signatures and sentences targeted by I2FOL become parametric on states and the remaining sentences are treated as in
HFOL2FOL. A slice M|w corresponds now to the “FOL-interpretation” of the local I-model Mw , which can be recovered
using I2FOL.

3. The method

The hybridisation process discussed in section 2, provides an extensive number of hybrid(ised) logics, several of them
with appropriate first-order encodings, which are the basis of a specification method for reconfigurable systems. This section
introduces such a method, offering a sort of guided tour to its application through the IIP example.

The method, summarised in Fig. 2, is divided into four steps: i) definition of the specification framework, ii) interface
description, iii) specification of properties and iv) analysis and validation. The next four subsections provide a ‘guided tour’
through these states illustrating them with the specification of a IIP device.

3.1. Definition of the specification framework

In this first stage the Software Engineer defines the specification framework by generating the specification language for
the local configurations through the hybridisation of a base logic. This entails the need for choosing

• the institution representing the base logic found suitable to specify individual configurations of the problem at hand,
• the quantification space, to express which kinds of quantifications are necessary, and
• the relevant constrained models, to capture additional semantic constraints.

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 59
Fig. 2. Specification of reconfigurable systems: The method.

These choices are crucial as they fix the working institution and therefore constrains all subsequent development. In
particular, the choice of the base institution I needs to be made only after most of the problem informal requirements
were given and clearly understood. The approach proposed in this paper is largely independent of the specific logic chosen
to specify concrete configurations. One may, for example, specify them as multialgebras to cope with non-determinism, or
with multi-valued logic to deal with uncertainty. Another possibility is using partial equational logic to deal with exceptions,
or observational logics when the local level encapsulates hidden spaces. Moreover, as mentioned above, in some cases each
configuration can be regarded as a transition system itself and a modal language is in then order. Actually, different logics
have been suggested for software specification (see e.g. [16]) and, from the point of view of our method, there is no reason
to favour one over the other. The only possible limitation is related to tool support: for example, choosing a base logic for
which a translation to FOL or CASL exists, may be a good option if tool support is an issue, as such a translation can be
lifted to the resulting hybridised logic.

The two other choices are equally relevant. The decision about what kind of quantification is to be allowed has a direct
impact on the expressiveness of the framework. On the other hand, enforcing additional constraints upon the models pro-
vides the technical support to deal with sharing (e.g. of data, operations or both) across configurations. Such constraints may
also tune the accessibility relation which expresses the reconfiguration dynamics (imposing, for example, reflexivity on an
ordered structure). Both issues are closely related: for example, to obtain suitable encodings, global quantification over the
universes of individual configurations requires the previous choice of a suitable constrained model. In practice the following
kinds of quantification are found useful:

• Quantification over the base institution, i.e. over the domains of system’s configurations. This can be
– global, if a shared universe for all the configurations is chosen and the quantified variables are assumed to be rigid.

Actually, this is the typical way to ‘relate computations of’ or to ‘communicate values across’ different configurations.
– or local, i.e., ranging over each particular configuration domain. Technically, this is obtained by taking a quantifier-free

hybridisation w.r.t. the first component of the quantification morphisms.
• Quantification over nominals, which makes it possible to express properties about the systems global state space. This is

particularly useful, for instance, to express the existence of configurations satisfying a given requirement.
• Quantification over modalities, a rather powerful form of quantification, which, in general, allows us to control in a very

precise way the underlying accessibility relations.

As usual, when facing these choices the specifier should take into account the compromise between expressiveness and
formal tractability. For instance, quantification over modalities should not be used if the aim is to take advantage of the
first-order encodings discussed in [45,69] to obtain suitable tool support for validating the specifications. Similarly, the
relationships between the choice of constrained models and that of quantification spaces cannot be overlooked.

Example: The IIP device

In the IIP device case study, we identify in the original requirements [110,111] two types of insulin infusion:

• basal, where insulin is continuously injected throughout the day at adjustable rates;

60 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
Low Fail

Basal T Basal

sus
•

resc nor
•susc

bolc

•
bolus

susc

sus
•

resc nor
•susc

sus
•

resc nor
•susc

diagc

•
bolus

susc

•
diag

resc

bolc

sus
•

Basalc

Diagc

Low w Basalc

Faild

Low wFaild

Faild
Recoc

Fig. 3. Hierarchical state transition system for the IIP device.

• and bolus, which is a one-time insulin delivery rapidly administered, closely resembling an injection.

The former is used as the default, with insulin administration rates given by a 24 h-profile that takes into account the
scheduling of the patient meals, sleep and exercise. When unsuitable, such profile may be temporarily replaced. The latter
adds up to the basal mode and is typically used to cover up unexpected situations or high-carb food intake. We also
consider an additional suspension state where any kind of insulin administration is forbidden. Transitions among these
different states are triggered by specific events. Their structure, however, depends on which is the current profile of insulin
administration chosen for the patient. Each such profile corresponds to an upper-level state which constitutes a configuration
of the IIP device.

The overall structure of the IIP specification is that of an hierarchical transition system as depicted in Fig. 3. Actually, each
configuration is given as a transition system; switching between them provides a higher level transition structure. If HTRIV
is appropriate to specify plain transition systems, as the ones populating each local configuration, its hybridisation H2TRIV
will express the global dynamics and the change from one profile to another.

3.2. Interface description

At this second stage all the relevant ‘vocabulary’ to specify the intended system is declared. This includes the enu-
meration of all configurations to be considered (i.e., component Nom) and the events triggering reconfigurations (i.e.,
component �). Moreover, a (local) I-signature for the specification of individual configurations (i.e., component �) is also
required. In a sense, the latter can be understood as the actual interface of the system since all services and functions
offered at each configuration must be declared at this stage.

Hybrid signatures are represented in the sequel in a notation similar to that of the specification language Casl [8],
according to the following structure:

spec SpecName in HBaseInst =
Nom

declaration of nominal symbols
Modal

declaration of modality symbols

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 61
BaseSig
signature of the base institution

Axioms
set of axioms

SpecName is the specification identifier, and BaseInst stands for the base institution I adopted when fixing the specification
framework. Entries Nom and Modal are used for the declaration of nominal and modality symbols, respectively. Arities of
modalities are given by natural numbers placed in front of the respective symbol (e.g. event:k means that modality event
has arity k). The parameter BaseSig is the declaration of the I-signature �. Since the structure of those local signatures is
specific for each hybridisation, there is no way to fix the syntax for this declaration. Finally, the field Axioms contains the
specification expressed in axioms of the chosen logic.

Example: The IIP device

Returning to our running example, we first identify the four upper states corresponding to different insulin administration
profiles:

• Basal, denoting the pump following a 24-h basal profile.
• T Basal, representing the temporary basal profile that overrides basal due to specific circumstances. Extra care is ex-

pected in this profile: a new diagnosis is required before injecting insulin.
• Low , which is triggered when the pump detects that insulin reservoir levels are becoming low, and therefore any form

of extra insulin doses (as is the case of bolus) are forbidden.
• Fail, triggered whenever faulty behaviour is encountered and thus entails the prohibition of any sort of insulin admin-

istration.

Switching between these administration profiles is accomplished by the following transitions which encode reconfiguration
commands: Basalc , to evolve to the Basal profile, Diagc to change to a diagnosis requiring profile, Faild and Recoc to signal
the device failure and recovery, respectively. The warning associated to a low insulin level is denoted by Low w .

Inside each upper-state, the configuration behaviour is given again by a transition system whose states correspond to differ-
ent infusion modes, namely,

• nor, denotes insulin infusion with rates being given by a specific profile;
• bolus, adds up to nor through bolus injections;
• sus, simply denotes suspension which entails insulin infusion to not occur;
• diag , represents a diagnosis process, which while occurring also forbids any kind of insulin infusion.

All of these components are collected in the following hybrid signature:

spec IIPSpec in HHTriv =
Nom

Basal, TBasal, Low, Fail
Modal

Diagc : 1, Basalc : 1, Low w : 1, Faild: 1, Recoc : 1
BaseSign {

Nom
sus, nor, bolus, diag
Modal
resc : 1, susc : 1, bolc : 1, diagc : 1
}

62 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
HI-boilerplate HI-representation

System has modes <set of Nom>
∨

n∈Nom n
If P then property Q holds P ⇒ Q
If P then property Q does not hold P ⇒ ¬Q
<Mode> is active Mode
System changes from < Mode1 > to < Mode2 > through < E vent > @Mode1〈E vent〉Mode2
All transitions through < E vent > lead to < Mode > [E vent]Mode
Property P holds in < Mode > @Mode P
There are no transitions through < E vent > ¬〈E vent〉�
.

Fig. 4. Typical boilerplates for the specification of reconfigurable systems.

3.3. Specification of properties

All system properties, both at the local and global levels, are introduced at this stage. They correspond to requirements
placed at different levels of abstraction. In particular, one has to consider

1. the global properties, i.e., properties holding in all the configurations, which are expressed through (atomic)
I-sentences;

2. the reconfiguration dynamics whose specification resorts to the modal features introduced through the hybridisation
process;

3. and finally, the local properties, i.e. those relative to specific configurations, which are expressed by tagging I-sentences
with the satisfaction operator @ (@iρ is used to express that property ρ holds in the configuration named by i).

An alternative way of expressing these properties is by resorting to a suitable pallet of boilerplates which translate
to sentences to the relevant logic. This provides a ‘user friendly’ syntax to express properties rigorously. The design of
boilerplates for the specification of reconfigurable systems, some of them shown in Fig. 4, and their formal semantics is
discussed in [72].

Example: The IIP device

The first properties to be considered in the specification of the IIP are the ones that rule out ‘anomalous’ models. Actually, as
it always happens in loose semantics, a specification may admit other models beyond the ones in which all configurations
are distinguished and suitably identified by nominals. Such ‘junk configurations’ exist, but one may also have to deal with
‘confusion on the configurations’ whenever different nominals identify the same state. Expressing no junk through boilerplates
leads to

System has modes Basal, T Basal, Low, Fail,

which translates into the sentence

Basal ∨ T Basal ∨ Low ∨ Fail.

Similarly, the statement imposing no confusion between profiles Basal and TBasal is given by boilerplate

If Basal is active then property TBasal is active does not hold,

which corresponds to

¬@Basal TBasal.

This generalises to
∧

i, j∈Nom,i �= j

¬@i j,

to extend to every possible pair of nominals.

Once global properties are established we turn to the specification of the reconfigurations dynamics. In the IIP example
this amounts to the definition of the upper level transitions. Those are the transitions which encode the reconfiguration
dynamics, i.e. the change of an execution mode to another one. As explained above, this is an example of a system whose
configurations can themselves be modelled as transition structures (the lower level ones). Adding the reconfiguration layer
leads to a hierarchy of such structures, as illustrated in Fig. 3. Through boilerplates one may express a Diagc transition
between Basal and T Basal:

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 63
System changes from Basal to T Basal through event Diagc,

or that any Diagc transition from Basal will necessarily lead to T Basal:

Property all transitions through Diagc lead to T Basal holds in Basal.

Formally, the former is expressed by

@Basal〈Diagc〉T Basal

and the restriction that from Basal one may only reach T Basal by means of Diagc is written as

@Basal[Diagc]T Basal.

Both properties can be “compressed” into a conjunction

@Basal(〈Diagc〉T Basal ∧ [Diagc]T Basal),

which we abbreviate, through notation 〈M〉†ρ ≡ (〈M〉ρ ∧ [M]ρ), into,

@Basal〈Diagc〉† T Basal.

Finally, the statement cutting all Faild transitions in Fail is simply formulated as,

@Fail¬〈Faild〉�,

where � stands for a tautology in the language, for instance @Fail Fail.

Finally, let us consider the local properties of configurations. As in this example they are themselves described in HTRIV ,
each configuration corresponds to the specification of a Kripke structure. Each of them is endowed with an initial state
to define the local (lower level) state which is expected to become active when a reconfiguration forces switching to the
corresponding profile. For instance, on a transition to the Basal configuration, state nor will become active. The following
conjunction in H2TRIV establishes the entry point in each of the four profiles considered:

@Failsus ∧ @Basalnor ∧ @Lownor ∧ @T Basaldiag.

Transitions must now also be defined w.r.t. each of the available profiles. For instance, in Basal, there exists a susc transition
between nor and sus,

Property system changes from nor to sus through event susc holds in Basal

and there are no susc transitions departing from sus,

P = Property there are no transitions through susc holds in sus.

Property P holds in Basal

The direct use of H2TRIV sentences provides an alternative to boilerplates, whenever the specifier prefers to avoid such a
structured text format. From a methodological point of view, however, the rationale is similar. This means that properties
concerning the lower level are made w.r.t. each of the available profiles. For example, the ‘no confusion’ condition in Basal
between nor and sus is formulated as,

@Basal @nor¬sus,

and, as before, it may be generalised to hold between nor and any other state,

@Basal @nor(¬sus ∧ ¬bolus)

The definition of local transitions is relative to the upper state to which they belong. For example, that a susc transition
exists from nor to sus in the Basal profile is given by

@Basal @nor〈susc〉 sus,

Similarly, that no susc transition from sus is possible at Basal is defined as

@Basal¬@sus〈susc〉 �.

64 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
spec IIPSpec in HHTriv =
Nom

Basal, TBasal, Low, Fail
Modal

Diagc : 1, Basalc : 1, Low w : 1, Faild: 1, Recoc : 1
BaseSign {

Nom
sus, nor, bolus, diag
Modal
resc : 1, susc : 1, bolc : 1, diagc : 1
}

Axioms
• Basal ∨ TBasal ∨ Low ∨ Fail %(no junk)%
• Basal ⇒ (¬ TBasal ∧ ¬ Low ∧ ¬ Fail) %(no confusion wrt Basal)%
• TBasal ⇒ (¬ Low ∧ ¬ Fail) %(no confusion wrt TBasal)%
• Low ⇒ (¬Fail) %(no confusion wrt Low)%

• (@Basal 〈Diagc〉" T Basal) ∧ (〈Diagc〉� ⇒ Basal)
• (@Fail 〈Recoc〉† Basal) ∧ (〈Recoc〉� ⇒ Fail)
• (T Basal ∨ Low) ⇒ 〈Basalc〉† Basal
• 〈Basalc〉� ⇒ (T Basal ∨ Low)

• (¬Fail ⇒ 〈Faild〉† Fail) ∧ (〈Faild〉� ⇒ ¬Fail)
• (Basal ∨ T Basal ⇒ 〈Low w 〉† Low) ∧ (〈Low w 〉� ⇒ Basal ∨ T Basal)

• @Fail sus ∧ @Basal nor ∧ @Low nor ∧ @T Basal diag %(the initial states)%

• @Fail ¬ (〈susc〉� ∨ 〈diagc〉� ∨ 〈bolc〉� ∨ 〈resc〉�)

• @Basal
(
(@nor〈susc〉† sus) ∧ (@bolus〈susc〉† sus) ∧ (¬ @sus〈susc〉�)

)
• @Basal

(
(@sus〈resc〉† nor) ∧ (¬ @nor〈resc〉 �) ∧ (¬ @sus〈resc〉�)

)
• @Basal

(
(@nor〈bolc〉† bolus) ∧ (¬ @bolus〈bolc〉 �) ∧ (¬ @sus〈bolc〉�)

)
• @Basal

(
(¬ @nor〈diagc〉 �) ∧ (¬ @bolus〈diagc〉 �) ∧ (¬ @sus〈diagc〉�)

)

• @Low
(
(@nor〈susc〉† sus) ∧ (¬ @sus〈susc〉 �)

)
• @Low

(
(@sus〈resc〉† nor) ∧ (¬ @nor〈resc〉 �)

)
• @Low

(
(¬ @nor(〈diagc〉� ∨ 〈bolc〉�)) ∧ (¬ @sus(〈diagc〉� ∨ 〈bolc〉�))

)

• @T Basal
(
(@nor〈susc〉† sus) ∧ (@bolus〈susc〉† sus) ∧ (¬ @sus〈susc〉�) ∧ (¬ @diag〈susc〉�)

)
• @T Basal

(
(@sus〈resc〉† nor) ∧ (@diag〈resc〉† nor) ∧ (¬ @nor〈resc〉�) ∧ (¬ @bolus〈resc〉�)

)
• @T Basal

(
(@diag〈bolc〉† nor) ∧ (¬ @nor〈bolc〉 �) ∧ (¬ @sus〈bolc〉�) ∧ (¬ @bolus〈resc〉�)

)
• @T Basal

(
(@nor〈diagc〉† diag) ∧ (¬ @diag〈diagc〉 �) ∧ (¬ @sus〈diagc〉�) ∧ (¬ @bolus〈diagc〉�)

)

end

Fig. 5. The IIP specification.

Note that cutting transitions may become an increasingly cumbersome task, as the number of modalities increases. For
example to specify that no further transitions are possible once inside the Fail profile, one writes

@Fail ¬(〈susc〉� ∨ 〈diagc〉� ∨ 〈bolc〉� ∨ 〈resc〉�).

The complete H2TRIV-specification is given in Fig. 5.

3.4. Analysis and validation

The construction and the analysis of particular models of a specification is a fundamental step in the design process.
In a sense, it can be understood as a high level implementation of the specification, a first prototype acting as a proof-of-
concept for the system. Once a model is available, its validation, i.e. the systematic verification of the specified properties,
becomes crucial. Although this can be done with ‘paper and pencil’, the availability of computational proof-support tools is
a necessary condition for the methodology to be considered a viable alternative in the software industry.

There are a number of provers available for propositional hybrid logics (which can, of course, be of use when dealing
with hybrid(ised) propositional logic), for example, HTab [62], HyLoTab [104] and Spartacus [55]. Other works, for example
[68,60], study model checking procedures for hybrid propositional models.

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 65
Unfortunately, propositional hybrid logic has a limited use in the specification of reconfigurable systems. Actually, it only
suits the case in which states have a very simple structure, i.e. when the local description of individual configurations is
irrelevant. On the other hand, and to the best of our knowledge, there is no dedicated tool support for richer hybrid logics.

The method proposed in this paper takes a different path. In order to prototype a specification written in an hybrid(ised)
logic, or to validate its consistency, the latter is translated into first-order logic (FOL), so that the software engineer can take
advantage of several provers already available for FOL. Actually, the institution-based framework underlying the hybridisation
process described in Section 2, which provides a whole pallet of (hybrid) logics for translating the system requirements,
also offers for free the conceptual machinery for this translation to FOL, whenever it exists. Then, the prover toolset Hets

[84], a framework specifically designed to support specifications expressed in different institutions, offers suitable proof
support. Using a common metaphor [83], Hets may be seen as a “motherboard” where different “expansion cards” can be
plugged. These pieces are individual logics (with their particular analysers and proof tools) as well as logic translations,
suitably encoded in the theory of institutions. Hets already integrates parsers, static analysers and provers for a wide set of
individual logics and manages heterogeneous proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are
logics and, whose edges, are comorphisms between them.

The existence of a suitable translation, technically a comorphism, from an hybrid(ised) logic HI to FOL, gives, for free,
access to a number of provers integrated in Hets. Those include, for example, Spass [106], Vampire [93] and Darwin [12].
Such a translation, as noticed above, is not available for all logics. However, in [75,45], the authors provide a roadmap for
addressing this issue: In [75], the authors show that the hybridisation of an institution with a comorphism to FOL also
has a comorphism to FOL. Then, in reference [45], the authors extend this result and characterise conservativity of those
translations to define in which cases it is possible to borrow, in an effective way, proof support from FOL. Note that the proof
of this result is constructive, offering a method to implement such a translation. In practice, this is a very general, broadly
applicable result since several specification logics have a comorphism to FOL. Such is the case, for example, of propositional,
equational, first-order, modal or even hybrid logic, among many others.

Several other features of Hets can be explored in the context of the methodology proposed here. For instance, the model
finder of Darwin may be used as a consistency checker for specifications. On the other hand, recent encodings of FOL into
HasCASL, a specification language for functional programs, open new perspectives for prototyping generated specifications
in a standard programming language such as Haskell.

Example: The IIP device

Properties of the IIP device, at different levels of abstraction, can be verified through a suitable translation to FOL, using, for
example, the Spass theorem prover. A first example is provided by the property stating that any failure transition followed
by a recovery will always lead to basal mode, i.e.,

[Faild][Recoc]Basal,

which is translated by Hets into,

(∀w)(∀v) Faild(w, v) ⇒ (∀u) Recoc(v, u) ⇒ u = Basal.

Another example is the requirement that the pump is either in failure state or can always fail. In H2TRIV this is written as

Fail ∨ 〈Faild〉Fail,

and translated to FOL as

(∀w) w = Fail ∨ ((∃v) Faild(w, v) ∧ v = Fail).

Finally, the property that specifies that the pump is either suspended or able to suspend

sus ∨ 〈susc〉sus,

is written in FOL as,

(∀w) init(w) = sus ∨ ((∃v) susc(w, init(w), v) ∧ v = sus).

Fig. 6 shows the Hets session where those properties were proved.

4. Different needs, different logics

In Section 3 the specification of a IIP device was presented in H2TRIV characterising a two-level hierarchical transition
system. Our aim was to illustrate the step-by-step development of the specification method proposed in this paper. In
this section, however, the focus is the choice of specific hybrid(ised) logics to suitably address specific requirements. The
message is mirrored in the Section title: to meet a (specification) need, a particular logic can be chosen, hybridised and

66 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
Fig. 6. Hets session.

Sus1
•es

R T Basal
•usesolus

S

R

B

Basal
•empusolus

T

S

B

Sus2
•es

R

•
T BasalBouses

S R

•
BasalBoesus

R S

Fig. 7. The IIP transition structure.

used. Therefore, configurations will no longer be regarded as transition systems themselves, as before, but as models for the
different logics considered.

To guide our exposition we assume that the reconfiguration dynamics of the IIP device considered in the sequel is
represented by the transition structure depicted in Fig. 7. In comparison with the H2TRIV models in Section 3, note that
the behaviour remains similar: We still have the Basal and Temporary basal profiles, both allowing bolus administration, but
now we disregard any sort of diagnosis; suspension is still possible, but is represented through two nominals at the same
level. The need for two nominals comes from the insufficient expressivity power w.r.t. “remembering” previous states, which
in this particular case means that after suspending, unless each relevant state has its own suspension mode, it is impossible
to know which was the previous mode.

4.1. Capturing equational and first-order requirements: the insulin flow

As already mentioned, the purpose of the IIP is, as autonomously as possible, to administrate to a patient the adequate
insulin quantities. This means that in an IIP specification the precise characterisation of the insulin quantities that the pump
effectively debits becomes a major concern. In the sequel, we address this concern first with a simpler logic, EQ , and then,
due to the nature of the requirements, with a more powerful logic, FOL, at the cost of decidability.

One of the safety measures w.r.t. insulin flow in a IIP is the definition of an upper limit for the amount of insulin that is
injected per time slice. We define this limit as a constant over the naturals,

maxFlow : Nat

and then change its value along the possible configurations. For instance, when the pump is suspended no insulin should
flow, which fixes the maximum flow to zero, i.e.,

(Sus1 ∨ Sus2) ⇒ maxFlow = 0.

Note that, without loss of generality, the natural numbers are used to represent insulin rates. The conformance of such rates
with user programmable basal profiles, which inform the insulin quantities to be injected for each instant of time, is highly
desirable. We define such programs as a function between time and naturals,

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 67
basal : T ime → Nat

with time also abstracted as a natural number. Function

cur F low : T ime → Nat

gives for each instant the intended quantity of insulin the pump is expected to administer. Finally, stating that the pump
should follow the basal profile at specific modes becomes possible. For instance,

@Basal(∀© t : T ime). cur F low(t) = basal(t)

imposes that in the Basal mode the insulin output should exactly correspond to the basal profile. When a bolus is given,
however,

@BasalBo(∀© t : T ime). cur F low(t) = basal(t) + bolus(t),

with bolus being defined as a function bolus : T ime → Nat . Two additional remarks on the definition of a profile are in
order:

• The IIP is reconfigurable, but profiles are not. That is, user program profiles not taking into account the different internal
modes of the pump and it is expected from the profiles to remain the same along all possible configurations. Hybridised
logics allows for dealing with this kind of rigidifications. For example in the case of basal, using global quantification
over the base institution and over nominals (i.e., quantification over states), we can impose that

(∀w, w ′) . (∀t,n : Nat) . @wbasal(t) = n ⇒ @w ′basal(t) = n.

• Having defined profiles as functions imposes on them to be always defined along all configurations. This is clearly an
over restriction since there are modes where such profiles are not relevant, as is the case of the suspension mode.
One solution for this issue is the switch to a more suitable logic where partial functions are allowed; for instance PAR.
Within this logic we may say, for example, that

(Sus1 ∨ Sus2) ⇒ (∀t : Nat). ¬df (basal(t)),

where df is the definability predicate in PAR. Naturally in PAR the notion of rigidity ought to be made partial: functions
become expected not to change their values along the configurations in which they are defined.

Although decidable, HEQ has enough expressivity to formalise a number of interesting requirements. However, there
are others whose formalisation entails more powerful logics, even if decidability is lost. A prime example of this is on the
requirement that insulin flow cannot surpass specific values. To capture this requires some sort of ordering, which comes
naturally if we switch to HFOL, the hybrid(ised) first-order logic, where relations are treated as first–class citizens. Then,
the formalisation becomes

(∀© t : Nat). cur F low(t) ≤ maxFlow.

With Hets and the specification language HCASL, of which HFOL is a sub-logic, several non-trivial properties can be
automatically proved. One example is the statement that when the pump is suspended the insulin flow is not bigger than
in any other modes:

(∀t : Nat). (∀n : Nat) . ((@Sus1cur F low(t) = n) ⇒ cur F low(t) ≥ n).

Another example is the requirement that since bolus adds up to the basal insulin rates, the flow in Basal mode cannot
surpass the flow in the BasalBo mode:

(∀t : Nat) . (∃n,n′ : Nat) . @Basal cur F low(t) = n ∧ @BasalBo cur F low(t) = n′ ∧ n ≤ n′.

4.2. Capturing fuzzy and probabilistic reasoning: alarms and air-in-line sensors

Suppose the IIP device has a sensor able to inform if the insulin reservoir is empty or not, represented here, in a first
attempt, by a predicate empty. In several cases, however, this binary information is not that useful: some action may
depend on the reservoir being just with “enough” insulin. Similarly, one might consider an alarm that sounds louder when
the situations gets “worse”, as opposed to the alarm being on or off and the situation being “good” or “bad”.

Many-valued logics, i.e. logics that can take other truth spaces than the standard Boolean one, are suitable for the sit-
uations just described where interesting cases appear in a “grey” area. For the sake of illustration, we consider here the
simplest of such logics — the three-valued one. The reader is referred to Section 2 for a detailed description of the hybridis-
ation of this sort of logics.

This adds a third element (½) to the Boolean truth space, with 0 ≤ ½ ≤ 1. Thus, predicate empty does not necessarily
needs to output one or zero, but can also give one half, which we interpret as the case where the reservoir has an unknown

68 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
insulin level inside. In the alarm case, we may also represent it in the form of a predicate (named alarm), with output zero
being interpreted as turned off, one half as on but not sounding loud, and one as on and sounding loud.

With both predicates we become able to address, in a suitable way, situations that motivate a switch to hybrid(ised)
many-valued logics. For instance, the requirement that an unknown reservoir state preceded by a full reservoir, activates the
alarm with low sound is expressed as

@Basal(∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),½).

When a bolus is being given, however, the insulin flow, as we have seen before, is typically higher, so, since the situation is
probably worse, it might be a good idea to fully activate the alarm, i.e.,

@BasalBo(∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),1).

Naturally, when the pump is suspended alarms are not raised, i.e.,

(Sus1 ∨ Sus2) ⇒ (∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),0).

There are yet other components in a IIP device which motivate the use of different logics. Our last example concerns the
detection of air within lines, a situation that may be fatal to the patient if significant quantities of air are injected along with
insulin, but that can be avoided through an air-in-line sensor and an air filter. Suppose the sensor reports the probabilities of
the air-in-line situation causing problems to the patient. This entails the need for bringing to scene a probabilistic logic; the
propositional variant is enough for illustration purposes. The translation of probabilistic properties, requiring a combination
of FOL with the real numbers, follows the work of P. Baltazar [9].

One of the most important sort of requirements on the air-in-line sensor concerns the definition of the specific conditions
which activate the filter, given, as mentioned before, in probabilistic terms. A clear example of this is a requirement stating
that in Basal mode the filter activates whenever the probability given by the sensor is bigger than x:

@Basal

∫
bubbles > x ⇒

∫
f ilter = 1.

Naturally, it the pump is suspended there is no risk of air being injected into the patient and therefore the filter does
not need to be activated for any value returned by the sensor, i.e.,

(Sus1 ∨ Sus2) ⇒
∫

f ilter = 0.

Typically, due to sundry constraints, specifications are not proved to be always correct but rather to work in an acceptable
percentage of cases. This shift from “perfection” to “just good enough”, which is currently a reality in industry, can also be
applied here with the help of probabilistic propositional logic. For example, we may state that in the Basal mode the
probability of the patient getting problems due to air in line is less than x:

@Basal

∫
bubbles ∧ ¬ f ilter < x.

5. Long term properties

Back to our running example, suppose one wants to express the (liveness) requirement that from any mode, suspension is
reachable through a path composed of susc transitions. This is an example of a statement expressed over an entire sequence of
transitions and, therefore, are not directly expressible through the modalities considered so far. Those, however, can easily
be extended to deal with regular expressions over binary modalities, providing a way to express long term, “enduring”
properties. The requirement above could then be written as

〈sus∗
c 〉 sus.

In the sequel we show how the hybridisation HI of a logic I can be extended in this direction. This is a common procedure,
namely to extend process logics into a temporal dimension [77]. We prove, however, that the result of this enrichment is
still an institution HI∗ , as defined below.

The signatures category is inherited from HI , i.e., SignHI = SignHI∗
. The sentences functor SenHI∗

is defined for each
signature (�, Nom, �) ∈ |SignHI∗ |, as the smallest set such that

• SenHI(�, Nom, �) ⊆ SenHI∗
(�, Nom, �),

• for any ρ ∈ SenHI(�, Nom, �) and a ∈ Ac(�), where Ac(�) ::= λ | a; a | a ∪ a | a∗, λ ∈ �1, we have that [a]ρ, 〈a〉ρ ∈
SenHI∗

(�, Nom, �).

Recall �1 is the set of binary modalities in the signature.

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 69
For any morphism ϕ : (�, Nom, �) → (�′, Nom′, �′) ∈ SignHI∗
, we define

SenHI∗
(ϕ)(〈a〉ρ) = 〈SenHI∗

(ϕ)(a)〉SenHI(ϕ)(ρ)),

where SenHI∗
(ϕ)(a) extends the translation of modalities of SenHI(ϕ) in a structural way:

• SenHI∗
(ϕ)(λ) = SenHI(ϕ)(λ), λ ∈ �1,

• SenHI∗
(ϕ)(a1; a2) = SenHI∗

(ϕ)(a1); SenHI∗
(ϕ)(a2),

• SenHI∗
(ϕ)(a1 ∪ a2) = SenHI∗

(ϕ)(a1) ∪ SenHI∗
(ϕ)(a2),

• SenHI∗
(ϕ)(a∗) = (SenHI∗

(ϕ)(a))∗.

Analogously, ModHI∗ = ModHI where the interpretation of the regular expressions in a model (M, W) ∈ |ModHI∗
(�,

Nom, �)| extends the interpretation of modalities by

• Wa1;a2 = Wa1 ; Wa2 ,• Wa1∪a2 = Wa1 ∪ Wa2 and
• Wa∗ = (Wa)

∗ ,

where ; and ∗ stand for relational composition and transitive closure upon binary relations. Then the satisfaction |=HI∗

extends |=HI with

• (M, W) |=w 〈a〉ρ iff (M, W) |=w ′
ρ for some (w, w ′) ∈ Wa and

• (M, W) |=w [a]ρ iff (M, W) |=w ′
ρ for any (w, w ′) ∈ Wa .

Finally, we observe that the satisfaction condition holds in HI∗ , as stated below.

Theorem 5.1. Let HI∗ be the dynamic extension of the hybridisation of I , ϕ : (�, Nom, �) → (�′, Nom′, �′) ∈ SignHI∗
and

(M ′, W ′) ∈ ModHI∗
(�′, Nom′, �′). Then for any ρ ∈ SenHI∗

(�, Nom, �) and w ∈ |W |(= |W ′|),

ModHI∗
(ϕ)(M ′, W ′) |=w ρ iff (M ′, W ′) |=w SenHI∗

(ϕ)(ρ)

Proof. Let us denote ModHI∗
(ϕ)(M ′, W ′) by (M, W). We start with the observation that W ′

SenHI∗
(ϕ)(a)

= Wa . The result
follows by induction over the structure of the modalities. The base case, when a ∈ �1, comes from the reduct definition in
HI∗ . For a = a1; a2 we reason

W ′
SenHI∗

(ϕ)(a1;a2)

= {defn. of SenHI∗ }
W ′

SenHI∗
(ϕ)(a1);SenHI∗

(ϕ)(a2)

= {defn. of actions interpretation}
W ′

SenHI∗
(ϕ)(a1)

; W ′
SenHI∗

(ϕ)(a2)

= {induction hypothesis}
Wa1 ; Wa2

= {defn. of actions interpretation}
Wa1;a2

and the remaining cases are analogous.
For any w ∈ |W |(= |W ′|),

(M, W) |=w SenHI∗
(ϕ)(〈a〉ρ)

⇔ {defn. of SenHI∗ }
(M, W) |=w 〈SenHI∗

(ϕ)(a)〉SenHI∗
(ϕ)(ρ)

⇔ {defn. of |=}
(M, W) |=w ′

SenHI∗
(ϕ)(ρ), for some (w, w ′) ∈ WSenHI∗

(ϕ)(a)

⇔ {induction hypothesis + W ′
HI∗ = Wa}
Sen (ϕ)(a)

70 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
(M ′, W ′) |=w ′
ρ, for some (w, w ′) ∈ W ′

a

⇔ {defn of |=}
(M ′, W ′) |=w 〈a〉ρ

The proof for [a] ρ is similar. The remaining cases are taken from the satisfaction condition of HI . �

Therefore HI∗ is an institution:

Corollary 5.1. Let HI∗ be the dynamic extension of the hybridisation of an institution I , ϕ : → ′ ∈ SignHI∗
, (M ′, W ′) ∈

ModHI∗
(′). Then, for any ρ ∈ SenHI∗

(′),

ModHI∗
(ϕ)(M ′, W ′) |=HI∗

(�,Nom,�) ρ iff (M ′, W ′) |=HI∗
(�′,Nom′,�′) SenHI(ϕ)(ρ).

Example: The IIP device

The safe behaviour of a IIP device also depends on its ability to allow bolus administration only in the expected states. More
precisely, when not in Basal or T Basal, paths starting in the initial state and ending in bolus do not exist. A proof for this
property may start by imposing the unreachability of bolus through bolc ,

〈bolc〉bolus ⇒ (Basal ∨ T Basal),

which is promptly verified in the Hets platform. Such condition is, however, too strong. Actually, it entails our goal, but the
converse does not happen. A weaker statement is the property that the initial state does not directly reaches bolus through
bolc when not in Basal or T Basal,

¬(Basal ∨ T Basal) ⇒ ¬(〈bolc〉bolus ∨ bolus),

but this property is not strong enough to entail the goal. Using regular expressions as discussed above leads to a suitable
formalisation of this property:

¬(Basal ∨ T Basal) ⇒ ¬〈bol∗c 〉bolus

or more generally,

¬(Basal ∨ T Basal) ⇒ ¬〈(resc ∪ diagc ∪ susc ∪ bolc)
∗〉bolus.

As expected, this enrichment makes also possible to express liveness constraints. Such is the case of the requirement stated
above as a motivation for this section, expressed as 〈sus∗

c 〉 sus.

As a final example, consider the H2
TL sentence stating that Fail’s initial state has no outgoing transitions to sus or nor,

@Fail¬
(〈susc〉 (sus ∨ nor) ∨ 〈diagc〉 (sus ∨ nor) ∨ 〈bolc〉(sus ∨ nor) ∨ 〈resc〉(sus ∨ nor)

)
,

which may be simplified as follows

@Fail¬(〈susc ∪ diagc ∪ bolc ∪ resc〉(sus ∨ nor)).

6. Conclusions

6.1. What was achieved

This paper introduced a rigorous and flexible method for the specification of reconfigurable systems based on hybrid
logics generated on top of whatever logic is found adequate to describe the system’s local configurations. This shows how a
logic construction which is of largely theoretical interest — the hybridisation process — has an effective and novel application
in handling a non-trivial problem in Software Engineering.

Actually, reconfigurability is, at present, more the norm than the exception in software design. The method was illustrated
in detail with the description of an insulin infusion pump (the IIP device), which provides a small, but clear example of
a reconfigurable system. Another typical, everyday example is offered by cloud based applications that elastically react to
clients demands.

On concluding, the main distinguished features of this work can be summarised as follows:

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 71
• First of all the introduction of hybrid features on top of the modal language used to specify the overall transition
structure of a reconfigurable system, makes it possible to refer to individual configurations in an explicit way, leading
to more flexible and precise specifications. For example, nominals and the corresponding satisfaction operators give the
specifier a “surgical” precision in talking about the system’s configurations.

• On the other hand, through hybridisation of each logic selected to specify individual configurations, we get a single,
powerful logic weaving together local and global aspects to reason about the system. The two corresponding conceptual
levels get unified through the use of a common logic which bears in its own structure local and global means of
expressiveness.

• Finally, the institution-based construction used provides a precise way to transport specifications and proofs from one
logic to another that can be realised in a formal tool for the proposed method.

In the sequel the paper contribution is compared to related work and, finally, current research directions are reported.

6.2. Related work

As stated, we intend to explore hybridised logics to frame a general approach to the specification of reconfigurable
systems. By general we mean independent of whatever logic one finds suitable to describe the system’s individual configu-
rations. The rationale underlying our approach seeks to combine two basic dimensions in systems specification: one which
emphasises behaviour and its evolution, another focused on data and their transformations. To be able to cope, within a
single formalism, with both data structuring and prescription of functionality, as well as with specification and analysis of
(externally observable) behaviour remains a main challenge for Software Engineering.

Behaviour is typically specified through (some variant of) state machines. Such models capture the system’s evolution
in terms of event occurrences and their impact in the system’s internal state configuration (see e.g. [1]). Data types and
services upon them, on the other hand, are often presented as theories in suitable logics, over a signature which offers a
syntactic interface to the system. Semantics is, then, given by a class of concrete algebras acting as models of the specified
theory (see e.g. [82]).

Our starting point is that these two dimensions are interconnected: the functionality offered by a reconfigurable system,
at each moment, may depend on the stage of its evolution. In [70] the reconfiguration dynamics is modelled as a transi-
tion system, whose nodes are interpreted as the different configurations it may assume. Therefore, each of such nodes is
endowed with an algebra, or even a first-order structure, to formally characterise the semantics of the services offered in
the corresponding configuration. Technically, models of reconfigurable systems are given as structured state-machines whose
states denote algebras, rather than sets. Structured transition systems [38] are, therefore, the semantic structure underlying
the approach proposed. They are usually obtained by extending the bare structure of (sets of) states and transitions with fur-
ther elements in either of them (e.g., structured labels, weights, functions, algebraic structure on states, etc). A quite general
characterisation was proposed by R. Heckel and A. Corradini through the concept of lax coalgebra [37] which incorporates
algebraic structure in both labels and states.

There are two ways to mathematically represent transition systems: either as graphs or as coalgebras by regarding the
transition relation as a function from states to some collection of states whose shape is determined by a suitable end-
ofunctor. It is not surprising that the literature on formal models of software reconfiguration explores both these paths.
Graph rewriting techniques [94], notably the double pushout approach [57], have been extensibility used in modelling the
evolution of dynamic systems. Typical applications emerge in the areas of mobile processes, from the π -calculus [80] and
its variants [95] to the latter work of Robin Milner in bigraphs [36,81], architectural evolution [107,25] or coordination of
software services [66], among many others.

Representing reconfiguration as transition systems described by coalgebras or, more often, in terms of their relational
counterpart, has also been considered in the literature. The approaches are more diverse than in the graph-oriented trend
and often endowed with a particular variant of a modal logic. Some examples include the separate specification of a second
transition structure to monitor the basic one, often called a reconfiguration manager [10], the use of feature enriched tran-
sition systems [34] or well-structured transition systems [50]. The latter incorporates an order on (an infinite) state space,
compatible with the transitions, with interesting decidability results. The specification of contracts or interaction conflicts
in either states or transitions, in the context of the well known design-by-contract formalism, also provides mechanisms to
talk about reconfigurations (see e.g. [101,48,11,39]).

In both cases a critical ingredient to incorporate the reconfigurability dimension in specifications is the ability to add
structure, typically algebraic structure, to the transition system modelling the system’s behaviour. In a sense such is also
the path taken in this work. But the combination of what, after Rutten’s seminal work on universal coalgebra, are called
algebraic and coalgebraic structures, has a long trace in Computer Science.

A first landmark was the whole research trend on behavioural satisfaction, early references being [51] and [92]. Hidden-
sort algebra [53], embodying a fundamental distinction between visible values and internal states, which can only be
observed in an indirect way, is an example of a behavioural formalism whose development was triggered, from the outset,
by research on the foundations of object-oriented programming. Specification with coherent hidden algebras [44], observa-
tional algebras [59] and behavioural reasoning [74] are remarkable approaches in this line. In [96], the authors provide a
comprehensive account of the area.

72 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
Another research direction, somehow closer to the approach proposed in this work, seeks to combine explicitly algebraic
specifications with state-based structures. Also motivated by the emergence of object orientation in the 80’s, the specifica-
tion language Trool [64] is a paradigmatic example. Objects, defined by attributes and evolving in response to events, are
described as abstract data types and their evolution as linear processes specified in a temporal logic. A logic which combines
many-sorted first-order logic with branching-time combinators, with both initial and loose semantics is introduced by Costa
in [40].

Introduced by M. Broy and M. Wirsing in [23], algebraic state machines take algebraic specifications as states, an idea
which was also present in Y. Gurevich seminal work on evolving algebras [56], posteriorly renamed to abstract states machines
[21]. These machines, aiming at modelling arbitrary computational processes, consist of transition systems where each state
has a structure of an algebra. The initial state consists of a particular algebra and each transition in a command that triggers
an update on the current algebra. Hence, the set of transitions can be regarded as an abstract (imperative) program to be
executed over the assigned initial state. The impact of abstract state machines in formal modelling cannot be understated.
Several key ideas were borrowed by, and later incorporated in, popular model-oriented formalisms, namely the B method.
A recent manifestation of this states as algebras perspective appears in the work of M. Bidoit and R. Hennicker in [15]
as a semantic foundation for the contract-based design of software components. This perspective developed into a whole
approach to software architecture based on a two layered semantics (at the interface and internal levels) with precise
notions of composition and refinement.

The perspective of the presented specification method has several points of contact with these approaches based on
structured transition systems. Note, however, that in our models a state does not correspond to a configuration of variables
over a unique, common, fixed first-order structure, but to a specific structure modelling the configuration behaviour and
functionality. Technically, we resort to rigid variables for non-rigid operations, in contrast to other, more disseminated
approaches where rigid operations act upon non rigid variables. On the other hand our specifications are always axiomatic
and expressed in a logic which results from the hybridisation of the logic found suitable for each application to capture its
possible configurations.

The use of different, often domain-tailored logics to specify reconfigurations in software constitutes a wide and heteroge-
neous landscape in which our own approach fits in. We mention some examples, for illustration but with no pretension of
exhaustibility. An important one is J. Meseguer’s rewriting logic [78] and its Maude realisation, a language whose dynamics
is based on the concurrent transformation of a ‘soup’ of objects and messages. A detailed overview, including references
to modelling evolution and self-adaptability, is provided in [79]. Logic based formalisms are also common in specifying
reconfiguration in component-based paradigms, dynamic software architectures and coordination schemes. An example of
the first is given by the work of O. Kouchnarenko and her collaborators in which reconfigurations are specified in a tem-
poral pattern logic [47] in the context Fractal [24], a paradigmatic component model. The work of T. Maibaum [2,30] and
J. Fiadeiro [49], as well as of the Pisa or the Munchen Schools (see e.g. [26] or [105], the latter work developed in an institu-
tional framework), among many others, exemplify applications to dynamic architectures [112]. Finally, on the coordination
side, the work of D. Clarke on what is called reconfiguration logic [33] expresses evolution of Reo [4] connectors in formulas
of a modal logic evaluated over constrained automata.

6.3. Future work

Current work aims at addressing some limitations of the method proposed here and extending its scope of application.
A known limitation concerns interface reconfiguration, i.e., the possibility of different (local) configurations being specified
over different signatures. A solution exists for specifications in hybrid(ised) equational logic as discussed in reference [73].
However, addressing the general case remains an open issue. In an orthogonal directions lies the possibility of resorting to
different logics to model different configurations, a topic which can be explored by taking the hybridisation of a product of
the corresponding institutions with a suitable choice of operators.

Although the paper is focused in the specification stage of software development, current work includes the study of
both a corresponding refinement process [71], and a requirements analysis stage. Actually, the design of comprehensive
pallet of boilerplates for requirements elicitation of reconfigurable systems, illustrated in Section 3 is a relevant issue for
the working software engineer. At present a Haskell processor for these boilerplates is already available as a first step
towards the definition of a domain specific language for this area of software technology. The combination of different sets of
requirements expressed in hybridised versions HI of different base logics I is a challenge to explore.

The hybridisation process [75,69], which, underlies the method discussed here, is rather flexible and able to cope, as
discussed in Section 3, with several forms of quantification (e.g., of nominals, modalities, etc.) which bring out remarkable
expressive power. In some cases, as one would expect, this may rule out the existence of suitable first order encodings
for the logic, thus reducing the existent tool support for the method. Computational support for reasoning about hybrid
specifications is crucial from the Software Engineering point of view, which makes us to pay careful attention to this issue
[87]. Encodings to second-order-logic are also being developed.

One can go even further by also taking as a parameter the logic used for the reconfiguration stage. This entails the
need for developing a general method for asymmetric combination of logics parametric not only on the base logic used to
express local requirements, but also on the shape of the transition structure. The latter, understood as a coalgebra, can be
typed by a given functor. This coalgebraising process will go a step ahead of what is currently done (e.g. in hybridisation

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 73
or temporalisation of logics), providing not only a more general, flexible approach, but also bringing upfront the whole
coalgebraic machinery to the design of requirement-driven specification logics. This is left to future work, but note that a
similar observation was already made by C. Kupke and D. Pattinson [67]. In their work, however, the emphasis is put on
exploring different transition semantics, rather than on the combination of the latter with an arbitrary logic, i.e. the base
logic remains fixed.

As clarified above, the notion of a reconfiguration is understood here as a statically programmed change of operation
mode. This covers situations like the deletion of a component or a failure in a communication link which can be foreseen
at design time and planned for by then using, for example, a fault tolerance scheme. Truly unplanned dynamic reconfig-
urations, involving, for example, the dynamic plugging of a new component enforced by the system’s environment would
require complementary mechanisms [65]. One may therefore question the advantages of the method proposed in this paper
in comparison to a notationally simpler approach in which state changes are captured by “flattening” the reconfiguration
structure as another local dimension of the (global) state. We believe our approach to be methodologically simpler, avoiding
to mix mode information with other state dimensions and directly encoding reconfigurations as transitions between modes.
In some cases, moreover, it may lead to simpler verification strategies. Actually, references [87,88] show that the hybridis-
ation method can be extended so that not only the logic is hybridised but also its calculus is systematically enriched into
a calculus for the hybridised logic. The latter is shown to be sound and complete whenever the calculus associated to the
underlying, base logic is. Reasoning at this level may thus pay back as an alternative to flattening the whole structure and
having to resort to, e.g., first order setting to capture the whole picture.

If reconfigurations increase the availability and the reliability of software systems by allowing their architectures to evolve
at run-time, there is a number of other domains in Computing where reconfigurability, and the search for suitable formal
methods, are emerging as a crucial issue. These include areas in the intersection of discrete and continuous behaviour,
namely in what concerns sensor networks [105] and robotics [109]. Whether the method introduced in this paper scales to
those domains, as well as to real, industrial cases, on the other hand, only time and effort will tell. Therefore, the study of
hybridisation of logics to deal with probabilistic [35,46,58] and continuous [90] reasoning appears as the next, natural step
to take.

Acknowledgements

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for
Competitiveness and Internationalisation – COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT – Fundação para a Ciência e a Tecnologia within projects POCI-01-0145-FEDER-016692 and
UID/MAT/04106/2013. The first author is further supported by the BPD FCT grant SFRH/BPD/103004/2014, and
R. Neves is sponsored by FCT grant SFRH/BD/52234/2013. M.A. Martins is also funded by the EU FP7 Marie Curie
PIRSESGA-2012-318986 project GeTFun: Generalizing Truth-Functionality.

References

[1] Luca Aceto, Anna Ingólfdótir, Kim G. Larsen, Jiri Srba, Reactive Systems: Modelling, Specification and Verification, Cambridge University Press, 2007.
[2] Nazareno Aguirre, Tom S.E. Maibaum, A temporal logic approach to the specification of reconfigurable component-based systems, in: 17th IEEE Intern.

Conf. on Automated Software Engineering, ASE 2002, 23–27 September, 2002, Edinburgh, Scotland, UK, 2002, pp. 271–274.
[3] Jaume Agusti-Cullell, Francesc Esteva, Pere Garcia, Lluis Godo, Formalizing multiple-valued logics as institutions, in: B. Bouchon-Meunier, R.R. Yager,

L.A. Zadeh (Eds.), 3rd Intern. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 90, Paris, France,
July 2–6, 1990, in: Lecture Notes in Computer Science, vol. 521, Springer, 1990, pp. 269–278.

[4] Farhad Arbab, Reo: a channel-based coordination model for component composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329–366.
[5] Carlos Areces, Patrick Blackburn, Bringing them all together, J. Log. Comput. 11 (5) (2001) 657–669.
[6] C. Areces, B. ten Cate, Hybrid logics, in: P. Blackburn, F. Wolter, J. van Benthem (Eds.), Handbook of Modal Logic, in: Studies in Logic and Practical

Reasoning, vol. 3, Elsevier, 2007, pp. 822–868.
[7] D. Arney, R. Jetley, P. Jones, Insup Lee, O. Sokolsky, Formal methods based development of a PCA infusion pump reference model: generic infusion

pump (GIP) project, in: Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability,
2007, HCMDSS-MDPnP, 2007, pp. 23–33.

[8] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses, Donald Sannella, Andrzej Tarlecki, CASL: the common alge-
braic specification language, Theor. Comput. Sci. 286 (2) (2002) 153–196.

[9] Pedro Baltazar, Probabilization of logics: completeness and decidability, Log. Univers. (2013) 1–38.
[10] Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, David E. Rydeheard, Quantified event automata: towards expressive and efficient runtime

monitors, in: D. Giannakopoulou, D. Mery (Eds.), Formal Methods, FM-12, Paris, France, August 27–31, 2012, in: Lecture Notes in Computer Science,
vol. 7436, Springer, 2012, pp. 68–84.

[11] Sebastian S. Bauer, Rolf Hennicker, Martin Wirsing, Interface theories for concurrency and data, Theor. Comput. Sci. 412 (28) (2011) 3101–3121.
[12] Peter Baumgartner, Björn Pelzer, Cesare Tinelli, Model evolution with equality – revised and implemented, J. Symb. Comput. 47 (9) (2012) 1011–1045.
[13] Christoph Beierle, Gabriele Kern-Isberner, Looking at probabilistic conditionals from an institutional point of view, in: G. Kern-Isberner, W. Rödder,

F. Kulmann (Eds.), Conditionals, Information, and Inference Revised Selected Papers of WCII 2002, Hagen, Germany, May 13–15, 2002, in: Lecture
Notes in Computer Science, vol. 3301, Springer, 2005, pp. 162–179.

[14] Michel Bidoit, Rolf Hennicker, Constructor-based observational logic, J. Log. Algebraic Program. 67 (1–2) (2006) 3–51.
[15] Michel Bidoit, Rolf Hennicker, An algebraic semantics for contract-based software components, in: J. Meseguer, G. Rosu (Eds.), Algebraic Methodol-

ogy and Software Technology, AMAST 2008 – Urbana, IL, USA, July 28–31, 2008, in: Lecture Notes in Computer Science, vol. 5140, Springer, 2008,
pp. 216–231.

[16] Dines Björner, Martin Henson (Eds.), Logics of Specification Languages, Monographs in Theoretical Computer Science. An EATCS Series, Springer, 2008.

http://refhub.elsevier.com/S0167-6423(16)30027-2/bib41494C533037s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib416775697272654D3032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib416775697272654D3032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4167757374692D43756C6C656C6C4547473930s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4167757374692D43756C6C656C6C4547473930s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4167757374692D43756C6C656C6C4547473930s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4172623034s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib41726563657330316272696E67696E677468656Ds1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib61726563657330353A5F6879627269645F6C6F676963s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib61726563657330353A5F6879627269645F6C6F676963s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6769705F70726F6A656374s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6769705F70726F6A656374s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6769705F70726F6A656374s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6361736C32303032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6361736C32303032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42616C74617A6172323031332D42414C504F4Cs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42617272696E676572464852523132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42617272696E676572464852523132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42617272696E676572464852523132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib426175657248573131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F6A73632F4261756D676172746E657250543132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F776369692F42656965726C654B3032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F776369692F42656965726C654B3032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F776369692F42656965726C654B3032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F6A6C702F4269646F6974483036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42483038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42483038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42483038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib426A6Fs1

74 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
[17] Patrick Blackburn, Representation, reasoning, and relational structures: a hybrid logic manifesto, Log. J. IGPL 8 (3) (2000) 339–365.
[18] Patrick Blackburn, Arthur Prior and hybrid logic, Synthese 150 (3) (2006) 329–372.
[19] Patrick Blackburn, Maarten de Rijke, Yde Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University

Press, 2001.
[20] Thomas Bolander, Torben Braüner, Tableau-based decision procedures for hybrid logic, J. Log. Comput. 16 (6) (2006) 737–763.
[21] Egon Börger, Robert F. Stärk, Abstract State Machines. A Method for High-Level System Design and Analysis, Springer, 2003.
[22] Torben Braüner, Hybrid Logic and Its Proof-Theory, Applied Logic Series, Springer, 2010.
[23] Manfred Broy, Martin Wirsing, Algebraic state machines, in: T. Rus (Ed.), Algebraic Methodology and Software Technology, AMAST 2000, Iowa City,

Iowa, USA, May 20–27, 2000, in: Lecture Notes in Computer Science, vol. 1816, Springer, 2000, pp. 89–188.
[24] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, Jean-Bernard Stefani, The Fractal component model and its support in Java, Softw.

Pract. Exp. 36 (11–12) (2006) 1257–1284.
[25] Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, Dan Hirsch, Alberto Lluch-Lafuente, Graph-based design and analysis of dynamic software archi-

tectures, in: P. Degano, R. De Nicola, J. Meseguer (Eds.), Concurrency, Graphs and Models (Essays Dedicated to Ugo Montanari on the Occasion of His
65th Birthday), in: Lecture Notes in Computer Science, vol. 5065, Springer, 2008, pp. 37–56.

[26] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, Style-based architectural reconfigurations, Bull. Eur. Assoc. Theor. Comput. Sci. 94 (2008)
161–180.

[27] Rod Burstall, Răzvan Diaconescu, Hiding and behaviour: an institutional approach, in: William Roscoe (Ed.), A Classical Mind: Essays in Honour of
C.A.R. Hoare, Prentice-Hall, 1994, pp. 75–92.

[28] Rod M. Burstall, Joseph A. Goguen, The semantics of CLEAR, a specification language, in: D. Bjørner (Ed.), Abstract Software Specifications, 1979
Copenhagen Winter School, January 22–February 2, 1979, in: Lecture Notes in Computer Science, vol. 86, Springer, 1980, pp. 292–332.

[29] Carlos Caleiro, Paulo Mateus, Amílcar Sernadas, Cristina Sernadas, Quantum institutions, in: K. Futatsugi, J.-P. Jouannaud, J. Meseguer (Eds.), Algebra,
Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, in: Lecture Notes in Computer Science,
vol. 4060, Springer, 2006, pp. 50–64.

[30] Pablo F. Castro, Nazareno Aguirre, Carlos Gustavo Lopez Pombo, T.S.E. Maibaum, Towards managing dynamic reconfiguration of software systems in a
categorical setting, in: A. Cavalcanti, D. Deharbe, M.-C. Gaudel, J. Woodcock (Eds.), Theoretical Aspects of Computing, ICTAC 2010, Natal, Rio Grande
do Norte, Brazil, September 1–3, 2010, in: Lecture Notes in Computer Science, vol. 6255, Springer, 2010, pp. 306–321.

[31] Balder ten Cate, Massimo Franceschet, On the complexity of hybrid logics with binders, in: C.-H. Luke Ong (Ed.), Computer Science Logic, CSL 2005,
Oxford, UK, August 22–25, 2005, in: Lecture Notes in Computer Science, vol. 3634, Springer, 2005, pp. 339–354.

[32] Corina Cîrstea, An institution of modal logics for coalgebras, J. Log. Algebraic Program. 67 (1–2) (2006) 87–113.
[33] Clarke Dave, A basic logic for reasoning about connector reconfiguration, Fundam. Inform. 82 (4) (2008) 361–390.
[34] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay, Jean-Francois Raskin, Featured transition systems: foundations

for verifying variability-intensive systems and their application to LTL model checking, IEEE Trans. Softw. Eng. 39 (8) (2013) 1069–1089.
[35] Giulianella Coleti, Romano Scozzafava, Probabilistic Logic in a Coherent Setting, Trends in Logic, Studia Logica Library, vol. 15, Kluwer Academic

Publishers, 2002.
[36] Giovanni Conforti, Damiano Macedonio, Vladimiro Sassone, Static BiLog: a unifying language for spatial structures, in: W. Penczek, G. Rozenberg

(Eds.), Half a Century of Inspirational Research, Honouring the Scientific Influence of Antoni Mazurkiewicz, Fundam. Inform. 80 (1–3) (2007) 91–110.
[37] Andrea Corradini, Martin Große-Rhode, Reiko Heckel, A coalgebraic presentation of structured transition systems, Theor. Comput. Sci. 260 (1–2) (2001)

27–55.
[38] Andrea Corradini, Ugo Montanari, An algebraic semantics for structured transition systems and its applications to logic programs, Theor. Comput. Sci.

103 (1) (1992) 51–106.
[39] Roberto Di Cosmo, Stefano Zacchiroli, Gianluigi Zavattaro, Towards a formal component model for the cloud, in: G. Eleftherakis, M. Hinchey, M.

Holcombe (Eds.), Software Engineering and Formal Methods, SEFM 2012, Thessaloniki, Greece, October 1–5, 2012, in: Lecture Notes in Computer
Science, vol. 7504, Springer, 2012, pp. 156–171.

[40] Gerardo Costa, Gianna Reggio, Specification of abstract dynamic-data types: a temporal logic approach, Theor. Comput. Sci. 173 (2) (1997) 513–554.
[41] Răzvan Diaconescu, Institution-independent Model Theory, Studies in Universal Logic, Birkhäuser, Basel, 2008.
[42] Răzvan Diaconescu, On quasi-varieties of multiple valued logic models, Math. Log. Q. 57 (2) (2011) 194–203.
[43] Răzvan Diaconescu, Quasi-varieties and initial semantics in hybridized institutions, J. Log. Comput. (2013), http://dx.doi.org/10.1093/logcom/ext016.
[44] Răzvan Diaconescu, Kokichi Futatsugi, Logical foundations of CafeOBJ, Theor. Comput. Sci. 285 (2002) 289–318.
[45] Răzvan Diaconescu, Alexandre Madeira, Encoding hybridized institutions into first order logic, Math. Struct. Comput. Sci. 26 (5) (2016) 745–788.
[46] Ernst-Erich Doberkart, Stochastic Coalgebraic Logic, Monographs in Theoretical Computer Science, An EATCS Series, Springer, 2010.
[47] Julien Dormoy, Olga Kouchnarenko, Arnaud Lanoix, Using temporal logic for dynamic reconfigurations of components, in: L.S. Barbosa, M. Lumpe

(Eds.), Formal Aspects of Component Software, Revised Selected Papers of FACS 2010, Guimaraes, Portugal, October 14–16, 2010, in: Lecture Notes in
Computer Science, vol. 6921, Springer, 2010, pp. 200–217.

[48] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, Jean-Luc Richier, Runtime enforcement monitors: composition, synthesis, and enforcement
abilities, Form. Methods Syst. Des. 38 (3) (2011) 223–262.

[49] Jose Luiz Fiadeiro, Antonia Lopes, A model for dynamic reconfiguration in service-oriented architectures, Softw. Syst. Model. 12 (2) (2013) 349–367.
[50] Alain Finkel, Ph. Schnoebelen, Well-structured transition systems everywhere!, Theor. Comput. Sci. 256 (1–2) (2001) 63–92.
[51] V. Giarratana, F. Gimona, Ugo Montanari, Observability concepts in abstract data type specifications, in: A.W. Mazurkiewicz (Ed.), Mathematical

Foundations of Computer Science, MFCS, Gdansk, Poland, September 6–10, 1976, in: Lecture Notes in Computer Science, vol. 45, Springer, 1976,
pp. 576–587.

[52] Joseph A. Goguen, Rod M. Burstall, Institutions: abstract model theory for specification and programming, J. ACM 39 (1) (1992) 95–146.
[53] Joseph A. Goguen, Grant Malcolm, A hidden agenda, Theor. Comput. Sci. 245 (1) (2000) 55–101.
[54] Siegfried Gottwald, A Treatise on Many-Valued Logics, Studies in Logic and Computation, vol. 9, Research Studies Press, 2001.
[55] Daniel Götzmann, Mark Kaminski, Gert Smolka, Spartacus: a tableau prover for hybrid logic, Electron. Notes Theor. Comput. Sci. 262 (2010) 127–139.
[56] Yuri Gurevich, Evolving algebras, in: IFIP Congress, vol. 1, 1994, pp. 423–427.
[57] Annegret Habel, Jürgen Müller, Detlef Plump, Double-pushout graph transformation revisited, Math. Struct. Comput. Sci. 11 (5) (2001) 637–688.
[58] Rolf Haenni, Jan-Willem Romeijn, Gregory Wheeler, Jon Williamsont, Probabilistic Logics and Probabilistic Networks, Synthese Library: Studies in

Epistemology, Logic, Methodology, and Philosophy of Science, vol. 350, Springer, 2011.
[59] Rolf Hennicker, Michel Bidoit, Observational logic, in: Armando Martin Haeberer (Ed.), AMAST, in: Lecture Notes in Computer Science, vol. 1548,

Springer, 1998, pp. 263–277.
[60] Christian Hoareau, Ichiro Satoh, Hybrid logics and model checking: a recipe for query processing in location-aware environments, in: 22nd Intern.

Conf. on Advanced Information Networking and Applications, AINA 2008, GinoWan, Okinawa, Japan, March 25–28, 2008, IEEE Computer Society, 2008,
pp. 130–137.

[61] Wilfrid Hodges, Model Theory, Cambridge University Press, 1993.

http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6D616E69666573746Fs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib426C61636B6275726E3036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6D6F64616C626C7565s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6D6F64616C626C7565s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib426F6C616E646572423036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A626F6F6B732F73702F426F726765725332303033s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6C6976726F5F627261756E6572s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42726F793030616C676562726169637374617465s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib42726F793030616C676562726169637374617465s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6672616374616C3036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6672616374616C3036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4272756E694247484C3038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4272756E694247484C3038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4272756E694247484C3038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4272756E694C4D3038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4272756E694C4D3038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib686964696E67s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib686964696E67s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib62673830s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib62673830s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F62697274686461792F43616C6569726F4D53533036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F62697274686461792F43616C6569726F4D53533036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F62697274686461792F43616C6569726F4D53533036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43617374726F41504D3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43617374726F41504D3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43617374726F41504D3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43617465463035s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43617465463035s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F6A6C702F436972737465613036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436C61726B653038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4654533133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4654533133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43533032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib43533032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F6E666F7274693A3037s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F6E666F7274693A3037s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F72726164696E6947483031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F72726164696E6947483031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F72726164696E694D3932s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F72726164696E694D3932s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F736D6F5A5A3132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F736D6F5A5A3132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F736D6F5A5A3132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib436F737461523937s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6C6976726F646961636F6E65736375s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F6D6C712F446961636F6E657363753131s1
http://dx.doi.org/10.1093/logcom/ext016
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib446961636F6E657363755F6C6F676963616C666F756E646174696F6E73s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7061706572646961636Fs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib446F6265726B61743130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib446F726D6F794B4C3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib446F726D6F794B4C3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib446F726D6F794B4C3130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib46616C636F6E654D46523131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib46616C636F6E654D46523131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib466961646569726F4C3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib46533031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib47474D3736s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib47474D3736s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib47474D3736s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib696E73s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib476F6775656E4D3030s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib476F747477616C643031617472656174697365s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F656E7463732F476F747A6D616E6E4B533130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F696669702F47757265766963683934s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib486162656C4D503031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib485257573131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib485257573131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F616D6173742F48656E6E69636B6572423938s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F616D6173742F48656E6E69636B6572423938s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F61696E612F486F6172656175533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F61696E612F486F6172656175533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F61696E612F486F6172656175533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib486F646765733A31393933s1

A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76 75
[62] Guillaume Hoffmann, Carlos Areces, Htab: a terminating tableaux system for hybrid logic, Electron. Notes Theor. Comput. Sci. 231 (2009) 3–19.
[63] Andrzej Indrzejczak, Modal hybrid logic, Log. Log. Philos. 16 (2007) 147–257.
[64] Ralf Jungclaus, Gunter Saake, Thorsten Hartmann, Cristina Sernadas, TROLL – a language for object-oriented specification of information systems, ACM

Trans. Inf. Syst. 14 (2) (1996) 175–211.
[65] G. Karsai, F. Massacci, L.J. Osterweil, I. Schieferdecker, Evolving embedded systems, IEEE Comput. 43 (5) (2010) 34–40.
[66] Christian Krause, Ziyan Maraikar, Alexander Lazovik, Farhad Arbab, Modeling dynamic reconfigurations in reo using high-level replacement systems,

Sci. Comput. Program. 76 (1) (2011) 23–36.
[67] Clemens Kupke, Dirk Pattinson, Coalgebraic semantics of modal logics: an overview, Theor. Comput. Sci. 412 (38) (2011) 5070–5094.
[68] Martin Lange, Model checking for hybrid logic, J. Log. Lang. Inf. 18 (4) (2009) 465–491.
[69] Alexandre Madeira, Foundations and techniques for software reconfigurability, PhD thesis, Universidades do Minho, Aveiro and Porto, July 2013, Joint

MAP-i Doctoral Programme.
[70] Alexandre Madeira, José M. Faria, Manuel A. Martins, Luís Soares Barbosa, Hybrid specification of reactive systems: an institutional approach, in:

G. Barthe, A. Pardo, G. Schneider (Eds.), Software Engineering and Formal Methods, SEFM 2011, Montevideo, Uruguay, November 14–18, 2011, in:
Lecture Notes in Computer Science, vol. 7041, Springer, 2011, pp. 269–285.

[71] Alexandre Madeira, Manuel A. Martins, Luís S. Barbosa, Bisimilarity and refinement for hybrid(ised) logics, in: John Derrick, Eerke A. Boiten, Steve
Reeves (Eds.), Refine – Proceedings 16th International Refinement Workshop, in: Electronic Proceedings in Theoretical Computer Science, vol. 115,
2013, pp. 84–98.

[72] Alexandre Madeira, Manuel A. Martins, Luís Soares Barbosa, Boilerplates for reconfigurable systems: a language and its semantics, in: André Rauber
Du Bois, Phil Trinder (Eds.), SBLP, in: Lecture Notes in Computer Science, vol. 8129, Springer, 2013, pp. 75–89.

[73] Alexandre Madeira, Renato Neves, Manuel A. Martins, Luís Soares Barbosa, When even the interface evolves..., in: Proc. TASE, IEEE, 2013, pp. 79–82.
[74] Manuel A. Martins, Don Pigozzi, Behavioural reasoning for conditional equations, Math. Struct. Comput. Sci. 17 (5) (2007) 1075–1113.
[75] Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, Luís Soares Barbosa, Hybridization of institutions, in: A. Corradini, B. Klin, C. Cîrstea (Eds.),

Algebra and Coalgebra in Computer Science, CALCO 2011, Winchester, UK, August 30–September 2, 2011, in: Lecture Notes in Computer Science,
vol. 6859, Springer, 2011, pp. 283–297.

[76] Paolo Masci, Anaheed Ayoub, Paul Curzon, Insup Lee, Oleg Sokolsky, Harold Thimbleby, Model-based development of the generic PCA infusion pump
user interface prototype in PVS, in: Friedemann Bitsch, Jérémie Guiochet, Mohamed Kaâniche (Eds.), Computer Safety, Reliability, and Security, in:
Lecture Notes in Computer Science, vol. 8153, Springer, Berlin, Heidelberg, 2013, pp. 228–240.

[77] Radu Mateescu, Mihaela Sighireanu, Efficient on-the-fly model-checking for regular alternation-free mu-calculus, Sci. Comput. Program. 46 (3) (2003)
255–281.

[78] Jose Meseguer, Conditioned rewriting logic as a united model of concurrency, Theor. Comput. Sci. 96 (1) (1992) 73–155.
[79] Jose Meseguer, Twenty years of rewriting logic, J. Log. Algebraic Program. 81 (7–8) (2012) 721–781.
[80] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (parts I and II), Inf. Comput. 100 (1) (1992) 1–77.
[81] Robin Milner, The Space and Motion of Communicating Agents, Cambridge University Press, 2009.
[82] Till Mossakowski, Anne Haxthausen, Donald Sannella, Andrzej Tarlecki, CASL: the common algebraic specification language: semantics and proof

theory, Comput. Inform. 22 (2003) 285–321.
[83] Till Mossakowski, Christian Maeder, Mihai Codescu, Dominik Lucke, HETS user guide – Version 0.99, Technical report, DFKI Lab Bremen, April 2013.
[84] Till Mossakowski, Christian Maeder, Klaus Lüttich, The heterogeneous tool set, Hets, in: O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the

Construction and Analysis of Systems, TACAS 2007 – Braga, Portugal, March 24–April 1, 2007, in: Lecture Notes in Computer Science, vol. 4424,
Springer, 2007, pp. 519–522.

[85] Till Mossakowski, Markus Roggenbach, Structured CSP – a process algebra as an institution, in: J.L. Fiadeiro, P.-Y. Schobbens (Eds.), Recent Trends
in Algebraic Development Techniques, Revised Selected Papers of WADT 2006, La Roche en Ardenne Belgium, June 1–3, 2006, in: Lecture Notes in
Computer Science, vol. 4409, Springer, 2006, pp. 92–110.

[86] Renato Neves, Alexandre Madeira, Manuel A. Martins, Luís Soares Barbosa, Hybridisation at work, in: Reiko Heckel, Stefan Milius (Eds.), Algebra and
Coalgebra in Computer Science – 5th International Conference, Proceedings, CALCO 2013, Warsaw, Poland, September 3–6, 2013, in: Lecture Notes in
Computer Science, vol. 8089, 2013, pp. 340–345.

[87] Renato Neves, Manuel A. Martins, Luís Soares Barbosa, Completeness and decidability results for hybrid(ised) logics, in: C. Braga, N. Martí-Oliet
(Eds.), Formal Methods: Foundations and Applications (Proc. Brazilian Symp. on Formal Methods, SBMF 2014), in: Lecture Notes in Computer Science,
vol. 8941, Springer, 2015, pp. 146–161.

[88] Renato Neves, Alexandre Madeira, Manuel A. Martins, Luís S. Barbosa, Proof theory for hybrid(ised) logics, Sci. Comput. Program. 126 (2016) 73–93.
[89] Solomon Passy, Tinko Tinchev, An essay in combinatory dynamic logic, Inf. Comput. 93 (2) (1991) 263–332.
[90] Andre Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics, Springer, 2010.
[91] Arthur N. Prior, Past, Present and Future, Oxford University Press, 1967.
[92] Horst Reichel, Behavioral program specification, in: David H. Pitt, Samson Abramsky, Axel Poigné, David E. Rydeheard (Eds.), CTCS, in: Lecture Notes

in Computer Science, vol. 240, Springer, 1985, pp. 390–411.
[93] Alexandre Riazanov, Andrei Voronkov, The design and implementation of VAMPIRE, AI Commun. 15 (2–3) (2002) 91–110.
[94] Gregori Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation, vol 1: Foundations, World Scientific, 1997.
[95] Davide Sangiorgi, David Walker, The π -Calculus: A Theory of Mobile Processes, Cambridge University Press, 2003.
[96] Donald Sannella, Andrzej Tarlecki, Observability concepts in abstract data type specification, 30 years later, in: P. Degano, R. De Nicola, J. Meseguer

(Eds.), Concurrency, Graphs and Model (Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday), in: Lecture Notes in Computer
Science, vol. 5065, Springer, 2008, pp. 593–617.

[97] Donald Sannella, Andrzej Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Monographs on Theoretical Computer
Science, An EATCS Series, Springer, 2012.

[98] Lutz Schröder, Till Mossakowski, HasCasl: integrated higher-order specification and program development, Theor. Comput. Sci. 410 (12–13) (2009)
1217–1260.

[99] Neeraj Kumar Singh, Hao Wang, Mark Lawford, Thomas S.E. Maibaum, Alan Wassyng, Report 18: formalizing insulin pump using Event-B, Technical
report 18, McSCert, October 2014.

[100] Ian Sommerville, Software Engineering, 9 edition, Addison–Wesley, 2010.
[101] Gabriel Tamura, Rubby Casallas, Anthony Cleve, Laurence Duchien, Qos contract-aware reconfiguration of component architectures using e-graphs,

in: Formal Aspects of Component Software, Revised Selected Papers of FACS 2010, Guimaraes, Portugal, October 14–16, 2010, in: Lecture Notes in
Computer Science, vol. 6921, Springer, 2010, pp. 34–52.

[102] Andrzej Tarlecki, Abstract specification theory: an overview, in: M. Broy, M. Pizka (Eds.), Models, Algebras, and Logics of Engineering Software, in:
NATO Science Series, Computer and Systems Sciences, vol. 191, IOS Press, 2003, pp. 43–79.

[103] Johan van Bentham, Modal Logic and Classic Logic, Humanities Press, 1983.
[104] Jan van Eijck, Hylotab-tableau-based theorem proving for hybrid logics, Technical report, CWI, Amsterdam, 2002.

http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F656E7463732F486F66666D616E6E413039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4149s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F746F69732F4A756E67636C6175735348533936s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F746F69732F4A756E67636C6175735348533936s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4B4D4F533130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4B72617573654D4C413131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4B72617573654D4C413131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4B503131s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D617274696Es1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6D616465697261746865736973s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6D616465697261746865736973s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7365666Ds1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7365666Ds1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7365666Ds1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5265663133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5265663133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5265663133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib73626C70s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib73626C70s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib74617365s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D617274696E73503037s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636Fs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636Fs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636Fs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736F6B6F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736F6B6F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736F6B6F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D61746565736375533033s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D61746565736375533033s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D657365677565723932s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D657365677565723132s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D50573932s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D696C6E65723039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D4853543033s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D4853543033s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib686574736D616E75616Cs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7461636173s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7461636173s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7461636173s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D6F7373616B6F77736B693A323030363A5343503A313736333739342E31373633383031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D6F7373616B6F77736B693A323030363A5343503A313736333739342E31373633383031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib4D6F7373616B6F77736B693A323030363A5343503A313736333739342E31373633383031s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib63616C636F3133s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib72656E61746F2D73626D663134s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib72656E61746F2D73626D663134s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib72656E61746F2D73626D663134s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib72656E61746F2D7363703136s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib50543931s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib506C61747A65723130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7072696F72s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F637463732F5265696368656C3835s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F637463732F5265696368656C3835s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F6169636F6D2F5269617A616E6F76563032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib726F7A656E626572673139393768616E64626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib626F6F6B5049s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib53616E6E656C6C61543038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib53616E6E656C6C61543038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib53616E6E656C6C61543038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6C6976726F5F73616E6E656C6C61s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6C6976726F5F73616E6E656C6C61s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F7463732F536368726F6465724D3039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A6A6F75726E616C732F7463732F536368726F6465724D3039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6E656572616A73696E67683134s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6E656572616A73696E67683134s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736F6D6D657276696C6C653130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib54616D7572614343443130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib54616D7572614343443130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib54616D7572614343443130s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7461726C65636B69s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib7461726C65636B69s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5642s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib68796C6F746162s1

76 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
[105] M. Birna van Riemsdijk, Rolf Hennicker, Martin Wirsing, Andreas Schroeder, Service specification and matchmaking using description logic, in:
J. Meseguer, G. Roşu (Eds.), Algebraic Methodology and Software Technology, AMAST 2008 – Urbana, IL, USA, July 28–31, 2008, in: Lecture Notes
in Computer Science, vol. 5140, Springer, 2008, pp. 392–406.

[106] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, Patrick Wischnewski, SPASS version 3.5, in: R.A. Schmidt (Ed.),
Automated Deduction, CADE-22, Montreal, Canada, August 2–7, 2009, in: Lecture Notes in Computer Science, vol. 5663, Springer, 2009, pp. 140–145.

[107] Michel Wermelinger, José Luiz Fiadeiro, A graph transformation approach to software architecture reconfiguration, Sci. Comput. Program. 44 (2) (2002)
133–155.

[108] Hao Xu, Tom Maibaum, An event-b approach to timing issues applied to the generic insulin infusion pump, in: Proceedings of the First International
Conference on Foundations of Health Informatics Engineering and Systems, FHIES’11, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 160–176.

[109] Zheng Yu, Ian Warren, Bruce A. MacDonald, Dynamic reconfiguration for robot software, in: IEEE Intern. Conf. on Automation Science and Engineering,
CASE, Shanghai, China, 7–10 October, 2006, IEEE, 2006, pp. 292–297.

[110] Yi Zhang, Raoul Jetley, Paul L. Jones, Arnab Ray, Generic safety requirements for developing safe insulin pump software, J. Diabetes Sci. Technol. 5 (6)
(2011) 1403–1419.

[111] Yi Zhang, Paul L. Jones, Raoul Jetley, A hazard analysis for a generic insulin infusion pump, J. Diabetes Sci. Technol. 4 (2) (2010) 263–283.
[112] Zhikun Zhao, Wei Li, Specifying dynamic software architectures with dynamic description logic, J. Softw. 7 (1) (2012) 169–175.

http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5269656D7364696A6B4857533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5269656D7364696A6B4857533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5269656D7364696A6B4857533038s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F636164652F57656964656E6261636844464B53573039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib44424C503A636F6E662F636164652F57656964656E6261636844464B53573039s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib57463032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib57463032s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6576656E74625F676970s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6576656E74625F676970s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib574D3036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib574D3036s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736166657479726571756972656D656E74735F676970s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib736166657479726571756972656D656E74735F676970s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib6769705F68617A617264616E616C79736973s1
http://refhub.elsevier.com/S0167-6423(16)30027-2/bib5A4C3132s1

	A method for rigorous design of reconﬁgurable systems
	1 Introduction
	1.1 Motivation: the insulin infusion pump
	1.2 The approach
	1.3 Contribution and paper's structure

	2 Background: hybrid(ised) logics
	2.1 Logics as institutions
	2.2 The hybridisation process
	2.3 Hybridisation examples
	2.4 First-order encodings

	3 The method
	3.1 Deﬁnition of the speciﬁcation framework
	3.2 Interface description
	3.3 Speciﬁcation of properties
	3.4 Analysis and validation

	4 Different needs, different logics
	4.1 Capturing equational and ﬁrst-order requirements: the insulin ﬂow
	4.2 Capturing fuzzy and probabilistic reasoning: alarms and air-in-line sensors

	5 Long term properties
	6 Conclusions
	6.1 What was achieved
	6.2 Related work
	6.3 Future work

	Acknowledgements
	References

