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Reconfigurability, understood as the ability of a system to behave differently in different 
modes of operation and commute between them along its lifetime, is a cross-cutting 
concern in modern Software Engineering. This paper introduces a specification method 
for reconfigurable software based on a global transition structure to capture the system’s 
reconfiguration space, and a local specification of each operation mode in whatever logic 
(equational, first-order, partial, fuzzy, probabilistic, etc.) is found expressive enough for 
handling its requirements.
In the method these two levels are not only made explicit and juxtaposed, but formally 
interrelated. The key to achieve such a goal is a systematic process of hybridisation of 
logics through which the relationship between the local and global levels of a specification 
becomes internalised in the logic itself.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation: the insulin infusion pump

Diabetes mellitus is one of the most rapidly growing diseases in modern times, predicted by many to become one of the 
most challenging health problems of this century. There is, currently, no known cure for diabetes. Moreover, in its most 
severe forms, the standard treatment still boils down to insulin injections, a method that hinders a patient’s normal life 
and carries risks. For this reason, new, more convenient, less expensive and safer technologies helping patients to pursue a 
better quality of life, are in order.

The insulin infusion pump (IIP) is an alternative to the usual treatment. To compensate for eventual insulin disequilibri-
ums the IIP measures at regular intervals the patient needs and injects insulin through a subcutaneous catheter at different 
rates. As an alternative to insulin injections, it brings greater dosing precision and quicker adjustments on the fly.

The operation of a IIP is, of course safety critical in the sense that a small error in, for example, administrating the 
correct dose of insulin, may cause severe harm, or even death. Potential risks are well-studied (cf. [111,110]), but can be 
mitigated through rigorous design, able to enforce implementations to obey to (suitably formalised) safety requirements. Not 
surprisingly the design of a safe IIP is regarded as a challenge in the engineering of safety critical systems. Specific strategies 
have been proposed resorting to, and even combining, different formalisms. Among several others one may cite the work 
reported in [7], in which state-based specifications are validated in Uppaal, and [108] or [99], both based on Event-B, the 
later being a rather extensive and complete account of the problem. In [76], the authors resort to PVS to generate executable 
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code from the formalisation of an interface provided by a legal document. The popularity of the insulin pump example as 
a specification case study is also witnessed by the discussion of a Z specification in the recent edition of I. Sommerville’s 
classic on Software Engineering [100].

To the best of our knowledge all those approaches fix, from the outset, a specification logic, entailing a particular per-
spective on the IIP system. The strategy put forward in this paper has a different starting point:

(a) Firstly, we recognise that the project of an IIP device involves different classes of requirements which are better 
expressed through different logic formalisms. For example, requirement “at all times the insulin flow cannot surpass 
a given limit” calls for some sort of quantification and an ordering relation, whereas the statement ‘‘if the insulin 
reservoir is almost empty then alarm must sound higher” suggests the use of a fuzzy language to capture the intended 
meaning of almost and higher. On the other hand, some variant of temporal logic becomes necessary to express 
properties over long-term executions of the device, including typical safety and liveness requirements.

(b) Secondly, we regard an IIP as a prime example of a reconfigurable device, i.e. one whose execution modes, and 
not only the values stored in its internal memory, may change in response to the continuous interaction with 
the environment. Such systems behave differently in different modes of operation, or configurations, and commute 
between them along their lifetime.

Clearly, the dynamics of reconfiguration of a software system, understood here in the sense of statically programmed 
change of operation mode, can be described by some sort of transition system, whose states represent configurations and 
transitions are triggered by whatever conditions enforce the move from a configuration to another. Indeed, requirement (b) 
above entails the need for a design method able to express such a local/global dichotomy, by specifying both the individual 
configurations and the reconfiguration dynamics. However, one needs also to capture the specific, local requirements which 
characterise each configuration and distinguish one from the others. Formally, such different behaviours can be modelled by 
imposing additional structure upon states in the transition system which expresses the overall dynamics. Requirement (a), 
on its turn, suggests such a method to be agnostic w.r.t. whatever logic is used to specify the system configurations: the 
nature of the requirements relevant for a particular view should lead the choice of a suitable base logic.

1.2. The approach

The method proposed in this paper aims at being a step in this direction, by addressing the following research question: 
can a rigorous approach to the design of reconfigurable systems be developed based on the hybridisation of the logics used for their 
local specifications? The notion of hybridisation and its methodological use are explained below. For the moment, note that 
the motto of the envisaged approach

reconfigurations as transitions, configurations as local models

embodies a two-layered abstraction between a local specification stage (that of the system’s individual configurations) and 
a global one (concerning the dynamics of reconfiguration). In short, models for reconfigurable software are structured tran-
sition systems described within appropriate logical systems. Their states are the individual configurations with whatever 
structure they have to bear in concrete applications. Transitions correspond to the admissible reconfigurations.

Regarding reconfigurations as transitions suggests some sort of modal logic as the language to express them. A modal 
logic, however, has no ability to explicitly refer to individual configurations. This view justifies the use of hybrid logic [63,
17,22,6] as the basic language to express evolution (through modalities) and locality (through nominals). Actually, a spec-
ification for this sort of system should be able to make assertions both about the transition dynamics and, locally, about 
each particular configuration. This leads to the adoption of hybrid logic as the specification lingua franca for the envisaged 
methodology.

In general, hybrid logic adds to a modal language the ability to name, or to explicitly refer to specific states of the 
underlying Kripke structure. This is done through the introduction of propositional symbols of a new sort, called nominals, 
each of which is true at exactly one possible state. The sentences are then enriched in two directions. On the one hand, 
nominals are used as simple sentences holding exclusively in the state they name. On the other hand, explicit reference 
to states is provided by sentences @i ρ , stating the validity of ρ at the state named i. One may therefore specify (local) 
properties of specific configurations in the system or even to assert the equality between two particular configurations, 
something which is beyond what can be said in a modal language. Modalities, however, capture state transitions, providing 
a way to specify the global dynamics of reconfigurability.

Historically, hybrid logic was introduced by A. Prior in his book [91]. However, its seminal ideas emerged by the end 
of the 50’s, in a discussion of C.A. Meredith [17]. The theme was latter revisited, in the school of Sofia, by S. Passy and 
T. Tinchev [89]. It achieved global interest within the modal logic community on the 90’s, being contributed by P. Blackburn, 
C. Areces, B. ten Cate, T. Braüner, T. Bolander, among many others (see, e.g., [5,31,22,20]). This lifted the status of hybrid logic 
to an independent branch of modern logic. For an historical account we suggest [17,22], as well as [18] for a comparison 
with the original perspective of A. Prior.
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Fig. 1. Specification of reconfigurable systems: the approach.

On the other hand, identifying configurations, or operation modes, as local models emphasises that no special restrictions 
should be put to their specification. This means that it would not be enough to take a particular version of hybrid logic 
for writing specifications. Actually, the relevant research question is how to combine a hybrid language with whatever logic 
seems appropriate to express local requirements for each configuration. Specific problems may require specific logics to 
describe their configurations (e.g., equational, first-order, fuzzy, etc.). Therefore, instead of choosing a particular version of 
hybrid logic, the method proposed here starts by choosing a specific logic for expressing requirements at the configuration 
level. This is later taken as the base logic on top of which the characteristic features of hybrid logic are developed.

This process is called hybridisation [75,45] and was introduced in the first author’s PhD thesis [69]. The basic idea is 
quite simple: to develop, on top of a given logic, called the base logic and framed as an institution [52,41], the characteristic 
features of hybrid logic, both at the level of syntax (i.e. modalities, nominals, etc.) and semantics (i.e., possible worlds), 
together with first-order encodings of such hybridised institutions. In particular, given a base institution ‘encodable’ in the 
institution of theories in first-order logic, the hybridisation method provides a systematic construction of a similar encoding 
for the corresponding hybridised institution.

To proceed in a completely generic way, the whole approach is framed in the context of the theory of institutions of 
Goguen and Burstall [28,41], each logic (base and hybridised) treated abstractly as an institution. Institutions provide a 
precise way to transport specifications and proofs from one logic to another, which allows us to seek for appropriate tool 
support for simulating and validating our conjectures. The Hets framework offers such a support as discussed in [86] and 
exemplified later in the paper.

As it will become clearer along the paper, the general idea underlying the design method proposed here is depicted in 
Fig. 1. The upper part refers to the global level of a specification; the lower one to the local description of configurations. 
The line in the middle emphasises the role of hybrid features: in a formula they provide a way to name evaluation states, 
whereas in a model they index the relevant configuration. Actually, each configuration is characterised by a local model 
capturing its functionality and behaviour.

1.3. Contribution and paper’s structure

The hybridisation process mentioned above, conducted in an institutional setting, is the foundational work on top of 
which the specification method proposed in this paper was developed. The paper itself is devoted to the detailed intro-
duction of the specification method, illustrated with fragments of the IIP case study. In this sense, it extends the authors’ 
previous work [70,72]. The former reference is a first introduction to the use of hybrid logics for specification of reconfig-
urability, whereas the latter discusses an important, but somehow complementary aspect of the design method proposed 
here — that of requirements elicitation through the use of a suitable set of boilerplates.

In this setting the paper’s contributions are twofold:

• The introduction, in a detailed way, of a method, based on hybridisation, for the design of reconfigurable systems 
(Sections 3 and 4).

• The technical development of a mechanism for capturing a system’s enduring temporal properties (Section 5).

Sections 3, 4 and 5 contain, as explained above, the paper’s original contributions. In all of them fragments of the IIP

design are used for illustration purposes. Before that an introduction to the systematic construction of hybrid(ised) logics 
is provided in Section 2. This includes a brief summary to the institutional rendering of logics. Such a background section 
seems necessary to set the scene for the paper, exemplifying the generation of several logics used in later sections, and 
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providing relevant pointers to the literature. Finally, related work and perspectives for further research are discussed in 
Section 6.

2. Background: hybrid(ised) logics

2.1. Logics as institutions

The development of a systematic process for hybridising logics entails the need for a mathematical framework where log-
ics are suitably handled as generic objects. The theory of institutions [52] provides such a framework in a category theoretic 
setting. The notion of an institution formalises that of a logical system, encompassing syntax, semantics and satisfaction. It 
was put forward by J. Goguen and R. Burstall, in the late seventies, in response to the “population explosion among the logical 
systems used in Computing Science” [52].

The theory proved effective and resilient as witnessed by the wide number of logics formalised in this framework. 
Examples range from classical logics (propositional, equational, first order, etc.), to the ones underlying specification and 
programming languages or used for describing particular systems from different domains. Well-known examples include 
probabilistic logics [13], quantum logics [29], hidden and observational logics [27,14], coalgebraic logics [32], as well as logics for 
reasoning about process algebras [85], functional [97,98] and imperative programing languages [97].

Seeking for abstract characterisations of basic conceptual tools, e.g., translations and combination of logics, the theory had 
a relevant impact in theoretical Computer Science. In particular, it led to the development of a solid institution-independent 
specification theory, on which, structuring and parameterisation mechanisms, required to scale up software specification 
methods, are defined ‘once and for all’, irrespective of the concrete logic used in each application domain [102].

Some basic definitions are recalled below and illustrated with a few examples to which we return later in the paper. 
Most of the technical details presented are not essential for an appreciation of the design method proposed in the paper, 
and can be skipped on a first reading. The interested reader, however, is referenced to [41] for an extensive account of the 
theory.

An institution

I = (
SignI ,SenI ,ModI , (|=I

�)
�∈|SignI |

)
consists of

• a category SignI whose objects are signatures and arrows signature morphisms;
• a functor SenI : SignI → Set giving for each signature a set of sentences over that signature;
• a functor ModI : (SignI)op → CAT , giving for each signature � a category whose objects are �-models, and arrows 

are �-(model) homomorphisms; each arrow ϕ : � → �′ ∈ SignI , (i.e., ϕ : �′ → � ∈ (SignI)op ) is mapped into a functor 
ModI(ϕ) : ModI(�′) → ModI(�) called a reduct functor, whose effect is to cast a model of �′ as a model of �;

• a relation |=I
�⊆ |ModI(�)| × SenI(�) for each � ∈ |SignI |, called the satisfaction relation,

such that for each morphism ϕ : � → �′ ∈ SignI , the satisfaction condition

M ′ |=I
�′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

� ρ (1)

holds for each M ′ ∈ |ModI(�′)| and ρ ∈ SenI(�). Graphically,

�

ϕ

ModI(�)
|=I

� SenI(�)

SenI (ϕ)

�′ ModI(�′)

ModI (ϕ)

|=I
�′

SenI(�′)

A presentation in I consists of a pair (�, �) where � is a I-signature and � is a set of �-sentences.
The whole theory of institutions was developed to provide a sound way of relating logics and transporting specifications 

between them. Technically, this is achieved through comorphisms which are a special kind of mappings between institutions. 
Formally, a comorphism between I an I ′ consists of a triple (�, α, β) : I → I ′ where � is a functor between SignI and 
SignI

′
and α : Sen ⇒ �; Sen′ and β : �op; Mod′ ⇒ Mod, two natural transformations which map sentences and models 

between both institutions assuring the following satisfaction condition – for any signature � ∈ |Sign|, for any �(�)-model 
M ′ and, for all the �-sentences ρ:

β�(M ′) |=I
� ρ iff M ′ |=I′

�(�) α�(ρ).

A comorphism is conservative if its β component is a surjection. This being the case one has that for any set of sentences 
{ρ} ∪ � ⊆ SenI (�)



54 A. Madeira et al. / Science of Computer Programming 132 (2016) 50–76
� |=I
� ρ iff α�(�) |=I′

�(�) α�(ρ).

In practice, the existence of a conservative comorphism connecting two logics allows the transport of proof support mecha-
nisms from one to the other. In the context of the design method proposed Section 3, this is used to allow for the verification 
of properties expressed in whatever specification logic was found appropriate for a given problem using standard theorem 
provers for more popular logics.

Another relevant issue for the hybridisation process is the way quantifications are dealt with in institutional terms. In 
the light of the lemma on constants of first order logic, (see e.g. [61]), a set of variables X for a signature can be regarded as 
a set of constants in its X-expansion. Hence,

M |=FOL
(S,F ,P ) (∀X)ρ iff M ′ |=FOL

(S,F+X,P ) ρ,

for any (S, F + X, P )-expansion M ′ of M . In an institutional setting these expansions can be understood as models M ′
such that M = ModFOL(i)(M ′) for i : (S, F , P ) ↪→ (S, F + X, P ) an inclusion morphism. This motivates the introduction of the 
following quantification principle: given a morphisms χ : � → �′ ,

M |=I
� (∀χ)ρ iff M ′ |=I

�′ ρ,

for any M ′ ∈ ModI(�′) such that ModI(χ)(M ′) = M .
In order to assure the functoriality of SenI , the quantification morphism needs to be carefully introduced. In the context 

of first order logic this means that SenFOL(ϕ)(∀X ρ) = (∀Xϕ) SenFOL(ϕ′)(ρ), where Xϕ and ϕ′define the pushout:

(S, F , P )
ϕ

X

(S, F ′, P ′)

Xϕ

(S, F 
 X, P )
ϕ′ (S, F ′ 
 Xϕ, P ′)

where Xϕ = {x : ϕst(s)|x : s ∈ X}, and ϕ′ is the canonical expansion of ϕ mapping each x : s in x : ϕst(s).

2.2. The hybridisation process

As mentioned in the Introduction, the hybridisation process [75,45,69] which underlies the design method proposed in 
this paper, is based on the representation of logics as institutions. It enriches a base (arbitrary) institution I with hybrid 
logic features and the corresponding Kripke semantics. The result is still an institution, HI — the hybridisation of I . This 
subsection reviews a simplified version of this process, i.e., quantifier-free and non-constrained, in order to convey the basic 
intuitions.

At the syntactic level the base signatures are enriched with nominals and polyadic modalities. Therefore, the category 
of I-hybrid signatures, denoted by SignHI , is defined as the direct (cartesian) product of categories of the original category 
of signatures SignI and that of signatures of REL, the sub-institution of (the institution of) first order logic, without non-
constant operation symbols, SignREL . Signatures of the hybridised institution combine those of I with a family of constants 
Nom for nominals and a set of relational symbols � to represent modalities. HI signatures are, thus, triples (�, Nom, �), 
with signature morphisms ϕ = (ϕSign, ϕNom, ϕMS) : (�, Nom, �) → (�′, Nom′, �′), defined component-wise: inherited from 
I for the first component, given as maps relating nominals and modalities, and preserving the arities of the latter as ex-
pected.

The second step in the method is to enrich the base sentences accordingly. The sentences of the base institution I
and the nominals in Nom are taken as atoms and composed with the Boolean connectives, the modalities given in �, 
and satisfaction operators indexed by nominals. For example, for a n-ary modality λ, a nominal i and ρ, ρ1, ρ2 . . . , ρn HI
sentences, the following are also sentences in HI: [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) and @iρ .

Given a HI-signature morphism ϕ , the translation of sentences SenHI(ϕ) is defined structurally: e.g., SenHI(ϕ)(i) =
ϕNom(i), SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ) and SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . , SenHI(ρn)).

Turning to semantics, models of HI can be regarded as (�-)Kripke structures whose worlds are I-models. Formally, 
they are pairs (M, W ) where W is a (Nom, �)-model in REL and M is a function which assigns to each state w ∈ |W | a 
model in Mw ∈ |ModI(�)|.

In each model (M, W ), Wn provides interpretation for nominal n, whereas relation Wλ interprets modality λ. The reduct 
definition is lifted from the base institution: the reduct of a ′-model (M ′, W ′) along with a signature morphism ϕ :  → ′
is the -model (M, W ) such that W is the (ϕNom, ϕMS)-reduct of W ′ (i.e., |W | = |W ′|, Wn = W ′

ϕNom(n) , for each nominal n, 
and Wλ = W ′

ϕMS(λ) for each modality in �) and for each w ∈ |W |, Mw = ModI(ϕSign)(M ′
w).

Finally, the satisfaction relation for the hybridised institution resorts to the one in the base institution for sentences in 
I , i.e.,
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• (M, W ) |=w ρ iff Mw |=I ρ when ρ ∈ SenI(�),

captures the semantics of nominals

• (M, W ) |=w i iff W i = w , when i ∈ Nom,

• (M, W ) |=w @iρ iff (M, W ) |=W i ρ,

and modalities, as in

• (M, W ) |=w [λ](ξ1, . . . , ξn) iff, for any (w, w1, . . . , wn) ∈ Wλ , (M, W ) |=wi ξi for some 1 ≤ i ≤ n,

and is defined as usual for the Boolean connectives. Note that, whenever the base institution has Boolean connectives, there 
is a replication of these connectives in its hybridisation: those in the base institution sentences (that we denote by ∧© , 
∨© , ⇒© and ¬© ) and those introduced by the hybridisation method (∧, ∨, ⇒ and ¬). However, as shown in [45,69], they 
semantically collapse, in the sense that for any ρ, ρ ′ ∈ SenI(�) we have that (M, W ) |=w ¬ρ iff (M, W ) |=w ¬©ρ and that 
(M, W ) |=w ρ � ρ ′ iff (M, W ) |=w ρ �©ρ ′ for any � ∈ {∧, ∨, ⇒}. In virtue of this fact, we will not make any denotational 
distinction between these two levels of connectives

The main result is that HI effectively constitutes an institution [75]. The next step is the systematic characterisation of 
encodings of HI into the institution of many sorted first-order logic (FOL) building on existent encodings of into FOL of the 
base institution I .

Quantified hybridisation. Extending this procedure to quantified sentences requires the introduction of an adequate quan-
tification space DHI for ModHI such that, its projection in the first component belongs in a quantification space DI

adequate for ModI . This is regarded as an additional parameter in the hybridisation process.
As a subclass of SignHI , the quantification morphisms consists of triples χ = (χSign, χNom, χMS) : (�, Nom, �) →

(�′, Nom′, �′). Each of these components is responsible for a particular kind of quantification. For example, considering 
χNom : Nom ↪→ Nom + Y , for Y a finite set of constants, and considering χMS the identity morphism, we obtain the standard 
state quantification of the literature.

The hybridisation process is adjusted to the quantified version as follows: the set SenHI() is enriched, for any χ :  →
′ ∈ DHI and ρ ∈ SenHI(′), with the sentence (∀χ)ρ; the translation of sentences is extended, in each morphism 
ϕ :  → 1, by SenHI(ϕ)

(
(∀χ)ρ

) = (∀χ(ϕ))SenHI(ϕ[χ ])(ρ); finally, for the satisfaction, we consider

• (M, W ) |=w (∀χ)ρ iff (M ′, W ′) |=w ρ for any (M ′, W ′) such that ModHI(χ)(M ′, W ′) = (M, W ).

Existential quantification is introduced in a similar way.
Observe that, in these cases, it is necessary to distinguish between quantification coming from the base institution and 

the one introduced by the hybridisation process, itself. The relation between both levels is given by

• (M, W ) |=w ( ∀©χ)ρ implies that (M, W ) |=w (∀(χ, 1Nom, 1�))ρ, and
• (M, W ) |=w (∃(χ, 1Nom, 1�))ρ implies that (M, W ) |=w ( ∃©χ)ρ.

Constrained models. Introduced in [43], represent a third parameter in the hybridisation process, providing a precise way to 
put constraints upon models of the hybridised logics. Typical constraints come from sharing among local universes or the 
rigidification of the variables. They are particularly important to ensure the existence of proper encodings.

Formally, a constrained models functor for HI consists of a subfunctor ModC ⊆ ModHI (i.e., such that ModC () is a 
subcategory of ModHI(), for any  ∈ |SignHI |) that reflects weak amalgamation, i.e., such that any pushout in SignHI

which forms an amalgamation square for ModHI , is also a weak amalgamation square for ModC . The models of ModC ()

are called constrained model of HI . Replacing ModHI by ModC in HI we obtain an institution, denoted by HIC [43].

2.3. Hybridisation examples

Example 2.1 (The trivial institution). The simplest institution one can think of is TRIV . Its category of signatures, SignTRIV , is 
the final category, i.e., the category whose class of objects is the singleton set {∗} and morphisms reduce to the identity 
1∗(∗) = ∗. The sentences functor, SenTRIV , sends object ∗ into the empty set ∅ and, morphism 1∗ , into the empty function. 
The models functor, ModTRIV , sends the signature ∗ to the final category. Since the set of sentences is empty, the satisfaction 
condition holds trivially.

Let us consider the free-hybridisation of TRIV . The signature category corresponds to

SignTRIV × SignREL ∼= SignREL.
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Since SenTRIV(∗) = ∅, SenHTRIV (∗, Nom, �) is the set of sentences built up from nominals in Nom by the application of 
modalities in � and Boolean connectives. This kind of formulas are called pure hybrid formulas in [19,63]. Models of 
ModHTRIV(∗, Nom, �) are relational structures (W , M), where M is the constant function Mw = ∗, for any w ∈ |W |.

It is an usual assumption to consider initial states in the models. For this case, we may consider the ‘pointed’ version 
of HTRIV , denoted by HTRIVP as the institution obtained considering by taking SignHTRIVP = SignHTRIVP , SenHTRIVP =
SenHTRIVP and assuming for each  ∈ |SignHTRIVP |, the category whose objects |ModHTRIVP ()| = {(

(M, W ), s
)|(M, W ) ∈

ModHTRIV and s ∈ |W |} and whose morphisms are the morphisms of ModHTRIV() that map initial states to initial states. 
Then, (

(M, W ), s
) |=HTRIVP ρ iff (M, W )(|=HTRIV)sρ.

An interesting institution for the specification of hierarchical state transition systems is obtained through the hybridi-
sation of HTRIVP , which we denote (simply) by H2TRIV . Models of this institution are “Kripke structures of Kripke 
structures”. Thus H2TRIV signatures are triples ((∗, Noml, �l), Nomu, �u) with Noml ,�l and Nomu , �u denoting the 
nominals and the modalities of the lower and upper layers of hybridisation, respectively. Hence, the set of sentences 
SenH

2TRIV ((∗, Noml, �l), Nomu, �u) is defined by the grammar

� � φ | I | @I� | 〈M〉 (�, . . . ,�) | [M] (�, . . . ,�) | ¬� |� � �, (2)

where

φ � i | @iφ | 〈m〉 (φ, . . . , φ) | [m] (φ, . . . , φ) | ¬φ |φ � φ, (3)

for I ∈ Nomu , M ∈ �u
n , i ∈ Noml , m ∈ �l

n and � ∈ {∧, ∨, →}. In order to prevent ambiguities, we use upper and lower 
case letters to distinguish the nominals and modalities symbols of these two levels. Since they collapse, we do not need to 
make denotational distinction in the two levels of Boolean connectives. Our tagging convention is extended also to H2TRIV
models: a ((∗, Noml, �l), Nomu, �u)-model is denoted by (Mu, W u) where, for any w ∈ |W u |, the models Mu

w are denoted 
by 

(
(W l

w , Ml
w), sw

)
.

Example 2.2 (EQ, FOL, PL and PA). Signatures in the institution EQ of equational logic are pairs (S, F ) where S is a set of sort 
symbols and F = {Far→s | ar ∈ S∗, s ∈ S} is a family of sets of operation symbols indexed by arities ar (for the arguments) 
and sorts s (for the results). Signature morphisms map both components in a compatible way: they consist of pairs ϕ =
(ϕst, ϕop) : (S, F ) → (S ′, F ′), where ϕst : S → S ′ is a function, and ϕop = {ϕop

ar→s : Far→s → F ′
ϕst(ar)→ϕst(s) | ar ∈ S∗, s ∈ S} is 

a family of functions mapping operations symbols respecting arities.
A model M for a signature (S, F ) is an algebra interpreting each sort symbol s as a carrier set Ms and each operation 

symbol σ ∈ Far → s as a function Mσ : Mar → Ms , where Mar is the product of the arguments’ carriers. Model morphisms 
are homomorphisms of algebras, i.e., S-indexed families of functions {hs : Ms → M ′

s | s ∈ S} such that for any m ∈ Mar, 
and for each σ ∈ Far→s , hs(Mσ (m)) = M ′

σ (har(m)). For each signature morphism ϕ , the reduct of a model M ′ , say M =
ModEQ (ϕ)(M ′) is defined by (M)x = M ′

ϕ(x) for each sort and function symbol x from the domain signature of ϕ . The models 
functor maps signatures to categories of algebras and signature morphisms to the respective reduct functors.

Sentences are universally quantified equations (∀X)t = t′ . Sentence translations along a signature morphism ϕ : (S, F ) →
(S ′, F ′), i.e., SenEQ (ϕ) : SenEQ (S, F ) → SenEQ (S ′, F ′), replace symbols of (S, F ) by the respective ϕ-images in (S ′, F ′). The 
sentences functor maps each signature to the set of its sentences and each signature morphism to the respective sentences 
translation.

The satisfaction relation is the usual Tarskian satisfaction defined recursively on the structure of the sentences as follows:

• M |=(S,F ) t = t′ when Mt = Mt′ , where Mt denotes the interpretation of the (S, F )-term t in M defined recursively by 
Mσ(t1,...,tn) = Mσ (Mt1 , . . . , Mtn ).

• M |=(S,F ) (∀X)ρ when M ′ |=(S,F+X) ρ for any (S, F + X)-expansion M ′ of M .

Signatures of HEQ are triples ((S, F ), Nom, �) and the sentences are defined as in (2) but taking (S, F )-equations 
(∀X)t = t′ as atomic base sentences. Models are Kripke structures with a (local)-(S, F )-algebra per world.

The institution of (multi-sorted) first-order logics, denoted by FOL, is defined as EQ but considering also an S∗-family 
of symbols P interpreted as predicates in the models. The models are defined as in EQ but interpreting any π ∈ Par
as a predicate Mπ ⊆ Mar. The sentence of FOL is defined as usual, taking beyond the equations, predicate formulas, its 
compositions through Boolean connectives and quantified sentences. The satisfaction extends the satisfaction of EQ by taking

• M |=FOL
S,F ,P π(t1, . . . , tn) iff (Mt1 , . . . , Mtn ) ∈ Mπ and

• M |=FOL
(S,F ,P ) (∀X)ρ if M ′ |=FOL

(S,F+X,P ) ρ for any (S, F + X, P )-expansion M ′ of M (see discussion in the above section).

The hybridisation of FOL constrained to the models with sharing in the universes shared and variables realisation was 
suggested in [70] as suitable logic for the reconfigurable systems specification. Observe that the institution of propositional 
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logic PL can be formalised as the fragment of FOL obtained by restricting the signatures with empty sets of sorts (see [41]). 
The fragment of the quantified free hybridisation of PL with an unique binary modality, i.e., �1 is a singleton and �n = ∅ for 
n �= 1, corresponds to the standard propositional hybrid logic of the literature. Another useful hybridisation in this ‘family’ 
is the hybridisation of the institution PA of partial algebras. Models of this institution are defined as above, but considering 
partial, instead of total, functions. Versions of hybridisations FOL and PA with sharing and rigidification of components are 
carefully treated in [69] and are denoted in the sequel by HFOLR and HPAR.

Example 2.3 (MVLL ). Multi-valued logics [54] generalise classic logics by replacing, as its truth domain, the 2-element Boolean 
algebra by larger sets structured as complete residuate lattices. They were originally formalised as institutions in [3] (see also 
[42] for a recent reference).

Residuate lattices are tuples L = (L, ≤, ∧, ∨, �, ⊥, ⊗), where

• (L, ∧, ∨, �, ⊥) is a lattice ordered by ≤, with carrier L, with (binary) infimum (∧) and supremum ( ∨), and biggest and 
smallest elements � and ⊥;

• ⊗ is an associative binary operation such that, for any elements x, y, z ∈ L,
– x ⊗ � = � ⊗ x = x,
– y ≤ z implies that (x ⊗ y) ≤ (x ⊗ z),
– there exists an element x ⇒ z such that y ≤ (x ⇒ z) iff x ⊗ y ≤ z.
The residuate lattice L is complete if any subset S ⊆ L has infimum and supremum denoted by 

∧
S and 

∨
S , respec-

tively.

Given a complete residuate lattice L, the institution MVLL is defined as follows.

• MVLL -signatures are PL-signatures.
• Sentences of MVLL consist of pairs (ρ, p) where p is an element of L and ρ is defined as a PL-sentence over the set of 

connectives {⇒ ∨, �, ⊥, ⊗}.
• A MVLL -model M is a function M : F Prop → L.

• For any M ∈ ModM V LL (F Prop) and for any (ρ, p) ∈ SenM V LL (F Prop) the satisfaction relation is

M |=MVLL
F Prop (ρ, p) iff p ≤ (M |= ρ),

where M |= ρ is inductively defined as follows:
– for any proposition p ∈ F Prop, (M |= p) = M(p)),

– (M |= �) = �,

– (M |= ⊥) = ⊥,

– (M |= ρ1 � ρ2) = (M |= ρ1) � (M |= ρ2), for � ∈ {∨, ⇒, ⊗}.

This institution captures many multi-valued logics in the literature. For instance, taking L as the Łukasiewicz arithmetic 
lattice over the closed interval [0, 1], where x ⊗ y = 1 − max{0, x + y − 1)} (and x ⇒ y = min{1, 1 − x + y}), yields the 
standard propositional fuzzy logic.

The institution obtained through the hybridisation of MVLL , for a fixed L, is similar to the HPL institution defined above, 
but for two aspects,

• sentences are defined as in (2) but considering MVL F Prop-sentences (ρ0, p) as atomic;
• to each world w ∈ |W | is associated a function assigning to each proposition its value in L.

It is interesting to note that expressivity increases along hybridisation, even if one restricts to the case of a (one-world) 
standard semantics. For instance, differently from the base case where each sentence is tagged by an L-value, one may now 
deal with more structured expressions involving several L-values, as in, for example, (ρ, p) ∧ (ρ ′, p′).

Example 2.4 (P P L). The probabilised propositional logic (P P L), obtained from the application of the probabilisation method 
[9], assigns a probability value to each PL-sentence. Formally,

• P P L-signatures are PL-signatures,
• P P L-sentences are defined by the grammar,

ρ � t < t | ¬ρ | ρ ⇒ ρ,

where

t � r |
∫

β | t + t | t . t,

for r ∈ R and β a PL-sentence.
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• and P P L-models are tuples (S, F , P , V ) where (S, F , P ) is a probability space and V a function from the possible 
outcomes (elements of S) to PL-models.

Then, the probability value of a given PL-sentence (
∫

β) is equal to the sum of all the probabilities assigned to the 
outcomes that, through function V , point to a PL-model satisfying β .

Through hybridisation P P L gives rise to the HP P L logic where,

• HP P L-signatures are triples (Prop, Nom, �),
• HP P L-sentences are generated by the grammar

ρ � ρ0 | i | @iρ | ρ � ρ | ¬ρ | 〈λ〉(ρ, . . . , ρ) | [λ](ρ, . . . , ρ),

where ρ0 is a P P L-sentence, � ∈ {∧, ∨, →}, i is a nominal and λ is a modality,
• and HP P L-models are Kripke structures with a (local) P P L-model per world.

Note that along this process two levels of Boolean connectives are added, which, as expected, semantically collapse. It is 
interesting to notice, however, that the atomic connectives cannot be collapsed into the new ones because the latter only 
act outside the scope of the 

∫
operator, while the former only apply within.

2.4. First-order encodings

The first steps in defining a method for generating first-order encodings for hybridised institutions were presented in 
[75] and further extended to presentations, constrained and quantified models in [45,69]. In particular, for any institution 
‘encodable’ in presentations in FOL, the method constructs an encoding from its hybridisation to FOL. Therefore, a wide 
variety of computer assisted provers for FOL can be ‘borrowed’ to reason about specifications in the new, hybridised logics. 
Technically such encodings are achieved by extending the classical standard translation of modal logic into the (one-sorted) 
first order logic [103], more precisely, for its hybrid version [17], to the encodings of hybridised institutions into FOL.

The general idea of the standard translation from HPL into the (one-sorted) first-order logic, is to consider a sort to 
denote the state space, where nominals are interpreted as constants, modalities as binary relations, and propositions as 
unary predicates (where p(w) means that the proposition p holds at state w). The idea underlying the standard transla-
tion HFOL2FOL (e.g. [22]), is to extend this encoding by considering a new universe ST as an extra sort in the signature, 
and ‘flattening’ the universes, operations and predicates of the (local) FOL-models into a unique (global) FOL-model. Local 
functions and predicates become parametric over states, and the state universes distinguished with a sort-family of defin-
ability predicates. Intuitively, whenever m belongs to the universe of w , π(w, m) and σ(w, m) = b means that π(m) and 
σ(m) = b hold in the state w . Moreover, restricting this global model M to the local universes, operations and predicates 
of a fixed world w , we obtain a “slice of M”, say M|w , which consists of a local FOL-model representing (and coinciding 
with) Mw .

The general method is based on the application of a state-parametrisation construction of HFOL2FOL to lift I2FOL to 
HI2FOL, where I in these acronyms stands for an arbitrary institution — that of the base logic to be hybridised. Thus, 
signatures and sentences targeted by I2FOL become parametric on states and the remaining sentences are treated as in 
HFOL2FOL. A slice M|w corresponds now to the “FOL-interpretation” of the local I-model Mw , which can be recovered 
using I2FOL.

3. The method

The hybridisation process discussed in section 2, provides an extensive number of hybrid(ised) logics, several of them 
with appropriate first-order encodings, which are the basis of a specification method for reconfigurable systems. This section 
introduces such a method, offering a sort of guided tour to its application through the IIP example.

The method, summarised in Fig. 2, is divided into four steps: i) definition of the specification framework, ii) interface
description, iii) specification of properties and iv) analysis and validation. The next four subsections provide a ‘guided tour’ 
through these states illustrating them with the specification of a IIP device.

3.1. Definition of the specification framework

In this first stage the Software Engineer defines the specification framework by generating the specification language for 
the local configurations through the hybridisation of a base logic. This entails the need for choosing

• the institution representing the base logic found suitable to specify individual configurations of the problem at hand,
• the quantification space, to express which kinds of quantifications are necessary, and
• the relevant constrained models, to capture additional semantic constraints.
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Fig. 2. Specification of reconfigurable systems: The method.

These choices are crucial as they fix the working institution and therefore constrains all subsequent development. In 
particular, the choice of the base institution I needs to be made only after most of the problem informal requirements 
were given and clearly understood. The approach proposed in this paper is largely independent of the specific logic chosen 
to specify concrete configurations. One may, for example, specify them as multialgebras to cope with non-determinism, or 
with multi-valued logic to deal with uncertainty. Another possibility is using partial equational logic to deal with exceptions, 
or observational logics when the local level encapsulates hidden spaces. Moreover, as mentioned above, in some cases each 
configuration can be regarded as a transition system itself and a modal language is in then order. Actually, different logics 
have been suggested for software specification (see e.g. [16]) and, from the point of view of our method, there is no reason 
to favour one over the other. The only possible limitation is related to tool support: for example, choosing a base logic for 
which a translation to FOL or CASL exists, may be a good option if tool support is an issue, as such a translation can be 
lifted to the resulting hybridised logic.

The two other choices are equally relevant. The decision about what kind of quantification is to be allowed has a direct 
impact on the expressiveness of the framework. On the other hand, enforcing additional constraints upon the models pro-
vides the technical support to deal with sharing (e.g. of data, operations or both) across configurations. Such constraints may 
also tune the accessibility relation which expresses the reconfiguration dynamics (imposing, for example, reflexivity on an 
ordered structure). Both issues are closely related: for example, to obtain suitable encodings, global quantification over the 
universes of individual configurations requires the previous choice of a suitable constrained model. In practice the following 
kinds of quantification are found useful:

• Quantification over the base institution, i.e. over the domains of system’s configurations. This can be
– global, if a shared universe for all the configurations is chosen and the quantified variables are assumed to be rigid. 

Actually, this is the typical way to ‘relate computations of’ or to ‘communicate values across’ different configurations.
– or local, i.e., ranging over each particular configuration domain. Technically, this is obtained by taking a quantifier-free 

hybridisation w.r.t. the first component of the quantification morphisms.
• Quantification over nominals, which makes it possible to express properties about the systems global state space. This is 

particularly useful, for instance, to express the existence of configurations satisfying a given requirement.
• Quantification over modalities, a rather powerful form of quantification, which, in general, allows us to control in a very 

precise way the underlying accessibility relations.

As usual, when facing these choices the specifier should take into account the compromise between expressiveness and 
formal tractability. For instance, quantification over modalities should not be used if the aim is to take advantage of the 
first-order encodings discussed in [45,69] to obtain suitable tool support for validating the specifications. Similarly, the 
relationships between the choice of constrained models and that of quantification spaces cannot be overlooked.

Example: The IIP device

In the IIP device case study, we identify in the original requirements [110,111] two types of insulin infusion:

• basal, where insulin is continuously injected throughout the day at adjustable rates;
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Fig. 3. Hierarchical state transition system for the IIP device.

• and bolus, which is a one-time insulin delivery rapidly administered, closely resembling an injection.

The former is used as the default, with insulin administration rates given by a 24 h-profile that takes into account the 
scheduling of the patient meals, sleep and exercise. When unsuitable, such profile may be temporarily replaced. The latter 
adds up to the basal mode and is typically used to cover up unexpected situations or high-carb food intake. We also 
consider an additional suspension state where any kind of insulin administration is forbidden. Transitions among these 
different states are triggered by specific events. Their structure, however, depends on which is the current profile of insulin 
administration chosen for the patient. Each such profile corresponds to an upper-level state which constitutes a configuration 
of the IIP device.

The overall structure of the IIP specification is that of an hierarchical transition system as depicted in Fig. 3. Actually, each 
configuration is given as a transition system; switching between them provides a higher level transition structure. If HTRIV
is appropriate to specify plain transition systems, as the ones populating each local configuration, its hybridisation H2TRIV
will express the global dynamics and the change from one profile to another.

3.2. Interface description

At this second stage all the relevant ‘vocabulary’ to specify the intended system is declared. This includes the enu-
meration of all configurations to be considered (i.e., component Nom) and the events triggering reconfigurations (i.e., 
component �). Moreover, a (local) I-signature for the specification of individual configurations (i.e., component �) is also 
required. In a sense, the latter can be understood as the actual interface of the system since all services and functions 
offered at each configuration must be declared at this stage.

Hybrid signatures are represented in the sequel in a notation similar to that of the specification language Casl [8], 
according to the following structure:

spec SpecName in HBaseInst =
Nom

declaration of nominal symbols
Modal

declaration of modality symbols
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BaseSig
signature of the base institution

Axioms
set of axioms

SpecName is the specification identifier, and BaseInst stands for the base institution I adopted when fixing the specification 
framework. Entries Nom and Modal are used for the declaration of nominal and modality symbols, respectively. Arities of 
modalities are given by natural numbers placed in front of the respective symbol (e.g. event:k means that modality event
has arity k). The parameter BaseSig is the declaration of the I-signature �. Since the structure of those local signatures is 
specific for each hybridisation, there is no way to fix the syntax for this declaration. Finally, the field Axioms contains the 
specification expressed in axioms of the chosen logic.

Example: The IIP device

Returning to our running example, we first identify the four upper states corresponding to different insulin administration 
profiles:

• Basal, denoting the pump following a 24-h basal profile.
• T Basal, representing the temporary basal profile that overrides basal due to specific circumstances. Extra care is ex-

pected in this profile: a new diagnosis is required before injecting insulin.
• Low , which is triggered when the pump detects that insulin reservoir levels are becoming low, and therefore any form 

of extra insulin doses (as is the case of bolus) are forbidden.
• Fail, triggered whenever faulty behaviour is encountered and thus entails the prohibition of any sort of insulin admin-

istration.

Switching between these administration profiles is accomplished by the following transitions which encode reconfiguration 
commands: Basalc , to evolve to the Basal profile, Diagc to change to a diagnosis requiring profile, Faild and Recoc to signal 
the device failure and recovery, respectively. The warning associated to a low insulin level is denoted by Low w .

Inside each upper-state, the configuration behaviour is given again by a transition system whose states correspond to differ-
ent infusion modes, namely,

• nor, denotes insulin infusion with rates being given by a specific profile;
• bolus, adds up to nor through bolus injections;
• sus, simply denotes suspension which entails insulin infusion to not occur;
• diag , represents a diagnosis process, which while occurring also forbids any kind of insulin infusion.

All of these components are collected in the following hybrid signature:

spec IIPSpec in HHTriv =
Nom

Basal, TBasal, Low, Fail
Modal

Diagc : 1, Basalc : 1, Low w : 1, Faild: 1, Recoc : 1
BaseSign {

Nom
sus, nor, bolus, diag
Modal
resc : 1, susc : 1, bolc : 1, diagc : 1
}
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HI-boilerplate HI-representation

System has modes <set of Nom>
∨

n∈Nom n
If P then property Q holds P ⇒ Q
If P then property Q does not hold P ⇒ ¬Q
<Mode> is active Mode
System changes from < Mode1 > to < Mode2 > through < E vent > @Mode1〈E vent〉Mode2
All transitions through < E vent > lead to < Mode > [E vent]Mode
Property P holds in < Mode > @Mode P
There are no transitions through < E vent > ¬〈E vent〉�
. . . . . .

Fig. 4. Typical boilerplates for the specification of reconfigurable systems.

3.3. Specification of properties

All system properties, both at the local and global levels, are introduced at this stage. They correspond to requirements 
placed at different levels of abstraction. In particular, one has to consider

1. the global properties, i.e., properties holding in all the configurations, which are expressed through (atomic) 
I-sentences;

2. the reconfiguration dynamics whose specification resorts to the modal features introduced through the hybridisation 
process;

3. and finally, the local properties, i.e. those relative to specific configurations, which are expressed by tagging I-sentences 
with the satisfaction operator @ (@iρ is used to express that property ρ holds in the configuration named by i).

An alternative way of expressing these properties is by resorting to a suitable pallet of boilerplates which translate 
to sentences to the relevant logic. This provides a ‘user friendly’ syntax to express properties rigorously. The design of 
boilerplates for the specification of reconfigurable systems, some of them shown in Fig. 4, and their formal semantics is 
discussed in [72].

Example: The IIP device

The first properties to be considered in the specification of the IIP are the ones that rule out ‘anomalous’ models. Actually, as 
it always happens in loose semantics, a specification may admit other models beyond the ones in which all configurations 
are distinguished and suitably identified by nominals. Such ‘junk configurations’ exist, but one may also have to deal with 
‘confusion on the configurations’ whenever different nominals identify the same state. Expressing no junk through boilerplates 
leads to

System has modes Basal, T Basal, Low, Fail,

which translates into the sentence

Basal ∨ T Basal ∨ Low ∨ Fail.

Similarly, the statement imposing no confusion between profiles Basal and TBasal is given by boilerplate

If Basal is active then property TBasal is active does not hold,

which corresponds to

¬@Basal TBasal.

This generalises to
∧

i, j∈Nom,i �= j

¬@i j,

to extend to every possible pair of nominals.

Once global properties are established we turn to the specification of the reconfigurations dynamics. In the IIP example 
this amounts to the definition of the upper level transitions. Those are the transitions which encode the reconfiguration 
dynamics, i.e. the change of an execution mode to another one. As explained above, this is an example of a system whose 
configurations can themselves be modelled as transition structures (the lower level ones). Adding the reconfiguration layer 
leads to a hierarchy of such structures, as illustrated in Fig. 3. Through boilerplates one may express a Diagc transition 
between Basal and T Basal:
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System changes from Basal to T Basal through event Diagc,

or that any Diagc transition from Basal will necessarily lead to T Basal:

Property all transitions through Diagc lead to T Basal holds in Basal.

Formally, the former is expressed by

@Basal〈Diagc〉T Basal

and the restriction that from Basal one may only reach T Basal by means of Diagc is written as

@Basal[Diagc]T Basal.

Both properties can be “compressed” into a conjunction

@Basal(〈Diagc〉T Basal ∧ [Diagc]T Basal),

which we abbreviate, through notation 〈M〉†ρ ≡ (〈M〉ρ ∧ [M]ρ), into,

@Basal〈Diagc〉† T Basal.

Finally, the statement cutting all Faild transitions in Fail is simply formulated as,

@Fail¬〈Faild〉�,

where � stands for a tautology in the language, for instance @Fail Fail.

Finally, let us consider the local properties of configurations. As in this example they are themselves described in HTRIV , 
each configuration corresponds to the specification of a Kripke structure. Each of them is endowed with an initial state 
to define the local (lower level) state which is expected to become active when a reconfiguration forces switching to the 
corresponding profile. For instance, on a transition to the Basal configuration, state nor will become active. The following 
conjunction in H2TRIV establishes the entry point in each of the four profiles considered:

@Failsus ∧ @Basalnor ∧ @Lownor ∧ @T Basaldiag.

Transitions must now also be defined w.r.t. each of the available profiles. For instance, in Basal, there exists a susc transition 
between nor and sus,

Property system changes from nor to sus through event susc holds in Basal

and there are no susc transitions departing from sus,

P = Property there are no transitions through susc holds in sus.

Property P holds in Basal

The direct use of H2TRIV sentences provides an alternative to boilerplates, whenever the specifier prefers to avoid such a 
structured text format. From a methodological point of view, however, the rationale is similar. This means that properties 
concerning the lower level are made w.r.t. each of the available profiles. For example, the ‘no confusion’ condition in Basal
between nor and sus is formulated as,

@Basal @nor¬sus,

and, as before, it may be generalised to hold between nor and any other state,

@Basal @nor(¬sus ∧ ¬bolus)

The definition of local transitions is relative to the upper state to which they belong. For example, that a susc transition 
exists from nor to sus in the Basal profile is given by

@Basal @nor〈susc〉 sus,

Similarly, that no susc transition from sus is possible at Basal is defined as

@Basal¬@sus〈susc〉 �.
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spec IIPSpec in HHTriv =
Nom

Basal, TBasal, Low, Fail
Modal

Diagc : 1, Basalc : 1, Low w : 1, Faild: 1, Recoc : 1
BaseSign {

Nom
sus, nor, bolus, diag
Modal
resc : 1, susc : 1, bolc : 1, diagc : 1
}

Axioms
• Basal ∨ TBasal ∨ Low ∨ Fail %(no junk)%
• Basal ⇒ (¬ TBasal ∧ ¬ Low ∧ ¬ Fail) %(no confusion wrt Basal)%
• TBasal ⇒ (¬ Low ∧ ¬ Fail) %(no confusion wrt TBasal)%
• Low ⇒ (¬Fail) %(no confusion wrt Low)%

• ( @Basal 〈Diagc〉" T Basal ) ∧ ( 〈Diagc〉� ⇒ Basal )
• ( @Fail 〈Recoc〉† Basal ) ∧ ( 〈Recoc〉� ⇒ Fail )
• ( T Basal ∨ Low ) ⇒ 〈Basalc〉† Basal
• 〈Basalc〉� ⇒ (T Basal ∨ Low)

• ( ¬Fail ⇒ 〈Faild〉† Fail ) ∧ ( 〈Faild〉� ⇒ ¬Fail )
• ( Basal ∨ T Basal ⇒ 〈Low w 〉† Low ) ∧ ( 〈Low w 〉� ⇒ Basal ∨ T Basal )

• @Fail sus ∧ @Basal nor ∧ @Low nor ∧ @T Basal diag %(the initial states)%

• @Fail ¬ ( 〈susc〉� ∨ 〈diagc〉� ∨ 〈bolc〉� ∨ 〈resc〉� )

• @Basal
(
( @nor〈susc〉† sus ) ∧ ( @bolus〈susc〉† sus ) ∧ (¬ @sus〈susc〉� )

)
• @Basal

(
( @sus〈resc〉† nor ) ∧ (¬ @nor〈resc〉 � ) ∧ (¬ @sus〈resc〉� )

)
• @Basal

(
( @nor〈bolc〉† bolus ) ∧ (¬ @bolus〈bolc〉 � ) ∧ (¬ @sus〈bolc〉� )

)
• @Basal

(
(¬ @nor〈diagc〉 � ) ∧ (¬ @bolus〈diagc〉 � ) ∧ (¬ @sus〈diagc〉� )

)

• @Low
(
( @nor〈susc〉† sus ) ∧ (¬ @sus〈susc〉 � )

)
• @Low

(
( @sus〈resc〉† nor ) ∧ (¬ @nor〈resc〉 � )

)
• @Low

(
(¬ @nor( 〈diagc〉� ∨ 〈bolc〉� ) ) ∧ (¬ @sus( 〈diagc〉� ∨ 〈bolc〉� ) )

)

• @T Basal
(
( @nor〈susc〉† sus ) ∧ ( @bolus〈susc〉† sus ) ∧ (¬ @sus〈susc〉� ) ∧ (¬ @diag〈susc〉� )

)
• @T Basal

(
( @sus〈resc〉† nor ) ∧ ( @diag〈resc〉† nor ) ∧ (¬ @nor〈resc〉� ) ∧ (¬ @bolus〈resc〉� )

)
• @T Basal

(
( @diag〈bolc〉† nor ) ∧ (¬ @nor〈bolc〉 � ) ∧ (¬ @sus〈bolc〉� ) ∧ (¬ @bolus〈resc〉� )

)
• @T Basal

(
( @nor〈diagc〉† diag ) ∧ (¬ @diag〈diagc〉 � ) ∧ (¬ @sus〈diagc〉� ) ∧ (¬ @bolus〈diagc〉� )

)

end

Fig. 5. The IIP specification.

Note that cutting transitions may become an increasingly cumbersome task, as the number of modalities increases. For 
example to specify that no further transitions are possible once inside the Fail profile, one writes

@Fail ¬(〈susc〉� ∨ 〈diagc〉� ∨ 〈bolc〉� ∨ 〈resc〉�).

The complete H2TRIV-specification is given in Fig. 5.

3.4. Analysis and validation

The construction and the analysis of particular models of a specification is a fundamental step in the design process. 
In a sense, it can be understood as a high level implementation of the specification, a first prototype acting as a proof-of-
concept for the system. Once a model is available, its validation, i.e. the systematic verification of the specified properties, 
becomes crucial. Although this can be done with ‘paper and pencil’, the availability of computational proof-support tools is 
a necessary condition for the methodology to be considered a viable alternative in the software industry.

There are a number of provers available for propositional hybrid logics (which can, of course, be of use when dealing 
with hybrid(ised) propositional logic), for example, HTab [62], HyLoTab [104] and Spartacus [55]. Other works, for example 
[68,60], study model checking procedures for hybrid propositional models.
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Unfortunately, propositional hybrid logic has a limited use in the specification of reconfigurable systems. Actually, it only 
suits the case in which states have a very simple structure, i.e. when the local description of individual configurations is 
irrelevant. On the other hand, and to the best of our knowledge, there is no dedicated tool support for richer hybrid logics.

The method proposed in this paper takes a different path. In order to prototype a specification written in an hybrid(ised) 
logic, or to validate its consistency, the latter is translated into first-order logic (FOL), so that the software engineer can take 
advantage of several provers already available for FOL. Actually, the institution-based framework underlying the hybridisation 
process described in Section 2, which provides a whole pallet of (hybrid) logics for translating the system requirements, 
also offers for free the conceptual machinery for this translation to FOL, whenever it exists. Then, the prover toolset Hets

[84], a framework specifically designed to support specifications expressed in different institutions, offers suitable proof 
support. Using a common metaphor [83], Hets may be seen as a “motherboard” where different “expansion cards” can be 
plugged. These pieces are individual logics (with their particular analysers and proof tools) as well as logic translations, 
suitably encoded in the theory of institutions. Hets already integrates parsers, static analysers and provers for a wide set of 
individual logics and manages heterogeneous proofs resorting to the so-called graphs of logics, i.e., graphs whose nodes are 
logics and, whose edges, are comorphisms between them.

The existence of a suitable translation, technically a comorphism, from an hybrid(ised) logic HI to FOL, gives, for free, 
access to a number of provers integrated in Hets. Those include, for example, Spass [106], Vampire [93] and Darwin [12]. 
Such a translation, as noticed above, is not available for all logics. However, in [75,45], the authors provide a roadmap for 
addressing this issue: In [75], the authors show that the hybridisation of an institution with a comorphism to FOL also 
has a comorphism to FOL. Then, in reference [45], the authors extend this result and characterise conservativity of those 
translations to define in which cases it is possible to borrow, in an effective way, proof support from FOL. Note that the proof 
of this result is constructive, offering a method to implement such a translation. In practice, this is a very general, broadly 
applicable result since several specification logics have a comorphism to FOL. Such is the case, for example, of propositional, 
equational, first-order, modal or even hybrid logic, among many others.

Several other features of Hets can be explored in the context of the methodology proposed here. For instance, the model 
finder of Darwin may be used as a consistency checker for specifications. On the other hand, recent encodings of FOL into
HasCASL, a specification language for functional programs, open new perspectives for prototyping generated specifications 
in a standard programming language such as Haskell.

Example: The IIP device

Properties of the IIP device, at different levels of abstraction, can be verified through a suitable translation to FOL, using, for 
example, the Spass theorem prover. A first example is provided by the property stating that any failure transition followed 
by a recovery will always lead to basal mode, i.e.,

[Faild][Recoc]Basal,

which is translated by Hets into,

(∀w)(∀v) Faild(w, v) ⇒ (∀u) Recoc(v, u) ⇒ u = Basal.

Another example is the requirement that the pump is either in failure state or can always fail. In H2TRIV this is written as

Fail ∨ 〈Faild〉Fail,

and translated to FOL as

(∀w) w = Fail ∨ ((∃v) Faild(w, v) ∧ v = Fail).

Finally, the property that specifies that the pump is either suspended or able to suspend

sus ∨ 〈susc〉sus,

is written in FOL as,

(∀w) init(w) = sus ∨ ((∃v) susc(w, init(w), v) ∧ v = sus).

Fig. 6 shows the Hets session where those properties were proved.

4. Different needs, different logics

In Section 3 the specification of a IIP device was presented in H2TRIV characterising a two-level hierarchical transition 
system. Our aim was to illustrate the step-by-step development of the specification method proposed in this paper. In 
this section, however, the focus is the choice of specific hybrid(ised) logics to suitably address specific requirements. The 
message is mirrored in the Section title: to meet a (specification) need, a particular logic can be chosen, hybridised and 
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Fig. 6. Hets session.
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Fig. 7. The IIP transition structure.

used. Therefore, configurations will no longer be regarded as transition systems themselves, as before, but as models for the 
different logics considered.

To guide our exposition we assume that the reconfiguration dynamics of the IIP device considered in the sequel is 
represented by the transition structure depicted in Fig. 7. In comparison with the H2TRIV models in Section 3, note that 
the behaviour remains similar: We still have the Basal and Temporary basal profiles, both allowing bolus administration, but 
now we disregard any sort of diagnosis; suspension is still possible, but is represented through two nominals at the same 
level. The need for two nominals comes from the insufficient expressivity power w.r.t. “remembering” previous states, which 
in this particular case means that after suspending, unless each relevant state has its own suspension mode, it is impossible 
to know which was the previous mode.

4.1. Capturing equational and first-order requirements: the insulin flow

As already mentioned, the purpose of the IIP is, as autonomously as possible, to administrate to a patient the adequate 
insulin quantities. This means that in an IIP specification the precise characterisation of the insulin quantities that the pump 
effectively debits becomes a major concern. In the sequel, we address this concern first with a simpler logic, EQ , and then, 
due to the nature of the requirements, with a more powerful logic, FOL, at the cost of decidability.

One of the safety measures w.r.t. insulin flow in a IIP is the definition of an upper limit for the amount of insulin that is 
injected per time slice. We define this limit as a constant over the naturals,

maxFlow : Nat

and then change its value along the possible configurations. For instance, when the pump is suspended no insulin should 
flow, which fixes the maximum flow to zero, i.e.,

(Sus1 ∨ Sus2) ⇒ maxFlow = 0.

Note that, without loss of generality, the natural numbers are used to represent insulin rates. The conformance of such rates 
with user programmable basal profiles, which inform the insulin quantities to be injected for each instant of time, is highly 
desirable. We define such programs as a function between time and naturals,
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basal : T ime → Nat

with time also abstracted as a natural number. Function

cur F low : T ime → Nat

gives for each instant the intended quantity of insulin the pump is expected to administer. Finally, stating that the pump 
should follow the basal profile at specific modes becomes possible. For instance,

@Basal( ∀© t : T ime). cur F low(t) = basal(t)

imposes that in the Basal mode the insulin output should exactly correspond to the basal profile. When a bolus is given, 
however,

@BasalBo( ∀© t : T ime). cur F low(t) = basal(t) + bolus(t),

with bolus being defined as a function bolus : T ime → Nat . Two additional remarks on the definition of a profile are in 
order:

• The IIP is reconfigurable, but profiles are not. That is, user program profiles not taking into account the different internal 
modes of the pump and it is expected from the profiles to remain the same along all possible configurations. Hybridised 
logics allows for dealing with this kind of rigidifications. For example in the case of basal, using global quantification 
over the base institution and over nominals (i.e., quantification over states), we can impose that

(∀w, w ′) . (∀t,n : Nat) . @wbasal(t) = n ⇒ @w ′basal(t) = n.

• Having defined profiles as functions imposes on them to be always defined along all configurations. This is clearly an 
over restriction since there are modes where such profiles are not relevant, as is the case of the suspension mode. 
One solution for this issue is the switch to a more suitable logic where partial functions are allowed; for instance PAR. 
Within this logic we may say, for example, that

(Sus1 ∨ Sus2) ⇒ (∀t : Nat ). ¬df (basal(t)),

where df is the definability predicate in PAR. Naturally in PAR the notion of rigidity ought to be made partial: functions 
become expected not to change their values along the configurations in which they are defined.

Although decidable, HEQ has enough expressivity to formalise a number of interesting requirements. However, there 
are others whose formalisation entails more powerful logics, even if decidability is lost. A prime example of this is on the 
requirement that insulin flow cannot surpass specific values. To capture this requires some sort of ordering, which comes 
naturally if we switch to HFOL, the hybrid(ised) first-order logic, where relations are treated as first–class citizens. Then, 
the formalisation becomes

( ∀© t : Nat). cur F low(t) ≤ maxFlow.

With Hets and the specification language HCASL, of which HFOL is a sub-logic, several non-trivial properties can be 
automatically proved. One example is the statement that when the pump is suspended the insulin flow is not bigger than 
in any other modes:

(∀t : Nat). (∀n : Nat) . ((@Sus1cur F low(t) = n) ⇒ cur F low(t) ≥ n).

Another example is the requirement that since bolus adds up to the basal insulin rates, the flow in Basal mode cannot 
surpass the flow in the BasalBo mode:

(∀t : Nat) . (∃n,n′ : Nat) . @Basal cur F low(t) = n ∧ @BasalBo cur F low(t) = n′ ∧ n ≤ n′.

4.2. Capturing fuzzy and probabilistic reasoning: alarms and air-in-line sensors

Suppose the IIP device has a sensor able to inform if the insulin reservoir is empty or not, represented here, in a first 
attempt, by a predicate empty. In several cases, however, this binary information is not that useful: some action may 
depend on the reservoir being just with “enough” insulin. Similarly, one might consider an alarm that sounds louder when 
the situations gets “worse”, as opposed to the alarm being on or off and the situation being “good” or “bad”.

Many-valued logics, i.e. logics that can take other truth spaces than the standard Boolean one, are suitable for the sit-
uations just described where interesting cases appear in a “grey” area. For the sake of illustration, we consider here the 
simplest of such logics — the three-valued one. The reader is referred to Section 2 for a detailed description of the hybridis-
ation of this sort of logics.

This adds a third element (½) to the Boolean truth space, with 0 ≤ ½ ≤ 1. Thus, predicate empty does not necessarily 
needs to output one or zero, but can also give one half, which we interpret as the case where the reservoir has an unknown 
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insulin level inside. In the alarm case, we may also represent it in the form of a predicate (named alarm), with output zero 
being interpreted as turned off, one half as on but not sounding loud, and one as on and sounding loud.

With both predicates we become able to address, in a suitable way, situations that motivate a switch to hybrid(ised) 
many-valued logics. For instance, the requirement that an unknown reservoir state preceded by a full reservoir, activates the 
alarm with low sound is expressed as

@Basal(∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),½).

When a bolus is being given, however, the insulin flow, as we have seen before, is typically higher, so, since the situation is 
probably worse, it might be a good idea to fully activate the alarm, i.e.,

@BasalBo(∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),1).

Naturally, when the pump is suspended alarms are not raised, i.e.,

(Sus1 ∨ Sus2) ⇒ (∀t : T ime) . ¬(empty(t),½) ∧ (empty(t + 1),½) ⇒ (alarm(t + 2),0).

There are yet other components in a IIP device which motivate the use of different logics. Our last example concerns the 
detection of air within lines, a situation that may be fatal to the patient if significant quantities of air are injected along with 
insulin, but that can be avoided through an air-in-line sensor and an air filter. Suppose the sensor reports the probabilities of 
the air-in-line situation causing problems to the patient. This entails the need for bringing to scene a probabilistic logic; the 
propositional variant is enough for illustration purposes. The translation of probabilistic properties, requiring a combination 
of FOL with the real numbers, follows the work of P. Baltazar [9].

One of the most important sort of requirements on the air-in-line sensor concerns the definition of the specific conditions 
which activate the filter, given, as mentioned before, in probabilistic terms. A clear example of this is a requirement stating 
that in Basal mode the filter activates whenever the probability given by the sensor is bigger than x:

@Basal

∫
bubbles > x ⇒

∫
f ilter = 1.

Naturally, it the pump is suspended there is no risk of air being injected into the patient and therefore the filter does 
not need to be activated for any value returned by the sensor, i.e.,

(Sus1 ∨ Sus2) ⇒
∫

f ilter = 0.

Typically, due to sundry constraints, specifications are not proved to be always correct but rather to work in an acceptable 
percentage of cases. This shift from “perfection” to “just good enough”, which is currently a reality in industry, can also be 
applied here with the help of probabilistic propositional logic. For example, we may state that in the Basal mode the 
probability of the patient getting problems due to air in line is less than x:

@Basal

∫
bubbles ∧ ¬ f ilter < x.

5. Long term properties

Back to our running example, suppose one wants to express the (liveness) requirement that from any mode, suspension is 
reachable through a path composed of susc transitions. This is an example of a statement expressed over an entire sequence of 
transitions and, therefore, are not directly expressible through the modalities considered so far. Those, however, can easily 
be extended to deal with regular expressions over binary modalities, providing a way to express long term, “enduring” 
properties. The requirement above could then be written as

〈sus∗
c 〉 sus.

In the sequel we show how the hybridisation HI of a logic I can be extended in this direction. This is a common procedure, 
namely to extend process logics into a temporal dimension [77]. We prove, however, that the result of this enrichment is 
still an institution HI∗ , as defined below.

The signatures category is inherited from HI , i.e., SignHI = SignHI∗
. The sentences functor SenHI∗

is defined for each 
signature (�, Nom, �) ∈ |SignHI∗ |, as the smallest set such that

• SenHI(�, Nom, �) ⊆ SenHI∗
(�, Nom, �),

• for any ρ ∈ SenHI(�, Nom, �) and a ∈ Ac(�), where Ac(�) ::= λ | a; a | a ∪ a | a∗, λ ∈ �1, we have that [a]ρ, 〈a〉ρ ∈
SenHI∗

(�, Nom, �).

Recall �1 is the set of binary modalities in the signature.
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For any morphism ϕ : (�, Nom, �) → (�′, Nom′, �′) ∈ SignHI∗
, we define

SenHI∗
(ϕ)(〈a〉ρ) = 〈SenHI∗

(ϕ)(a)〉SenHI(ϕ)(ρ)),

where SenHI∗
(ϕ)(a) extends the translation of modalities of SenHI(ϕ) in a structural way:

• SenHI∗
(ϕ)(λ) = SenHI(ϕ)(λ), λ ∈ �1,

• SenHI∗
(ϕ)(a1; a2) = SenHI∗

(ϕ)(a1); SenHI∗
(ϕ)(a2),

• SenHI∗
(ϕ)(a1 ∪ a2) = SenHI∗

(ϕ)(a1) ∪ SenHI∗
(ϕ)(a2),

• SenHI∗
(ϕ)(a∗) = (SenHI∗

(ϕ)(a))∗.

Analogously, ModHI∗ = ModHI where the interpretation of the regular expressions in a model (M, W ) ∈ |ModHI∗
(�,

Nom, �)| extends the interpretation of modalities by

• Wa1;a2 = Wa1 ; Wa2 ,• Wa1∪a2 = Wa1 ∪ Wa2 and
• Wa∗ = (Wa)

∗ ,

where ; and ∗ stand for relational composition and transitive closure upon binary relations. Then the satisfaction |=HI∗

extends |=HI with

• (M, W ) |=w 〈a〉ρ iff (M, W ) |=w ′
ρ for some (w, w ′) ∈ Wa and

• (M, W ) |=w [a]ρ iff (M, W ) |=w ′
ρ for any (w, w ′) ∈ Wa .

Finally, we observe that the satisfaction condition holds in HI∗ , as stated below.

Theorem 5.1. Let HI∗ be the dynamic extension of the hybridisation of I , ϕ : (�, Nom, �) → (�′, Nom′, �′) ∈ SignHI∗
and 

(M ′, W ′) ∈ ModHI∗
(�′, Nom′, �′). Then for any ρ ∈ SenHI∗

(�, Nom, �) and w ∈ |W |(= |W ′|),

ModHI∗
(ϕ)(M ′, W ′) |=w ρ iff (M ′, W ′) |=w SenHI∗

(ϕ)(ρ)

Proof. Let us denote ModHI∗
(ϕ)(M ′, W ′) by (M, W ). We start with the observation that W ′

SenHI∗
(ϕ)(a)

= Wa . The result 
follows by induction over the structure of the modalities. The base case, when a ∈ �1, comes from the reduct definition in 
HI∗ . For a = a1; a2 we reason

W ′
SenHI∗

(ϕ)(a1;a2)

= {defn. of SenHI∗ }
W ′

SenHI∗
(ϕ)(a1);SenHI∗

(ϕ)(a2)

= {defn. of actions interpretation}
W ′

SenHI∗
(ϕ)(a1)

; W ′
SenHI∗

(ϕ)(a2)

= {induction hypothesis}
Wa1 ; Wa2

= {defn. of actions interpretation}
Wa1;a2

and the remaining cases are analogous.
For any w ∈ |W |(= |W ′|),

(M, W ) |=w SenHI∗
(ϕ)(〈a〉ρ)

⇔ {defn. of SenHI∗ }
(M, W ) |=w 〈SenHI∗

(ϕ)(a)〉SenHI∗
(ϕ)(ρ)

⇔ {defn. of |=}
(M, W ) |=w ′

SenHI∗
(ϕ)(ρ), for some (w, w ′) ∈ WSenHI∗

(ϕ)(a)

⇔ {induction hypothesis + W ′
HI∗ = Wa}
Sen (ϕ)(a)
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(M ′, W ′) |=w ′
ρ, for some (w, w ′) ∈ W ′

a

⇔ {defn of |=}
(M ′, W ′) |=w 〈a〉ρ

The proof for [a] ρ is similar. The remaining cases are taken from the satisfaction condition of HI . �

Therefore HI∗ is an institution:

Corollary 5.1. Let HI∗ be the dynamic extension of the hybridisation of an institution I , ϕ :  → ′ ∈ SignHI∗
, (M ′, W ′) ∈

ModHI∗
(′). Then, for any ρ ∈ SenHI∗

(′),

ModHI∗
(ϕ)(M ′, W ′) |=HI∗

(�,Nom,�) ρ iff (M ′, W ′) |=HI∗
(�′,Nom′,�′) SenHI(ϕ)(ρ).

Example: The IIP device

The safe behaviour of a IIP device also depends on its ability to allow bolus administration only in the expected states. More 
precisely, when not in Basal or T Basal, paths starting in the initial state and ending in bolus do not exist. A proof for this 
property may start by imposing the unreachability of bolus through bolc ,

〈bolc〉bolus ⇒ (Basal ∨ T Basal),

which is promptly verified in the Hets platform. Such condition is, however, too strong. Actually, it entails our goal, but the 
converse does not happen. A weaker statement is the property that the initial state does not directly reaches bolus through 
bolc when not in Basal or T Basal,

¬(Basal ∨ T Basal) ⇒ ¬(〈bolc〉bolus ∨ bolus),

but this property is not strong enough to entail the goal. Using regular expressions as discussed above leads to a suitable 
formalisation of this property:

¬(Basal ∨ T Basal) ⇒ ¬〈bol∗c 〉bolus

or more generally,

¬(Basal ∨ T Basal) ⇒ ¬〈(resc ∪ diagc ∪ susc ∪ bolc)
∗〉bolus.

As expected, this enrichment makes also possible to express liveness constraints. Such is the case of the requirement stated 
above as a motivation for this section, expressed as 〈sus∗

c 〉 sus.

As a final example, consider the H2
TL sentence stating that Fail’s initial state has no outgoing transitions to sus or nor,

@Fail¬
(〈susc〉 (sus ∨ nor) ∨ 〈diagc〉 (sus ∨ nor) ∨ 〈bolc〉(sus ∨ nor) ∨ 〈resc〉(sus ∨ nor)

)
,

which may be simplified as follows

@Fail¬(〈susc ∪ diagc ∪ bolc ∪ resc〉(sus ∨ nor)).

6. Conclusions

6.1. What was achieved

This paper introduced a rigorous and flexible method for the specification of reconfigurable systems based on hybrid 
logics generated on top of whatever logic is found adequate to describe the system’s local configurations. This shows how a 
logic construction which is of largely theoretical interest — the hybridisation process — has an effective and novel application 
in handling a non-trivial problem in Software Engineering.

Actually, reconfigurability is, at present, more the norm than the exception in software design. The method was illustrated 
in detail with the description of an insulin infusion pump (the IIP device), which provides a small, but clear example of 
a reconfigurable system. Another typical, everyday example is offered by cloud based applications that elastically react to 
clients demands.

On concluding, the main distinguished features of this work can be summarised as follows:
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• First of all the introduction of hybrid features on top of the modal language used to specify the overall transition 
structure of a reconfigurable system, makes it possible to refer to individual configurations in an explicit way, leading 
to more flexible and precise specifications. For example, nominals and the corresponding satisfaction operators give the 
specifier a “surgical” precision in talking about the system’s configurations.

• On the other hand, through hybridisation of each logic selected to specify individual configurations, we get a single, 
powerful logic weaving together local and global aspects to reason about the system. The two corresponding conceptual 
levels get unified through the use of a common logic which bears in its own structure local and global means of 
expressiveness.

• Finally, the institution-based construction used provides a precise way to transport specifications and proofs from one 
logic to another that can be realised in a formal tool for the proposed method.

In the sequel the paper contribution is compared to related work and, finally, current research directions are reported.

6.2. Related work

As stated, we intend to explore hybridised logics to frame a general approach to the specification of reconfigurable 
systems. By general we mean independent of whatever logic one finds suitable to describe the system’s individual configu-
rations. The rationale underlying our approach seeks to combine two basic dimensions in systems specification: one which 
emphasises behaviour and its evolution, another focused on data and their transformations. To be able to cope, within a 
single formalism, with both data structuring and prescription of functionality, as well as with specification and analysis of 
(externally observable) behaviour remains a main challenge for Software Engineering.

Behaviour is typically specified through (some variant of) state machines. Such models capture the system’s evolution 
in terms of event occurrences and their impact in the system’s internal state configuration (see e.g. [1]). Data types and 
services upon them, on the other hand, are often presented as theories in suitable logics, over a signature which offers a 
syntactic interface to the system. Semantics is, then, given by a class of concrete algebras acting as models of the specified 
theory (see e.g. [82]).

Our starting point is that these two dimensions are interconnected: the functionality offered by a reconfigurable system, 
at each moment, may depend on the stage of its evolution. In [70] the reconfiguration dynamics is modelled as a transi-
tion system, whose nodes are interpreted as the different configurations it may assume. Therefore, each of such nodes is 
endowed with an algebra, or even a first-order structure, to formally characterise the semantics of the services offered in 
the corresponding configuration. Technically, models of reconfigurable systems are given as structured state-machines whose 
states denote algebras, rather than sets. Structured transition systems [38] are, therefore, the semantic structure underlying 
the approach proposed. They are usually obtained by extending the bare structure of (sets of) states and transitions with fur-
ther elements in either of them (e.g., structured labels, weights, functions, algebraic structure on states, etc). A quite general 
characterisation was proposed by R. Heckel and A. Corradini through the concept of lax coalgebra [37] which incorporates 
algebraic structure in both labels and states.

There are two ways to mathematically represent transition systems: either as graphs or as coalgebras by regarding the 
transition relation as a function from states to some collection of states whose shape is determined by a suitable end-
ofunctor. It is not surprising that the literature on formal models of software reconfiguration explores both these paths. 
Graph rewriting techniques [94], notably the double pushout approach [57], have been extensibility used in modelling the 
evolution of dynamic systems. Typical applications emerge in the areas of mobile processes, from the π -calculus [80] and 
its variants [95] to the latter work of Robin Milner in bigraphs [36,81], architectural evolution [107,25] or coordination of 
software services [66], among many others.

Representing reconfiguration as transition systems described by coalgebras or, more often, in terms of their relational 
counterpart, has also been considered in the literature. The approaches are more diverse than in the graph-oriented trend 
and often endowed with a particular variant of a modal logic. Some examples include the separate specification of a second 
transition structure to monitor the basic one, often called a reconfiguration manager [10], the use of feature enriched tran-
sition systems [34] or well-structured transition systems [50]. The latter incorporates an order on (an infinite) state space, 
compatible with the transitions, with interesting decidability results. The specification of contracts or interaction conflicts 
in either states or transitions, in the context of the well known design-by-contract formalism, also provides mechanisms to 
talk about reconfigurations (see e.g. [101,48,11,39]).

In both cases a critical ingredient to incorporate the reconfigurability dimension in specifications is the ability to add 
structure, typically algebraic structure, to the transition system modelling the system’s behaviour. In a sense such is also 
the path taken in this work. But the combination of what, after Rutten’s seminal work on universal coalgebra, are called 
algebraic and coalgebraic structures, has a long trace in Computer Science.

A first landmark was the whole research trend on behavioural satisfaction, early references being [51] and [92]. Hidden-
sort algebra [53], embodying a fundamental distinction between visible values and internal states, which can only be 
observed in an indirect way, is an example of a behavioural formalism whose development was triggered, from the outset, 
by research on the foundations of object-oriented programming. Specification with coherent hidden algebras [44], observa-
tional algebras [59] and behavioural reasoning [74] are remarkable approaches in this line. In [96], the authors provide a 
comprehensive account of the area.
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Another research direction, somehow closer to the approach proposed in this work, seeks to combine explicitly algebraic 
specifications with state-based structures. Also motivated by the emergence of object orientation in the 80’s, the specifica-
tion language Trool [64] is a paradigmatic example. Objects, defined by attributes and evolving in response to events, are 
described as abstract data types and their evolution as linear processes specified in a temporal logic. A logic which combines 
many-sorted first-order logic with branching-time combinators, with both initial and loose semantics is introduced by Costa 
in [40].

Introduced by M. Broy and M. Wirsing in [23], algebraic state machines take algebraic specifications as states, an idea 
which was also present in Y. Gurevich seminal work on evolving algebras [56], posteriorly renamed to abstract states machines
[21]. These machines, aiming at modelling arbitrary computational processes, consist of transition systems where each state 
has a structure of an algebra. The initial state consists of a particular algebra and each transition in a command that triggers 
an update on the current algebra. Hence, the set of transitions can be regarded as an abstract (imperative) program to be 
executed over the assigned initial state. The impact of abstract state machines in formal modelling cannot be understated. 
Several key ideas were borrowed by, and later incorporated in, popular model-oriented formalisms, namely the B method. 
A recent manifestation of this states as algebras perspective appears in the work of M. Bidoit and R. Hennicker in [15]
as a semantic foundation for the contract-based design of software components. This perspective developed into a whole 
approach to software architecture based on a two layered semantics (at the interface and internal levels) with precise 
notions of composition and refinement.

The perspective of the presented specification method has several points of contact with these approaches based on 
structured transition systems. Note, however, that in our models a state does not correspond to a configuration of variables 
over a unique, common, fixed first-order structure, but to a specific structure modelling the configuration behaviour and 
functionality. Technically, we resort to rigid variables for non-rigid operations, in contrast to other, more disseminated 
approaches where rigid operations act upon non rigid variables. On the other hand our specifications are always axiomatic 
and expressed in a logic which results from the hybridisation of the logic found suitable for each application to capture its 
possible configurations.

The use of different, often domain-tailored logics to specify reconfigurations in software constitutes a wide and heteroge-
neous landscape in which our own approach fits in. We mention some examples, for illustration but with no pretension of 
exhaustibility. An important one is J. Meseguer’s rewriting logic [78] and its Maude realisation, a language whose dynamics 
is based on the concurrent transformation of a ‘soup’ of objects and messages. A detailed overview, including references 
to modelling evolution and self-adaptability, is provided in [79]. Logic based formalisms are also common in specifying 
reconfiguration in component-based paradigms, dynamic software architectures and coordination schemes. An example of 
the first is given by the work of O. Kouchnarenko and her collaborators in which reconfigurations are specified in a tem-
poral pattern logic [47] in the context Fractal [24], a paradigmatic component model. The work of T. Maibaum [2,30] and 
J. Fiadeiro [49], as well as of the Pisa or the Munchen Schools (see e.g. [26] or [105], the latter work developed in an institu-
tional framework), among many others, exemplify applications to dynamic architectures [112]. Finally, on the coordination 
side, the work of D. Clarke on what is called reconfiguration logic [33] expresses evolution of Reo [4] connectors in formulas 
of a modal logic evaluated over constrained automata.

6.3. Future work

Current work aims at addressing some limitations of the method proposed here and extending its scope of application. 
A known limitation concerns interface reconfiguration, i.e., the possibility of different (local) configurations being specified 
over different signatures. A solution exists for specifications in hybrid(ised) equational logic as discussed in reference [73]. 
However, addressing the general case remains an open issue. In an orthogonal directions lies the possibility of resorting to 
different logics to model different configurations, a topic which can be explored by taking the hybridisation of a product of 
the corresponding institutions with a suitable choice of operators.

Although the paper is focused in the specification stage of software development, current work includes the study of 
both a corresponding refinement process [71], and a requirements analysis stage. Actually, the design of comprehensive 
pallet of boilerplates for requirements elicitation of reconfigurable systems, illustrated in Section 3 is a relevant issue for 
the working software engineer. At present a Haskell processor for these boilerplates is already available as a first step 
towards the definition of a domain specific language for this area of software technology. The combination of different sets of 
requirements expressed in hybridised versions HI of different base logics I is a challenge to explore.

The hybridisation process [75,69], which, underlies the method discussed here, is rather flexible and able to cope, as 
discussed in Section 3, with several forms of quantification (e.g., of nominals, modalities, etc.) which bring out remarkable 
expressive power. In some cases, as one would expect, this may rule out the existence of suitable first order encodings 
for the logic, thus reducing the existent tool support for the method. Computational support for reasoning about hybrid 
specifications is crucial from the Software Engineering point of view, which makes us to pay careful attention to this issue 
[87]. Encodings to second-order-logic are also being developed.

One can go even further by also taking as a parameter the logic used for the reconfiguration stage. This entails the 
need for developing a general method for asymmetric combination of logics parametric not only on the base logic used to 
express local requirements, but also on the shape of the transition structure. The latter, understood as a coalgebra, can be 
typed by a given functor. This coalgebraising process will go a step ahead of what is currently done (e.g. in hybridisation 
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or temporalisation of logics), providing not only a more general, flexible approach, but also bringing upfront the whole 
coalgebraic machinery to the design of requirement-driven specification logics. This is left to future work, but note that a 
similar observation was already made by C. Kupke and D. Pattinson [67]. In their work, however, the emphasis is put on 
exploring different transition semantics, rather than on the combination of the latter with an arbitrary logic, i.e. the base 
logic remains fixed.

As clarified above, the notion of a reconfiguration is understood here as a statically programmed change of operation 
mode. This covers situations like the deletion of a component or a failure in a communication link which can be foreseen 
at design time and planned for by then using, for example, a fault tolerance scheme. Truly unplanned dynamic reconfig-
urations, involving, for example, the dynamic plugging of a new component enforced by the system’s environment would 
require complementary mechanisms [65]. One may therefore question the advantages of the method proposed in this paper 
in comparison to a notationally simpler approach in which state changes are captured by “flattening” the reconfiguration 
structure as another local dimension of the (global) state. We believe our approach to be methodologically simpler, avoiding 
to mix mode information with other state dimensions and directly encoding reconfigurations as transitions between modes. 
In some cases, moreover, it may lead to simpler verification strategies. Actually, references [87,88] show that the hybridis-
ation method can be extended so that not only the logic is hybridised but also its calculus is systematically enriched into 
a calculus for the hybridised logic. The latter is shown to be sound and complete whenever the calculus associated to the 
underlying, base logic is. Reasoning at this level may thus pay back as an alternative to flattening the whole structure and 
having to resort to, e.g., first order setting to capture the whole picture.

If reconfigurations increase the availability and the reliability of software systems by allowing their architectures to evolve 
at run-time, there is a number of other domains in Computing where reconfigurability, and the search for suitable formal 
methods, are emerging as a crucial issue. These include areas in the intersection of discrete and continuous behaviour, 
namely in what concerns sensor networks [105] and robotics [109]. Whether the method introduced in this paper scales to 
those domains, as well as to real, industrial cases, on the other hand, only time and effort will tell. Therefore, the study of 
hybridisation of logics to deal with probabilistic [35,46,58] and continuous [90] reasoning appears as the next, natural step 
to take.
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