65 research outputs found

    Design and evaluation of the Hamal parallel computer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2003."December 2002."Includes bibliographical references (p. 145-152).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization.(cont.) Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.by J.B. Grossman.Ph.D

    Design and Evaluation of the Hamal Parallel Computer

    Get PDF
    Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Fully Programming the Data Plane: A Hardware/Software Approach

    Get PDF
    Les réseaux définis par logiciel — en anglais Software-Defined Networking (SDN) — sont apparus ces dernières années comme un nouveau paradigme de réseau. SDN introduit une séparation entre les plans de gestion, de contrôle et de données, permettant à ceux-ci d’évoluer de manière indépendante, rompant ainsi avec la rigidité des réseaux traditionnels. En particulier, dans le plan de données, les avancées récentes ont porté sur la définition des langages de traitement de paquets, tel que P4, et sur la définition d’architectures de commutateurs programmables, par exemple la Protocol Independent Switch Architecture (PISA). Dans cette thèse, nous nous intéressons a l’architecture PISA et évaluons comment exploiter les FPGA comme plateforme de traitement efficace de paquets. Cette problématique est étudiée a trois niveaux d’abstraction : microarchitectural, programmation et architectural. Au niveau microarchitectural, nous avons proposé une architecture efficace d’un analyseur d’entêtes de paquets pour PISA. L’analyseur de paquets utilise une architecture pipelinée avec propagation en avant — en anglais feed-forward. La complexité de l’architecture est réduite par rapport à l’état de l’art grâce a l’utilisation d’optimisations algorithmiques. Finalement, l’architecture est générée par un compilateur P4 vers C++, combiné à un outil de synthèse de haut niveau. La solution proposée atteint un débit de 100 Gb/s avec une latence comparable à celle d’analyseurs d’entêtes de paquets écrits à la main. Au niveau de la programmation, nous avons proposé une nouvelle méthodologie de conception de synthèse de haut niveau visant à améliorer conjointement la qualité logicielle et matérielle. Nous exploitons les fonctionnalités du C++ moderne pour améliorer à la fois la modularité et la lisibilité du code, tout en conservant (ou améliorant) les résultats du matériel généré. Des exemples de conception utilisant notre méthodologie, incluant pour l’analyseur d’entête de paquets, ont été rendus publics.----------ABSTRACT: Software-Defined Networking (SDN) has emerged in recent years as a new network paradigm to de-ossify communication networks. Indeed, by offering a clear separation of network concerns between the management, control, and data planes, SDN allows each of these planes to evolve independently, breaking the rigidity of traditional networks. However, while well spread in the control and management planes, this de-ossification has only recently reached the data plane with the advent of packet processing languages, e.g. P4, and novel programmable switch architectures, e.g. Protocol Independent Switch Architecture (PISA). In this work, we focus on leveraging the PISA architecture by mainly exploiting the FPGA capabilities for efficient packet processing. In this way, we address this issue at different abstraction levels: i) microarchitectural; ii) programming; and, iii) architectural. At the microarchitectural level, we have proposed an efficient FPGA-based packet parser architecture, which is a major PISA’s component. The proposed packet parser follows a feedforward pipeline architecture in which the internal microarchitectural has been meticulously optimized for FPGA implementation. The architecture is automatically generated by a P4- to-C++ compiler after several rounds of graph optimizations. The proposed solution achieves 100 Gb/s line rate with latency comparable to hand-written packet parsers. The throughput scales from 10 Gb/s to 160 Gb/s with moderate increase in resource consumption. Both the compiler and the packet parser codebase have been open-sourced to permit reproducibility. At the programming level, we have proposed a novel High-Level Synthesis (HLS) design methodology aiming at improving software and hardware quality. We have employed this novel methodology when designing the packet parser. In our work, we have exploited features of modern C++ that improves at the same time code modularity and readability while keeping (or improving) the results of the generated hardware. Design examples using our methodology have been publicly released

    A novel approach for the hardware implementation of a PPMC statistical data compressor

    Get PDF
    This thesis aims to understand how to design high-performance compression algorithms suitable for hardware implementation and to provide hardware support for an efficient compression algorithm. Lossless data compression techniques have been developed to exploit the available bandwidth of applications in data communications and computer systems by reducing the amount of data they transmit or store. As the amount of data to handle is ever increasing, traditional methods for compressing data become· insufficient. To overcome this problem, more powerful methods have been developed. Among those are the so-called statistical data compression methods that compress data based on their statistics. However, their high complexity and space requirements have prevented their hardware implementation and the full exploitation of their potential benefits. This thesis looks into the feasibility of the hardware implementation of one of these statistical data compression methods by exploring the potential for reorganising and restructuring the method for hardware implementation and investigating ways of achieving efficient and effective designs to achieve an efficient and cost-effective algorithm. [Continues.

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    3D-SoftChip: A novel 3D vertically integrated adaptive computing system [thesis]

    Get PDF
    At present, as we enter the nano and giga-scaled integrated-circuit era, there are many system design challenges which must be overcome to resolve problems in current systems. The incredibly increased nonrecurring engineering (NRE) cost, abruptly shortened Time-to- Market (ITA) period and ever widening design productive gaps are good examples illustrating the problems in current systems. To cope with these problems, the concept of an Adaptive Computing System is becoming a critical technology for next generation computing systems. The other big problem is an explosion in the interconnection wire requirements in standard planar technology resulting from the very high data-bandwidth requirements demanded for real-time communications and multimedia signal processing. The concept of 3D-vertical integration of 2D planar chips becomes an attractive solution to combat the ever increasing interconnect wire requirements. As a result, this research proposes the concept of a novel 3D integrated adaptive computing system, which we term 3D-ACSoC. The architecture and advanced system design methodology of the proposed 3D-SoftChip as a forthcoming giga-scaled integrated circuit computing system has been introduced, along with high-level system modeling and functional verification in the early design stage using SystemC

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Embracing Low-Power Systems with Improvement in Security and Energy-Efficiency

    Get PDF
    As the economies around the world are aligning more towards usage of computing systems, the global energy demand for computing is increasing rapidly. Additionally, the boom in AI based applications and services has already invited the pervasion of specialized computing hardware architectures for AI (accelerators). A big chunk of research in the industry and academia is being focused on providing energy efficiency to all kinds of power hungry computing architectures. This dissertation adds to these efforts. Aggressive voltage underscaling of chips is one the effective low power paradigms of providing energy efficiency. This dissertation identifies and deals with the reliability and performance problems associated with this paradigm and innovates novel energy efficient approaches. Specifically, the properties of a low power security primitive have been improved and, higher performance has been unlocked in an AI accelerator (Google TPU) in an aggressively voltage underscaled environment. And, novel power saving opportunities have been unlocked by characterizing the usage pattern of a baseline TPU with rigorous mathematical analysis
    • …
    corecore