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ABSTRACT

Embracing Low-Power Systems with Improvement in Security and Energy-Efficiency

by

Pramesh Pandey, Doctor of Philosophy

Utah State University, 2021

Major Professor: Sanghamitra Roy, Ph.D.
Department: Electrical and Computer Engineering

The stagnation of Moore’s Law and huge demand in the performance brought about

by economies around the world based on computing, the necessity of low power design

is becoming inevitable. As a result of energy inefficiencies in conventional architectures

while performing AI computations, the computing industry has already invited the use of

specialized computing architectures, such as Tensor Processing Unit (TPU).

Among many research efforts in increasing the energy efficiency of the computing sys-

tems, Near-Threshold Computing (NTC) has been a prominent low power design paradigm

offering a quadratic reduction in power consumption through aggressive underscaling of

the chip supply voltage, in comparison to the conventional Super-Threshold Computing

(STC). However, the extreme sensitivity to manufacturing process variation (PV) and in-

herent slow down of the speed in the transistor operated in this regime, result to serious

reliability and performance problems. This is causing a bottleneck to the adoption of NTC

paradigm in mainstream semiconductor system designs. In this work, two disparate im-

plementations (viz. SRAM Physical Unclonable Funtions (SPUF) and TPU) in NTC are

assessed for their security and performance characteristics respectively. This dissertation

improves the security properties of the NTC SPUFs by reforming the reliability and unifor-

mity characteristics. Next, 2×−3× higher performance is unlocked in the NTC TPU by the



iv

providing predictive timing error resilience. Also, novel power saving opportunities are

identified in the baseline STC TPU with rigorous mathematical analysis on the usage pat-

tern of the TPU systolic array. The opportunities are exploited through dynamic dataflow

adaptive power gating to curtail the wasteful leakage power, to attain 3.5×−6.5× higher

energy efficiency.

(87 pages)
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PUBLIC ABSTRACT

Embracing Low-Power Systems with Improvement in Security and Energy-Efficiency

Pramesh Pandey

As the economies around the world are aligning more towards usage of computing sys-

tems, the global energy demand for computing is increasing rapidly. Additionally, the

boom in AI based applications and services has already invited the pervasion of special-

ized computing hardware architectures for AI (accelerators). A big chunk of research in

the industry and academia is being focused on providing energy efficiency to all kinds of

power hungry computing architectures. This dissertation adds to these efforts.

Aggressive voltage underscaling of chips is one the effective low power paradigms of

providing energy efficiency. This dissertation identifies and deals with the reliability and

performance problems associated with this paradigm and innovates novel energy efficient

approaches. Specifically, the properties of a low power security primitive have been im-

proved and, higher performance has been unlocked in an AI accelerator (Google TPU) in

an aggressively voltage underscaled environment. And, novel power saving opportunities

have been unlocked by characterizing the usage pattern of a baseline TPU with rigorous

mathematical analysis.
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CHAPTER 1

INTRODUCTION

From mundane livelihood of individuals to modern economies around the world,

computing industry has touched almost every aspect of 21st century. Andrae et al. have

projected that global computing systems will consume about 21% of the world’s electrical

energy by the year 2030 [1]. This can be attributed to the spikes in the energy demands in

data centers and the rapid rise of portable and IoT devices at the edge. Furthermore, the

rise in performance demand from slow paced hardware development (characterized by

stagnated Moore’s Law), has forced the computing infrastructure to operate at very tighter

thermal bounds. The latest boom in the AI is also demanding huge pool of extremely

low-power and battery powered and smart edge devices. This calls for low-power design

paradigms to be adapted into mainstream computing industry. However, the severe drop

in low power system’s performance along with associated reliability and security risks are

rendering the adaptation very slow.

The total power consumption in VLSI is composed of switching or dynamic power

and idle or static power. The dynamic power is quadratically dependent on the supply

voltage. Near Threshold Computing (NTC) is one of the design paradigms which exploits

this fundamental property which promises to significantly decrease the power consump-

tion. NTC operates its devices at a supply voltage close and slightly higher than the de-

vices’ switching threshold voltage. This operation, while dramatically reduces the power

consumption, invites many performance and reliability concerns. The devices fundamen-

tally operate slower when operated at lower voltages, and the delay variability due to ex-

treme sensitivity to process and environmental variations cause reliability concerns. The

practical adaptation of NTC can only be successful by various circuit-architectural innova-

tions that can deal with these performance and reliability concerns.

Two bodies of work in the dissertation investigate and innovate in NTC’s security and
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performance characteristics through two disparate computation implementations. Chap-

ter 3 explores the security characteristics of 8TSRAM Physical Unclonable Functions (PUF)

operating at NTC on the metrics of reliability and uniformity. Chapter 4 addresses the per-

formance issues of a NTC Tensor Processing Unit (TPU) by providing it adequate timing

error resilience, so that it can perform at 2×−3× faster than its NTC operation.

The third body of work in the dissertation is devoted to providing energy efficiency to

TPU by preventing the large bulk of the wasteful idle power. Chapter 5 presents this work

which mathematically showcases the vast amount of leakage power and prevents it with

systolic powergating. Chapter 2 performs literature review of the research efforts in the

academics pertinent to the all the contributions in this dissertation. Chapter 6 concludes

the works of this dissertation. Section 1.1 presents the formal contributions of the works

in this disserations to the academia through several journals and conference publications.

1.1 Contributions of This Dissertation

The works presented in this dissertation have been published in several conference

proceedings and journal articles, including 2016 and 2020 IEEE/ACM Design Automation

Conference (DAC), 2018 International Symposium on Low Power Electronics and Design

(ISLPED), 2020 IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2020

Journal of Low Power Electronics and Applications (JLPEA). Details of the publications

are listed below:

1.1.1 Conference Papers

• UPTPU: Improving Energy Efficiency of a Tensor Processing Unit through Underuti-

lization Based Power-Gating. Pramesh Pandey, Noel Daniel Gundi, Koushik Chakraborty

and Sanghamitra Roy. Accepted for publication in IEEE/ACM Design Automation

Conference (DAC), 2021.

• GreenTPU: Improving Timing Error Resilience of a Near-Threshold Tensor Process-

ing Unit. Pramesh Pandey, Prabal Basu, Koushik Chakraborty and Sanghamitra Roy.
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IEEE/ACM Design Automation Conference (DAC), 2019.

• Reliability and Uniformity Enhancement in 8T-SRAM based PUFs operating at NTC.

Pramesh Pandey, Asmita Pal, Koushik Chakraborty, Sanghamitra Roy. International

Symposium on Low Power Electronics and Design (ISLPED)’18.

1.1.2 Journal Articles

• Challenges and Opportunities in Near-Threshold DNN Accelerators around Timing

Errors. Pramesh Pandey, Noel Daniel Gundi, Prabal Basu, Tahmoures Shabanian,

Mitchell Patrick, Koushik Chakraborty, Sanghamitra Roy. Journal of Low Power Elec-

tronics and Applications 2020, 10(4), 33

• GreenTPU: Predictive Design Paradigm for Improving Timing Error Resilience of

a Near-Threshold Tensor Processing Unit. Pramesh Pandey, Prabal Basu, Koushik

Chakraborty, Sanghamitra Roy. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 28, no. 7, pp. 1557-1566, July 2020



CHAPTER 2

LITERATURE REVIEW

This chapter presents an extensive literature review on the research efforts, pertinent

to the works in this dissertation. The works include the areas around SRAM PUFs, low

power computing, DNN accelerators and power gating. Section 2.1 discusses the fun-

damental works embracing energy efficiency through near threshold computing. Section

2.2 discusses the introductory works on SRAM PUFs. Section 2.3 points out the alternate

SRAM designs targeted for low power operation. Section 2.4 details the works which im-

prove the quality of SRAM PUFs. Section 2.5 discusses and classifies the works around

energy efficiency of DNN accelerators components. Section 2.6 discusses works on the

powergating approach used to improve system energy efficiency.

2.1 Works on Near Threshold Computing (NTC)

• Dreslinski et al. [2]: This work serves as the modern day designer guide for NTC

systems and also highlights the inability of 6T-SRAM to be used as a reliable memory

device at NTC. They highlight that SRAM is a site for high yield requirements and

the aggressive sizing of the SRAMs result in very high sensitivity to local variation.

The combination of global and local variations at NTC leads to several functional

read/write failures.

• Pinckney et al. [3]: This work explores on how the cessation of Dennard scaling can

be dealt with by a near-threshold voltage operation of a chip multiprocessor. Utilizing

the inherent parallelism of the applications is presented as the saving grace. With the

parallelization overhead, their NTC operation provides 4× improvement in the CPU

performance across 6 commercial technology nodes.

• Hsu et al. [4]: This work proposes a reconfigurable single instruction multiple data

vector permutation engine that can work at the NTC region, while tolerating process



5

variation. The ultra-low voltage optimizations drop down the power to 109 micro-

watt at 0.28V, achieving 9× higher energy efficiency.

• Marković et al. [5]: The authors explore the near threshold operation of systems

with supply voltage variations and transistor sizing. The authors introduce a pass-

transistor based logic family with only sub-threshold leakage while operating at the

near-threshold region. The work uses the ultra-low power design in the design syn-

thesis.

2.2 SRAM PUF Implementations

• Suh et al. [6]: Suh et al. introduce PUFs as critical and low overhead security primi-

tives for device authentication and secret key generation. They present PUF designs

that exploit inherent delay characteristics within the wires and transistors of the IC.

They describe how PUFs can be made from these characteristics that differ among

chip of same design/function. They showcase the generation of volatile secret keys

for cryptographic operations and chip identification.

• Holcomb et al. [7]: Holcomb et al. give the first comprehensive basis for using the

initial power up state of SRAMs as electronic fingerprint for devices with SRAMs

already in it. They also extend the use of non reliable bitcells to develop true random

number generator from power up state of SRAMs.

• Selimis et al. [8]: The authors successfully evaluate low power 90nm commercial

6T-SRAMs of Wireless Sensor Networks (WSN) at different environmental, electrical,

and ageing conditions, for operation as PUF primitives. They extend SRAM PUF

implementation with fuzzy extractor to generate unique cryptographic keys.

• Kaseem et al. [9]: The authors introduce a sub-threshold PUF based on the 10T-SRAM

cell as a suitable low-power solution for secure devices. This parameters of reliability

and uniformity have not been addressed at sub-threshold operation for the 10T-SRAM

PUF. The work weakly evaluates 10TSRAM to be a primitively viable option for PUF

implementation.
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2.3 Alternate SRAM configurations

• Chang et al. [10]: The authors propose an eight transistor SRAM cell architecture

to improve variability tolerance and low-voltage operation within high-speed SRAM

caches. They design 32 kb 8TSRAM array without significant area penalty by modify-

ing traditional 6T-SRAM techniques.

• Calhoun et al. [11]: Calhoun et al. describe the specifics of design of a ten transistor

SRAM cell that can operate below 400mv. The design achieves 2.25× lower leakage

power and 2.25× lower active energy than its 6T counterpart at 0.6V.

• 7T-SRAM et al. [12]: This work proposes a seven transistor SRAM cell that improves

read stability and write ability of the conventional 6T SRAM cell at low voltages. The

authors improve read stability and write ability of the conventional 6T SRAM cell by

separating read and write access transistors in this cell.

2.4 SRAM PUF Improvements

• Garg et al. [13]: This work addresses uniformity and reliability improvement of SRAM

PUFs by utilizing aging effects. , like application of NBTI stress. This technique, based

on 6TSPUF cannot control the gate leakage current which is primarily responsible for

degraded uniformity, in an 8T-SPUF.

• Bhargava et al. [14]: This work demonstrates the efficacy and associated costs of di-

rected accelerated aging, multiple evaluations, and activation control, three SRAM

PUF’s reliability enhancing techniques. They base their evaluation of a 65nm custom

PUF chip and measure a 40%-71% improvement in reliability with these techniques.

• Chellapa et al. [15]: Chellapa et al. propose an alternative SRAM cell power-up strat-

egy, by raising the wordline and decoder voltage higher than array voltage. They also

show an extensive mathematical proof to how their fingerprinting extraction tech-

nique is better than conventional SRAM powering up method. However, the voltage

raise defeats the key purpose of NTC operation.
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• Chang et al. [16]: The authors argue that the design methods usable for PUFs to max-

imize the mismatches between the transistors in SRAMs, act badly when those cells

have to be used as memory elements, by giving more read/write failures. They pro-

pose several voltage scaling/biasing and sizing strategies enhance SPUF reliability

and embrace dual mode use of expensive SRAM cells.

• Elshafiey et al. [17]: Elshafiey et al. model the effect of power supply ramp time

on SRAM PUFs with a binary classification of Vdd Ramp up time regions, based on

either threshold variations only dominate or both capacitive and threshold variations

dominate.

• Simons et al. [18]: Simons et al. , This work acknowledge the importance of voltage

ramp up times on the reliability of SRAM based PUFs, in addition to the conven-

tional temperature and voltage based reliability. They argue that Vdd can influence

the stability of PUF responses. They advise to keep the faster ramp-up time of PUF

primitives.

To the best of our knowledge, the work in the dissertation is the first one which has ex-

plored reliability and uniformity characteristics for 8T-SPUFs operated at NTC and adopt

efficient design strategies to overcome their adverse effects.

2.5 Improving energy efficiency of DNN accelerators

Several efforts have been made to improve energy efficiency of components around

DNN accelerators. Section 2.5.1 discusses the innovations around architectural elements.

Section 2.5.2 discusses the works improving the energy efficiency through innovations

around memory. Section 2.5.3 reviews the innovations on the analog and mixed signal

components of the DNN accelerators.

2.5.1 Architectural Enhancements

• Li et al. [19]: This work demonstrates that by providing appropriate precision and

numeric range to values in each layer, the failure rate can be reduced by 200x. In
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each layer of DNN, this technique uses a ’symptom based fault detection’ scheme to

identify the range of values and adds a 10% guard-band.

• Libano et al. [20]: This work proposes a scheme to design and apply triple modular

redundancy selectively to the vulnerable NN layers to effectively mask the faults.

• TE-Drop [21]: Zhang et al. proposed a timing speculation approach that enables an

aggressive voltage underscaling in DNN accelerators without compromising the clas-

sification accuracy [21]. The authors expect a timing error at a MAC, detect it and

drop the computation to isolate the damage the errant computation can bring. They

use the inherent error tolerance of the DNN implementations.

• Choi et al. [22]: Choi et al. proposed error resilient techniques to enable aggressive

voltage scaling by exploiting the variable error resilience exposed by different com-

ponents of DNN The authors approximate variable weight sensitivity by using Taylor

expansion and assign the highly sensitive weights to robust MACs and weakly sensi-

tive weights to underpowered and variation prone MACs.

• Zhang et al. [23]: This work evaluates the drop of classification accuracy in the pres-

ence of faults in TPU systolic array and proposes design of fault-tolerant, systolic ar-

ray based DNN accelerators for high defect rate technologies in case of permanent

hardware faults. Their proposal is based on fault-aware pruning and combination of

fault-aware pruning and retraining. They show that their techniques can tolerate upto

50% in the TPU.

• Chen et al. [24]: The authors analyze how dataflow plays a very important role in

energy efficiency optimization in DNN accelerators and provide guidelines on fu-

ture DNN accelerator designs. They propose an optimal MAC operation mapping

rule, called Row-Stationary dataflow, that optimizes the data movement inside a deep

CNN, resulting in a superior system-level energy efficiency.

• Minerva [25]: This work demonstrates an automated co-design approach across the

algorithm, architecture, and circuit to offer a staggering 8.1× power reduction over

a baseline DNN accelerator, without compromising the accuracy. The authors take



9

holistic approach in optmizing and combining gains from different granularities of

DNN hardware, such as algorithm, architecture, and circuit.

• Lin et al. [26]: Lin et al. This work presents a statistical error compensation tech-

nique to correct process variation induced timing errors in CNNs, operating under

near-threshold condition. The authors use a ripple carry adder to show the exacer-

bated delay variation at NTC and with their technique, achieve an 11x improvement

in variation tolerance when comparison to a conventional CNN.

• Whatmough et al. [27, 28]: This work has incorporated several techniques like curb-

ing unwanted computations, providing algorithmic error tolerance, timing violation

tolerance and so on to come up with an extremely energy efficient DNN SoC, in ac-

tual hardware. They provide the timing error tolerance by complementing Razor with

their time borrowing techniques in [29, 30].

• Hegde et al. [31]: propose a predictive scheme to tackle timing errors coming as a re-

sult of critical undervolting in DSP architectures They compensate the errors with al-

gorithmic noise-tolerance schemes. They use a prediction-based error-control scheme

to improve the performance of the filtering algorithm.

• Karakonstanis et al. [32]: This work proposes a undervolting enabled discrete cosine

transform architecture to demonstrate higher energy savings. Their architecture puts

the long paths for the operations which have less influence on the quality of the final

output, so that the impact of low voltage variation sensitivity can be reduced.

2.5.2 Enhancements around Memory

• Kim et al. [33]: This work analyzes the bit-level SRAM errors and isolate the con-

tribution of total energy spent in SRAMs in several DNN accelerators. The authors

utilize the motivation to present memory adaptive training with in-situ canaries, that

enables aggressive voltage scaling of DNN-accelerator weight memories to improve

the overall energy-efficiency.

• DRIS-3 [34]: This work demonstrates that a significant accuracy loss is caused by
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certain bits during faulty DNN operations and using this fault analysis, proposes a

fault tolerant reliability improvement scheme— DRIS-3, to mitigate the faults during

DNN operations.

• Chandramoorti et al. [35]: This work presents a technique of low-voltage neural net-

work acceleration with application-aware SRAM architecture. Undervolting causes

errors in SRAMs. They evaluate low voltage SRAM errors specifically for ML appli-

cations and incorporate an application aware voltage boosting framework, that runs

deep into the SRAM banks, to enhance the overall energy efficiency for ML applica-

tion.

• Parana [36]: This work evaluates thermal issues in a NN accelerator 3D memory

and propose a ”3D + 2.5D” integration processor named Parana, which integrates 3D

memory and the NPU. Parana tackles the thermal problem by lowering the number

of memory accesses and changing the memory access patterns.

• Salami et al. [37]: This work performs a thorough analysis of the NN accelerator

components and devise a strategy to appropriately mask the MSBs, to recover the

corrupted bits, thereby enhancing the efficiency by mitigating the faults.

• Nguyen et al. [38]: This work presents innovation in error resilience around DRAM

accesses to increase the energy efficiency of DNN applications. The authors exploit

that the DNN classification accuracy is not affected equally by all the bits fetched from

memory. By studying the trade-off, the authors devise an adaptive DRAM refreshing

technique, eliminating unnecessary refresh energy spent on insignificant bits.

2.5.3 Analog/Mixed-Signal Enhancements

• Eshraghian et al. [39]: This work for ReRAM based DNN accelerators, utilizes the

frequency dependence of v-i place hysteresis to relieve the limitation on the single-

bit-per-device and allocating the kernel information to the device conductance and

partially to the frequency of the time-varying input.

• BIHIWE [40]: Ghodrati et al. propose a technique BIHIWE for mixed signal DNN
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accelerators, to address the issues in mixed-signal circuitry due to restricted scope of

information encoding, noise susceptibility and overheads due to Analog to Digital

conversions. BIHIWE, bit-partitions vector dot-product into clusters of low-bitwidth

operations executing in parallel and embedded across multiple vector elements.

• ISAAC [41]: This work demonstrates a scheme ISAAC, by implementing a pipelined

architecture with each neural network layer being dedicated specific crossbars and

heaping up the data between pipe stages using eDRAM buffers. ISAAC also proposes

a novel data encoding technique to reduce the analog-to-digital conversion overheads

and performs a design space inspection to obtain a balance between memristor stor-

age/compute, buffers and ADCs on the chip.

• Mackin et al. [42]: This work proposes the usage of crossbar arrays of NVMs to imple-

ment MAC operations at the data location and demonstrates simultaneous program-

ming of weights at optimal hardware conditions and exploring its effectiveness under

significant NVM variability.

To the best of our knowledge, the work on this dissertation is the first one to exploits

the data-driven delay variance in the systolic array of MACs, to predict timing errors in

TPUs, operating under near-threshold condition.

2.6 Power Gating Implementations

• Tschanz et al. [43]: This work advocated for the need of active leakage control tech-

niques in VLSI. The authors employ dynamic sleep transistors and body bias with

clock gating to provide active leakage control on an execution core in 130-nm CMOS

technology. They use PMOS sleep transistors, and are able to reducing the power

consumption by 8%.

• Shi et al. [44]: This work outlines the challenges and opportunities in optimal sleep

transistor design in different configurations. Most of the aspects like the design and

implementation of header and/or footer switch, the actual distribution of the sleep
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transistors, dimensions of the sleep transistor, and possibilities of optimization through

bias are discussed in depth.

• Hu et al. [45]: This work provides an extensive analytical model of the idleness in

CPU. The sections that are to be powergated need to be idle for sufficient number

of cycles so that the sleep/wake-up overheads of powergate implementation don’t

outweigh the benefits of leakage power savings. They show that the floating point

units can be powergated for upto 28% of the cycles for a performance loss of 2%.

To the best of our knowledge, the work in the dissertation is the first one in the DNN

accelerator domain to explore the severe, yet predictable resource underutilization and

propose power-gating strategies to extract a staggering gain in energy efficiency.
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CHAPTER 3

RELIABILITY AND UNIFORMITY ENHANCEMENT IN 8T-SRAM PUFs

3.1 Background and Contributions of This Work

SRAM-based PUFs (SPUFs) have emerged as a viable security choice in resource con-

strained systems [16]. This can be attributed to their obviation for dedicated circuitry and

elimination of the overheads of complex encryption mechanisms [6]. Instead, SPUFs rely

on inherent physical characteristics, that originate from manufacturing process variations

(PV), to enable chip security [7]. Likewise, Near-Threshold Computing (NTC) has tran-

spired as a promising energy-efficient design paradigm, as compared to Super Threshold

Computing (STC). SPUFs operating at NTC exhibit quadratic energy gains making them

more pervasive among low power systems [46]. For example, battery-operated systems,

batteryless RFIDs running on inductive coupling, Internet of Things (IoT) applications,

sensor networks, wearable gadgets, low power embedded systems and so on.

However, the supply voltage reduction is also accompanied by increasing effects of

PV. Herein, it is important to highlight a unique property of SPUFs to reproduce the same

chip signature every time it is attempted to be authenticated, often referred to as SPUF

reliability [7]. Consequently, it becomes extremely challenging to reliably deploy SPUFs at

NTC. Thus, it remains an intriguing research question whether NTC operation of SPUFs

brings about any degradation in reliability, due to exacerbated PV sensitivity.

The read instability introduced by low voltage operation thus makes 6T-SRAMs an

unfavorable design choice at NTC. Researchers have proposed 8T-SRAM and 10T-SRAM

models for sub-threshold computing systems [11, 47]. 8T-SRAMs have been used for NTC

operation, in this work, owing to their relatively lower area overhead. The addition of

extra read transistors in 8T-SRAM introduces a schematic asymmetry, quite contrary to a

symmetrical 6T-SRAM. It is observed that, this leads to an asymmetric start-up current,
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which when sensitized by varying system noise and temperature, leads to a degradation

in SPUF reliability.

In addition to reliability concerns, this chapter finds that the shift to NTC SPUFs chal-

lenges ideal SPUF uniformity owing to the differences in device geometry. SPUF uniformity

depicts how uniformly the 0’s and 1’s are distributed in the SPUF signature; with better

uniformity corresponding to a more randomized distribution, making it unfathomable for

the attacker to recreate [13]. It is observed that the schematic asymmetry exhibited by

8T-SPUFs leads to an imbalanced distribution of the start-up current within the cell, giv-

ing rise to decreased uniformity. To preserve the energy efficiency at NTC, this chapter

analyzes the impact of device asymmetry on reliability and uniformity of 8T-SPUF and

propose CUBIT: Biasing based strategies and CUSIT: Sizing based strategies.

Our contributions in this chapter are as follows:

• It is observed that there is a marked degradation in reliability and uniformity for 8T-

SPUFs operating at NTC, in comparison with STC-operated 6T-SPUFs (Section 3.2).

• By analyzing the impact of device asymmetry on reliability and uniformity character-

istics, this chapter proposes CUBIT: biasing based design strategy, and CUSIT: sizing

based design strategy (Section 3.3).

• In comparison to state-of-the-art technique by Chang et al. [16], our proposed design

strategies exhibit a comprehensive enhancement in both reliability and uniformity,

with more than 55% improvement in percentage of unreliable cells, and 82% progres-

sion in the ballpark of ideal uniformity over the Baseline NTC 8T-SPUF array (Section

3.4).

3.2 Background and Motivation

In this section, the metrics of reliability (Section 3.2.1) and uniformity (Section 3.2.2),

which are key determinants of SPUF behavior, are quantified. Using the methodology dis-

cussed in Section 3.2.4, a radical change in these characteristics in an 8T-SPUF operated at

NTC (Section 3.2.3) is observed. Further, it is demonstrated that although 8T-SPUFs ex-
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(a) PUC comparison w.r.t. temperature and Vdd
fluctuations

(b) Uniformity(%) comparison w.r.t. tempera-
ture variations

Fig. 3.1: Reliability and Uniformity characteristics for STC-operated 6T-SPUF versus NTC-
operated 8T-SPUF

hibit an energy efficient solution [46], their naive implementation on low power platforms

come with massive degradation in reliability and uniformity (Section 3.2.5).

3.2.1 Estimating SPUF Reliability

SPUF Reliability is a measure of repeatability of SPUF array signature. The reliability

is threatened when the start-up states of cells in the unique signature of SPUF array are

flipped by noise and environmental variations, leading to unreliable cells [7]. A larger pro-

portion of unreliable cells in the SPUF array, indicates a lower SPUF reliability. In Equation

(3.1), Bit Flips gives the number of times an SPUF cell c powers up to a different bit value,

relative to the noiseless iteration. n is the number of power-ups of the same SPUF cell in

the presence of system noise.

Bit Flips (BFc) =
n

∑
i=0
|Bit value noiseless − Bit value i| (3.1)

Bit Reliable is a binary thresholder, determining whether the c-th SPUF cell is reliable. t is

the threshold of number of allowed bit flips to still mark the cell as reliable.

Bit Reliable (BRc) =

 1 t ≤ BFc = 0

0 BFc > t
(3.2)
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Finally, PUC, gives the percentage of unreliable cells in the SPUF with m cells, at supply

voltage V and temperature T.

PUC(% o f Unreliable Cells (V, T)) =
1
m

m

∑
c=0

BRc × 100% (3.3)

For assessing reliability in this chapter, the values used are t=0, n=10, m=1000.

3.2.2 Estimating SPUF Uniformity

Uniformity depicts the randomness of the SPUF array’s signature. Uniform distribu-

tion of ’1’s and ’0’s in the SPUF signature ensures a strongly random key, which is difficult

to be replicated by an attacker [13]. For a m-bit SPUF, Maiti et al. have defined uniformity

as the percentage Hamming Weight (HW) of the m-bits [48], given by Equation (3.4).

Uni f ormity (%) =
1
m

m

∑
c=0

Bit valuec × 100% (3.4)

where Bit valuec is the power up state of the cth SPUF cell (’0’ or ’1’) of SPUF with m cells.

The ideal SPUF with even distribution of bits ’0’ and ’1’ produces 50% uniformity. Hence,

a uniformity proximal to 50% translates to more randomness in the SPUF. In uniformity

analysis of the skewness of a bit to ’0’ or ’1’, Bit valuec is considered to be ’1’(’0’) if SPUF

cell powers to ’1’(’0’) more than 50% of the time.

WL

Vdd

BL BLB

M2M1

M4M3

M6M5

(a) 6T-SPUF cell

WL

Vdd

BL BLB

M2M1

M4M3

M6M5

RWL

RBL

M8

M7

(b) 8T-SPUF cell

Fig. 3.2: Schematic Representation of a SPUF cell
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3.2.3 Threats to SPUFs at NTC

It is discussed how 8T-SPUFs operating at NTC bring reliability and uniformity con-

cerns in following arguements.

• Although PV is responsible for the generation of a unique SPUF signature, aggravated

PV sensitivity at NTC impairs the repeatability of the signature. Under variation in

environmental conditions, such as system noise, the inherent skewness of the SPUF

cell is overriden, instigating an increase in PUC (Equation 3.3).

• 8T-SRAM (Figure 3.2b) used for NTC execution exhibits a schematical asymmetry

with respect to a STC-operated 6T-SRAM (Figure 3.2a). The addition of two extra

transistors introduces a current sharing on one half of the SRAM cell. The asymmet-

ric current causes the SRAM cell to skew towards an uneven number of 0s or 1s, in

a sequence of power-ups, making the uniformity sway further from its ideal value

(Equation 3.4).

• The current induced due to asymmetry of 8T-SPUF, experiences further imbalance as a

consequence of exacerbated PV sensitivity at NTC. This current variation degrades the

reliability of a NTC-SPUF. Hence, it is a fair deduction that reliability and uniformity

characteristics of an SPUF undergo cataclysmic changes when operated at NTC.

3.2.4 Methodology

To estimate the reliability and uniformity of an SPUF array, 6T-SRAM and 8T-SRAM

cells are modeled using Predictive Technology Model (PTM) for 32nm [49] based on BSIM-

CMG [50]. 1000 unique cells are instantiated to build an SPUF array by Monte Carlo sim-

ulations for Threshold voltage (Vth), Length (L) and Width (W), with PV of 9% for Vth and

4.5% for W and L. The noise in time-domain is modeled using all the noise sources de-

fined in BSIM-CMG. For the frequency-domain noise modeling, the base and maximum

frequency are set to Fmin=104 and Fmax=109 respectively [51]. The SPUF array are then sim-

ulated at supply voltage ranging from -10% Vdd to +10% Vdd and temperature from -40◦C

to 110◦C.



18

3.2.5 Results and Significance

Figure 3.1a shows the comparison of PUC in STC 6T-SPUF and NTC 8T-SPUF array.

It is observed that the PUC variation across Vdd is under 5% for both the STC and NTC

SPUF. However, the window of variation of PUC across temperatures for NTC 8T-SPUF

shoots up to 30%, as opposed to 6% in STC 6T-SPUF. This means that if a key is devised

at same temperature, for both STC and NTC SPUFs, and then attempt to reconstruct the

response at a higher temperature, the number of unreliable cells is much higher for NTC

8T-SPUF. Fuzzy extractor and other error correcting mechanisms would then have to cover

a larger spread of unreliable cells across all corners of environmental variations, which

leads to excessive power and area overheads [18]. The increased overheads will disrupt

the entire SPUF ecosystem, which is primarily targeted for low cost security primitives.

Hence, shifting from STC to NTC, SPUFs subjected to temperature variation, are plagued

by decreased reliability.

Figure 3.1b compares the uniformity of STC 6T-SPUF and NTC 8T-SPUF at different

temperatures. It is seen that the worst case deviation of 6T-SPUF from ideal uniformity is

under 9%, as compared to the glaring deviation of 33.2% for 8T-SPUF. This anomaly can be

attributed to the exorbitant skewness of the bits to a particular state for the NTC 8T-SPUF.

Therefore, it is imperative to realise that the 8T-SPUFs are plagued by decrement in uni-

formity, making them more vulnerable to attacks. To recuperate this atrophy in reliability

and uniformity characteristics, design strategies are proposed, for SPUFs operated at NTC

in Section 3.3.

3.3 Design

In this section, the impact of schematic asymmetry in 8T-SPUFs amalgamated with

the increased effect of PV are first discussed, to justify the governing principle of our

design (Section 3.3.1). Following which, design strategies are proposed, CUBIT: Current

Suppression with Biasing Technique (Section 3.3.2) and CUSIT: Current Suppression with Sizing

Technique (Section 3.3.3), to tackle the glaring degradation in reliability and uniformity
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characteristics of 8T-SPUFs at NTC.

Fig. 3.3: Current Ig is shared from only right junction JR of the 8T-SPUF cell, rendering the
current in the right half, IRH asymmetric to left half current ILH.

(a) Asymmetric Distribution of startup
current (b) Suppression of Ig Magnitude (c) Suppression of Ig Variance

Fig. 3.4: Fig. 3.4a : Plot of the maximum supply currents distributed to right and left half
of 8T-SPUF cell. Fig. 3.4b : Effective suppression of Ig by biasing techniques. Fig. 3.4c
: Effective supression of Variance of Ig by biasing techniques. Maximum and variance are
calculated among the maximum currents until trip point, of 10 different noisy startups

3.3.1 Impact of Schematic Differences

The schematic difference between a 6T-SPUF and 8T-SPUF cell is the addition of the

two NMOS’s for read access. Schematically, as the read access transistors are only con-

nected to one half of the cell (Fig. 3.2), there is an asymmetry in right half and left half

supply current, IRH and ILH (Fig.3.3).

The maximum of currents, IRH, ILH are compared among 10 different noisy startups,
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until the trip point [7], from where the voltages at BL and BLB diverge to their final states.

Figure 3.4a shows that the current IRH dominates the current ILH. This non-uniformity

in current distribution among the SPUF cells is brought about by gate leakage current,

Ig flowing from right junction JR towards the gate of transistor M7 as shown in Figure

3.3. Ig tries to drag down the voltage rise at junction JR. This phenomenon leads to more

number of SPUF cells ending up to a final states ’1’ than ’0’ at JL, .i.e degraded uniformity.

In addition, it is observed that this current is very sensitive to temperature change and

random system noise. Due to this increased sensitivity, the chances of degraded reliability

increases manifold. Hence, the suppression of this current and its variation opens doors to

better reliability and uniformity in NTC 8T-SPUF.

3.3.2 CUBIT: Biasing based Techniques

CUBIT improves the reliability and uniformity of the NTC 8T-SPUF by biasing Read

Counterpart of NTC 8T-SPUF (Fig. 3.3) in different ways, targeting the suppression of

current Ig. In Figure 3.4b, the supression of maximum of current Ig in SPUF cells by one

of our biasing technique is shown, which improves both reliability and uniformity.

Similarly, in Figure 3.4c, the massive reduction of statistical variance of maximum

of current Ig among the noisy startups for SPUF cells for the same technique is shown.

Higher magnitude and variance contributes towards decreased reliability and non unifor-

mity respectively. Different biasing techniques are discussed in 3.3.2, as different steps of

an algorithm, devised to comprehensively improve both reliability and uniformity.

CUBIT Algorithm

An algorithm for finding the best combination among the different ways of biasing

Read Counterpart (Fig. 3.3) is proposed. At the end of the algorithm, a stack of improved

uniformity and reliability figures and the respective moves which cause it are achieved.

Top of the stack is the best combination according to priority constraints given. User can

also select sub optimal solutions as a tradeoff with the overheads in actual implementa-
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tion. It is started by applying minimum possible moves first, and then move to different

combinations of moves. Table 3.1 lists the terminologies and the objective of our algorithm

1.

T {-40◦C, 25◦C, 110◦C}
R Max(% of Unreliable Cells (PUC)), across T
U Max(Uniformity-Ideal Uniformity), across T
RLT Reliability Loss Threshold: The maximum allowed Loss of

R (in %) for gaining U.
ULT Uniformity Loss Threshold: The maximum allowed Loss

of U (in %) for gaining R.
Objective Minimize U and R

Table 3.1: Terminologies and Objective for Algorithm 1

• T= {-40C, 25C, 110C}

• R= Max(% of Unreliable Cells (PUC)), across T.

• U= Max(Uniformity-Ideal Uniformity), across T.

• Reliability Loss Threshold (RLT): The maximum allowed Loss of R (in %) for gaining

U.

• Uniformity Loss Threshold (ULT): The maximum allowed Loss of U (in %) for gain-

ing R.

• Objective: Minimize U and R

CUBIT Moves The moves of the algorithm that bias the Read Counterpart of 8T-SPUF

cell in different ways are outlined, targeting the supression of magnitude and/or variation

of Ig, which are successful in improving in reliability and/or uniformity.

1. RE-RBL: This is a Reliability Enhancer move, where the Read Bit Line (RBL) of the

8T-SPUF cell is biased to Biasing voltage (VB), as shown in Fig. 3.6a. The SPUF array logic

can be customized to provide a logic high through precharging in RBL line at the startup

of the 8T-SPUF array. Simulation results in Fig. 3.5, show that, with VB=Vdd, this move

can decrease R (Fig. 3.5a), by 55%, but cannot decrease U (Fig. 3.5b).
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(a) Comparison of Reliability Improvement (b) Comparison of Uniformity Improvement

Fig. 3.5: Improvement in Reliability (Fig. 3.5a) and Uniformity (Fig. 3.5b) obtained by different
biasing schemes. Individual biasing schemes cannot always address comprehensive improvement
in both reliability and uniformity.

2. RE-RWL: This is also a RE move, where the Read Word Line (RWL) of the 8T-SPUF

cell is biased to VB as shown in Fig. 3.6b. The SPUF array logic can be customized to

enable RWL, also at the startup. Simulation results in Fig. 3.5, show that, with VSB=Vdd,

this move can decrease R (Fig. 3.5a), by 53%, but cannot decrease U (Fig. 3.5b).

3. RUE-SGT and UE-SGTf: Biasing the Source Ground Terminal (SGT) of M7 with

voltage VB=Vdd, as shown in Fig. 3.6c, at the startup of the 8T-SPUF cell, gives us Reilabil-

ity and Uniformity Enhancher (RUE) move. As the sink of the current Ig is SGT, rising its

potential from ground supresses the Ig very effectively. Simulation results in Fig. 3.5 show

that Bias of VSB=Vdd at SGT is able to reduce R and U by 55.8% and 56% respectively.

RUE-SGT improves the uniformity by aggressively turning around the population of ’1’

skewed cells to from 83% (67% above ideal) to 35% (30% below ideal). Hence, by reducing

the degree of supression with lowering VB from Vdd, the uniformity can be brought closer

to ideal uniformity. This give us Uniformity Enhancher (UE) moves, UE-SGTf, where f is

VB as fraction of cell Vdd (VB/Vdd). Simulation results in Fig. 3.5b shows improvement

of U with decrease of VB. However, as the VB goes on decreasing, reliability decreases

severely as shown in Fig. 3.5a. Hence, true benefit of UE-SGTfs can be extracted only by

coupling with REs.

Terminologies
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Below are some terminologies and equations used in the algorithm 1

• The set of RE moves combinations: REcombinations={RE-RWL, RE-RBL,{RE-RWL,

RE-RBL}}

• The set of RUE moves: RUEmoves={RUE-SGT}

• The set of UE moves: UEmoves={UE-SGT1, UE-SGT2, and so on}

• R= Max(Percentage of Unreliable Cells (PUC)), across all temperatures.

• U= Max(Uniformity-Ideal Uniformity), across all temperatures.

• Reliability Loss Threshold (RLT): is the the maximum allowed Loss of R in percent-

age for gaining U.

• Uniformity Loss Threshold (ULT): is the the maximum allowed Loss of U in percent-

age for gaining R.

• Objective: Minimize U and R

RWL

Ig

VB

JR

(a) Biasing RBL with VB

RBL

Ig

VB

JR

(b) Biasing RWL with VB

RWL
RBL

Ig

VB

JR

(c) Elevating GND to VB

Fig. 3.6: Moves to effectively supress the magnitude and/or variation of the current Ig, which
bias a voltage VB at different terminals of Read Section of 8T-SPUF cell in CUBIT Algorithm.
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Algorithm 1 CUBIT

1: REcombinations={RE-RWL, RE-RBL,{RE-RWL, RE-RBL}}
2: RUEmove={RUE-SGT}
3: UEmoves={UE-SGTf1, UE-SGTf2,....UE-SGTfn}
4: procedure MAIN

5: Apply RUE move
6: Push move and (R, U) to stack
7: for (r in REcombinations) do:
8: Apply r
9: if (RU-IMPROVED(R,U)==1) then

10: Push r and (R, U) to stack
11: end if

ENHANCE UNIFORMITY

12: end for
13: end procedure

14: procedure ENHANCE UNIFORMITY

15: for u in UEmoves do:
16: Apply u
17: if RU-IMPROVED(R,U)==1 then
18: Push u and (R, U) to stack
19: end if
20: end for
21: end procedure

22: procedure RU-IMPROVED(Ri, Ui)
23: (Ri−1, Ui−1)← Top value o f stack
24: RG ← (Ri−Ri−1)

Ri−1
× 100%

25: UG ←= (Ui−Ui−1)
Ui−1

× 100%
26: if (RG > 0 and UG > 0) then
27: return 1
28: else if (RG > 0 and −ULT ≤ UG ≤ 0) then
29: return 1
30: else if (UG > 0 and − RLT ≤ RG ≤ 0) then
31: return 1
32: else
33: return 0
34: end if
35: end procedure



25

3.3.3 CUSIT: Sizing based Techniques

CUSIT is a sizing based technique to supress the effects of current Ig, for better reliabil-

ity and uniformity. CUSIT scales the sizes of the transistors of Ig source (Write counterpart)

and sink (Read counterpart) in such a way that Ig, relative to supply current, I(Vdd) is de-

creased. This scaling ensures that the impact of Ig on reliability and uniformity is curtailed.

Figure 3.7 shows the variation in Ig for upscaling write transistors relative to read transis-

tors, with six different scaling factors. Ig is normalized to I(Vdd) and observed till the time

a 8T-SPUF reaches its trip point. It is evident from the figure that Ig decreases with an

increase in the upscaling factor. To establish the adaptive nature of CUSIT in the light of

varying currents in the transistor, two different approaches to transistor resizing are pre-

sented. First, scaling down the size of read transistors (relative to write transistors), and

second, scaling up the size of write transistors (relative to read transistors). In light of im-

plementation feasibility, the Read and Write Counterparts of 8T-SPUF cells (Fig. 3.3) can be

sized independent of each other, unlike the meticulous sizing constraints of conventional

6T-SPUF cells [52].

Fig. 3.7: Supression of normalized current Ig with different size upscaling factors of CUSIT

3.4 Results

In this section, the results for enhancement of reliability and uniformity given by our
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design strategies are presented. Section 3.4.1 presents the results obtained by applying

CUBIT and Section 3.4.2 presents results obtained by aplying CUSIT, comparing it with a

comparative sizing scheme in literature.

3.4.1 CUBIT Results

In this section, the results of applying CUBIT algorithm are presented and analyzed.

Table 3.2 shows the final combination of RE/RUE/UE moves which minimize the (R,U)

with different priority constraints. It is possible to obtain an excellent enhancement of

more than (51%, 76%) in (R, U) across the Baseline NTC 8T-SPUF across all priority con-

straints. It is observed that the optimal combination of biasing techniques for best Relia-

bility and Uniformity is a trade-off. If Reliability (Uniformity) is favored, 55.8% (82.86%)

enhancement in R(U) is achieved. Also, even by only using a single voltage source which

eliminates the need of additional low voltage source, (54.9%, 76.8%) enhancement in (R,

U) is got as compared to Baseline 8T-SPUF.

Priority RLT ULT Bias Set PUC(%) Uniformity(%) Enhancement
-40◦C 25◦C 110◦C -40◦C 25◦C 110◦C (R, U) (in %)

Reliability 5% 10% {RE-RBL, RE-RWL, 17.4 16.7 17.5 49.09 47.16 43.77 (55.8%, 81.35%)
Favoring UE-SGT0.17}

Uniformity 10% 5% {RE-RBL, UE-SGT0.33} 18.8 18.9 18.4 56.50 51.21 44.27 (52.27%, 82.86%)
Favoring

Single Voltage 10% 10% {RE-RWL, RUE-SGT} 17.8 16.2 17.9 42.29 42.84 44.17 (54.79%, 76.8%)
Source

Table 3.2: Different (R, U) enhancements over base line NTC 8TSPUF, obtained from appli-
cation of different priority constraints in the CUBIT algorithm.

Comparative Size (Area,Power) PUC(%) Uniformity(%) Enhancement
Schemes Upscaling -40◦C 25◦C 110◦C -40◦C 25◦C 110◦C (R, U) (in %)

CUSIT

Baseline
Relative X2
Relative X3
Relative X4
Relative X5

(1x,1x)
(1.75x, 2.12x)

(2.5x, 3.23)
(3.25x, 4.31x)

(4x, 5.45x)

14.8 22.6 39.6
13.3 19.0 30.0
13.0 17.7 24.4
12.0 15.6 21.1
10.7 14.4 19.5

83.27 80.10 73.32
71.02 67.67 63.50
65.11 63.04 60.24
61.70 60.52 57.89
59.09 58.56 56.09

(-, -)
(24.24, 36.79)
(38.38, 54.56)
(46.71, 64.80)
(50.75, 72.67)

VCTS

Baseline
Holistic X2
Holistic X3
Holistic X4
Holistic X5

(1x,1x)
(2x, 2.15x)
(3x, 3.26x)
(4x, 4.38x)
(5x, 5.51x)

14.8 22.6 39.6
9.9 15.0 27.1
8.4 12.7 21.8
6.7 11.2 17.3
6.5 10.4 16.3

83.27 80.10 73.32
82.76 79.31 72.00
82.88 79.09 71.50
82.76 79.29 71.14
82.53 78.67 70.79

(-, -)
(31.57, 1.51)
(44.95, 1.16)
(56.31, 1.50)
(58.83, 2.21)

Table 3.3: Comparative analysis of Enhancement of Reliability and Uniformity
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3.4.2 CUSIT Results

In this section, the improvement in reliability obtained with CUSIT is presented . As

a sizing technique for 8T-SPUF’s quality improvement in literature is not available, the

comparison is of CUSIT is made with a sizing technique [16] demonstrated for 6T-SPUFs

which holistically upscales the size of all transistors of SPUF cell targeting Vth variation

(VCTS-Vth Centric Transistor Sizing). For CUSIT, the size of transistors in write counter-

part relative to the size of transistors in read counterpart is upscaled, targeting supression

of current Ig. Table 3.3 shows that reliability improvement with size upscaling is similar in

both techniques, achieving improvement in PUC by more than 50% when upscaling factor

reaches 5. However, CUSIT vastly outperforms VCTS in terms of comprehensive enhance-

ment of both reliability and uniformity as CUSIT achieves more than 72% enhancement

in proximity to ideal uniformity, compared to an insignificant 3% improvement by VCTS.

VCTS cannot achieve uniformity improvement because, holistic scaling of all the transis-

tors with a common factor can’t reduce the effect of asymmetric current Ig. Hence, it is

imperative to deduce that CUSIT is a superior comprehensive technique than VCTS for

NTC 8T-SPUFs.

3.4.3 Overhead Analysis

The techniques in CUBIT can be realized in SPUF array at the granularity of array logic

and column. Like most of other circuit level techniques [16], area and power overheads

of CUBIT relative to the entire SPUF array is insignificant because the area and power

consumed by the SPUF cells hugely dominates the resources consumed by SPUF’s array

logic [53] [16].

For CUSIT, it is observed that CUSIT’s relative sizing over VCTS’s holistic sizing

achieves linear savings in transistor’s active area and power consumtion with size up-

scaling factors (Table 3.3). Although overheads in CUBIT inrease linearly with upscaling

factors (Table 3.3), they can be amortized with respect to conventional 6T-SPUFs by adopt-

ing future technology nodes in design. This is because the size of 8T-SPUFs can be smaller
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than 6T-SPUFs along the future technology nodes, as 6T-SPUF’s further shrinkability with

future technology nodes is already limited by their cell stability issues [54, 55].



29

CHAPTER 4

IMPROVING PERFORMANCE OF A NEAR-THRESHOLD TENSOR PROCESSING

UNIT WITH TIMING ERROR RESILIENCE

4.1 Background and Contributions of This Work

The cessation of Dennard’s scaling, accompanied with the diminishing throughput

from the growing number of on-chip cores, has led to the adoption of power-efficient

domain-specific architectures. With the recent confluence of artificial intelligence (AI)

and high performance computing, the domain-specific computing paradigm is already

on the uprise, as evident by the success of the deep neural-network (DNN) accelera-

tors [24,25,33,56]. Among the multitude of such ad-hoc AI architectures, the Google Tensor

Processing Unit (TPU) is at the forefront, claiming 15× - 30× faster inference, compared to

the top of the line CPUs and GPUs [57]. However, the unprecedented growth in the DNN

workloads (e.g., speech recognition in Google Assistant [57, 58]) portends a rapid increase

in the overall power consumption of the Google data-centers. With a view to heavily cur-

tailing the power consumption while sustaining a high inference accuracy, we envision

a near-threshold (NTC) operation of the TPUs. However, operating a TPU at the NTC

condition, can significantly dwindle the inference accuracy due to a high rate of timing er-

rors [21,46]. This chapter aims to exploit the inherent architectural artifacts of the TPUs, to

predict and tackle the timing errors at NTC, thus promoting a reliable and energy-efficient

low-power TPU design paradigm.

The high delay sensitivity to voltage and process variation (PV) at NTC necessitates

a relaxed clock constraint to ensure an error-free execution. On the other hand, hardware

accelerators like TPUs are designed to offer a high throughput in niche applications. So, in

order to embrace the NTC design paradigm for TPUs, it is needed to adopt a better-than-

worst case design strategy that can efficiently tolerate the timing errors in its systolic array
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architecture (Section 4.2.1). Prior research efforts delve into the challenges and solutions of

tackling timing errors in conventional CPU and contemporary TPU architectures [21, 59].

Next, it is discussed why such existing techniques are not effective in an NTC TPU.

Razor—one of the most popular timing error detection and recovery schemes—employs

a double sampling flip-flop to detect timing violations inside a pipeline stage [59]. The

erring instruction is replayed at a reduced clock frequency to prevent a subsequent tim-

ing error. Adopting Razor in TPUs will negatively impact the performance, as the global

timing error rate rapidly grows with the dimension of the systolic array. Hence, any re-

covery penalty, associated with correcting an erroneous computation, will significantly

bloat the execution time of the inference. Zhang et al. have recently proposed TE-Drop—

where an erring multiplier-and-accumulator (MAC) in a TPU, steals a clock cycle from its

downstream MAC to correct the error, and bypasses the downstream MAC’s update [21].

However, this approach cannot tackle any timing error in the last row of MACs, without

incurring a significant performance penalty at NTC. As the partial sums grow towards the

bottom of the systolic array, the impact of timing errors in the last row of MACs is the most

crucial. Moreover, as the rate of the timing error increases significantly at NTC, bypassing

the update of some MACs will greatly diminish the inference accuracy.

In the light of such shortcomings of the existing timing error mitigation techniques,

we propose a novel timing error prediction strategy, exploiting the wavefront propagation

of the data in a TPU systolic array. It is observed that only few activation sequences are

more likely to cause timing violations in the MACs (Section 4.2.3). As the activation data

streams through all the MACs in a row, an error-causing activation sequence, can serve as

an excellent predictor to avoid subsequent errors in the rest of the MACs in the same row.

This early error prediction scheme is combined with a low-complexity voltage boosting

mechanism to propose GreenTPU—a new frontier in the design of reliable and low-power

TPU. Following are the key contributions of our work:

• It is observed that only few input data sequences cause timing violations in MACs.

Consequently, they serve as an efficient predictor for impending timing errors (Section
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4.2).

• A heuristic to group several input sequences with similar delay characteristics into

a family in order to predict future timing errors in a hardware-efficient manner is

proposed. (Section 4.3.2).

• GreenTPU—a low-overhead NTC TPU design paradigm is proposed that predicts im-

pending timing violations in its systolic array, and precludes them using a novel volt-

age boosting mechanism (Section 4.3).

• Combining with our in-house statistical timing analyzer tool, a TPU systolic array

simulator in C++ is developed. An end-to-end integration is supported, by interfacing

our simulator with Keras [60], so as to closely emulate a real-life TPU-accelerated

inference eco-system for contemporary DNN applications (Section 4.4).

• It is demonstrated that GreenTPU provides two orders of magnitude reduction in

timing errors at NTC, with respect to TE-Drop [21]—a cutting-edge timing error miti-

gation technique for TPUs (Section 4.5).

• Compared to TE-Drop, GreenTPU offers 2X–3X higher performance (TOPS) in an NTC

TPU, in 7 out of 8 DNN datasets, with only 3% average loss in the inference accuracy.

Estimated from synthesis, place and route of a TPU systolic array RTL, augmented

with GreenTPU, the area, power, and wire-length overheads are found to be ∼1.8%,

∼2.2%, and ∼4.1%, respectively (Section 4.5).

4.2 Motivation

In this section, the opportunity of employing a predictive mechanism to tackle timing

errors in NTC TPUs is demonstrated. Section 4.2.1 provides a background on the TPU sys-

tolic array. Using a cross-layer methodology (Section 4.2.2), the data-driven delay variance

in the systolic array of MAC units are analyzed (Section 4.2.3), and motivate the need for

a timing error prediction scheme in NTC TPUs (Section 4.2.4).

4.2.1 Background
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(a) Exhaustive delay profile of a MAC
unit. (b) CDF of the delay profile.(c) Commonality for all the 256

rows.

Fig. 4.1: Figure 4.1a shows the plot of the sensitization delays for all possible weights and
input changes for a MAC unit. The variance in the input data can bring about ample delay
variance. However, there are only few input sequences that can sensitize the longest delay paths,
as depicted by the CDF plot in Figure 4.1b. Figure 4.1c exhibits a very high % of Commonality
(Equation 4.2) in the error causing input sequences for all the rows, during the inference of the
MNIST dataset.

TPU Systolic Array

Matrix multiplication is the most expensive operation in the inference phase of the

DNN applications. The usage of the systolic array of MAC units, has been recognized as

a promising direction to accelerate the matrix multiplication. TPU—a DNN accelerator—

employs a 256×256 systolic array of MAC units, to multiply the weight matrix with the

activation (also referred to as input) matrix, maintaining a precision of 8-bit integer [57].

The weights are pre-loaded into the MACs. The activations stream from the left to the

right columns of the array at successive clock cycles. The partial sums from the rows of

MACs move downstream. Unlike CPUs and GPUs, a TPU boasts a distinctly homogeneous

architecture with a highly predictable data-flow pattern.

Hazards and Opportunities of NTC TPUs

Operating a TPU at the NTC condition ideally contributes to a quadratic saving in the

energy consumption. However, the performance of the TPU heavily declines due to a large

delay experienced by the circuits at an NTC voltage [46]. Moreover, a high delay sensitivity

to PV and voltage variation at NTC, demands the clock frequency to be heavily relaxed,

compared to a super-threshold operation. Hence, in order to operate with an aggressive

clock constraint at NTC, a TPU needs to efficiently tolerate a high rate of timing violations.
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Furthermore, due to a very deep pipelined architecture of the systolic array (Section 4.2.1),

even a small rate of timing error aids to a severe drop in the inference accuracy of the DNN

applications [21].

Fortunately, the architectural homogeneity and a predictable data-flow pattern in TPUs,

offer a unique opportunity to efficiently tackle timing errors at NTC. Owing to a fixed 8-

bit precision in the arithmetic operations, a finite state space of different sensitized path

delays, experienced by the MAC units is achieved. Isolating the subset of the relatively high

delays, and correlating that subset with the concerned data patterns, can facilitate the prediction of

the impending timing errors in the TPU systolic array.

4.2.2 Methodology

A MAC unit is synthesized at an NTC operating condition (Section 4.5), by using

the 15-nm FinFET library from NanGate [61]. In-house statistical timing analysis tool is

employed to study the delay distributions of the sensitized paths for different inputs to

the MAC unit. For a conservative estimate, PV-induced delays, obtained from VARIUS-

NTV [62] are considered, in randomly chosen 2% of the gates in the MAC circuit [63]. Our

cross-layer methodology is further elaborated in Section 4.4.

4.2.3 Results and Significance

The multiplier block of a MAC unit has a relatively deeper logic depth, compared to

the accumulator. Hence, the delay distribution of the MAC is modeled, as a function of

the change in inputs to the multiplier, i.e., the activation sequence, and the weight. An

exhaustive set of 8-bit activation sequences is created for all possible 8-bit weights, leading

to a total of 16,777,216 unique combinations.

Figure 4.1a shows the delay profile of a PV-affected MAC unit at NTC, obtained by

providing all the aforementioned combinations of weights and input changes. A value of

X in Figure 4.1a, corresponds to a specific input change sequence, for a specific weight W,
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as expressed in equation 4.1.

Weight (W) = b X
65536

c, S = X mod 65536

Input change : b S
256
c → (S mod 256)

(4.1)

The delay profile shows ample variation, resulting from the variance in the input data.

This delay variation is statistically shown as a CDF plot of the delay values in Figure 4.1b,

where the maximum delay to be the clock period is conservatively attributed. The key

observations from Figure 4.1a and 4.1b are: (a) no paths are sensitized when the same

activation sequence is applied in two consecutive cycles, and (b) a majority of the mul-

tiplication operations sensitize paths with low delays. For instance, it is noticed that the

set of delays with more than 60% of the clock cycle is only 3.6% of the entire state space

of delays. This sparse sensitization of the higher delay paths, eases the prediction of the

recurring timing errors from the same input sequence. Next, the insight to our proposed

design of GreenTPU is discussed.

4.2.4 Timing Error Prediction in TPUs

It is aimed to systematically study the likelihood of an error-causing input sequence

in a MAC, to produce timing errors in the subsequent MACs, belonging to the same row.

In this pursuit, a Commonality metric is proposed in Equation 4.2.

Commonalityi(%) = 100∗
(

1−

255⋃
j=0

UESj

∑255
j=0 UESj

)
(4.2)

where, UESj is the set of unique input sequences that cause timing errors in the jth

MAC unit of the ith row.

Figure 4.1c shows a plot of the Commonality(%), measured across all the 256 rows dur-

ing the inference of 1000 test inputs of the MNIST dataset. It is observed that, for all the

rows, the commonality of the error-causing input sequences is more than 85%. This result
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(a) A conceptual block diagram of GreenTPU. (b) BCU and MACs inter-
action.

Fig. 4.2: Figure 4.2a shows that the TECUs are pipelined between the activation memory and
the rows of the systolic array of MACs. A timing error inside a MAC unit is detected and tackled
using Razor and TE-Drop techniques, respectively. A TECU comprises an ELT, an SeMU, and
a BCU. ELT stores the error-causing input patterns. SeMU, on the other hand, monitors the
input data stream and queries the ELT, to identify potential error-causing input sequences. The
BCU (Figure 4.2b), comprising two 256-bit registers—ESU and BCR—prevents future timing
errors by boosting the operating voltage of the MACs in a row.

indicates a landslide effect of timing errors in the systolic array of a TPU. In other words,

if an input sequence causes a timing error in a MAC unit, that sequence is very likely to

cause timing errors in the subsequent MACs, until the sequence is alive in the row. Hence,

predicting errors based on the input sequences, and adopting a row-wise control strategy

can greatly reduce the number of timing errors in a TPU. With this insight, GreenTPU—

our proposed energy-efficient TPU systolic array design, for a near-threshold operation is

discussed next.

4.3 GreenTPU

GreenTPU is a novel low-power TPU design paradigm, that dynamically predicts and

tackles timing errors in the systolic array of MAC units. Section 4.3.1 outlines the de-

sign overview. The details of the components of GreenTPU are elaborated in Section 4.3.2

through 4.3.5.

4.3.1 Design Overview



36

Figure 4.2a depicts the top-level design overview of GreenTPU. The heart of GreenTPU

is the Timing Error Control Unit (TECU). TECU is responsible for predicting and prevent-

ing timing errors in the MAC units. In order to maintain a low-complexity circuit design

while incurring a negligible performance overhead, one TECU per row of MACs is dedi-

cated, pipelined between the activation memory and the systolic array. A TECU has three

main components, viz., Error Log Table (ELT), Sequence Monitor Unit (SeMU), and Boost

Control Unit (BCU). When a timing error occurs in any MAC unit of a row, the ELT logs

the timing error causing input sequence pattern. Simultaneously, the BCU is alerted to

boost the operating voltage of the subsequent MACs in the row, in order to prevent any

future timing error. The SeMU monitors the sequence of inputs, and tries to find a match-

ing family representing the pattern in the ELT in every clock cycle. If a match is found,

SeMU communicates with the BCU to preclude future timing errors in all the MAC units

of a row.

4.3.2 Heuristic for Determining Input Sequence Family

As timing error prediction lies at the heart of GreenTPU design, an efficient heuristic

for storing and matching the input sequences responsible for producing higher delays is

formulated.

It is observed that the input sequences with similar delay characteristics can be grouped

into a family. The input sequences within a family have similar characteristics of bit flips

among them, which are responsible to produce delays that are close to each other. Stor-

ing families of the high delay causing sequences, rather than storing each sequence as a

different entry is thus a hardware efficient strategy to realize our prediction based design.

The correlation between the input sequences and the delays is analyzed to group sev-

eral input sequences into families. The changes of bits in an input sequence are divided

into three different groups of bit changes with their respective contribution in producing

specific delay or its vicinity. a) Dynamic bit positions, which have the highest domination

and are required to flip, b) Static bits positions, which are required to remain static and not
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flip, c) Insignificant bits positions, whose flipping is insignificant. One input sequence can

thus virtually represent a family of numerous input sequences that produce similar delays,

by virtue of different combinations of bits in Dynamic and Insignificant bit positions.

Algorithm 2 methodizes the hardware inexpensive heuristic to store and match the

input sequences. In our heuristic, storage of a new input sequence as a family is done by

its bit wise XOR, which can inherently reflect dynamic and static bits positions. Matching

is the process of determining if there exists a family in the stored entries, which can encap-

sulate the input sequence under consideration. Search and incorporation of the insignifi-

cant bits is done by loosening the static bit positions by a threshold (Line 1 in Algorithm

2). Then the domination of dynamic bit positions in the contribution towards the delay

is maintained (Line 9 of Algorithm 2). Consequently, a match is declared, if an entry is

found whose static bit positions are same in more than a threshold percentage of positions

with the input sequence under consideration (Line 6-16 in Algorithm 2). The threshold

serves as a trade-off between the storage efficiency and the grouping efficiency of the tim-

ing error prone input sequences. Lower threshold enables a family to represent higher

number of input sequences, but decreases the grouping efficiency, leading to unwanted

voltage boosting. Similarly, a higher threshold more accurately groups the error causing

sequences, while storing more family entries.

4.3.3 Error Log Table (ELT)

ELT is a look-up table which stores the patterns of the input sequence that lead to

timing errors in a MAC unit. A timing error in each MAC unit is sensed using a double-

sampling flip-flop at the output, similar to Razor [59]. An erroneous computation is pre-

vented from the timing error by employing TE-Drop [21], where the errant MAC steals a

clock cycle from its downstream MAC to correctly finish its own update. Each MAC unit

is augmented with the capability to store the previous clock cycle’s activation input, thus

enabling it to infer the input sequence responsible for the timing error. The sequence is

then stored as an 8-bit family, as per the STORE procedure of Algorithm 2 (line 2 to 4) in
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Algorithm 2 Pattern Storing/Matching Heuristic

1: TH ← pattern match threshold
2: procedure STORE(current activ, previous activ)
3: xor pattern← current activ⊕ previous activ
4: Store(xor pattern)
5: end procedure
6: procedure MATCH(current activ, previous activ)
7: new pattern← current activ⊕ previous activ
8: for all saved pat ∈ saved patterns do
9: similarity← saved pat | new pattern

10: num zeros sim← num reset bits(saved pat)
11: num zeros new← num reset bits(similarity)
12: if num zeros new > bTH × num zeros simc then
13: return match found
14: end if
15: end for
16: end procedure

the ELT, while the correct output is being computed parallelly. Also, the BCU is signalled

with the errant MAC unit’s position in the row, to prevent further timing errors in the

MAC units, located to the right of the errant MAC. The ELT is implemented as a content

addressable memory that enables a fast lookup. When the ELT is full, a pseudo-LRU-based

eviction policy is used (not shown in Algorithm 2) to replace an existing pattern with the

new incoming pattern. The size of the ELT is a trade-off between the hardware overhead

and prediction accuracy, which is discussed in Section 4.5.

4.3.4 Sequence Monitor Unit (SeMU)

SeMU identifies the possibility of a recurring timing error. The input activation data,

coming to each row, is intercepted by SeMU, as the TECU is placed in pipeline between

the activation memory and the systolic array. For a given activation sequence coming

from the activation memory, SeMU checks if a corresponding family for that sequence is

already present in the ELT, as per the MATCH procedure of Algorithm 2 (line 6-16). If a

match is found, the BCU is alerted to boost the operating voltage of some of the MACs in

the row (Section 4.3.5). This action is taken in order to prevent the timing errors that would

have been caused by the input sequence. Due to its pipelined architecture, SeMU adds a
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negligible performance overhead.

Algorithm 3 BCU Algorithm

1: resolution← no o f bits to set
2: BCR← Boost Control Register
3: ESU ← Error Sensing Unit
4: procedure BOOST REACTIVE(ESUmac i)
5: start← mac i + 1
6: while start < 256 do
7: wait f or clock cycles(resolution)
8: if start 6= mac i then
9: BCR[start− resolution ... start− 1]← 0

10: end if
11: BCR[start ... min(start + resolution− 1, 255)]← 1
12: start← start + resolution
13: end while
14: end procedure
15: procedure BOOST PROACTIVE(semu signal)
16: start← 0
17: while start < 256 do
18: wait f or clock cycles(resolution)
19: if start 6= 0 then
20: BCR[start− resolution ... start− 1]← 0
21: end if
22: BCR[start ... start + resolution− 1]← 1
23: start← start + resolution
24: end while
25: end procedure

4.3.5 Boost Control Unit (BCU)

BCU is responsible for boosting the operating voltage of the MAC units, in order to

prevent timing errors. As shown in the Figure 4.2b, a BCU houses two 256-bit registers:

Boost Control Register (BCR) and Error Sensing Unit (ESU). Each bit of these registers

corresponds to each MAC unit in a row. Timing error in a MAC is reflected by the setting

of the corresponding bit in ESU. The boosting technique proposed in [64] is adopted, where

every MAC unit has access to two voltage rails, VNTC and VB, representing a near-threshold

and a boost voltage, respectively. The reset (set) value in any bit of the BCR, indicates the
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corresponding MAC unit to operate with the VNTC (VB) voltage. In our experiments, VNTC

and VB are set to 0.45V and 0.65V, respectively. Employing the transition infrastructure

of [64], it is noticed that the switching between VNTC and VB can be performed within one

clock cycle of the NTC TPU. Also, It is observed that if the pre-loaded weight of a MAC

unit is zero, it is unlikely to encounter a timing error. Hence, a MAC with weight zero can

disable the voltage boost for itself, to conserve energy.

The boost control procedures are illustrated in Algorithm 3. Whenever a timing error

occurs in any MAC unit (ESUmac i), a certain number of bits of BCR (indicated as resolution

(Line 1)) that are located to the right of that position, are periodically set (Line 11) and

unset (Line 9) as per BOOST REACTIVE procedure (Line 4). One bit in the resolution

also reflects one clock cycle to wait for the next boost period (Line 7). As a result, the

MAC units, specific to those set bits in the BCR, will be boosted in the subsequent cycles,

precluding any probable timing violations.

On the other hand, if the SeMU (Section 4.3.4) sends a signal (semu signal) as a result

of finding an errant pattern, BCU starts to periodically boost the entire row, starting from

the column 0. Boosting of the MAC units will happen periodically in response of the set

bits in BCR. Again, a certain number of BCR bits are set at a time, defined by resolution

as per the BOOST PROACTIVE procedure (Line 15). The resolution is empirically ascer-

tained. The choice is guided by the energy budget of the GreenTPU implementation, and

the noise margin of the TPU systolic array at NTC, so as to trade-off between the tolerable

timing errors, and the energy overhead.

4.3.6 GreenTPU Variants

Three different variants of GreenTPU are outlined to better understand the implica-

tion of different architectural artifacts of GreenTPU design.

GreenTPU

GreenTPU is the variant, which includes every details of the architecture discussed
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so far. It includes a full fledge predictive engine, which can store many error causing in-

put sequence families to facilitate prediction of any imminent timing errors from the input

sequences represented by those families, as defined by pattern-match threshold in Algo-

rithm 2. This variant helps us to better understand the efficacy of a full blown predictive

appraoch for maintaining the DNN accuracy in a high timing error prone environment.

GreenTPU Reactive (GTR)

GTR is a variant without any form of predictive capabilities of GreenTPU design

paradigm. When the timing error in a MAC unit is detected as a result of an error causing

sequence, the MAC units to the right in the row are prevented from potential timing errors

from the same sequence. Architecturally, GTR omits SeMU and ELT altogether and only

uses BOOST REACTIVE procedure (Line 3 of Algorithm 3) for BCU. GTR helps to better

understand the extent of efficacy than can be provided by a purely reactive approach in

maintaining DNN accuracy in a high timing error prone environment.

GreenTPU Lite (GTL)

GTL is a variant which introduces a hint of predictiveness over GTR. It does so by

including the minimum possible predictive engine for the most basic prediction scheme.

Only one error causing input sequence is used as the basis of prediction and that entry is

constantly replaced on the introduction of a new timing error. Hence, architecturally, the

entire ELT is replaced by a 8-bit register to store the XOR of error causing sequence. The

pattern-match threshold in Algorithm 2 is set to 100% to simplify the prediction scheme,

thereby flagging a match only upon an exact match between stored XOR pattern and the

XOR pattern of the incoming input sequence. GTL helps to better understand the effi-

cacy added by basic introduction of predictiveness over a reactive timing error correction

scheme for DNN accelerators.

4.4 Methodology
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In this section, the extensive cross-layer methodology, used to implement and evaluate

GreenTPU variants is explained.

4.4.1 Device Layer

The NTC energy consumptions are estimated by performing HSPICE simulations on

the basic logic gates (viz., NAND, NOR and Inverter). The 31-stage FO4 inverter-chain is

used as a representative of various combinational logics in a TPU. The simulation parame-

ters are obtained from the 16-nm Predictive Technology Model [65]. The impact of the PV

at NTC is incorporated using the VARIUS-NTV [66] model. The FinFET characteristics are

obtained using the VARIUS-TC model [67]. The delays of the basic gates are used in the

circuit layer (Section 4.4.2) to ascertain the sensitized path delays in a MAC.

4.4.2 Circuit Layer

The Verilog RTL description of a systolic array are developed, and augment it with the

GreenTPU components. The RTLs are synthesized using the Synopsys Design Compiler,

at various operating conditions. Place and route of the synthesized netlist is performed

using Cadence SoC Encounter, and estimate the area, power, and wirelength overheads at

the NTC operating condition. Using both synthetically generated, as well as, real dataset

driven inputs, the sensitized path delays in the MAC array are obtained with our in-house

statistical timing analysis (STA) tool. Based on a library of the delay files of the basic logic

gates at different operating voltages, the STA tool reports the delays of the sensitized paths

of the MAC circuit.

4.4.3 Architecture Layer

Based on the architectural description detailed in [57], a cycle-accurate TPU systolic

array simulator—TPU-Sim— is developed in C++, and the GreenTPU components are im-

plemented in TPU-Sim. The STA tool (Section 4.4.2) is integrated with TPU-Sim, to accu-

rately model timing errors in the MACs, based on real data-driven sensitized path delays.
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Fig. 4.3: Number of timing errors encountered in different comparative schemes across 8 DNN
datasets.

A real TPU-based inference eco-system is created by conjoining TPU-Sim with Keras [60].

First, several DNN applications (viz., MNIST [68], Reuters [69], CIFAR-10 [70], IMDB [71],

SVHN [72], GTSRB [73], FMNIST [74], FSDD [75]) are trained using Keras, running Ten-

sorFlow in the back-end. Each layer’s activation inputs and trained model weights are

extracted, and pre-processed them into multiple 256×256 8-bit-integer matrices. TPU-Sim

is invoked with each pair of the pre-processed input and weight matrices. The output ma-

trices from the TPU-Sim are combined to evaluate the inference accuracy. The framework

for handling large amount of test data is parallelized using Python Multiprocessing.

4.5 Experimental Results

In this section, the efficacy of different timing error-resilient schemes, when a TPU

operates at a better-than-worst-case scenario are evaluated. Our baseline NTC operating

condition (0.45V, 67MHz) guarantees an error-free execution of the TPU. Section 4.5.1 de-

scribes the comparative schemes. Section 4.5.2 elaborates the timing error resilience of the

schemes. Section 4.5.3 presents the inference accuracy and the energy consumption of the

TPU under different schemes. Finally, Section 4.5.4 discusses the hardware overheads of

GreenTPU.

4.5.1 Comparative Schemes

• TE-Drop (TD): This is a recently proposed technique that can tackle timing errors in

the systolic array of a TPU [21]. The errant MAC steals the next clock cycle from its
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Fig. 4.4: Normalized inference accuracy (Acc), and voltage boost energy (VBE) from the
comparative schemes, at different normalized performance levels, across 8 DNN datasets.

downstream MAC to correct the error, while the downstream MAC bypasses its own

operation.
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• GreenTPU (GT): This is our proposed design strategy that stores the error-causing

patterns in order to predict any imminent timing errors from those patterns (Section

4.3). This variant has a full fledge predictive engine in place (Section 4.3.6). For the

experiments, the pattern-match threshold of 90%, and an ELT size of 10 is chosen.

• GreenTPU-Lite (GTL): This is a lighter variant of GreenTPU, with the most basic

predictive engine capable of storing only one error-causing pattern (Section 4.3.6).

• GreenTPU-Reactive (GTR): This is a variant of GreenTPU with the predictive ca-

pability taken off (Section 4.3.6). The prevention of timing errors thus only occurs

reactively after a timing error in the row has occured.

4.5.2 Timing Error Resilience

Figure 4.3 depicts the number of timing errors encountered during the inference of

the DNN datasets under different schemes, when the TPU operates at a higher frequency,

compared to the baseline. However, at all frequency—denoted by the X-axis—the oper-

ating voltage is kept constant at 0.45V. The Y-axis values are represented in a logarithmic

scale. It is noticed that, on an average, GT encounters two orders of magnitude less timing errors,

with respect to TD, across all the datasets, at any higher performance level. GT, boasting a full

blown prediction engine attributes to this huge reduction. GT is seen capable of predict-

ing most of the timing errors and preventing them from occurring. Although equipped

with a preliminary prediction scheme, GTL is still seen to substantially reduce the number

of timing errors compared TD and GTR. On the other hand, as GTR does not have any

form of prediction mechanism, the reduction in number of timing errors in the log scale

is almost negligible. These results demonstrate the importance of predictive approaches,

when it comes to an exponential reduction of the timing errors. It shows that predictive

approaches are the way to go when it is required to aggressively scale up the performance

of a massively parallel architecture like NTC TPU.

4.5.3 Inference Accuracy and Energy



46

Figure 4.4 presents the variations in the inference accuracy at different performance

points (Section 4.5.2), under various comparative schemes (Section 4.5.1), for 8 DNN datasets.

The accuracy values of the datasets are normalized to the corresponding error-free accu-

racy (IMDB: 0.90, CIFAR-10: 0.77, MNIST: 0.98, REUTERS: 0.80, FSDD: 0.92, FMNIST: 0.89,

GTSRB: 0.97, SVHN: 0.94 ) from the baseline NTC TPU. Figure 4.4 also shows the voltage

boosting energy (VBE), associated with the boosting mechanism in GT and GTL. VBE is

calculated as a percentage of the energy consumption of the baseline NTC systolic array

with no augmentation. It is seen that the accuracy curves (left Y-axis) fall from the normal-

ized maximum at different rates, due to varied timing error resilience of different schemes.

Also, the VBE curves (right Y-axis) rise from the minimum, reflecting the different rates of

increase in the number of voltage boosting events necessary to provide the required timing

error resilience for different schemes.

Up to 1.4× the baseline performance, all the schemes can efficiently prevent the im-

pact of timing errors from affecting the inference accuracy. However, as the performance

is further increased, GT and GTL offer considerably better accuracies with respect to TD

and GTR, for all the datasets. This is due to the high timing error resilience of GT and

GTL (Section 4.5.2). The pattern matching capability, along with a larger ELT, makes GT

a more effective scheme, compared to GTL. Our baseline NTC TPU, augmented with GT, can

be operated at 2×–3× the baseline frequency, with only 3% average loss in the inference accuracy

for 7 out of 8 DNN datasets. For CIFAR-10, GT is only as effective as GTL. This anomaly is

attributed to the extreme variance in the activation patterns of CIFAR-10. GTR performs

better or equal to TD in all the cases, however, noticeable increase in accuracy relative to

TD is not seen. It is seen that even the most basic prediction scheme added to a reactive

approach (GTR to GTL), can have huge impact in maintaining the inference accuracy. This

clearly shows that the maintenance of DNN inference accuracy at aggressively higher per-

formance points can only be achieved by near-exponentially reducing the potential timing

errors. Remaining in-line with the capability of predictive schemes to be able to exponen-

tially reduce the number of timing errors (Section 4.5.2), predictive schemes GT and GTL
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maintain the accuracy far better than the non predictive and reactive approaches like GTR

and TD.

The VBE of GTL—owing to its lower hardware footprint and infrequent boosting—

is usually less than the VBE of GT. However, for CIFAR-10, both the schemes trigger the

boosting mechanism for the same number of times, thus incurring similar energy over-

heads. GTR incurs the lowest VBE of all the GreenTPU variants as it has to perform boost-

ing for the least number of times, provided that the GTR is not a predictive scheme. Despite

a monotonic increase with the performance, VBEs of our proposed schemes are limited to

∼6% of the baseline NTC TPU energy consumption. This result is due to the sporadic

occurrence of the boosting. Due to the sparsity of need for boosting, it can be concluded

that, rather than selectively undervolting the MACs in a TPU operating at Super Thresh-

old Voltage, it is highly beneficial from an energy perspective, to operate the TPU at Near

Threshold Voltage and selectively boosting the MACs in a TPU. The performance loss

coming from this setting can be effectively uplifted by GT to yield a highly energy efficient

TPU. Hence, GT serves as an extremely error-resilient and energy-efficient design paradigm that

can unlock a high performance in future low-power NTC TPUs. Furthermore, as GT is based on

the hardware level data-delay relationship at the basic granularity of a MAC unit, it can

scale well to systolic array dimension, bit width of activation/weight, and the size of the

DNN applications.

4.5.4 Implementation Overheads

The hardware overheads of GreenTPU come from the TECU components, the addi-

tional voltage rail, and the augmentation of each MAC with the Razor capability. The area

overhead of GreenTPU is estimated to be ∼1.8%. This small footprint is attributed to the

fact that the systolic array occupies only 24% of the overall TPU die area [57]. GreenTPU

incurs a power overhead of ∼2.2%, compared to the vector-less power consumption of

the systolic array. From the detailed route reports, GreenTPU’s wire-length overhead is

estimated to be ∼4.1%.
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CHAPTER 5

IMPROVING ENERGY EFFICIENCY OF A TENSOR PROCESSING UNIT THROUGH

UNDERUTILIZATION BASED POWER-GATING

5.1 Background and Contributions of This Work

Artificial intelligence (AI) is predicted to contribute up to $15.7 trillion to the global

economy by 2030 [76]. In line with the AI evolution, the computing industry has already

embraced specialized AI accelerators, as conventional CPUs and GPUs are no longer able

to match up the required throughput [24, 25, 33, 56]. Google’s Tensor Processing Unit

(TPU) [57], a representative Systolic Array (SA) based architecture, has been widely em-

ployed throughout Google data centers to meet the excessive performance demand in

its Deep Neural Network (DNN) inference computations. The unprecedented growth in

DNN workloads demands huge energy efficiency in these architectures. Additionally, the

scarce energy resources coupled with limited hardware cost in battery powered edge-AI

applications necessitates an extremely energy efficient inference architecture.

Researchers have demonstrated impressive energy savings from power-gating in CPU

and GPU architectures. However, the savings are being limited due to the relatively un-

predictable idleness pattern (from general purpose applications) and performance loss

considerations due to the sleep and wakeup cycles of sleep transistors [43, 44, 77].A well

structured and massive hardware underutilization problem in TPU SA is observed and

parametrized, and a much larger opportunity of improving energy efficiency through

power-gating the idle hardware resources is uncovered.

DNN inference through TPU SA is carried out by performing a matrix multiplica-

tion between input matrix and weight matrix, in the array of 256 × 256 Multiply-And-

Accumulate (MAC) units. Weight matrix is preloaded into the SA and the input vectors

can be grouped and sent as batches of different sizes. Major chunk of the SA energy con-
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sumption comes from the dynamic energy consumed by the computationally active MAC

units and leakage energy consumed by idle MAC units. It is observed that the number

of computationally active MACs on an average for a batch computation period decreases

with the batch size. It is found that, the MAC units are computationally active only for

less than 40% of the time for practical batch sizes, incurring a substantial leakage loss. By

parameterizing the activity and idleness pattern of the MAC units, UPTPU: an intelligent

and adaptive power-gating paradigm for SAs, is formulated. Moreover, UPTPU prevents

any performance or accuracy loss by a smart control around circuit level tolerances of the

sleep transistors.

Furthermore, as the weights remain static for a batch computation lifecycle and any

computation with a zero weight is just an energy overkill, the same sleep transistor re-

sources are reused to powergate the zero weight holding MACs, further inflating the en-

ergy efficiency. More importantly, as the share of leakage energy in the total energy be-

comes more prominent for lower technology nodes [43], the effectiveness of UPTPU mag-

nifies with the future technology scaling.

Prior works have enhanced energy efficiency from optimizations in different granu-

larities of DNN accelerator spanning around dataflow, algorithm, memory, undervolting

and so on [21, 25, 33, 56, 78–80], which either reduce the number of computations, or skip

unwanted computations or reduce the energy per computation. However, this work is the

first one that improves the energy efficiency of TPUs by saving leakage loss in the under-utilized

SA resources which are idly waiting for computations. Following are the key contributions of

this work:

• The cycle accurate activity and idleness profile of MAC units inside a TPU systolic

array on different batch sizes of inputs is parametrized (Section 5.2.2).

• It is established that the MACs in TPU systolic array remain computationally idle for

40-90% of the time, depending on server or edge Inference applications (Section 5.2.3).

• UPTPU - a low overhead power-gating paradigm, adaptive of batch size, sleep tran-

sistor’s tolerances and zero-weight computations is proposed.(Section 5.3).
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• Combined with Zero-Skip [25], UPTPU offers a staggering 3.5× −6.5× energy effi-

ciency for eight DNN applications, with zero sacrifice on the performance and infer-

ence accuracy (Section 5.5).

Fig. 5.1: Cycle accurate representation of matrix multiplication between Activation and Weight
matrices. Orange represents computationally active MAC unit (only multiplication shown for
space constraints), whereas, green represents idle MAC unit, waiting for activation stream.

5.2 Motivation

In this section, the opportunities of drastically reducing the energy consumption in

TPU systolic arrays are demonstrated. Section 5.2.1 provides a background and archi-

tectural overview of the TPU systolic array. Section 5.2.2 presents a rigorous mathemat-

ical analysis to parametrize the computation and dataflow pattern. Finally, Section 5.2.3

presents new insights in energy saving opportunities.

5.2.1 TPU Systolic Array

Matrix Multiplication is the most crucial part of computation in the inference phase

of DNN applications. TPU hosts a weight stationary 256 × 256 systolic array of MAC

units to perform Matrix multiplication between 8-bit-quantized activation inputs and pre-

trained weights. Weights are fetched from weight FIFO and pre-loaded to each MAC unit.

Unified Buffer stores the activation inputs, which are streamed into the corresponding

row of the systolic array, to be multiplied by all the weights in the row. Partial sums move

downstream, adding themselves to the multiplication outputs at each row. Activation

matrix is transposed and sent to the the systolic array as a (systolic) diagonal wavefront,

creating a predictable dataflow.
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Figurative representation of the scaled down TPU systolic array dataflow can be seen

in Figure 5.1. A 3× 3 Activation matrix ([a0, .., a8]) is streaming into 3× 3 systolic array,

with Weight matrix ([W0, .., W8]) preloaded into it. A distinct systolic pattern can be seen in

the computation activity and idleness of a MAC with green and orange colors, respectively.

Seeking a general and exhaustive outlook on the pattern, the accurate analytical model of

the usage of hardware resources are presented and analyzed in Section 5.2.2.

5.2.2 Mathematical Parametrization

In this section, the usage of hardware resources is accurately parametrized for a gen-

eral B× N Activation matrix multiplied by N × N Weight matrix in an N-dimension sys-

tolic array. Different metrics are defined in Table 5.1 and illustrate them in Equations 5.1-

5.3.

TC Architectural lifetime (clock cycles) of the matrix multiplication of B× N acti-
vation and N × N weight matrix.

U(n) No. of computationally active MACs in nth clock cycle.
TRU True Resource Usage : Number of computationally active MACs over matrix

multiplication lifecycle, TC.
MAR Maximum Available Resource : Maximum number of MACs ideally available

for computation over TC.
RUR Resource Usage Ratio : Percentage of the MAC resources used for the matrix

multiplication over TC.

Table 5.1: Definitions of Metrics used for parametrization.

Through rigorous mathematical analysis, it is found that U(n) (Equation 5.2) can be

described accurately with eight distinct quadratic and linear arithmetic sequences of n, as

an artifact of varied dependence on B and N. Six regions (viz. R1 − R3 and R6 − R8 in

Equation 5.2) annotate the rise and fall in the number of actively used MACs at the begin-

ning and towards the end of Tc and two regions (viz. R4 and R5) describe the connection

between the rising and falling regions. R1 (and R8) includes quadratic rise (fall) from (to)

the minimum of a single active MAC . They are followed (and preceded) by linear regions

R2 (and R7) for B < N or quadratic regions R3 (and R6) for B > N. Finally, R4 connects
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R3 and R6 for large batch sized Activation matrix (B > 2N − 2) with capping constant

value (N2) representing the usage of all possible MACs. And quadratic region R5 connects

regions R1(R8) or R2(R7) or R3(R6) for medium B’s (2 < B < 2N − 2).

TRU aggregates U(n) over Tc. MAR amounts to all N2 MAC units available for TC

clock cycles. Finally, RUR, reflecting the actual resource usage ratio manifests itself as a

function of N and B (Equation 5.3). Next, this parametrization is used to better understand

the hardware utilization scenario in TPU systolic array with N=256.

Total Computation Clock Cycles (TC) = 2N + B− 2 (5.1)

U(n)=
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, R7 [(TC − N) < n <= (TC −min(N, B))]

n2

2
− (2B + 4N − 1)n

2
+

B2 + B(4N − 1) + 2N(2N − 1)
2

, R8 [(TC −min(N, B)) < n <= TC]

(5.2)

TRU =
TC

∑
n=1

U(n) = N2 × B, MAR = N2 × TC, RUR(%) =
TRU
MAR

×100% =
100B

(2N + B− 2)
(5.3)

5.2.3 TPU Hardware Resource Utilization

Using Equation 5.2, the distribution of computationally active MAC units, U(n), in

the TPU SA (N = 256), for different batch sized (B) activation matrices is plotted in Figure
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5.2. The correctness of this distribution are experimentally verified on the systolic array

simulator (Section 5.4). Following are the important observations from the figure. Num-

ber of active MACs reach the peak, only during the mid of the multiplication lifecycle.

During the start and end of the multiplication, maximum MACs are unused. Spatially,

all the available 65536 MACs can be used simultaneously (region R4 in Equation 5.2), if

a batch (B) is supplied with more than 510 inputs, and that peak utilization period can

then be sustained for the difference of (510− B) cycles. For any batch size, the number

of active MACs at the beginning and the end of multiplication lifecycle follows a rise and

fall leading to a massive underutilized hardware components. Furthermore, with smaller

batch sizes, the distance from the maximum usage keeps on increasing to result an almost

entirely unused SA.

Fig. 5.2: Distribution of computationally active MACs over all the clock cycles for different
B× 256 input matrices multiplied to 256× 256 weight matrix. X-axis labels show the respective
ends of Tc.

Figure 5.3 plots the Resource Usage Ratio (RUR) (Equation 5.3 and Table 5.1). It ex-

hibits the stark dependence of the RUR on the batch size. It is seen that even for a batch

size of 4× the SA dimension, the SA resource usage is under 65%, while smaller batch sizes

result in very poor resource utilization. There are practical limits to the batch size and thus

the RUR, as outlined below.
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Fig. 5.3: Resource Usage Ratio (%) for different batch sized input in TPU Matrix Multiplier
Unit.

• Very expensive high speed (typically on-chip SRAM) and higher size unified buffer

is required to stream the large batch sizes of inputs and handle the consequent large

output matrix.

• The inference decision from a batch of inputs can only be completed after matrix mul-

tiplications with different weights from all the layers of DNN. Hence, larger batch

sizes introduce real time inference response latency [57]. Consequently, although TPU

can accommodate batch sizes upto 2048 from its 24 MiB SRAM, Google workloads’ latency

requirements limit the batch sizes to only around 30-200 (RUR = 5− 30%) [57].

• Edge Inference applications are limited to handful of batches (as low as one) due to

real time need of low response latencies, and are bound by energy and cost budget

for streaming inputs and holding the outputs of larger batch sizes [81, 82].

This analysis points that any RUR less than 100% denotes that 100-RUR% MACs are

consuming wasteful leakage energy while waiting for computation and holding the weight

value. This scenario provides us with the unique opportunity to make the TPU highly

energy efficient by capping the wastage energy, while not interfering with the computation

throughput and accuracy. Section 5.3 details UPTPU, an intelligent power gating paradigm

to carefully exploit this opportunity.
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Fig. 5.4: UPTPU design overview

Algorithm 4 SPG Control Algorithm
1: Batch Counter(BC)← Batch Size− 1
2: Systolic Array Dimension(N)← 256
3: Tw ← wake up tolerance
4: sleep bit← 1, wake bit← 0
5: SR[(2N − 2)......(2N − 2− Tw)]← wake bit
6: SR[(2N − 2− Tw)......0]← sleep bit
7: while BC > 0 do
8: SR← SR� 1
9: SR[2N − 2]← wake bit

10: BC ← BC− 1
11: end while
12: while current batch do
13: SR← SR� 1
14: SR[2N − 2]← sleep bit
15: end while

Line 3: Tw refers to the number of clock cycles alloted for
the MAC diagonals to completely power up from sleep-
state and be ready for error free computation. This en-
ables a zero performance (TOPS) overhead.

Lines 5-6: SR is initialized to Tw wake bits followed en-
tirely by sleep bits. Right Shifting of SR along with these
Tw wake bits ensures that all the idle MAC diagonals
will start switching on Tw clock cycles in advance of
the computation scheduled in that diagonal.

Lines 7-11: SR shifts right by injecting wake bit to the
MSB, waking-up only one additional diagonal at a
time, until BC counts to zero.

Lines 12-15: After BC cycles, SR starts shifting right by
injecting sleep bit at the MSB, sleeping only one addi-
tional diagonal at a time.
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5.3 UPTPU Design

In this section, UPTPU: Uunderutilization based Power-gating Paradigm for TPU, a low

overhead design paradigm is presented which curbs almost entire wasteful leakage energy

coming from severely underutilized MAC units, through intelligent power gating. Section

5.3.1 presents the batch size aware gating control strategy. Section 5.3.2 delves into replac-

ing the volatile storage units of MAC unit with NVMs. Finally, Section 5.3.3 discusses the

circuit level specifics on the power gating design choices.

5.3.1 Power-Gating Control Strategy

Systolic Power Gating (SPG)

Section 5.2 exposes the stark dependence of the underutilization of the TPU systolic

array on batch size. The batch of activation inputs is supplied to the systolic array in a

diagonal fashion so that the wave of the activity in MACs advance diagonally to use up

the idle MACs one diagonal each clock cycle. After the clock cycles equal to the batch size,

the wave of idleness advances one diagonal each cycle. The phenomenon can be seen in

Figure 5.1 with orange (activity) and green (idleness) colors. With the advance knowledge

of batch size, an accurate assessment of which diagonal of MAC units are active and idle in

any computation clock cycle can be achieved. It is assumed that the software can provide

batch size along with the data.

Figure 5.4 shows the design overview of UPTPU. Following the systolic-diagonal

trend of activity and idleness, A 2N − 1 bit Serial-In-Parallel-Out (SIPO) Right Shift Reg-

ister (SR) is included whose bits are physically mapped onto 2N − 1 diagonals of MACs.

The parallel right-shifting bit values serve as systolic wake/sleep signals for each diago-

nal. A Batch Counter is conceived which will be loaded with the binary representation of

Batch Size− 1, the value of which will stream sleep bit and wake bit. Algorithm 4 and its

respective description explain how the batch size information is used to map bits in the

SR, while ensuring a zero overhead in performance.
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Zero Weight Power Gating (ZWPG)

It is observed that significant amount of the computations in the MAC units for the

practical DNN datasets see ‘zero computations’ involving either zero activation or zero

weight. Figure 5.6 shows the percentage distribution of Zero Activation or Weight Com-

putations (ZAWC) (average 75%) and Zero Weight Computations (ZWC) (average 26%) for

different DNN datasets. These zero computations can occur either naturally from the acti-

vation and trained weights or from zero padding of some activation and weight matrices

to fit into the 256× 256 TPU Systolic Array. However, only the MACs with zero weights

are practical to be powergated as the weights remain static over the batch computation

lifecycle, Tc (Equation 5.1) and the sleep transistors won’t have to be woken up until Tc.

Zero Weight Power Gating (ZWPG) is proposed to extend the applicability of the SPG

sleep transistor to curb the energy consumptions from zero weight MACs. As seen in

figure 5.4, the zero weight (zw) signal coming from weights stored in NVM (Section 5.3.2)

puts the MAC unit to sleep irrespective of SPG-En signal. Unlike a MAC gated with SPG, a

MAC gated with ZWPG should be able to route the upstream data through itself. A demux

is used to route the upstream MAC’s data by bypassing the MAC powergated with ZWPG.

5.3.2 Usage of NVMs

As each MAC unit stores a weight value in its associated volatile SRAM cells, it is

needed to preserve the weight values during powergating for seamless computation on

wake-up. Classic powergating employs retention cells, which call for further leakage [77],

given that there is a SRAM register in each of the 256 × 256 MACs. The replacement

of leaky weight holding SRAM cells with non-leaky STT-MRAM Non-Volatile Memory

(NVM) to solve both the hurdles of volatility and memory leakage is envisioned. STT-

MRAMs also provide other compelling advantages for the niche of weight stationary sys-

tolic arrays. STT-MRAMs boast about 20× reduction in leakage energy and about 4×

increment in packing density with respect to SRAMs and they have comparable read char-

acteristics to SRAMs [83].
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The unique write pattern in TPU systolic array facilitates the adoption of STT-MRAMs

although they suffer from a 3× write speed and 20× energy penalty for writes [83]. The

weights in the MACs are only written once for an entire batch of computation, which gives

the delay overhead of less than 0.5%, even for the smallest of batch sizes. More impor-

tantly, the spread of 20× savings in leakage power over the batch computation lifecycle,

diminishes the once-per-batch 20× write-energy-increase. Thus, usage of NVM overturns

the otherwise overkill in both energy and area consumption coming from SRAMs, and

also facilitates the sleep of entire MAC unit without retention leakage. In attempt to re-

place the SRAMs with STTMRAMs in CPU/GPU caches, researchers have compensated

the write penalties by packing manyfold MRAMs in the same area footprint of SRAM

cache [83], [84]. The area savings with STT-MRAM contributes to amortizing the area

overhead due to sleep transistors.

5.3.3 Circuit Level Considerations for Power-Gating

Sleep transistor design is a challenging VLSI domain because of the difficulty in opti-

mization around its various effects on design performance, area, routability, overall power

dissipation, and signal/power integrity [44]. One sleep transistor per MAC is conceived,

which receives a per-diagonal power gating control signal. Although it might seem in-

tuitive to house one sleep transistor per diagonal, per-MAC strategy eliminates several

circuit-level complications. As the diagonals represent diverse switching loads pertaining

to the varying number of connected MACs (1-256), design of graded sleep transistors adds

huge design complexity. In addition, the usage of sleep transistor at the granularity of a

MAC facilitates ZWPG (Section 5.3.1) and eliminates the need of having bulkier power

lines running through each diagonal, ultimately improving routability.

As the sleep and wake-up happens at a granularity of just one diagonal at a time

during computation (Algorithm 4), noise and current crowding issues are minimized and

the average sleep time is maximized. Moreover, the decrease in area penalty, noise, and

the high power-on rush current is favored by compromising the switching speed of the
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sleep transistor. The system wide performance is not affected by slower sleep transistors

because of the wake-up tolerance included in the gating control strategy (Tw in Algorithm

4). The 6% area overhead of PMOS sleep transistors [43], combined with the overheads

from control hardware, dilutes to only around 3.4% area overhead with respect to the entire

TPU die.

5.4 Methodology

In-house cycle accurate TPU systolic array simulator is used, which is built upon [85],

with architectural details from [57], as an architectural simulator for the cycle accurate as-

sessment of computation data and resource utilization pattern. First, eight DNN applica-

tions (viz., MNIST [68] , Reuters [69] , CIFAR-10 [70] , IMDB [71] , SVHN [72] , GTSRB [73]

, FMNIST [74] , FSDD (Audio-MNIST) [75]) are trained using Keras with TensorFlow back-

end and extract the weights from the trained model. The 8-bit quantized activation input

is streamed from the datasets in several batch sizes to the simulator to be multiplied with

the weight matrices stored in SA. The output matrices from the simulator are combined to

evaluate the inference accuracy.

The energy efficiency model is developed by conjoining the architectural outcomes of

the datasets with estimations of dynamic and leakage energy from CAD tools. The RTL

description of SA MAC units is synthesized with different design augmentations, through

Synopsys Design Compiler followed by place and route through Cadence SoC Encounter

using 45nm standard cell library, to estimate the area and energy (dynamic and leakage)

consumption and associated overheads. The leakage energy is found to be 20% of the

dynamic energy. The wake-up tolerance (Tw in Algorithm 4) is set to three clock cycles,

inline with the prior power gate implementations [43], [44], [45] . The switching energy

overhead is embedded in the model with break even clock cycles, as suggested by [45].

5.5 Experimental Results
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In this section, the efficacy of different schemes are evaluated on increasing the en-

ergy efficiency of a 256× 256 TPU systolic array. Section 5.5.1 presents the comparative

schemes. Section 5.5.2 compares and describes the energy efficiency coming from different

schemes.

5.5.1 Comparative Schemes

• Zero-Skip (ZS): This is a widely used technique for drastically improving the energy

efficiency of DNN Accelerators [25, 86, 87], where the computation in MAC is entirely

skipped if activation input or weight is equal to zero. Zero skipping gets rid of the dy-

namic energy for those MAC units which hold zero weight or receive zero activation.

• UPTPU-LITE: This is an extension to ZS, with application of Zero Weight Power

Gating (ZWPG). All the MAC units holding the weight value of zero are power gated

for the computation lifecycle of a batch of activation inputs. In addition to the dy-

namic energy savings from ZS, this scheme prevents the leakage power from the zero

weight holding MACs.

• UPTPU: UPTPU includes the Systolic Power Gating (SPG) of unutilized MAC units, in

addition to the benefits provided by UPTPU-LITE. It intelligently powergates almost

all the idle MAC units arising from TPU underutilization on different batch sizes.

Fig. 5.5: Normalized TOPS/Watt of eight DNN datasets computed on a TPU systolic array
with different batch sizes brought about by the comparative schemes.

5.5.2 Interpretation of Energy Efficiency
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Fig. 5.6: Zero Activation or Weight Computations (ZAWC) and Zero Weight Computations
(ZWC) expressed as percentage of total computations for different DNN datasets.

The gains in energy efficiency are simulated for eight DNN datasets, when the com-

putation is performed in different batch sizes. Figure 5.5 presents the gain in Tera Oper-

ations Per Second per Watt (TOPS/Watt) normalized with base TPU SA for eight DNN

datasets, for different comparative schemes. Figure 5.6 presents the batch-size indepen-

dent Zero Activation or Weight Computations (ZAWC) and Zero Weight Computations

(ZWC) among the total MAC computations pertinent to the ZS and ZWPG schemes re-

spectively. Various trends are seen in energy efficiency gains for different datasets and

schemes. In general, the maximum average gain for any dataset (Figure 5.5) is dictated by

the percentage of ZAWC (Figure 5.6). Higher ZAWC gives many opportunities for ZS em-

bedded in all comparative schemes. The datasets with relatively lower ZAWC (viz. IMDB

and CIFAR) have relatively lower energy efficiency gains.

A minimal benefit in UPTPU-LITE (ZS+ZWPG) is seen in comparison to ZS, as the

extra ZWPG scheme adds the small additional leakage savings coming from the small sub-

set (ZWC-Figure 5.6) of dynamically skipped MACs. The relatively smaller subsets (viz.

REUTERS, AMNIST, GTSRB) result in minimal benefit addition to gains. However, more

importantly, the gains from UPTPU-LITE (ZS+ZWPG) decrease for lower batch sizes. As

the RUR decreases with lower batch sizes (Section 5.2), the constant benefits coming from

ZS and ZWPG are progressively diluted by the increasing leakage energy consumption in

unutilized MACs.

Finally, UPTPU (ZS+ZWPG+SPG) is able to achieve much higher gains, because of the
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addition of Systolic Power Gating (SPG) which intelligently power gates the unutilized

MACs. In addition to higher average gain, a complementing effect to ZS and ZWPG is

also achieved, pronounced by the increase of the energy efficiency with the decrease in the

batch size. As the batch sizes decrease, SPG gets increasing opportunities from decreasing

RUR to give massive gain in TOPS/Watt. UPTPU achieves, on a average of 3.5×−6.5×

gain in TOPS/Watt for batch sizes 1024− 32. This shows that UPTPU can achieve stagger-

ing energy efficiency gains throughout the range of both highest and lowest ends of the

batch sizes. The performance and inference accuracy is not compromised at all, because of

the dataflow adaptive intelligent power gating (Algorithm 4).
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CHAPTER 6

CONCLUSION

This dissertation proposes design methodologies to improve the security and per-

formance in a near-threshold implementation of SRAM PUFs and TPU, while also signifi-

cantly improving energy efficiency of TPU operating at nominal voltage. The enhancement

in SRAM PUF security is shown through significant improvement in the uniformity and

reliability metrics. Higher performance is unlocked in NTC TPU by substantially elevat-

ing the timing error resilience at near-threshold voltages. The prominent energy efficiency

in the STC TPU is extracted by identifying and carefully masking the sizeable dataflow

guided leakage energy through powergating.

Various threats to reliability and uniformity characteristics of NTC-operated SPUF are

analyzed. Leveraging the impact of device asymmetry on these characteristics, the current

suppression techniques (viz. CUBIT and CUSIT) are crafted. The principles governing

CUBIT and CUSIT schemes are based on biasing and sizing various read and write coun-

terparts of a 8T-SRAM PUF respectively. CUBIT and CUSIT adaptively mitigate the accen-

tuated effects of PV on reliability and uniformity, by giving a comprehensive improvement

of more than 82% in reliability and 55% in uniformity metrics with negligible overheads.

With improved reliability and uniformity, NTC SPUFs are presented as viable alternatives

in security primitives to the conventional power hungry 6T-SRAM PUFs.

The unprecedented growth of the DNN workloads in the recent years, requires an

energy-efficient DNN accelerator design paradigm, that can offer an optimal inference

accuracy at a high performance. In this dissertation, we present GreenTPU—an energy-

optimized systolic array design for Google TPU—a state-of-the-art DNN accelerator is pre-

sented. Operating at the NTC condition, GreenTPU can efficiently predict and prevent the

imminent timing errors in its systolic array of MACs, thus offering close to an error-free

accuracy with a high performance. It is also established that predictive approaches to error



64

resilience, have the required potential to maintain DNN inference accuracy in aggressively

performance scaled DNN accelerator platforms. Compared to a recently proposed timing

error mitigation strategy for TPUs, GreenTPU enables 2×–3× higher performance (TOPS)

in an NTC TPU, with a minimal loss in the prediction accuracy, and minor hardware foot-

prints. GreenTPU paves a way towards adoption of low power design paradigms like

NTC in the mainstream computing industry with an elevated confidence in their system

performance, owing to a more greener AI future.

This dissertation also attempts to significantly improve the energy efficiency of the

TPU at the granularity of STC (nominal) operating voltage. A huge hardware under-

utilization problem is parametrized in the weight stationary systolic array with rigorous

mathematical analysis. The leakage energy spent in the systemic underutilization is then

masked through intelligent powergating layer, which dynamically adapts to the dataflow

and batch size, bestowing a 3.5× −6.5× gain in energy efficiency, when combined with

other energy efficient schemes. The scheme can be superimposed on top of other existing

architectural or circuit level techniques to inflate the energy efficiency, without any com-

promise in the inference accuracy or performance. More generally, due to a predictable

data-flow pattern in the AI workload, this work opens up newer avenues for exploration

of power-gating based energy efficient solutions for all forms of AI accelerators.

In conclusion, this dissertation embraces the application, adaptation and prolifera-

tion of low power systems in mainstream computing, by putting forward innovations and

design methodologies, to solve the reliability and performance problems in existing low

power design paradigms and providing energy efficiency to existing designs. It is hoped

that this dissertation adds significant contribution to the academia and design practices in

semiconductor industry.
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