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Abstract 

ABSTRACT 

This thesis aims to understand how to design high-performance compression 

algorithms suitable for hardware implementation and to provide hardware support for 

an efficient compression algorithm. 

Lossless data compression techniques have been developed to exploit the available 

bandwidth of applications in data communications and computer systems by reducing 

the amount of data they transmit or store. As the amount of data to handle is ever 

increasing, traditional methods for compressing data become· insufficient. To 

overcome this problem, more powerful methods have been developed. Among those 

are the so-called statistical data compression methods that compress data based on 

their statistics. However, their high complexity and space requirements have prevented 

their hardware implementation and the full exploitation of their potential benefits. 

This thesis looks into the feasibility of the hardware implementation of one of these 

statistical data compression methods by exploring the potential for reorganising and 

restructuring the method for hardware implementation and investigating ways of 

achieving efficient and effective designs to achieve an efficient and cost-effective 

algorithm. The aim is to reduce the complexity of the method while maintaining its 

compression performance, offering the possibility of implementing the system using 

current technologies. 

Three investigations were set for achieving our objectives. The first investigation 

explores an efficient compression method and identifies its main computational 

requirements. The second investigation looks into hardware structures used in 

compression chips and their impact in the statistical method. Also some methods are 

studied for simplifying the complexity of the model. The third investigation uses the 

results of the previous investigations to develop a new algorithm capable of hardware 

implementation, analysing so the interaction and tradeoffs between algorithmic desired 

characteristics and hardware capabilities for ensuring its effective mapping into 

compression architectures. 



Abstract 

This thesis presents a study of a hardware friendly statistical compression method. It 

reports a new algorithm, which simplifies the computational tasks while maintaining 

the algorithmic functionality and performance results. It also explains design issues 

and provides hardware support for the algorithm. 

The performance of the model results contained in this thesis enable us to identify 

under what conditions statistical compression methods offer performance benefits. 

This may help designers to incorporate statistical compression into future compression 

applications. 
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Chapter I Introduction 

CHAPTER! 

INTRODUCTION 

1.1 DATA COMPRESSION 

With the explosive growth of telecommunications there is an ever-increasing demand 

for faster and better digital devices. Nowadays, global telecommunication networks 

and the explosion of Internet usage produce large amounts of data to be transmitted or 

accessed in the least possible time. Some methods enable these tasks, enhancing the 

scope and cost-effectiveness of transmission and storage of data. 

Data compression is one of the methods that have contributed to make digital devices 

handle large volumes of data. It allows systems to gain space for storage or increase 

the bandwidth for data transmission, offering a vehicle for cost reduction and efficient 

operation. Examples of devices that benefit from data compression are routers, hard 

disks, and modems. 

In data networks, although there are many strategies for optimising traffic, including 

priority queues, access lists and filters, one of the more effective is to reduce the 

amount of data by compressing it over the network [Cisco97], reducing significantly 

the time the data takes to reach its destination point. Data compression is applied. to 

both low-speed links (for example those using modems) and to long-haul links to 

increase throughput. 

In local-area networks (LANs) compressiOn technology can help to reduce 

transmission bottlenecks if the network transmits data slower than the computers can 

generate it [Pawlikowski95). For wireless LANs to be seamlessly and transparently 

integrated with wired LAN s, they must support comparable data rates. Then data 

compression can be used to inexpensively reduce the amount of data to be transmitted, 
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Chapter 1 Introduction 

thus improving the effective bandwidth of the communication channel and in turn the 

overall network performance. 

The capacity of data storage devices is also further improved with data compression. 

Magnetic hard disks and tapes, among others, have been using data compression to 

reduce the amount of data they store. And although holographic data storage and other 

methods [AshleyOO] that do not require traditional compression methods are being 

developed, magnetic storage devices are far from declining. Instead, magnetic hard 

disks technology has sped up [ComenfordOO] requiring each time better, and faster, 

techniques for data compression. 

Most commonly transmitted types of data are significantly compressible [Holtz93], 

however, encrypted or already compressed data can not be further compressed 

[HifuOl]; in fact, it might originate data expansion [Bel190]. Compressible data 

includes text, fax, executable program files, audio, image and video. Audio, images 

and video are highly compressible and may tolerate some loss of information when 

compressed, a process known as lossy compression, whereas data that does not tolerate 

any loss of information is processed by lossless compression techniques [Smith99]. 

1.2 APPLICATIONS AND IMPLEMENTATIONS 

A large number of compression algorithms have been implemented either in software 

or hardware to meet the demands of a variety of applications and devices, 'reducing 

storage barriers and breaking system bottlenecks' [IBMOl]. 

Compression applications may enable and simplify operations as information backup, 

Web searches and document transfers on the Internet. Most of the implementations of 

compression algorithms have been in software, mainly for off-line applications such as 

data storage, where low compression speed and the best possible compression ratios 

are needed. Software compression is also used in on-line applications. However, the 

increasing speeds demanded in networks have made it more difficult for this type of 

compression to deliver the appropriate throughputs. 
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Throughput demands in compression implementations have varied significantly as 

technology improves. 'Starting from simple disk file compression some years ago with 

low speed requirements, data compression chip sets are now spreading to virtually all 

high-speed networks' [Holtz93]. Communication systems can use either hardware or 

software compression, depending on the speed ofthe design. 

The foremost compression applications were for hard disks, which have evolved 

according to the system requirements. Most utilities designed to relieve cramped hard 

disks have been based on file compression, although driver level compression is also 

used [HovinghOl]. File compression software essentially rewrites file data so it tends 

to take up less space on a hard disk. Driver level compression operates transparently, 

with compressed files or applications looking and behaving as if they were not 

compressed. File compression software used in disks exclude certain frequently 

accessed files from compression to gain speed, whereas driver level compressors 

compress everything and apparently increase disk savings more than file compression 

software. 

In networks, there are different forms of data compression in use today. For example, 

there are TCP/IP header compression, link compression and multi-channel payload 

compression. According to (Mello ], header compression shrinks the disproportionately 

large headers but leaves the data payload uncompressed. It is used to improve 

throughput of low speed lines. In link compression, the entire frame, both protocol 

header and payload, gets compressed and encapsulated to ensure error correction and 

packet sequencing. This method handles large packets and unlike header compression 

it is protocol independent. Multi-channel payload data compression provides the best 

overall data compression solution and typically yields the best compression ratios 

when there are many different sources of data [Mello]. While a number of vendors 

support multi-channel payload data compression, it is worth noting that 

implementations vary and the differences can affect overall performance depending on 

how vendors define data payload compression. Also, IP headers that remain 

uncompressed by payload compression can be a significant number of bytes long, thus, 

header compression must work in conjunction with this form of payload compression 
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for overall compression to be effective, although this may increase processor loading 

and packet delays. 

Data compression implementations can be used in external compression devices or 

embedded in products as integrated compression hardware or integrated compression 

software. System architecture, compression algorithms and method of implementation 

are important issues to consider when evaluating a product's overall data compression 

performance. 

1.3 MOTIVATION 

Compression implementations, either software or hardware, favour some applications 

depending on the type and amount of data to be transmitted or stored as well as the 

speed requirements. Data compression may have some potential problems if the right 

method of implementation or compression algorithm is not properly chosen. Some of 

these problems are data expansion, error propagation and incompatible standards. 

However, if the method is properly chosen, it multiplies the throughput and saves 

space without harmful side effects. 

Vendors of data communication equipment attempt to present compression devices 

that offer the highest compression ratios, the simplest implementation and the widest 

applications. The task of data compression is becoming harder, in order to meet the 

demanding requirements it is necessary to develop faster and better compression 

algorithms that adapt to the demands of network and storage applications. 

All compression algorithms can be implemented on general-purpose processors. 

However, in some applications the requirements for throughput, compression ratio and 

cost may prove difficult to overcome. The advance of semiconductor technology has 

made possible the integration of complex systems within a single chip. Hardware 

compression implementations are transparent to the user, they use simple algorithms 

that balance memory requirements and computational complexity at the expense of 

compression ratio. A special-purpose compressor offers the possibility of performing a 
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specific, well-defined compression algorithm as a self-contained system that can be 

integrated into an existing device or can be developed as a single external compression 

device. This device may act as a black box that takes in data from a device and sends 

data out into another device or transmission line. 

We exemplify with routers the use of data compressors, but the range of applications is 

wide and other devices as tape drives, hard disks, printers, among others, also use it. 

External data compression devices offer benefits to routers that connect high-speed 

links. The reason is that data compression is highly processor intensive with multi

channel payload data compression being the extreme case. External data compression 

devices also become a requirement when there is a concentration of lower speed links. 

Building a network that includes external devices for data compression is expensive, 

considering the cost of routers and the compression devices at each side of the link. 

Some router vendors use internal data compression implementations based in software 

for the advantages it may have in the provision of multi-channel compression, lower 

cost and simplified single device management. However, this design burdens the main 

processor and consumes memory, which adversely affects router performance and 

packet latency. An improved internal data compression approach can provide 

dedicated hardware built into the router for compressing and decompressing data. By 

using a separate dedicated processor for data compression, all of the other basic 

functions within the router continue to be processed simultaneously. This parallel 

processing minimises the packet delay that can occur due to the significant processing 

required for data compression. 

We have emphasised just the use of hardware compression as a means of improving 

the capacity of high-speed systems. However, another important factor to consider is 

the type of algorithm being implemented. For a long time, simple algorithms offering a 

good balance between compression efficiency and space requirements have been 

implemented in hardware. Recently, a different class of algorithms known as statistical 

algorithms has shown to be extremely effective, consistently meeting or exceeding the 

compression ratios of the simple techniques, although they are generally more 
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complex and time consuming, which has prevented their hardware implementation 

[EffrosOO]. 

To implement a special-purpose compressor architecture it is necessary to select a 

suitable algorithm for hardware implementation. Once the algorithm has been selected, 

the number of processing functions that are needed can be identified. These functions 

must be performed at high speed, and the implementation must be cost effective and 

better with alternative hardware solutions. The fact that the data compression 

algorithms perform a well-defined set of operations offers the possibility of exploiting 

many of its characteristics to achieve more efficient execution using specialised 

architectures. Then, a carefully selected algorithm together with an architecture that 

matches it would substantially increase the performance. Although this concept is not 

new and some manufactures currently offer a number of hardware compression chips, 

statistical algorithms have not been developed and exploited in current devices and 

these algorithms may well be the basis of the next generation of data compressors. 

1.4 AIMS OF THE RESEARCH 

This work concerns practical implementations of loss less data compression algorithms. 

The aims of the research are to understand how to design high-performance 

compression algorithms suitable for hardware implementation and to provide hardware 

support for an efficient compression algorithm. 

The area of lossless data compression has evolved to a practical level over recent 

years. Current hardware implementations of compression algorithms are used in a 

wide range of applications. However, many of these designs have been concentrated 

on optimising compression speeds and they usually neglect other important aspects. 

This thesis examines the following three areas in particular, 

• Analysing efficient compression algorithms: good compression techniques 

generally are complex and use computationally demanding methods. Our goal 

6 



Chapter 1 Introduction 

is to identify the key computational requirements and other issues that 

influence their functionality. 

• Simplified algorithmic processes: our goal is to reduce the complexity of the 

algorithm and understand how this reduction impacts its performance. 

• Analysis of the interaction and tradeoffs between algorithmic desired 

characteristics and hardware capabilities to ensure the effective mapping of 

algorithmic computational requirements into compression architectures. 

From this knowledge we can develop new algorithms which simplify the 

computational tasks while maintaining the characteristic algorithmic functionality and 

performance results. Also we can provide hardware support for the algorithm 

exploiting hardware capabilities. 

1.5 STRUCTURE OF THE THESIS 

Chapter 1 introduces the area of data compression. It discusses aims and objectives 

and describes the structure of the thesis. 

Chapter 2 provides a review of relevant work in the area of lossless data compression 

including some compression algorithms and the methods that have been developed to 

implement them. This chapter also shows comparisons of these algorithms and their 

implementations and finally argues about the potential benefits of relatively recent, 

and n()t __ practically . used, statistical data compression algorithms to improve 

compression performance of current compression chips. 

Chapter 3 introduces the experimental investigations and describes in more detail the 

research objectives and methodology followed. It also describes the tools used for the 

development of experiments required in this thesis and the verification method. 
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Chapter 1 Introduction 

Chapter 4 researches the PPMC statistical compression algorithm to identify the main 

functional requirements of the model and the coder, and other issues that may have an 

impact on compression. It presents the series of experiments that assist into this 

investigation including the outcomes of comparing it with current data compression 

implementations. 

Chapter 5 explores the reorganisation of PPMC algorithm, including some 

alternatives to simplify the PPMC model operation, aimed for hardware 

implementation. It presents the series of experiments that are important to this 

investigation. 

Chapter 6 describes in detail the issues of designing and implementing a PPMC 

statistical algorithm, taking into account the knowledge gained from the previous two 

chapters. Finally, it shows the integration ofthese issues within the algorithm. 

Chapter 7 explains the hardware architecture requirements of the compression 

algorithm and presents an estimated of performance. Additionally, it analyses the 

performance of the statistical model and determines how close it corresponds to the 

expected results. 

Chapter 8 concludes the thesis by summarising the main points and discussing 

whether the objectives have been achieved. It also examines the strengths and 

shortcomings of the work and, finally, it outlines further research areas that may be of 

interest. 
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CHAPTER2 

REVIEW 

2.1 OBJECTIVES OF THE CHAPTER 

Review 

This chapter reviews the relevant work in the area of lossless data compression, 

including compression technologies and current data compressors. More specifically, 

the objectives of the chapter are to: 

• Briefly review the relevant background on lossless data compression. 

• Review software and hardware implementation of lossless compression 

algorithms. 

• Place the work pursued in this thesis in context with related work. 

2.2 DATA COMPRESSION 

Since this thesis is related to the design of efficient hardware compression algorithms, 

it seems helpful to start this review by briefly outlining: 

• The meaning of data compression 

• Its main methods and implementations 

• The main issues in its implementation 

Data compression represents information with the fewest possible number of bits and 

is defined as the removal of the redundant information from a piece of data producing 

an equivalent but shorter message. Decompression is the reverse process, the 

reinsertion of redundant information. Depending on the application, compression can 

be lossy or lossless. 
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Lossy compression is especially useful for analogue data such as images, audio and 

video where some loss of information may be tolerated. The method removes some of 

the source information content along with the redundancy. This causes distortion of 

the data and thus the decompression process can not fully restore the original data. 

However, if some distortion is tolerated, the systems may achieve higher compression 

ratios, which is the ratio of the number of compressed bits to the number of original 

bits before compression, and enable transmission of data within critical times. 

Lossless compression does not tolerate any loss of information. It is a process 

completely reversible and it is used for digital data, as those processed by computer 

systems like text, object or alphanumerical. The price it pays for not tolerating loss of 

information is poorer compression ratio. 

This thesis is concerned purely with lossless data compression, and from now on, 

whenever the term data compression is used it will refer to loss less data compression. 

2.3 DATA COMPRESSION TECHNIQUES 

This section shows the main compression methods and some of their implementations, 

explaining their main characteristics and functionality, and what gives them the 

suitability for hardware or software implementations. 

As Figure 2.1 shows, the field of data compression is divided into three classes of 

compression methods: ad-hoc, dictionary based and statistical. Several ad-hoc 

techniques have being developed over the years and some of them are currently used 

to assist other compressors. Dictionary-based methods are the most widely studied 

type of algorithms and are used in a broad range of applications due to their simplicity. 

Statistical techniques offer considerable improvements in compression ratio at the 

expense of space or speed requirements. In this figure, the coloured route is the one 

followed in this thesis. All the methods will now be explained in more detail; the 

statistical techniques have been allocated a complete section. 
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Figure 2. I Data compression classification 

2.3.1 Ad-hoc Methods 

Ad-hoc methods exploit particular characteristics of the data. They were developed 

mainly in the early days of data compression and comprise Run Length Encoding 

(RLE) [Gollomb66] and more recently Move-to-Front (MTF) [Bentley86, Elias87 and 

Moffat89] the most successful of this class. 

RLE takes advantage of the presence of consecutive identical single symbols often 

found in data streams. It replaces long runs of repeated symbols with a special token 

and the length of the run. This method is particularly useful for small alphabets and 

provides better compression when symbols are correlated with their predecessors. 

MTF technique is designed for input streams that can be broken up into words. It 

assumes a word just occurred is more likely to occur later on again. So, as the inputs 

are processed, they are placed in the first position of a list. When one of them comes 

again it is coded with the index of its current location and it is placed on the top of the 

list. The indexes may be codified with variable code lengths [Bell90] to achieve more 

compression. 
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An example of an implementation of both techniques is the X-Match algorithm 

[JonesOO]. It looks for matches or partial matches between an incoming word and the 

words maintained in a dictionary using the MTF strategy. The strategy considers as 

the most important property of the scheme the locality of reference where, as 

[Bentley86] mentions, 'if a word has been recently used then it will be near the front 

ofthe list and therefore have a short decimal encoding'. X-Match makes use of this 

property and views as highly probable that the first position in the list will be repeated 

such that long runs of this location may occur, using then RLE to encode these runs. 

More information about this algorithm can be found in later sections looking in more 

detail at its hardware characteristics. 

2.3.2 Dictionary-based Methods 

In dictionary-based methods, groups of consecutive symbols are replaced by a code. 

These methods are based on breaking the input stream into blocks of symbols and 

replacing them by indexes of some dictionary. The dictionary holds blocks of data 

expected to occur frequently and the indexes are chosen in such a way that on average 

they consume less space than the phrase they represent. 

Some authors divide dictionary techniques into static, semi-adaptive and adaptive 

[Bell90], while others divide them into static or dynamic (adaptive) [Salomon98]. We 

consider the first classification more complete; it is the one used in this thesis and 

shown in Figure 2.2. 

Dictionary 
Techniques 

Static Permanent dictionary 

Semi-static Two pass in the data 

Adaptive Allow adaptation of 
the dictionary 

Figure 2.2 Classification of dictionary-based techniques 
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Static dictionaries are constructed before the compression starts and they are 

permanent. They are particularly useful when the type of data to compress is known in 

advance and offers compression with a little effort but does not allow adaptation to 

unforeseen data. 

Semi-adaptive dictionaries are considered as 'two-pass' dictionaries, where the 

occurrence of the symbols is first calculated and the dictionary initialised, then the 

dictionary adapts as symbols come in. One example is a scheme proposed by Larsson 

and Moffat [Larsson99). They developed a new method for creating the dictionary. 

The benefit of these dictionaries is the optimisation of the compression performance as 

the 'statistics' ofthe data are obtained before encoding. A disadvantage of this scheme 

is the need of storing a large part of a message in memory. Additionally, requiring two 

passes in the data makes them not practical for communication applications. 

The fact that static dictionaries do not allow adaptation makes them inadequate for 

universal compression, i.e. compression of any type of data. Also semi-static ones 

requiring two passes in the data prevents them for real-time applications. Thus, the 

third type of dictionaries, adaptive, is the most suitable for real-time dictionary-based 

compression applications. 

Adaptive dictionaries hold strings of symbols previously found in the input stream and 

allow for additions and deletions of strings as new inputs are processed. 

Among these adaptive techniques in dictionary based-methods, the LZ class of 

algorithms is the most popular in data compression for providing a satisfactory 

balance between compression and speed while requiring a modest amount of memory. 

The first and most popular dictionary-based algorithm is the LZ77 [Ziv77) developed 

by Lempel and Ziv. It subdivides a data source into two parts as Figure 2.3 shows. The 

first part represents n previously encoded symbols, which becomes the dictionary and 

is usually some thousands of bytes long. The second part represents x symbols to be 

encoded, it is usually some tens of bytes long [Held96]. They usually are implemented 

in a sliding window of n+x symbols, which is initially empty. To encode a symbol, the 
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first n symbols of the window are searched, from right to left, to find the longest 

match with the dictionary buffer. The coder codifies the offset of the longest match, 

the length of the match and the first symbol that did not match. 

n x-j 

)lossless data compression loss)less data I 

Figure 2.3 Sliding window in LZ77 compression method 

In [Craft98], Craft mentions that LZ77 has some advantages particularly for disk 

storage use. It shows not only better compression on the smaller data sizes desirable 

for random access applications, but amenability for a fast and simple CMOS hardware 

implementation based on a CAM [Gajski97] array. This allows the input data-string

matching operations required for the compression algorithm to be performed 

efficiently at high speeds. 

Next we show several implementations of the LZ77 algorithm to demonstrate the 

compression performance that they can achieve as well as the wide range of possible 

hardware implementations. 

• Ranganathan and Henriques proposed in [Ranganathan93] a VLSI implementation 

that exploits pipelining and parallelism to obtain high speed and throughput. A 

dictionary of 256 or at most 512 bytes is recommended for a hardware 

implementation, since it provides a reasonable choice while providing good 

compression efficiency. They used a parallel architecture of n processors, where n 

is the size of the longest possible match. The number of comparisons was reduced 

from i quadratic order in the sequential algorithm to linear order with this parallel 

implementation. A prototype CMOS VLSI chip was designed and fabricated using 

CMOS 2J.tm technology implementing a systolic array of nine processors. Based 

on the estimates from the prototype design, they estimated the chip could yield a 

compression rate of 13.3 MB/s operating at 40 MHz. 
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• In [Bongjin98], Bongjing and Burleson also present a parallel LZ VLSI 

implementation. The simulation operates at 12.5 MB/s with a clock speed of 100 

MHz using 1.2 !liD CMOS technology, it uses a 4.1 KB SRAM and 32 processors. 

In spite of the years of difference between these two implementations that allow better 

hardware technologies to be used, Ranganathan's implementation achieves higher 

throughput with a slower clock cycle than Bongjin's chip. This may well be attributed 

to the pipelining exploitation in the former implementation. 

• In [Kim95], Kim et al. present an efficient VLSI architecture for this algorithm 

but in non-systolic hardware architecture. It is claimed that the design require less 

area and fewer clock cycles than existing architectures at that time, but the 

compression performance of the algorithm is not shown explicitly. 

• In [Lee95], Lee and Y ang also present an implementation of LZ77 algorithm that 

achieves high throughput by implementing the sliding window in a CAM array. 

The clock speed is up to 50 MHz and accepts one sample per clock cycle; then it 

attains a throughput of 50 MB/s. The process is 0.8 !liD CMOS technology and the 

compression ratio is between 0.66 and 0.28, which is a wide range. On average 

this algorithm gives a compression ratio of 0.5. 

The LZ77 method has some inefficiency that Lempel and Ziv almost immediately 

improved with the LZ78 method [Ziv78], also known as LZ2. It does not use any 

search buffer, look-ahead buffer, or sliding window, instead, there is an adaptive 

dictionary of previously seen symbols. It starts empty or with a few symbols and its 

size is limited· by the amount of memory available. It outputs a pointer to the 

dictionary where the match occurred and the code of a symbol. The dictionary never 

deletes any entry, which is an advantage over LZ77, since new strings may be 

matched with previous strings, although the available space for the dictionary fills up 

soon. 

The TAG compressor [Bunton92] implements the LZ78 algorithm; it may compress 

up to 20 MB/s using a 211m CMOS technology. It makes use of RAM and CAM 
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memones [Gajski97] to store the dictionary and can be scaled to support larger 

dictionaries. 

The algorithms LZ77 and LZ78 are the basis of a number of variants, a clear summary 

and a short description is presented in [Bell90]. [Salomon98] also describe in detail 

these variants that improve the compression performance of the original algorithms. 

Next we describe two of the main variants of these algorithms, namely LZW and LZS. 

Probably the most popular variant of the LZ class of algorithms is the LZW, 

developed by Welch in 1984 [Welch84]. It is a descendant of the LZ78 algorithm and 

it is by far the most commonly used in practical applications. LZW as well as LZRWI 

[Williams9la] compression algorithms find in hash tables a powerful tool for fast 

search operations mainly in software-based applications. Hash tables are data 

structures that allow fast insertions, searches and deletions of data. 

A good example of an application of the LZW algorithm is the recommendation 

V.42bis of the International Telegraph and Telephone Consultative Committee 

(CCITT, now International Telecommunications Union ITU) [V.42bis and 

Thomborson92] for implementing data compression and increasing the data 

transmission rates in high-speed modems. Unisys holds the patent of the LZW 

algorithm although V.42bis modems presently require patent licenses from British 

Telecom, IBM and Holtz [Holtz93]. The V.42bis standard, as Thomborson foretold, 

has been widely used for more than ten years and with the increasing number of 

Internet users the use of modems will continue for some years until the widespread 

introduction of new technologies. 

Another popular variant is the LZS (Lempel-Ziv-Stac) which is the most common type 

of compression found in networking hardware and software. Stac Electronics 

developed it as a proprietary version of the LZ77 algorithm. It maintains a history of 

the last 2 KB of input data as well as other data structures to accelerate the 

compressiOn operation. Many of the products using this algorithm have a 

characteristic for tuning the algorithm, trading compression ratio by compression 

speed. Hi/fu holds the patent of LZS and sold licences to Cisco, U.S. Robotics, 
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Ascent, ffiM and Novell for their products. Also the Microsoft Point-to-Point (MPPC) 

compression software uses LZS. This algorithm has also been standardised by the 

ANSI, QIC, the Frame Relay Forum and others [Hifna]. Hardware implementation 

characteristics of this algorithm are mentioned in sections 2.6 and 2.7. 

2.3.3 Other Methodologies 

There are data compression algorithms that do not belong to the classification 

mentioned. These include methods as the Burrows-Wheeler Transform (BWT) 

[Burrows94] and symbol ranking [Fenwick96b] among others currently entering the 

data compressors market. 

The BWT method transforms a block of data into a format extremely well suited for 

compression for its later codification. Burrows and Wheeler recommend using MTF 

technique and an entropy coder. The authors state that their algorithm· 'achieves speed 

comparable to algorithms based on the techniques of Lempel and Ziv, but obtains 

compression close to the best statistical modelling techniques'. According to Fenwick, 

this method is not as good as the best of PPM-style compressors. Additionally, the 

technique requires a large number of computational operations as showed in 

[Fenwick96a]. 

The symbol ranking method uses some symbols seen in the immediate past to prepare 

a list of symbols likely to occur. The list is arranged according to the probability of 

occurrence. The position of the current symbol in the list is then encoded. The method 

uses an LZ77-type dictionary where the searches are done in a similar form to this 

algorithm. Without giving compression measurements, Salomon states that this 

method is 'slow but produces excellent compression' [Salomon98], while Fenwick 

mention speed as its main characteristic [Fenwick98], estimating that a hardware 

implementation of30 MB/s 'should be possible without trouble'. 

A detailed study of these two compression techniques is in [Fenwick96a] including 

some improvements and comparison with other effective techniques. 
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2.4 STATISTICAL COMPRESSION 

In statistical compression each symbol is assigned a code based on their probability of 

occurrence. Highly probable symbols get short codes and less probable symbols get 

larger codes. It has been shown that these schemes overcome most practical 

dictionary-based implementations, as it can be seen in an algorithmic comparison in 

[Bell90]. 

Statistical compression methods are divided for their study in two separated stages, 

modelling and coding, as Rissanen considered appropriated in 1981 [Rissanen81), see 

Figure 2.4. The model maintains statistics of the source to facilitate efficient 

compression and the coder maps the statistics into bits. This scheme allows studying 

either the model or the coder separately and this separation is important because 'it 

permits any degree of complexity in the modeller without requiring any change to the 

coder. In particular, the model structure and probability estimates can change 

adaptively' [Howard94]. 

(Model 

! 
Maintains the 
statistics of the data 

Statistical J 
Techniques \ Coder 

\ Converts statistics 
\ into bits 
\ 

PPM, DMC 

Arithmetic Coder, 
Huffman Coder 

Figure 2.4 Classification of statistical compression techniques 

The next section explains the best-known coders and models used for statistical 

compression in more detail. 
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2.4.1 Statistical Coders 

The two most important statistical coders that have drawn the attention of many 

researchers in data compression are Huffman and arithmetic coders [Salomon98]. 

2.4.1.1 Huffinan Coder 

This method developed by Huffinan in 1952 [Huffinan52) serves now as the basis for 

many popular programs used in computers. In its static form, the method consists of 

building a list of symbols and their probabilities in descending order to construct a tree 

[Horowitz95) with a symbol at each leaf of the tree. The procedure for building the 

tree involves the two symbols with the smallest probabilities to build their parent node 

whose probability is the sum of the individual probabilities. This parent node 

represents a symbol that replaces the two children symbols in the list. This step is 

repeated until the list contains only one symbol. The tree is binary where at each level, 

starting from the root, assigns a 0 to the left branch and 1 to the right one. Then, 

traversing the tree, the code of a string follows the path in the tree concatenating the 

O's and 1 's accordingly. This scheme gives short codes to more probable symbols and 

longer codes to less probable ones. 

Since no occurrence frequencies are known in advance in some applications, a semi

adaptive scheme may be followed. However, this mechanism is too slow for real-time 

applications and in practice an adaptive strategy is used [Salomon98). The compressor 

and decompressor start with an empty Huffinan tree and as symbols are input the tree 

is modified to adapt itself to the statistics of the data. 

In [Holtz93) Holtz claims that 'although the Huffman method has been known since 

1952 there have been few practical applications and it may be used as an addition to 

other compressors, but it is not commercially viable by itself. However, the 

widespread use of digital libraries, document databases and the Internet as well as 

digital television has generated new applications for this algorithm. At the moment, it 

is the base of the most effective compression technique used in information retrieval 

19 



Chapter2 Review 

systems [ZivianiOO] for directly searching the compressed text without decoding the 

entire text from the beginning. So, contradicting Holtz' view some implementations 

use just the Huffrnan coder while others use it as a part of a multi-step compression 

teclmique [ Salomon98]. 

• One example of hardware implementation ofHuffrnan coder is found in [Liu94], it 

presents a dynamic Huffman coder that maintains a tree implemented in CAM and 

ROM [Gajski97] cells. Simulation results show that the encoder can yield an input 

throughput of 5MB/s operating at 40 MHz and assumes 0.5 compression ratio that 

is the average achieved by the algorithm. The chip uses 0.8 f!m CMOS teclmology 

and uses about 17.7 Kgates. 

• Other example is the implementation of [Benschop96] of a hybrid methodology 

that combines Lempel Ziv and Huffinan coding, which is the LZH algorithm used 

in some software programs. Benschop built a VLSI implementation consisting of a 

bus interface, the sliding window coder (LZ), buffering and statistics module, 

Huffrnan coder and an internal processor that performs the Huffrnan tree 

computations and controls the other modules. The sliding window coder operates 

at a rate of one input character per clock cycle with a clock frequency of 12.5 

MHz, that is 12.5 MB/s. This is the same throughput as Bongjin's LZ VLSI 

implementation and slightly slower than Ranganathan's LZ77 chip. 

2.4.1.2 Arithmetic Coder 

In [Bell90] the intricate birth and history of the arithmetic coder is reviewed, since the 

early publications by Abramson [Abramson63], Rissanen and Langdon's description 

[Rissanen81] oriented towards hardware implementation until the last well-recognised 

paper by Witten et al. [Witten87] which made available a software implementation. 

Since its development, the arithmetic coder has been one of the most popular coders. 

From the theoretical point of view, it is the coder that compresses data closest to the 

entropy of the source, which produces the best compression than any compressor can 
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achieve. From the practical point of view, it has been long noted for its complexity and 

slow performance. However, due to its compression ratios, it has been studied to 

diminish its complexity and improve its performance speed. 

The basic form of the arithmetic coder uses a static model [Salomon98]. It assigns a 

code to an entire message, instead of assigning individual codes to symbols. A 

message is represented by an interval of real numbers between 0 and 1. The interval 

becomes smaller as the message becomes longer and the number of bits to codify this 

interval increases. Successive symbols of the message will reduce the size of the 

interval according to the symbol probabilities generated by the model. The more likely 

symbols reduce the range less than the unlikely symbols, thus, more likely symbols 

add fewer bits to the code. The adaptive form of this algorithm is used in real-time 

transmissions. 

Recently, the arithmetic coder was considered as the 'method of choice for adaptive 

coding on multi-symbol alphabets because of its speed, low storage requirements, and 

effectiveness of compression' [Moffat98] in a paper that incorporated several 

improvements over the early version of Witten [Witten97]. One of the software 

implementations of arithmetic coder in [Moffat98] uses a particular data structure to 

compute cumulative frequency tables in arithmetic coding. This structure is a binary 

indexed tree [Fenwick94 and Fenwick95] that provides fast access time either 

constant or proportional to the logarithm of the table size. Other data structures that 

have been used to speed up the coding process is a multiple-linked list or multi-list 

structure used by Howard in the quasi-arithmetic coder [Howard93a], similar to vine 

pointers mentioned in [Bell90]. 

Through all the years of study of this coder there have been investigations into 

hardware implementations of binary and multialphabet arithmetic coding to effectively 

exploit compression speed. Other forms of diminishing speed created multiplication

free codification [Lei95] and/or division-free [Rissanen89 and Jou99]. 

Langdon and Rissanen and Pennebaker et al. [Langdon82 and Pennebaker88] present 

methods for coding the binary alphabet. In [Rissanen89 and Chevion91] Rissanen and 
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Mohjuddin and Chevion et al. present methods for non-binary alphabets. While 

Rissanen and Mohjuddin describe an implementation of arithmetic codes where the 

proper multiplication is avoided even with non-binary alphabets, and also where no 

division operation is required, Chevion et al. present a simpler and more efficient 

implementation than the Rissanen method. 

The following are some examples of hardware implementations of arithmetic coder: 

• In [Jou99], Jou and Chen proposed an implementation of a binary arithmetic 

coding. Their simulation indicates that their chip compresses at about 1.5 MB/s 

with a clock rate of 50 MHz. 

• In [Kuang98], Kuang et al. designed an adaptive division-free binary arithmetic 

coding and implemented a prototype of a chip using the standard cells of 0.8 J.lm 

single-poly double-metal (SPDM) technology. The clock rate is 25 MHz and the 

compression speed is about 3 Mb/s. The complexity is 54 Kgates and requires 4 

SRAM memories of0.25 KB each. 

• A multi-alphabet arithmetic coding presented in [Printsz93] uses a static model 

and is implemented in a series of FPGA's. It uses 11.5 KB of RAM and has a 

throughput of 16 MB/s, although no decompression is presented. 

• Parallel implementations [Jiang94 and Lee97] have also been proposed and other 

successful variations named quasi-arithmetic coder [Howard94] and Q-coder 

[Pennebaker88]. Arps et al. implemented in VLSI the method of Pennebaker et al. 

in a chip designed for bilevel images [ Arps88]. Although it is targeted for bilevel 

image data, it serves as a reference. It is a custom chip with embedded SRAM 

memory with technology 1.5 J.lm, and complexity of 13 Kgates. The clock speed is 

10 MHz and the throughput is between 2.5 and 1.25 MB/s, depending on the data 

type compressed, whether images or code data. This speed is relatively lower than 

other arithmetic implementations but definitively can not compete with LZ VLSI 

implementations. 
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• In [Lee97], Lee et al. present a VLSI implementation of arithmetic coding which 

divides the input symbols into a number of groups and processes them in parallel. 

They claim that their implementation improves speed, expandability and latency of 

the conventional arithmetic coding. However, neither speed nor compression 

results are shown. 

In summary, an endless number of investigations into the arithmetic coder have taken 

place since its development. Algorithmic modifications have been done to simplify its 

operational complexity and to improve its compression performance. Arithmetic coder 

performs better when coupled with a model that effectively estimates the statistics of 

the source [Salomon98]. It can use any statistical model. However, the best statistics 

are provided by the class of Markov models, which are explained in the following 

section. 

2.4.2 Statistical or Markov Models 

2.4.2.1 Prediction by Partial Matching 

Prediction by Partial Matching (PPM) [Cleary84] is one of the most popular models 

for arithmetic coder, it was developed by Cleary and Witten in 1984. The scheme 

maintains a statistical model of data, assigning probabilities to the symbols and 

sending these probabilities to arithmetic coder. The probabilities are assigned 

according to the most recent symbols seen. Arithmetic coder then maps these 

probabilities into code bits. 

The simplest statistical model counts the number of times each symbol has occurred in 

the past and assigns a probability to the symbol accordingly. The next model up is 

context-based, where not just the frequency of the symbol is used to predict but the 

more recently symbols seen. The symbols recently seen are called context and the 

number of them is the order of the context. 
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Compared with arithmetic coder, there has been little research about PPM models. The 

first model was developed in 1984 [Cleary84] and the next main result came in 1990, 

Moffat's PPMC implementation [Moffat90]. Table 2.1 shows a history of the 

development of the main PPM models. It includes different methods for estimating 

probability information (Methods A, B, C and D), some little modifications and other 

features related with the order of the model. 

Model Year Author Modifications 

PPMA 
1984 

Cleary J.and 
Original models 

PPMB Witten I. 

PPMC 1990 Moffat A. New method for symbol and escape probabilities 

PPMD 1993 HowardP. 
Similar to PPMC with a slight improvement to 
probability estimation method 

PPMD+ 1995 TeahanB. 
Some techniques for selecting a particular context 
to predict the current symbol 

Cleary J, Exploits contexts of unbounded length, superior 
PPM* 1995 Teahan W. compression to PPMC but consuming considerably 

and Witten I. greater computational resources 

PPMZ 1996 Bloom C. Uses a local order estimation 

Table 2.1 History ofPPM class of compression models 

There have been a series of improvements over the PPM model, mainly at the 

probability estimation of the symbols with methods C [Moffat90], D (Howard93b) and 

PPM* [Teahan95]. PPMC overcomes original methods A and B [Cleary84] by using 

different ways of predicting the symbols. The PPMD does a small modification to the 

C method of Moffat and achieves an improvement of I% over PPMC. The PPM* 

exploits unbounded length contexts and has shown only a few modifications to the 

PPM scheme. The PPMZ uses local order estimation to overcome some of the 

problems of variable order techniques as memory consumption. There are also other 

methods like P, X and XC [Cleary84) based upon a Poisson process model and 

perform better than other methods in many cases but have not been given enough 

attention. From all these methods, the PPMZ is the one that produces the best 

compression ratios although its space requirements are high [Bloom96c] to be 

considered for practical implementations, and the PPMC seems to be most suitable 

option for that. 
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In [Nelson91 ], Nelson reviews and includes a software implementation of PPM 

method coupled with arithmetic coding and discusses how to combine arithmetic 

coding with several different modelling methods to achieve some impressive 

compression ratios. Also [Bunton92 and Bunton97] improved the compression 

performance of any PPM variant, although the improvements are too small relative to 

their cost to be useful in data compression applications. 

In [EffrosOO], Effros simplified the computational efficiency of PPM by combining it 

with BWT algorithm [Burrows94 and Nelson96] while using a prefvc tree, a data 

structure that according to Bell et al. [Bell90] 'is rather complicated and does not 

appear to be used in practice'. In [Bloom96c ], Bloom made available the software of 

a PPM model 41
h order, and in [Aberg97] Aberg et al. present a method for adaptive 

choice of estimators that provide a simple way of improving PPM. 

There have been only software implementations of this model, most of them use tree 

data structures, either backwards of forwards, binary or with vine pointers, to store the 

model. But mainly a special type of tree called trie is used [Bell90], where the search 

through the tree is binary and allows fast search operations. Additionally, the 

branching structure at any level is determined by just part of the data item, not the 

entire item [Horowitz95]. However, the total number of nodes for a large set of 

symbols can put them at a disadvantage against other structures. Morimoto et al. 

developed a new double-trie structure that in future software compression applications 

may speed up the search process [Morimoto94]. 

According with the documentation of PPMZ software implementation, it compresses 

at a speed roughly 1 byte per 20,000 CPU cycles with memory requirements about 30 

times the file size. 

A software implementation of the PPM* model by Itagaki and Yokoo exploits 

contexts of unlimited length and the space requirements are linear in the string length 

without depending on the context order [ItagakiOO]. It is worth mentioning that, 

normally, PPM models have an exponential growth of memory as the order of the 

model increases [Cleary93]. To implement the scheme, Itagaki and Yokoo use aprefvc 
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list, dynamic data structure, maintaining a set of contexts in reverse lexicographical 

order. They claim that although the nodes of the list do not contain statistical 

information and the structure needs to be traversed whenever statistics are required, 

the method encodes a string in expected linear time. 

Other software implementation that saves memory space is presented in 

[Hirschberg92]. The PPMC model is stored in self-organising lists and hash tables 

[Knuth97 and Knuth98]. He implements 2"d and 3'd order models with space 

requirements showed in Table 2.2 while providing compression ratios close to PPMC 

with considerable savings in space compared with Moffat's implementation [Bell90 

and Hirschberg92]. These data structures allow them to represent context models of 

any order in any available amount of memory. Additionally the method executes faster 

than the PPMC and the compress utility of Unix. 

Implementation 

Hirschberg92 

Moffat90 

Order of the model 

45KB 

Data not available 

100 KB 

500KB' 

Table 2.2 Space requirements for PPMC model. • This figure is in (Bell90 and Hirschberg92]. 

Previous studies have shown that arithmetic coder provides better results when it is 

coupled with a PPM-type model, and the higher the order of the model the better the 

compression performance of the system. Unfortunately, it is practically impossible to 

implement models without limiting the available space, and this is when some trade

offs among compression and space enter into consideration. 

It seems that all the research about PPM style compression models has generated only 

software simulations and no hardware implementations have been developed. 
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2.4.2.2 Dynamic Markov Modelling 

Some authors mention this scheme under a different type of compression rather than 

the classical compression classification. However, we consider it as statistical 

Markov-based methodology. This is a state-modelling technique developed by 

Cormack and Horspool in 1987 [Cormack87). The main principle of Dynamic Markov 

Modelling (DMC) is to maintain a finite number of states that provide symbol 

probability information. The current state information is used to encode the incoming 

bit. It counts transitions in each state and when a transition becomes popular enough it 

is 'cloned' under an intuitive criterion. 

The original version of the DMC algorithm is binary and does not compress text well 

[Salomon98]. However, it is possible to extend the algorithm to handle ASCII 

characters instead of individual bits, besides implementing more complex states, but 

the model could grow to consume more memory space. than the binary version. Its 

overall performance does not improve commercial software algorithms, but yields 

better compression ratios for binary data (machine code executable files, images and 

sound) for which it was originally developed. As the PPM model, this technique 

employs arithmetic coder. It produces compression similar to PPM as stated by Bell in 

[Bell90) and [Bell97) and although it is said [Salomon98) that it compresses faster 

than PPM, some results in [Bell97) show the opposite. 

There seems to be only software implementations of this algorithm. [Tong96) presents 

a binary version and [Teuhola93) an application for text. The idea of cloning seems to 

be complicated, if not impossible, to implement in hardware. 

2.4.3 Hybrid Methodologies: Statistical and Dictionary-based 

Although data compression has been divided into the three classes of compression 

methods mentioned in Section 2.3, statistical and dictionary-based classes are the most 

important. For years, these classes have been studied individually. On the one hand, 

Markov algorithms yield the best compression but are slow, on the other hand, Ziv and 
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Lempel algorithms perform at higher speed but offer poorer compression. So, it would 

be desirable to combine the speed ofLZ algorithms with the compression power of the 

Markov algorithms. 

Two approaches, LZP [Bloom96a] and LZRW4 [Williams9lb], combine dictionary 

and statistical schemes in a single compression method. LZP is a technique that 

combines the PPM-type context modelling with LZ77 string matching by finding the 

most recent occurrence of the lately seen context and comparing the symbols 

following this context with the current input. The length of the match is coded with 

either arithmetic or Huffinan coding if it is bigger than 0; if not, the literal is coded 

using other method. Four variants of the algorithm were developed using different 

coders and context sizes. 

The LZRW4 algorithm is an attempt to create a hybrid of the high-speed LZ 

algorithms and the variable-order Markov algorithms. The algorithm was implemented 

in an experimental program to measure the compression it would yield. It has a 

competitive benefit: contexts provide extra compression with little impact on speed, 

although with a high impact on memory since it uses a hash table of 4096 partitions 

each containing 32 pointers to the input. The idea is to create a group of contexts to 

parse phrases from each context. Compression proceeds exactly as with LZW except 

that the most recent symbol transmitted is used to select one of the 256 contexts. The 

result would be to take the low-order edge of LZW without losing any of its speed 

[Williams91 b ]. 

2.5 EXISTING DATA COMPRESSION IMPLEMENTATIONS 

Data compressors have been implemented in both software and hardware. Among 

these implementations, some are focused on achieving the best compression ratio, 

others the fastest compression speed, and others in requiring the less possible space to 

compress. All these characteristics depend on the application. 
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2.5.1 Software Implementations 

Software implementations of compression algorithms have been numerous due to the 

large number of applications. They are focused mainly on achieving the best possible 

compression ratios. Generally such implementations use complex and sophisticated 

data structures that allow them to store large amounts of data or/and retrieve the 

information, which at the same time make them slow. These implementations may be 

used in off-line applications as storage of computer data. 

Examples of these implementations are the Unix commands pack, which is an old 

command that uses an adaptive Huffman coding, and compress derived from LZW 

[Welch84] method, also called LZC. Another implementation is ARC, a 

compression/archival/cataloguing program developed in 1980 that immediately 

became popular among PC users because it offered good compression and the ability 

to combine several files into one file called archive. The archivers are self-extracting; 

they include a small decompressor in the compressed file, so the file becomes a bit 

longer, but it can decompress itself. It is derived also from LZC program, but this is an 

application for file archiving. PKArc is an improved version of ARC; it was developed 

by Katz who founded the PKWare company, which markets the PKZip, PKUnzip, 

PKLite and PKArc. The PK programs are faster and more general than ARC and also 

provide for more user control [Salomon98]. Zip and Gzip, the Gnu's zip compressor, 

ARJ and LZH algorithms use a variation ofLZ77 combined with static Huffman. 

LZEXE is yet another software compressor. It is freeware and originally written as a 

special-purpose utility to compress executable files. It is LZ based, and the main 

attraction of this program is the facility it provides when a single command can be 

used to decompress and execute the programs compressed with this tool. It works by 

using a circular queue and a dictionary tree for finding string matches. An auxiliary 

algorithm based on the Huffman method then encodes the position and size of the 

match. 

The company HiFn provides software compression with the LZS-221 and MPPC 

algorithms. Both compressors use the LZS algorithm and are offered also in hardware 
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chips. The LZS-221 compressor is optimised for network applications as routers, 

remote access servers and firewalls. The average compression ratio for storage 

applications is 0.5 and for data communications applications 0.33 is more common 

[Hifnb]. Compression and decompression speeds are 5MB/sand 6 MB/s respectively. 

A relatively new company, ICT (Intelligent Compression Technologies), also offers 

software compression with the UC-Xpress implementation. As they claim, it 'is a 

high-performance replacement for Zip coders in real-time compression applications 

where specialised support for image formats or Microsoft Office formats is not 

needed'. It is a variant of the BTW algorithm that on average achieves 15% more 

compression over the Zip method [UC-ICT]. An additional advantage of this 

algorithm is that it may adjust its operations in response to the available memory. The 

algorithm used was developed by Schindler [Schindler97] as a variant of the BTW that 

improves compression speed by limiting the context size and replacing the MTF 

coder, suggested by Burrows and Wheeler, by a caching model. 

Archivers as e-Space [WangOO] are also offered not only for off-line backup, but 

online. It dynamically compresses the data according to a policy chosen. 'The software 

automatically chooses the best compression algorithm for each file and compresses 

the file by an average of70 percent', 'compression occurs at a rate of I to 3 MB/s' 

[BucholtzOO]. The files remain online for immediate access and are transparent to the 

users and applications. Companies like HP and 3M are using this product in their data 

centres. 

These examples of software compression applications show data storage as their main 

target. Although software compression is migrating from the off-line applications, it is 

still not fast. enough to meet the requirements of the most demanding high-speed data 

transmissions. 

2.5.2 Hardware Implementations 

With the development of better compression algorithms and new VLSI technologies, it 

is possible to integrate adaptive compression algorithms into single VLSI chips. Fast 
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software implementations do not meet the requirements of real-time data transmission. 

Hardware implementations of compression algorithms are better suited for this type of 

applications, where the compression process is performed on the fly. 

These implementations generally use simple compression algorithms to produce fast 

compression engines. In 1993, Holtz foretold that inexpensive hardware compression 

chips-sets might soon replace slow and inefficient software compression and become a 

standard utility in most computers and communication networks. The applications 

would spread into digital image compression (HDVT), teleconferencing, Wide Area 

Networks (WAN, ISDN), Digital Audio Tapes and brain-like databases, reaching this 

market, that in that year was worth $300 million, $100 billion by the year 2000 

[Holtz93]. Although this figure may have not been reached, the applications of data 

compression have extended to tapes, hard disk drives, solid state storage (flash), file 

servers, LAN, WAN, wireless, printers and scanners, medical imaging and military 

imaging. 

Table 2.3 shows a summary of some compression chips that have been presented in 

the research literature. It comprehends dictionary and statistical methods. 

From Table 2.3, it can be seen that considering the time of development and the 

technology used, Ranganathan's implementation of the LZ77 chip is fast. Huffman 

implementation was developed about the same time but with better technology and is 

more than twice as slow as the LZ method. This fact is also derived from the 

complexity and slowness of Huffman methods against LZ ones and pipelining of 

Ranganathan' s LZ. Arithmetic coder is also a complex method but Printz achieved an 

implementation of arithmetic coder faster than the LZ77. However, it may be doubtful 

since no decompressor was presented. Recently, the arithmetic coder hardware 

implementations show compression throughputs slower than those ofLZ and Huffman 

methods that use even poorer technologies. Also, from the Table, it can be seen that 

Kuang's implementation uses three times the gate count and is seven times slower 

than the Huffman chip by Liu et al. However, it achieves about 12% better 

compression ratio. 
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Most of the hardware implementations of arithmetic coding that have been 

commercialised have been mainly for image compressors, which is out of the scope of 

this thesis. For universal data compression, most of the current available hardware 

implementations (Table 2.4) are based on LZ class of compression schemes. Such is 

the case of LZS chips from HiFn Corporation and ALDC from IBM [Craft98]. 

However, there are other products, such as X-Match [JonesOO], that using different 

and simple algorithms provide the best compression speeds. Also DCP816 uses a 

different algorithm, a genetic compression algorithm, and provides moderated 

compression ratios [DCP] although its compression speed is poor,just 210 KB/s. 

The figures in Table 2.4 are taken from the documentation provided by the companies, 

where the compression ratio is the average achieved for many data types. 

The compression chips from HiFn, the LZS family, use proprietary variations of LZ 

algorithm. Hardware solutions include multiple compression dictionaries maintained 

so that when a certain type of data is detected, the best dictionary can immediately be 

used without first building it and sending it to the receiver. This is used mainly in 

ISDN routers, which offers up to 5-to-1 data-compression ratios. Cisco is one of the 

companies that employ this algorithm in routers. 

Company Hi/fn IBM AHA 
Loughborough 

University 

Model 9600 
ALDC-J-40S-

AHA3580 X-Match 
M 

Method LZS ALDC ALDC X-Match 

0.5 J.lmCMOS IBMCMOS 0.5 J.lm Technology migrating to 0.35 0.18 J.lmCMOS 
J.lmCMOS 

0.8 J.lm CMOS 

Throughput 80 MB/s 40MB/s 80MB/s 100 MB/s 

Clock speed 40MHz 40MHz 80MHz 25MHz 

Compression 
0.5 0.5 0.5 0.51 

ratio 

Table 2.4 Main characteristics of commercial compression hardware implementations 
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IBM developed some compressiOn chips, the ALDC (Adaptive Lossless Data 

Compression) series, now discontinued although they still integrate data compression 

to some of their devices, such as the AS/400 Integrated Hardware Disk Compression. 

AHA (Advanced Hardware Architectures) distributes versions of the ALDC 

compression chips. ALDC is a CAM-based (512) variant of the LZ77 compression 

algorithm. IBM compression chips perform at 20 and 40 MB/s, while AHA's performs 

up to 80 MB/s. 

DCP816 it is a genetic compression algorithm designed explicitly for WAN data 

communications equipment such as bridges, routers, and point-to-point compressors. 

The company claims to achieve significantly higher compression ratios, typically 20% 

to 80% better than LZS. It has a small, custom-designed RISC processor with onboard 

ROM, and an integrated DRAM controlJer for the attached dictionary memory [DCP]. 

In [JonesOO], Jones describes the X-Match algorithm, it is the leader compressor 

engine achieving speeds of 100 MB/s, over twice the speed of other commercial 

devices. It compresses 4 bytes at a time and permits partial matching where at least 2 

out of 4 bytes may match. It also has a growing dictionary that makes the codes of the 

match location be codified with less bits when the dictionary is smalJ, which is 

particularly useful at the start of the compression. The dictionary is implemented in a 

CAM array, which allows it to attain high speeds and be an attractive option for 

network applications. It is worth mentioning that a recent version of X-Match 

[Nunez01] by Nunez et al. achieves 200 MB/s with compression ratios of0.58. 

2.6 COMPARISON OF DATA COMPRESSION IMPLEMENTATIONS 

A wide range of compression algorithms and implementations has been presented. 

There is not a single algorithm that may be considered the best for any type of data 

and application. 

All compressors are useful for specific types of data or applications. As mentioned, the 

best compression ratios can be achieved mainly with software implementations that 

34 



Chapter2 Review 

are used in off-line applications as storage of computer data. Fast compressors are 

hardware based and are usually employed for real-time applications where the 

compression is performed on the fly. 

Table 2.3 and Table 2.4 show the main characteristics of commercial and prototype 

lossless data compression chips. It would be difficult to make a fair comparison of 

these characteristics since they have been developed under different conditions and 

with different technologies. However, they are good examples of hardware 

implementations of lossless data compression algorithms. 

Two characteristics that data compressor developers use to measure the efficiency of 

their algorithms and/or implementations are compression ratios and speed. In [Bell90] 

there is a comparison of several compression algorithms in terms of compression ratio, 

speed and memory requirements. From this comparison, several important issues are 

obtained. For example, dictionary-based algorithms are the simplest and thus fastest 

algorithms, while statistical methods achieve the best compression ratios. Statistical 

coders may be coupled with any model to estimate the probability of the incoming 

data, which will dominate the compression performance. Sophisticated models such as 

finite-context Markov type achieve better compression, but the time consumption for 

updating the model is enormous. This is why the arithmetic coder has been studied in 

great detail and implemented in hardware for research and commercial products but 

has not been attractive to be coupled with Markov models to improve its compression. 

As far as we are concerned, the literature shows that statistical models have been 

implemented only in software and they have been left as a research work. [Bell90] 

states that these models 'are rather complicated and do not appear to be used in 

practice'. Also, it seems that no commercial companies offer compression products 

based on these systems. 

In compression chips, the highest speeds are achieved with simple methods taking 

advantage of hardware structures that allow fast search operations. Such structures are 

CAMs used in the fastest chips [Lee95, JonesOO and NunezOl] that deliver up to 50 

MB/s, 100MB/sand 200 MB/s respectively. 
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Then, the new generation of data compressors could be a combination of statistical 

models with efficient hardware structures that will keep the system as simple as 

possible. 

2.7 SUMMARY 

We have briefly reviewed the background needed to understand this thesis and have 

reported the current state of data compression together with the technological issues 

that influence the hardware implementation of compression algorithms. 

It has been shown that dictionary methods meet the requirements for practical 

implementations due to their simplicity and relatively low memory requirements. The 

number of compression chips that use this type of methods (Table 2.3 and Table 2.4) 

confirm this fact. 

As mentioned in Section 2.6, statistical algorithms such as arithmetic coders coupled 

with PPM Markov models, achieve better compression that dictionary-based 

algorithms, although it is recognised that their complexity have prevented their 

practical use. In [Bell90], this fact is verified when several algorithms were analysed 

and its complexity was measured, choosing the PPMC as the best performer of the 

statistical and dictionary-based compressors. It is also mentioned that, with the same 

amount of memory, the PPMC compresses always much better than other algorithms 

(dictionary based). With small memory they achieve similar performance, but as more 

memory is allowed, PPMC is always better. 

Also, it has been said that 'in practice, the extra compression obtained by Markov 

methods is usually not worth the decrease in speed. However, the field is by no means 

stable and it is possible that faster Markov techniques will appear' [Williams91]. This 

statement leads us to think that a hardware implementation of this type of algorithms 

may be a good solution to make fast Markov methods. PPMC seems to be the best 

performer algorithm among the Markov statistical compressors and the most suitable 

for simplification, although in the literature there is not a detailed study that analyses 
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the factors that may influence its performance. An analysis of this nature should 

provide the knowledge necessary to simplify it and make it suitable for hardware 

implementation. This thesis attempts such an analysis. 
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CHAPTER3 

OVERVIEW OF INVESTIGATIONS 

3.1 OBJECTIVES OF THE CHAPTER 

This chapter gives an overview of the investigations contained in this thesis. More 

specifically this chapter includes: 

• A brief description of research topics. 

• An introduction to experimental investigations outlining the questions to be 

addressed in each investigation. 

• An overview of the methodology followed in the investigations. 

3.2 IDENTIFICATION OF RESEARCH TOPICS 

Chapter 2 discussed how lossless data compression techniques have been developed to 

fully exploit capabilities and reduce costs of data transmission and storage systems. 

We also discussed the speed advantages and the requirements of implementing 

compression algorithms in hardware, rather than in software, to suit the most 

demanding applications in data communications. Most of these hardware 

implementations use LZ compression schemes due to their relative efficiencies in 

memory and computational complexity [Bell90] while achieving acceptable 

compression ratios. The compression ratios that these methods and their descendants 

attain have been overcame by the PPM class of statistical methods; however, there 

seems to have been relatively little work in the implementation of PPM algorithms in 

the belief that they are impractical for being too slow and resource hungry. 
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Some PPM algorithms are the best compression performers. This thesis will look into 

the simplification of these algorithms for its hardware implementation. However, the 

time and resources for this task are limited, making possible only to look at certain 

algorithm of this class. Based on our literature review, PPMC [Moffat90] is the most 

promising algorithm for hardware simplification and the one that 'has been carefully 

tuned to improve compression and increase execution speed' [Bell90] in software, so 

we adopt it as our research vehicle. The coder coupled with this model has been 

widely studied, so, we will focus mainly on the simplification of the PPMC model for 

its hardware implementation. 

Commercial chips and some of the research compression chips yield the best 

throughput in hardware technology. We identify some hardware structures that help 

these chips to achieve such performance additional to simple algorithms. However, the 

simplification of PPMC algorithm using simple structures has not been studied. We 

propose an investigation into the reorganisation of the PPMC algorithm to identify 

and select efficient and effective hardware structures. 

This involves a study of the interaction among the statistical PPMC compression 

algorithm, the simplified updating process and the simple data structures, which lead 

to simple hardware implementations, to provide a clear understanding of their relation. 

3.3 INTRODUCTION TO INVESTIGATIONS 

This section presents a brief introduction to the proposed investigations and the 

strategies. to follow to meet the objectives. We will assess each strategy for its 

suitability for hardware implementation and its cost-performance tradeoffs. 

3.3.1 PPMC Algorithmic Compression Investigation 

This section addresses the main characteristics of the PPMC algorithm (model plus 

coder). Firstly, we review how the model works and how it is coupled with the 
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arithmetic coder to provide a clear understanding of the system. Later, the main 

characteristics and their impact in compression performance are studied in detail. An 

analysis and software simulation of the PPMC algorithm should help to answer some 

questions arisen in this investigation as: 

• Which are the key computational requirements of the PPMC algorithm? 

• What other issues may influence the performance of the PPMC? 

• What is the impact on compression ratio of these issues? 

• Can the complexity of the coder and model be simplified? 

The results provide the information about the functionality and operational 

requirements of the algorithm that may help in the next investigations for the hardware 

implementation. The next chapter discusses and evaluates this investigation. 

3.3.2 Reorganisation of the PPMC Algorithm 

This investigation explores how to simplify the PPMC algorithm, including coding 

operations and the exploration of different strategies for model updating to reduce the 

complexity of the PPMC algorithm and speed up the compression process. 

Among the questions to answer with this investigation are: 

• Are there any methods to simplify the PPMC algorithm? 

• What are the design issues involved with these methods? 

• What is the impact on compression that these methods may have? 

The results of this investigation also provide information that helps into the 

implementation of a statistical compressor in hardware. 
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3.3.3 Shift Model Implementation and Performance 

This investigation aims to understand the tradeoffs between algorithmic characteristics 

and hardware architectures by modelling in software a statistical data compressor to be 

implemented later in hardware. Among the questions to answer in this investigation 

are: 

• Is it feasible to implement in hardware statistical compression? 

• Which could be the cost of this implementation? 

• Which is the performance impact of efficient hardware architectures m 

compression? 

This investigation provides a framework for characterising the performance impact of 

the statistical algorithm in hardware and is shown in Chapter 6. This understanding is 

provided by an algorithm implementation, that we have called Shift model, taking care 

of its main functional requirements. Chapter 7 looks into the hardware modelling 

implementation in SystemC of Shift model. 

3.4 TOOLS AND VERIFICATION 

This section describes the tools used to carry out the experiments and the method of 

verification. The experiments comprise software and hardware simulations and a 

verification stage where the results from software and hardware simulations are cross

checked. 

The data sets to use along the simulations are the popular Canterbury [ Arnold97] 

Corpus, Memory and Thesis Data to have a wide range of file types. A detailed 

description ofthe files comprised in these sets is in Appendix A. 

• Canterbury Corpus is a data set introduced in 1997 as an alternative to a previous 

corpus (Calgary Corpus [Bell90]) for evaluating lossless data compression 

methods. The corpus consist of 11 files, which range in size from 3K to 1,029K, 
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from C and LISP source code, html files, technical writings and text files. Table A

I and Table A-2 list the files in the corpus, their size and their category. The 

average size of a file is 255,564 symbols (characters) and the total number of 

symbols is 2,81 1,210. 

• Memory Data Set is a selection data files of about 80MB contained in memory and 

includes code and data from the SunOS operating system and eight real 

applications and utility programs. The set contains nine files from the SunOS 

operating system, Netscape, Emacs, Textedit, Ghostview, Xman, Matlab, Vlabplus 

and Logsyn, they are listed in Table A-3. For experimentation purposes, we have 

shortened this data set to 9MB of data, 1 MB from each file. 

• Thesis Data Set is a collection of 65 files, which range in size from 3K to 450K, 

from audio, images, object and text files. This set was obtained from [Gooch96]. 

Tables A-4, A-5, A-6 and A-7 list the audio, object, image and text files 

respectively. All the tables show the corresponding files, its category and size. The 

total number of characters is 8,045,584. 

The software simulations are carried out in a PC using Microsoft Visual C++ 6.0 

professional. They explore the behaviour of a compression model, firstly analysing 

only the model and later adapting it to a coder to simulate the whole compression 

system. 

Later, a hardware simulation of the whole system is developed to demonstrate the 

suitability of the algorithm for hardware implementation. It was developed in SystemC 

from the Open SystemC Initiative. SystemC is a C++ class library and a methodology 

to effectively create cycle-accurate models of software algorithms, hardware 

architecture and interfaces of SoC(System on a Chip) and system-level designs 

[SystemCOO]. It exploits concurrency and allows simulating high-level functional 

models, in a similar way to VHDL (VHSIC Hardware Description Language) that is 

the most commonly used language to simulate and model hardware systems. As 

VHDL, SystemC allows a structured hierarchical design methodology. It is hardware-
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oriented with C++ flexibility and allows cycle-accurate modeling and high-speed 

simulations. 

To verify the functionality of the hardware support of the algorithm, the compressed 

files output cross-checked with the compressed files output from the software 

simulation. 
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CHAPTER4 

PPMC ALGORITHMIC INVESTIGATION 

4.1 OBJECTIVES OF THE CHAPTER 

This chapter looks into the main functional requirements of the PPMC algorithm for 

data compression. Specifically, the objectives of this chapter are to: 

• Provide a detailed understanding of the PPMC compression model and its 

interaction with the arithmetic coder. 

• Identify the computational requirements of the PPMC algorithm. 

• Observe the impact these computational requirements have on compression. 

• Identify other issues that may affect compression performance. 

Statistical compression algorithms have been studied for several years, overcoming 

compression performance of dictionary-based algorithms. However, not much has 

been done to integrate them into the set of practical data compression techniques due 

to their high complexity and slow execution [Hirschberg92]. In this chapter we study 

the requirements of one of these algorithms, the PPMC, and analyse the feasibility of 

speeding it up and simplifying its complexity in order to generate a practical statistical 

algorithm._ ___ . 

To achieve the objectives of this chapter, it seems helpful to start this review by 

outlining: 

• How the PPMC algorithm works (PPMC model and arithmetic coder). 

• What are the key computational demands of the algorithm? 

• Important design issues when implementing this algorithm. 
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4.2 THE PPMC MODEL 

The PPMC model is the first software implementation of the PPM class of 

compression algorithms, developed by Moffat in 1990 [Moffat90]. The scheme is 

based on a system that maintains a dictionary containing a statistical model of the data, 

assigning probabilities to the symbols and sending these probabilities to an arithmetic 

coder. 

The statistical model in its simplest form counts the number of times each symbol has 

occurred in the past and assigns a probability of occurrence to the symbols 

accordingly. A more sophisticated model is context based, where not just the 

frequency of the symbol is used to predict but also the particular sequence of symbols 

that immediately preceded that symbol. The preceding symbols are called context and 

the number of them is the order of the context. 

A PPMC model of order o reads a symbol s and considers the previous o symbols as 

the current context. Then it searches in the dictionary for the symbol s preceded by the 

context of order o. If the symbol is found, its probability is sent to the coder. If the 

symbol is not found, the model faces the zero-frequency problem [Cleary95 and 

Witten91] to estimate the probability of a novel event. PPMC deals with this problem 

by 'escaping' to the next lower order o-1 transmitting a 'Escape' code. After that, the 

process continues until the symbol is found or the model reaches the order 0. If the 

symbol is not found in order 0, then a final Escape is transmitted and the symbol s is 

predicted by order '-1 ', where all symbols have the same probability of occurrence. 

The model is then updated adding s to the corresponding contexts. Next, s becomes 

part of the o1
h order context used to predict the next symbol. 

PPMC 'computes' symbol and escape probabilities using the method C (from where 

the model takes its name) with the following formulas: 

p(sicontext)=_£_ and 
t+k 

k 
p(esc I context)=-

t+k 
(4.1) 
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where p(sicontext) is the probability that symbol s will occur given that context has 

occurred; Is is the frequency count of symbol s; k is the number of different symbols 

seen in the current context, and t is the sum of the frequency counts of all symbols in 

the current context. 

The PPMC algorithm is a version of PPM models that has been 'carefully tuned to 

improve compression and increase execution speed' [Bel190]. To achieve this 

objective, unlike PPMA and PPMB [Cleary84] that take into account and update all 

context levels when a symbol is predicted, PPMC uses lazy exclusions [Bell90] by 

only taking into account frequency counts in context levels at or above the context in 

which a symbol was predicted. Then, when updating the model, just these frequency 

counts are updated. 

Table 4.1 shows a znd order PPMC model at some stage in the compression process. 

Table 4.2 shows the same model after symbol 'u' came in with previous context 'th'. 

In both tables, an 'empty' context means that there is no context to follow; the counts 

simply represent the frequency of the symbols. Frequency counts of 0 indicate that the 

symbol has not been seen in the corresponding context. The 'total' is the sum of the 

frequency counts. Order -1 is a special case that has and thus predicts all possible 

symbols of 8 bits with the same probability, so the total in this order is 256. 

For example, in English text if the stream 'th' occurred it is more probable the next 

symbol would be 'e' rather than 'u'. Then, according to Table 4.1, and using the 

formulas in (4.1), if the current context is 'th' and the incoming symbol were 'u', the 

model would search for 'thu'. Since it has not occurred, it escapes from znd order with 

probability: 

6 
p('esc'i'thJ = = 0.059 

(95 + 6) 

Then, the context 'th' drops the 't' and with the ! 51 order context 'h' looks for the 

symbol. As it is found, symbol 'u' is predicted by order I with probability: 
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p('u'i'h') 
2 

0.009 
(200 + 7) 

Later, during the updating process of the model, the frequency counts and the total are 

augmented by 1. When the incoming symbol has not been seen before, it is added to 

the dictionary and a frequency count of 1 is assigned to it. Table 4.2 shows the model 

after the updating process, indicating in bold letters the counts updated. 

Order 2 1 0 -1 Order 2 1 0 -1 

Context 'th' 'h' empty empty Context 'th' 'h' empty empty 
'a' 8 33 226 1 'a' 8 33 226 1 

"' 
'e' 51 110 362 l 

"' 
'e' 51 110 362 1 - 'i' 22 24 188 1 - 'i' 22 24 188 1 0 0 

1 'o' 7 16 248 1 1 'o' 7 16 248 1 
Sf) 6 14 781 1 STJ 6 14 781 1 en en 
'' 1 1 16 1 '' 1 1 16 1 
'u' 0 2 84 1 'u' 1 3 84 1 

total 95 200 1,905 total 96 201 1905 

Table 4.1 Example of the PPMC Table 4.2 Example of the PPMC 
model• model, updated after symbol 'u' 

followed context 'th' * 
* The frequency counts were obtained from a piece of English text of the file alice29.txt, part of 
Canterbury Corpus [Arnold97] 

Note that from Table 4.2: 

p(' i' I' th') 
22 

= 0.213 
(96 + 7) 

and 

p('i'l'h') 
24 

=0.115 
(201 + 7) 

The entropy formula (4.2) quantifies the information content, where E 1 is the entropy 

and p 1 is the probability of the /1h symbol. 

E1 =-log, p 1 (4.2) 
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According to this formula, symbol 'i' would be codified with 2.22 and 3.11 bits in 2"d 

and 1" orders respectively: 

Ecrt'th'l = -log2 Pct'l'th'l = -log2 (0.213) = 2.22 

and 

E('i'Wl = -log2 PrtTh') = -log2 (0.115) = 3.11 

Generally and as shown in this specific example, the higher the context the higher the 

probability of occurrence and the fewer the bits needed to codify the symbol. Thus, the 

higher the model the better the compression. 

Although PPMC considers two different formulas to compute the probability of 

Escape and other symbols, it is really a matter of implementation. The probability of 

Escape may be computed when required with the second formula in (4.1), or if Escape 

can be stored in the dictionary as any other symbol, its probability may be computed 

using the first formula in ( 4.1 ). In this latter case, the Escape frequency count must be 

k. In both cases the Escape probability must be the same. 

In reality, the arithmetic coder uses the probabilities but in the form of cumulative 

frequencies (provided by the model) to encode the symbols. And any practical 

implementation of the model considers restrictions of the maximum frequency counts 

the model can handle. The model avoids overflow of the counts by halving all of them 

once a certain threshold has been reached. This technique is called count scaling and is 

explained in more detail in [Bell90]. 

4.3 THE ARITHMETIC CODER 

In Chapter 2, the review of the arithmetic coder just included a semi-adaptive model. 

However, this type of model is not used in real-time compression but an adaptive 

model is used. This section shows how arithmetic coder works when coupled with the 

latter model. 
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In adaptive coding, the frequency information of the current symbol is generated from 

the occurrence of symbols previously coded. Arithmetic coder continually receives 

from the model the symbol frequencies together with a total count so that they can be 

normalised into estimated probabilities. These frequencies must be in cumulative form, 

as Table 4.3 shows, to simplify operations, otherwise, the direct calculation of such 

frequencies can be very time consuming. The table illustrates the index, i, of the 

symbols, the symbols, the frequencies and the cumulative frequencies. 

Frequencies I Cumulative frequencies 
Context 

S; 'th' 'h' empty emp 'th' 'h' empty empty 
'a' 8 33 226 1 0 0 0 0 
'e' 51 110 362 1 8 33 226 1 
li I 22 24 188 I 59 143 588 2 
'o' 7 16 248 1 81 167 776 3 
Sf} 6 14 781 1 88 183 1,024 4 
'' 1 1 16 I 94 197 1.805 5 
'u' I 3 84 1 95 198 1 821 6 

total 96 201 1,905 

Table 4.3 Example of the PPMC model with cumulative frequencies 

The coder represents a message with an interval of integer numbers between 0 and N 

where N depends on the precision desired in the implementation. The interval is 

subdivided in proportion to the specified probabilities. The algorithm for encoding 

taken from [Howard94] and adapted here for N, works as follows: 

1. Start with a 'current' interval [low, high) initialised to (O,N), 

2. For each event in the file, perform these steps: 

(a) Subdivide the current interval m proportion to the specified 

probabilities provided by the model. The size of the symbol's 

subinterval is proportional to the estimated probability that the symbol 

will be the next one to occur. 

(b) Select the sub interval corresponding to the event that actually occurs 

next, and make it the new current interval. 

3. Expand the interval following a normalisation procedure and output bits as soon as 

they are known. 
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Arithmetic coder uses the normalisation procedures to avoid the code range narrows 

such that the top bits of low and high become the same. Then, 'any high-order bits that 

are the same are transmitted immediately' [Bell90]. We have also adapted the 

normalisation procedure developed by Witten et al. [Witten87] and used by Howard 

and Vitter in [Howard94] to the interval [O,N). This procedure must be added 

immediately after the selection of the subinterval corresponding to an input event. 

Thus step 2(b) in the algorithm above is followed by: 

2. ( c ) Repeatedly execute the following steps in sequence until the loop is explicitly 

halted: 

1. If the new subinterval is not entirely within the intervals [O,N/2), [NI4,3N/4), or 

[N/2,N) exit the loop and return. 

2. If the new subinterval lies entirely within [O,N/2), output 0 and any following 

1 's left over from previous events; then double the size of the subinterval by 

linearly expanding [O,N/2) to [O,N). 

3. If the new subinterval lies entirely within [N/2,N), output 1 and any following 

O's left over from previous events; double the size of the subinterval by linearly 

expanding [N/2,N) to [O,N). 

4. If the new subintervallies entirely within [N/4,3N/4), keep track of this fact for 

future output by incrementing the follow count; then double the size of the 

subinterval by linearly expanding [NI4,3N/4) to [O,N). 

The operations performed by arithmetic coder to compute the new interval 

(subdivision of the current interval and the selection of the corresponding sub interval, 

steps 2(a) and 2(b) in the encoding algorithm) are as in (4.3), where CFs, is the 

cumulative frequency of the i1h symbol; CFs, is the overall cumulative frequency, and 

CFs,_, is the next cumulative frequency, i.e., of symbol i-1. 
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range= high -low+ 1; 

CFs 
high=low+range*--'--' -1; 

CFs, 

low= low+ 
CFs 

ranae * --'. 
, CF ' 

s, 

(4.3) 

It has been mentioned in the literature [Howard94) that 'the main usefulness of 

arithmetic coding is in obtaining maximum compression in conjunction with an 

adaptive model'. In the last two sections we have described the PPMC model and 

arithmetic coder separately, so, in the next section we will show how they work 

together to obtain this maximum compression. 

4.4 THE PPMC ALGORITHM: PPMC MODEL +ARITHMETIC CODER 

In this section we describe how the PPMC model and arithmetic coder interact to form 

a compression system. To do so, this section explains how the formulas of the model 

( 4.1) are related to the ones used by the coder ( 4.3) with a simple example. 

Figure 4.1 shows an example of the PPMC model information and corresponding 

range in arithmetic coder. Figure 4.1a shows the model storing symbols (S;), 

frequencies (fs1) and cumulative frequencies (CFs;). Figure 4.1b represents the 

arithmetic coder subintervals according to the information in the model. Escape (Esc) 

has been stored as any other symbol, taking as its frequency the number of times that 

the symbol has escaped and it is the same as the number of different symbols seen in 

the current context, k, from formulae ( 4.1 ). The information for this table is the same 

as Table 4.3 for the 2"d order context 'th '. The index i has been placed strategically in 

reverse order to simplify the calculations. 

To relate the formulas used by the model (4.1) with our example, we consider: 
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k = f(esc) 
i=k 

t= Lfs, (4.4) 
2 

T=t+k=CFs, 

CFsa- a ·a· i S; fs; CFs; CF~I8 
8 'a' 8 0 
7 'e' 51 8 'e' 

6 ... 
22 59 l 

5 ' ' 7 81 0 

4 sp 6 88 CFsa 59 

3 '' 1 94 
'i' 

2 'u' 1 95 
CFs 81 

'o' 5 
CFs4· 88 

1 Esc 7 96 
sp 

c ~~ 'u' 

0 T 103 CFs -103 esc 
0 

a b 

Figure 4.1 Example of the PPMC model information and corresponding range in 

arithmetic coder 

Then, the frequency of any symbol may be computed as the difference of two 

cumulative frequencies, as shown in formula (4.5). 

fs = CF, - CF, 
I (-! I 

(4.5) 

and the symbol probabilities may be computed as: 

p(s; I context)= 
CFs 

' 

(4.6) 

By considering Escape as any other symbol, the two formulas in (4.1) are no longer 

necessary. The formula in ( 4.6) is enough to compute both symbol and Escape 

probabilities, as mentioned in Section 4.2. For example, if the next symbol to occur 

were 'o', then its probability maybe computed as: 
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88-81 
p('o') 

103 
0.067 

This probability is mapped to the arithmetic coding range as follows: 

range= 103-0 = 103 

high=0+103* 
88 

=88 
103 

low = 0 + 103*_!!_ = 81 
103 

Looking at Figure 4.1 b, the values 88 and 81 are the high and low bounds respectively 

in the interval for symbol 'o '. After the occurrence of symbol 'o ', fs, increases to 8 

and CFs, and CFs, increase by 1 and the new current interval in arithmetic coder is 

[81,88). Then the normalisation procedure is executed and bits are output if required. 

Thus, the PPMC model must provide the arithmetic coder with CFs1 and CFsi-1 as well 

as the total CFs, for this to subdivide the range using the formulas (4.3). 

4.5 KEY COMPUTATIONAL REQUIREMENTS OF THE PPMC MODEL 

Analysing the PPMC algorithm and its interaction with the arithmetic coder helps to 

identify the main computational requirements and some issues that affect its 

compression performance. 

As compression techniques are used in combination with storage structures, it is 

helpful to understand how the model is stored to determine the type of operations 

performed when executing the algorithm. So, we will firstly show the data structure 

commonly used in software implementations of PPM models. 

Later, we review and show the issues and requirements that affect the compression 

performance. To do so, the algorithm is divided into processes that assist in this 

analysis to determine the number and type of operations the algorithm requires. After 
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that, we will use the operations performed in the data structure to describe the 

processes. 

4.5.1 Software Implementation of the PPMC Model 

PPM software implementations [Bloom96c, Cleary93, and Howard93b] store data in 

an efficient tree-class structure, which grows dynamically fulfilling the requirements 

of data storage. This structure commonly called 'trie' is a lexicographical tree, 

particularly useful for processing strings of variable length and specially suited for fast 

searching operations performed when looking for contexts [Horowitz95]. Its branching 

structure at any level is determined by just part of the string, not by the entire string. 

Figure 4.2 shows the structure of a trie in its simplest form. The numbers indicate the 

size of the arrays, where d is the number of bits required to represent a symbol. 

0 

0 0 

0 0 

0 

Figure 4.2 Structure of a lexicographical tree 

Due to the nature of the algorithm, the strings (context plus symbol) must be stored in 

reverse order, such that when a symbol is dropped from the context, just a leaf node is 

ignored. Then, the first level of the tree, level 0, has pointers corresponding to the last 

symbol of each string. The depth of the trie is the maximum number of symbols 

allowed in a string minus one. 

The structure itself has nothing to do with the compression results, unless its space is 

limited, allowing the model to gather less statistical information of the data. This fact 

may lead to poor compression performance. 
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The operations required to manipulate data within the structure play an important role 

in the compression performance of the model. The operations we refer to are searching 

and updating which we describe in the following sections as processes. 

4.5.2 Searching Process 

This process inputs the current symbol and context so the model looks for them in the 

dictionary and outputs the symbol cumulative frequencies. 

When a trie data structure stores the modelling information of the data, the searching 

process is done in lexicographical form. To search for a string, the corresponding 

symbols of the string are taken one by one following the path of the pointers that 

correspond to them until the information of the string is reached. 

Considering the trie in Figure 4.2; in the best case the searching time is O(l) where I is 

the number of levels in the trie, and in the worst case, it is 0(1!). This worst case is 

when the symbols are predicted in order -1, so the model looks in the trie for the 

highest-order context that may predict the symbol, which consumes O(l) time. If the 

symbol is not found, another search is performed having dropped one symbol from the 

context. This second search requires 0(/-1) time and so on until the symbol is 

predicted in order -1. 

From this analysis we conclude that as the number of levels is directly related to the 

order ofthe model, the higher the order, the slower the search operation. 

4.5.3 Updating Process 

Updating the model requires adding positions into the dictionary and updating the 

counts corresponding to the current symbol and context. When the model does not 

keep counts in cumulative form then they must be computed on the fly, which may be 

very time consuming, depending on the implementation. As the order of the model 
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increases this process becomes more complex since in the worst case, when a symbol 

is predicted in order -1, the contexts of all orders in the model must be updated. This 

may be illustrated with the next example. 

Table 4.3 showed the model at a certain moment in the compression process. If the 

letter 'm' were following the context 'th', as it has not occurred before, after the search 

operation it would be necessary to add the symbol to the model. Then, Table 4.4 

reflects with bold letters the counts updated in the model, 'm' is added to the model 

and because it is a new symbol, its frequency counts are set to 1 in all the orders and 

cumulative frequencies are also updated. 

i 

8 
7 
6 
5 
4 
3 
2 
1 

Frequencies I Cumulative frequencies 
Context 

s1 'th' 'h' empty empty 'th' 'h' empty empty 
'a' 8 33 226 1 0 0 0 0 
'e' 51 110 362 1 8 33 226 1 
'i , 22 24 188 1 59 143 588 2 
'o' 7 16 248 1 81 167 776 3 
STJ 6 14 781 1 88 183 1,024 4 
' ' 1 1 16 1 94 197 1,805 5 
'u' 1 3 84 1 ~~ 198 1,821 6 
'm' 1 1 1 1 201 1 905 7 

total 97 202 1,906 

Table 4.4 Example of the PPMC model, updated after symbol 'm' 
followed context 'th' 

The time spent in inserting a new entry in a dictionary depends on the data structure 

used. A table may require 0(1), while a trie may take O(a) where o is the order of the 

model. Updating cumulative frequency counts in a table may take O(q) where q is the 

size of the alphabet. However, if efficient structures [Fenwick94 and Fenwick95] are 

considered the time may be reduced to O(log2q). The type of operations required for 

updating are mainly add operations. 

From this analysis we conclude that the updating process of the model may be as 

simple or as complex as the data structure that stores the modelling information and 

the form in which the information is stored. Thus, simple data structures and simple 

data may lead to simple updating processes. 
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4.5.4 Arithmetic Coding Operations 

Recalling that the basic formulae used by the arithmetic coder (4.3) to subdivide the 

current interval according to the probability information are: 

range = high -low+ 1; 

CF5 
high =low+ range*--'-·' -1; 

CF5, 

CF5 
low = low + range * --' ; 

CF5, 

and that they include adds, multiplications and divisions, it is expected that arithmetic 

coder executes slow due that the last two operations are the most expensive in terms of 

time and complexity. These formulae require 5 adds, 2 multiplications and 2 divisions 

to codify each input symbol, without considering any renormalisation procedure. 

The research into the simplification of the coding process has been intense, developing 

multiplication or division free arithmetic coding versions [Rissanen89, Chevion91 and 

Lei95]. Some of these alternatives for speeding up the arithmetic coder have included 

the replacement of multiplications by additions and shifts, ignoring low order bits and 

replacing arithmetic operations by lookup tables. Naturally, these alternatives 

introduce errors, which cause the code length [Howard94] increases. 

Then, as simpler operations are performed faster, arithmetic coder may benefit 

considerably by performing simple operations but care must be taken if compression 

performance is to be maintained. 

4.5.5 Other Issues 

PPMC software implementations restrict the space to store the model; they also limit 

the maximum number of bits used for frequency counts. A method for overcoming this 

problem in the PPMC models is to scale counts, a practical issue when implementing 
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these models referred in the literature, that consist on halving the frequency counts of 

symbols that share the same context once a threshold has been reached. In addition to 

solving the problem, this method improves slightly the compression ratio of the model 

[Bell90]. However, this process requires many operations to halve all the frequency 

counts in a context. Thus, in the worst case, when all possible symbols are seen in the 

context, they must halve their frequencies, requiring O(q) operations, where q is the 

size of the alphabet. This process is not executed per every input symbol, but each time 

a certain threshold is reached. In models with higher order other than oth, the number 

of contexts increases with the order of the model, thus the likelihood of scaling counts 

also increases. 

Another process that requires attention for consuming a considerable amount oftime is 

the discarding policy. During the compression process, the tree growth proceeds at full 

speed while memory is available. Once the memory is exhausted, an efficient strategy 

for reclaiming space from the trie has to be implemented. The software 

implementation by [Moffat90] discards the entire trie when the space allocation has 

been filled. To avoid inefficient coding at this stage, the model keeps the last 2,048 

symbols transmitted and rebuilds the trie from this information. 

From here we conclude that other processes such as scaling counts and discarding 

policies that are irrelevant to the algorithm and required by its implementation may 

have a big impact in its compression performance due to the number and type of 

operations they require. 

4.5.6 Discussion 

'The main problem in any practical implementation of PPM models is to maintain a 

data structure while all contexts (orders 0 through o) of every symbol read from the 

input stream are stored and can be located fast' [Salomon98]. This statement indicates 

why the trie data structures have been successful while implementing the PPM models 

in software: they solve the storing problem while allow fast search operations. 
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However, data structures suited for software are not necessarily well suited for 

hardware. 

As the order of the model increases, so does the complexity of the model and the 

processing time, because, as the Table 4.5 shows, the number of possible contexts 

grows exponentially with the order of the model. 

Order of the model 

0 

1 

2 

3 

Number of possible contexts 

256 

(256i = 65,536 

(256)3 = 16,777,216 

(256)4 
= 4,294,947,296 

Table 4.5 Growth of the possible number of tokens as the order of the 

model increases 

Then, the space requirements also increase and even with the current technology it is 

not possible to store high-order models other than probably 3'd. 

Generally, the data structures are not allowed to grow freely when they are 

implemented; space constraints are always imposed by the capabilities of storage 

devices. So, it is required to investigate measures to limit the data space and the 

sensitivity of the models to such bounded spaces. 

According to the key computational requirements discussed in this section, we can 

conclude that the most expensive operations in the PPMC compression system are the 

searching and updating processes as well as the maintenance of the cumulative 

frequencies in the model showed in Sections 4.5.2 and 4.5.3. And expensive are the 

multiplication and division operations in the coder in terms of complexity and 

compression speed mentioned in Section 4.5.4. Probably other issues related with the 

implementation are also expensive but it is difficult to know to what extent without 

practical experiments and this is what next section explores. 
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4.6 PPMC COMPRESSION PERFORMANCE 

The model analysed to identify the key computational requirements is the PPMC 

model of the literature review [Moffat90] since it is the only document dealing purely 

with implementation issues ofPPM type of models that we are aware of. Some books 

[Bell90 and Salomon98] briefly explain these key requirements. However, there are 

other issues that seem to have an impact on compression and have not been considered 

specifically for this model in the literature, particularly if data structures other than 

tries or trees are used. So, this section intends to explore the impact of such issues 

when data structures better suited for hardware implementations are used. 

Such issues are the order of the model, the block size of the data to compress, the 

dictionary size and the discarding policy. To observe to what extent and how these 

issues affect the performance of the system, we require additional knowledge that may 

be gained through experimentation. To have a benchmark to compare our results, the 

PPMC model is simulated and its performance compared against some commercial 

compression chips based on LZ algorithms. 

A common assumption to the experiments of this section is that the compression 

system consists of model and coder. The model uses a matrix data structure; it is 

chosen for the simplicity to perform operations in hardware and its closeness to any 

hardware memory device. The 'perfect' coder computes the number of bits required to 

codify the probability using the entropy formula ( 4.2) 

where E, is measured in bits and PI is the probability of the symbols. 

This coder is chosen to simplify the experimentation process in this early stage. 

Furthermore, it allows focusing purely on the model. So, for simulation purposes of 

these experiments, cumulative frequency counts are not required. 
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4.6.1 PPMC Compression Performance- Experiment 

According to the literature review, PPMC performs well compared with commercial 

chips. However, it is not mentioned how well it performs. To show this and to set a 

benchmark for further experiments, it is necessary to gain some knowledge from 

experimentation. To do this experiment as fair as possible, the PPMC model is set to 

similar circumstances to the commercial chips. 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

3'd order PPMC model as it may be a balance between space 
requirements and compression performance. 

4,096 positions to provide the results as fairly as possible to 
the rest of the algorithms and to guarantee that the dictionary 
does not fill up considering the chosen block size. 

Since commercial algorithms allow compressing data per 
blocks, we compress data with the PPMC model also per 
blocks. The size chosen is 4 KB for being representative of 
the block of data found in many data networks. 

Canterbury Corpus for being a data set collected to evaluate 
lossless data compression methods while containing a mixture 
of data types. 

Not required 

The compression systems used in the experiment include dictionary-based hardware 

implementations, chips from IBM, AHA and Hifu, which use proprietary LZ variants, 

and X-Match. The results from the commercial chips were obtained executing demo 

versions provided by the companies. 

Method 

A simulation of the PPMC algorithm measures the compression ratio under the 

assumed conditions. Executing the demo software for the corresponding compression 

chips also measures their compression ratio. The review of the literature for 
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compression speed of the chips and compression performance of the PPMC model 

under different circumstances help to conclude this experiment. The compression ratio 

is measured as the average of the ratio of output bits and input bits per each block of 

data. 

Results 

Figure 4.3 shows the compression ratios that PPMC and the commercial chips provide. 

The X-axis shows the data compressors tested and theY-axis the compression ratios. 

From these results, it can be seen that the PPMC model delivers the best compression 

ratios. The DCLZ, ALDC and LZS chips are better performers than X-Match, they 

deliver compression ratios about 23% better, but on average 17.5% worse than PPMC. 
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Figure 4.3 Compression comparison of several data compressors and PPMC 

From the compression speeds of these chips reviewed in Chapter 2, X-Match is the 

fastest algorithm and the LZ type is the next fastest. PPMC has not been implemented 

in hardware so its compression speed can not be fairly compared with these chips. 
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Evidence [Moffat90] shows compression speeds of 4 KB/s while the fastest of the 

hardware chips compresses in excess of 100 MB/s. 

Compression results of the 3'd order PPMC model from [Moffat90] are about 0.34 for 

a set of test files, using update exclusion and scaling counts to a maximum precision of 

about 8 bits. However, Figure 4.3 shows about 0.39 for a different set of files. This 

clearly indicates that there are some other issues affecting the compression 

performance; one of them may well be the type of data. 

Some other facts in this experiment that may lead to further explorations are: 

• The space limitation to store the model, while Moffat uses between 56 KB and 448 

KB, our implementation of the model requires about 25 KB. 

• Block size of 4,096 symbols are compressed in this experiment while Moffat's 

software implementation compresses entire files, ranging from 16,384 to 139,521 

symbols. 

Conclusions 

From this experiment we conclude that: 

• The PPMC algorithm provides compression ratios superior to other common 

compression engines. 

• PPMC seems to be a promising algorithm that if implemented properly in 

hardware may reach the compression speeds of those of LZ class, but requires 

hardware experimentation. 

• Space limitations in the dictionary, block size and the type of data, among other 

issues, clearly affect compression performance of the PPMC algorithm. 
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Other issues that may impact the compression performance of the PPMC algorithm are 

considered in the following sections. 

4.6.2 Order of the Model- Experiment 

In Chapter 2 we mentioned that the higher the order the better the performance of a 

PPMC model, but it is also true that the compression speed diminishes and the space 

requirements increase considerably. So it is necessary to find a balance between these 

requirements and the compression results. The following experiment may achieve this: 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Method 

O'\ I'', 2nd and 3'd order models. Higher order models were 
not simulated since they do not represent a viable possibility 
for a hardware implementation due to the high space 
requirements they may have, see Table 4.5. 

8,192 positions, equivalent to no space restrictions for the 
block size used 

4 KB for being representative of the block of data found in 
many data networks 

Canterbury Corpus 

Least Recently Used for being the most popular policy used 

Simulations measuring the compression ratios measured as the average of the ratios of 

output bits and input bits per block and per file. 
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Results and Analysis 

Table 4.6 shows the compression ratios obtained with PPMC models of different 

orders. 

Order of the model 

0.556 0.467 0.405 0.388 

Table 4.6 Performance of different order models 

These figures clearly support the fact that the higher the order the better the 

compression. Although higher-order models were not implemented, there are studies 

in the literature that reveal that for text there is a little improvement in compression 

performance with models of order higher than 5 [Cleary93]. 

Conclusions 

• It is true that the higher the order the better the compressiOn, although the 

improvement in compression decreases as the order ofthe model increases. 

• Higher-order models gather more accurate statistics of the source thus producing 

better compression ratios. However, the space requirements grow significantly. 

• The space requirements are directly related to the order of the model since the 

number of possible contexts increases exponentially with it. This may well be an 

issue to consider in a hardware implementation, as the limitations in space are 

more severe. 
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4.6.3 Block Size- Experiment 

Software compression applications generally compress entire files of data. However, 

there are certain applications such as networks that require transmitting packets, 

frames or headers that are a few bytes long, so relatively small blocks of data are 

compressed. As data compression applications may require compressing blocks of data 

of different sizes, some commercial compression chips have the option to compress 

blocks of any size, having a limitation of a few gigabytes. Naturally, compressing 

blocks of data rather than the entire file may affect compression performance. 

To assess the impact of block size on the performance of the PPMC model, and the 

size of the block that delivers the best compression ratios, further knowledge is 

required. The following experiment that tests the model compressing blocks of 

different sizes should provide information to achieve this: 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Method 

3'd order PPMC model 

Same as the block size to guarantee the dictionary does not 
fill up considering the chosen block size 

256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 32,768, 65,536 
bytes. These sizes are chosen as a representative set of the 
practical block sizes commonly used 

Canterbury Corpus 

Not required 

A simulation of the PPMC algorithm measures the compression ratio, obtained with 

different block sizes under the assumed conditions. The compression ratios are 

measured as the average of the ratios of output bits and input bits per every block and 

per file. 
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Results 

Figure 4.4 shows the compression results. It can be seen how PPMC delivers poorer 

compression ratios with smaller blocks of data. Larger block sizes may provide an 

improvement in compression ratio of about 40% when compared with the smallest 

block. 
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Figure 4.4 Impact of block size on PPMC compression performance 

In this graph a different gradient can be seen after 4,096 symbols. This may be 

explained by the size of the files. Canterbury Corpus has files of different sizes, the 

smallest being of 3,721 bytes. That means that it is not possible to compress a block of 

4,096 bytes or bigger from a file of 3,721 bytes. Thus, the compression ratios of the 

graph are for blocks of the sizes indicated if the files are at least of the size of the 

block. If not, the whole file (smaller than the block) is compressed and the result is 

used to obtain the average compression ratio of this block. 

Conclusions 

From this experiment we conclude that: 
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• Block size plays an important role in the compression performance of the PPMC 

model. The larger the size of the block the better the compression ratio because 

more accurate statistics of the model are gathered. 

• It is expected that large block sizes require more space to store the model than 

small blocks. So, care must be taken when choosing the block size due to the 

implications it may have in space requirements or compression results. 

Some networking applications have fixed transmission requirements and block sizes 

can not be changed. However, the results of this experiment serve as reference when 

designing a model for this type of application. 

4.6.4 Dictionary Size - Experiment 

When implementing a compression algorithm, there are space limitations that restrict 

the size of the dictionary. Some compression chips limit the dictionaries to a few 

thousand bytes [Hifua]. Thus, it seems helpful to assess how, and to what extent, the 

dictionary size affects compression ratio. This knowledge may be gained with the 

following experiment that determines the impact that dictionary size has on the 

compression results, and which size of a dictionary may provide a good balance 

between compression and space requirements: 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

3'd order PPMC model 

256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 32,768 
positions 
32,768 to guarantee this parameter does not influence 
compression results 

Canterbury Corpus 

Least Recent! y Used 
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Method 

Simulations of the model with different dictionary sizes measure the compression 

ratios. These ratios are measured as the average of the ratios of output bits and input 

bits per every block and per file. 

Results and Analysis 

Figure 4.5 shows the compression results of the PPMC model using different 

dictionary sizes. From this figure it is clear that the larger the dictionary the better the 

compression. However, the improvement in compression becomes smaller as the 

dictionary size increases. For example, it can be seen that the improvement in 

compression ratio from a dictionary of 8,192 positions to one of 4,096 is not 

considerable, mainly taking into account that the space requirement duplicates. 
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Figure 4.5 Compression ratios for different sets of data using the PPMC model with 

different dictionary sizes 

Conclusions 

• The larger the size of the dictionary, the better is the compression ratio, as it 

gathers more accurate statistics of the data. 
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• The improvement in compression ratio with larger dictionaries does not justify the 

increase in space requirements, mainly with larger dictionaries. 

4.6.5 Discarding Policy - Experiment 

The limitations in space for storing the modelling information imposed by storage 

devices in practical implementations cause developers to adopt some measures to 

continue adapting the model to the source of data once the space allocated to the model 

has been occupied. Such measures, called reclaiming or discarding policies, allow the 

model to reclaim space while continue adaptation. 

There are several discarding policies to consider, including least recently used (LRU) 

position [Bell90, Williams93], least frequently used (LFU) position, climb policy 

[Williams93], to reset randomly any entry or to reset the entire dictionary. We have 

analysed them, identifying and summarising their characteristics together with 

advantages and disadvantages in Table 4.7. 

Functionality Advantages Disadvantages 

Least Removes the Discard less Requires to maintain sorted the 
Recently 'oldest' entry 

probable positions in the dictionary that 
Used(LRU) symbols/contexts have been used 

Least Removes the entry 
Requires to maintain sorted the 

Do not move/add frequency with which the 
Frequently that has been used counts positions in the dictionary have 
Used (LFU) less times been used 

Climb 
Moves only one Easy to maintain 

Need to 'move' data and 
.... position to the front frequency counts 

Reset Frees any entry Do not need to Requires generate random 
manage the numbers 

randomly randomly 
positions to free Need to update many counts 

Reset the Resets all the Very easy to May harm compression results 
entire information of the 
dictionary dictionary 

maintain of the model 

Table 4.7 Discarding policies 
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The information of Table 4.7 together with the following description gives a wider 

understanding of these policies: 

• In LRU policy, when a new phrase is input, it becomes the most recently used, and 

it is discarded only when it is the oldest one to have appeared in the input [Bell90]. 

Figure 4.6 shows how a window has to be maintained to keep this policy working. 

• LFU policy is similar to LRU, but the window must maintain the least frequently 

used phrases, i.e. counting the number of times each phrase is used. The phrase to 

be discarded is the one with fewer occurrences. 

• Climb policy works by moving up one position the phrase that has just been used, 

so that the phrase to discard is always the one at the bottom. Figure 4.6 illustrates 

this policy. 

Diclonary 

Entryto delete 1-----1 

Addr-ess ofthe last 
recently used entry 

Diclonary 

-

-

nlry I'! at predict!i 
Move up one position) 4r 

f-.> Entry to delete 

LRU CLIMB 
Figure 4.6 LRU and Climb discard policies 

• Resetting randomly any phrase requires generating the random positions of the 

phrases to be discarded. No further window maintenance or counting is required. 

• Resetting or discarding the entire dictionary or structure is used as a simple and 

fast mean oflimiting and reusing space. When the space allocated to the dictionary 

has been filled, the entire model is discarded. This has been demonstrated to be 

successful in some implementations [Moffat90]. 

Comments about these policies have been found in the literature, LRU policy 'ensures 

that the memory available is well utilised, and it adapts well to changes in subject or 
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style' [Bell90]. Climb policy can be 'performed in constant time whereas frequency 

ordering can degenerate to linear time in the number of symbols' [Williams93]. 

It seems difficult to define which of these alternatives should be used in a practical 

implementation of the PPMC model without further analysis that considers the data 

structure that could be used, since the data structure may effect the type and number of 

operations required in the maintenance of the policy. So, next, this analysis is 

performed: 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

3'd order PPMC model 

Small enough to require the reuse of positions 

Does not apply 

Does not apply 

LRU, LFU, Climb, Reset, being analysed 

Figure 4.7 shows a diagram of the data structure used in this analysis. The frequency 

counts for the contexts of order 0 (column D) are 256 indicating that this is the 

maximum number of symbols in this context order. 

Dictionary Symbol frequency counts 

A B C D Di(A,B,C) D)(B,C) DjC 

Figure 4.7 Data structure for 3'd order PPMC model 
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Method 

Logical analysis of the discarding policies under the assumed conditions. 

Results 

Although maintaining a window sorted with the entries in the dictionary that was used, 

LRU policy seems to be effective. According to the locality of reference principle 

stating that a symbol that just occurred is more probable to occur in the near future, the 

symbols pointed by the top positions of the window (see Figure 4.7) are more likely to 

occur again soon. Thus, deleting the symbols of an entry that has not been used for a 

long period of time may not harm the compression ratios of the model. Further 

analysis of this policy indicates: 

• When the arithmetic coder is coupled with the model, frequency counts may 

be stored in cumulative form. When freeing the least recently used entry, 

cumulative frequencies of all the symbols that share the same context need 

to be updated. 

• When an entry is deleted, it is necessary to identify the positions that share 

the same context such that after the deletion it is possible to update the 

cumulative frequency counts. This requires an increasing number of 

operations to be performed including searching the contexts similar to the 

context just deleted and updating their frequency counts. 

• A further problem is that any entry involves contexts of3'd, znd, 1" and O'h 

orders, with the entry having different frequency counts in each order. Then 

each time an entry is deleted, in the worst case most of the cumulative 

frequencies within the structure must be updated. 
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Climb policy seems a simple option: it is less complex [Williams93) than LRU and 

LFU and does not need to maintain any array (window) with the oldest or least 

frequently used positions. However, it may also cause inaccuracies in the model; any 

symbol once frequent and has not come for a short period of time, may be deleted. 

Then when it comes again, the model must treat it as if it has never occurred. 

The LFU discarding policy requires a large amount of operations to maintain sorted 

the positions of entries frequently used. When reusing a position, if cumulative 

frequency counts are stored, similar contexts to the one to delete need to be updated. 

This fact may slow down considerably the compression process due to the number of 

operations to be performed per every input symbol and may prevent the policy from 

being practical. 

A common characteristic of these three strategies is that their complexity not just rests 

in the maintenance of the window or the moving up of the data, but in the modification 

of the frequencies and cumulative frequencies associated with the entries being moved 

or updated. 

Resetting random positions in the dictionary on the one hand can lead to inaccurate 

statistics of the symbols in the model since the more frequent symbols may be deleted. 

On the other hand, although it seems very simple to maintain, it is not. When a 

position is deleted, similar context must be identified and updated, what is complex. 

Resetting the entire dictionary seems the fastest and easiest policy but also the one that 

affects more the compression results, as mentioned in [Moffat90] in his statement 'to 

avoid very inefficient coding while trie was being rebuilt'. It may bring severe 

imprecision to the model since all the information that has been gathered about the 

source of data is deleted and the model must start rebuilding the statistical information 

again. However, this is probably the most simple strategy and the less expensive to 

implement in terms of space and time requirements. 
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Conclusions 

From this analysis we can conclude that: 

• The complexity of implementation of discarding policies as LFU or LRU in a 

single dictionary seems to outweigh any benefit of additional compression. 

• The higher the order of the model, the more complex to maintain the policy if just 

one dictionary contains context of all orders. 

• The number of operations required would be significantly diminished by keeping 

contexts of the same order in separated dictionaries due to the simplification in 

cumulative frequency counts updating of all other contexts involved with each 

entry. Having separated dictionaries would guarantee contexts of a single order to 

be updated at a time. 

This latter solution has the advantage of resetting just part of the model, freeing space 

and allowing the adaptation of the model to continue. The cost could be some 

degradation in compression. 

If even this arrangement is considered to be complex or expensive in terms of the 

number of operations, there is a further consideration. As different dictionaries are 

maintained, one complete dictionary may be reset when one of them has consumed its 

space allocated, leaving other dictionaries with statistical information of the model. 

4.6.6 Summary 

This chapter has provided a detailed understanding of the PPMC model and has shown 

how the model interacts with the arithmetic coder giving an overview of the entire 

compression system. We have learnt that PPMC is a complex algorithm to be 

implemented in hardware due to the number and complexity of the operations required 

to execute and maintain it. A closer look of the algorithm has helped us to identify the 
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main computational requirements of the model and coder, as well as other issues that 

impact on the compression performance. 

We have learnt that the searching and updating processes, the data structure utilised 

and the coding operations, may impact on compression, but it is difficult to know to 

what extent without further experimentation. Other issues (size of the block being 

compressed, order of the model, dictionary sizes and discarding policies), that are not 

directly linked to the algorithm but to the implementation or external issues, also effect 

compression, our experiments have given a general understanding of them. 

Thus, further experimentation to reduce the complexity of the model is required and 

this is what the next chapter explores. Efficient hardware structures to store the 

dictionary, simpler coding and faster searching and updating processes may be the key 

to a simple hardware implementation of the PPMC model. 
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CHAPTERS 

REORGANISATION OF THE PPMC ALGORITHM 

5.1 OBJECTIVES OF THE CHAPTER 

This chapter investigates the reorganisation of the PPMC algorithm, including model 

and coder. The arithmetic coder is simplified and to adapt the model to that 

simplification, different methods for model updating are explored. This is to reduce the 

complexity of the PPMC algorithm and speed up the compression process. 

Specifically, the objectives of this chapter are to: 

• Investigate how the arithmetic coder could be simplified and what could be the 

effects on the model. 

• Investigate methods capable of fast and efficient model management for PPMC 

using simple hardware structures. 

• Identify the performance impact these methods have on compression. 

• Detect key design issues of the PPMC model. 

5.2 ALGORITHMIC REDESIGN 

Recalling that the entire compression system (PPMC model plus arithmetic coder) is 

complex compared with other compressors, attempts to simplify the arithmetic coding 

operations have included the substitution of multiplication and divide operations for 

add/subtractions that are simpler and may be performed faster. Some authors 

[Moffat94 and Witten87] have suggested scaling frequency counts up to a power of 

two, so that divide operations may be substituted by simple shifts. However, there are 

not explicit implementations of this proposal that mention the operational impact on 

the model, how the model should behave under these circumstances, what is the 
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interface to the model, and whether or not an approximation in the model updating 

could provide further simplifications in the system performance. 

In this chapter we explore the reorganisation of the PPMC algorithm, the modification 

of arithmetic coding operations, shown in the following section, and how, and to what 

extent, the model could be affected by such modification. 

5.3 SIMPLIFICATION OF ARITHMETIC CODING OPERATIONS 

In this section we look into the simplification of arithmetic coding operations, recalling 

from Chapter 4 the basic formulae (4.3) used by the arithmetic coder to subdivide the 

intervals: 

range = high -low+ I; 

CFs 
high = low+ range* --·--• - I; 

CFs, 

CFs 
low = low + range * --' ; 

CFs, 

The division operations were identified in Chapter 4 as the most complex. So, if they 

could be substituted by simpler operations the encoding process could be speeded. 

These simpler operations, as mentioned in the last section, could be the use of lookup 

tables or the approximation of multiplications by shifts and adds. Such modifications 

in the coding operations do not affect the functionality of the model, although the 

performance of the entire system may be slightly degraded due to the approximations 

that this implies. 

We think that the division operation could be substituted by shifts while the 

denominator is kept constant and to a power of two. Then, assuming that such a 

denominator is constant, we will call it 'Fixed Number of Tokens' or FNT. So, the 

basic operations for the arithmetic coder must be: 
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range= high -low+ 1; 

high = low+ (range *CF8 ) » FNT - 1; ,_, (5.1) 

low = low + (range * CF8 ) >> FNT; 
' 

For the arithmetic coder to execute the formulae in (5.1), it is required that the value of 

FNT is known in advance. As the coder requires the probability information to be sent 

by the model, with this modification, the FNT value must also be provided. These 

modifications in the arithmetic coder require the model to be reorganised as well. A 

modification of this type brings consequences in the model since the meaning of this 

denominator has been modified. It no longer indicates the sum of the frequency counts 

as symbols are seen, but it is now assumed that the value of this sum is always the 

same. 

Thus, in the next section we explore how the PPMC algorithm could be reorganised 

such that the precision of the model can be kept and the compression performance 

remains unchanged. 

5.4 REORGANISATION OF THE PPMC MODEL 

In this section we explore how the PPMC model should behave when the denominator 

in the arithmetic coder is constant and how it may update frequency counts in the 

simplest possible way. 

We continue to refer to the constant denominator as 'Fixed Number of Tokens' (FNT) 

and the frequencies of the symbols are going to be 'measured' by tokens. For example, 

when the model updates, it 'redistributes the FNT' among other symbols. From now on 

we use this terminology to differentiate this modification from the original basic 

formulae. 

As the main effect in the model comes when updating or distributing this FNT value, 

we will focus on the model updating. We shall consider and study several methods for 

model updating to obtain a clear understanding of the updating process under the 
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circumstances mentioned and how the process could be simplified. Among the 

questions we need to answer are: 

• Which is the best value for the total number oftokens, FNI? 

• Which are the possible strategies or methods for model updating? 

• Are these methods suitable for practical implementation? 

• Which are the best methods in terms of compression ratio, complexity and speed? 

There are some considerations and assumptions to be made when studying the 

different alternatives, as explained in Chapter 4. However, many of these must be put 

aside while the core of the alternatives is analysed. So, we will make use of the 

simplest assumptions and data structures in order to be completely focused on the 

model updating. 

The simplest data structure to consider is an array as shown in Figure 5.1, and it is 

used here just for a O'h order model. In this way, it is easy to visualise the steps to 

follow when updating frequency counts. The ideal updating procedure is the one that 

requires the simplest and lower possible number of operations. The o'h order model 

maintains one extra position for the 'termination' symbol which indicates when there 

are no more data to compress. 

0 2 3 4 5 251 252 253 254 255 

Figure 5 .I Array for frequency counts 

One may consider methods that assign the value of FNT to the first symbol to occur, 

and during the compression process, redistributing the tokens among the symbols such 

that few and simple operations are required for updating. This is probably the most 

attractive characteristic of having FNT; the model updating could be kept simple while 

the division operation in the arithmetic coder could be avoided. 
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Thus, the benefits from these methods, if they are successful, are that it could be 

possible to reorganise the PPMC algorithm by: 

1) Substituting divide by shift operations in arithmetic coding 

2) Preserv ing the compression performance of the model by rearranging its 

maintenance, e,g. redistributing frequency counts (tokens). 

The risks of keeping constant the denominator in arithmetic coding, i. e. using FNT, 

may be that the model could not reflect the stati stics of the data or that no 

approximations for model updated could be found. Then, the only solution should be 

to have more complex operations in the model. 

The methods to consider may include the assignment of FNT to the first symbol to 

occur or to Escape if it is considered as such. Also, the symbols cou ld be kept sorted 

according to thei r frequency counts (number of tokens) and so a variety of 

approximations for the model emerge to be explored. For example, the redistribution 

of tokens may be dependent or independent of the symbol frequency or the position of 

the symbol (in case no sorting is done). The possible methods are illustrated in F igure 

5.2. 

Assignment 
ofFNT 

1st Input 
symbol 

.. 
Escape 

Current value 
(requires sorting) 

/ . .... 
.... 

_..,,/" 

' Biggest Smallest 

Complexity 
of operations 

•-, 

' Plus 1 Dividing by 2 
(shift 1 position to right) 

Symbol position .... 
//~ 

Left Right 
Neighbour Neighbour 

Figure 5.2 Different alternatives for approximating the model updating 
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There could be a combination of the alternatives shown in Figure 5.2, for example, 

when the model updates counts it may be adding one token to a symbol (plus one 

strategy) or dividing by two the frequency count (dividing by two strategy). Either of 

them can be combined with a method that takes into account the current value of the 

symbol frequency or the symbol position as shown in Table 5.1. 

Plus One Dividing by Two 

FS EF L LR FS EF L LR 

Biggest X X X X 

Smallest X X X X 

Neighbour X X X X 
Table 5.1 Methods for model updating 

.In Table 5.1 FS indicates 'First Symbol', EF stands for 'Escape First', L for 'Left' and 

LR for 'Left-Right'. The first two refer to the assig:mnent of FNT and the last to the 

symbol position as Figure 5.2 shows. Next in Figure 5.3 we show the combination of 

methods studied, for each of them both strategies 'plus one' and 'dividing by two' 

apply. Biggest and smallest methods require sorting all symbols except 'Escape ' that is 

placed always at the first position of the array when the EF option is considered. DIS 

conditions the donor symbol to be 'Different from Incoming Symbol' . 

Next we show the algorithms for each method that we investigate. In all of them, a 

limit in the number of tokens of the donor symbol has been imposed to guarantee the 

donation or redistribution, e.g. a symbol with one token can not donates tokens, 

otherwise, the zero-frequency problem may arise. The way in which the symbols are 

redishibuted gives the name to the method as it describes the operations required to 

update the frequency counts. The number of tokens the Escape or new symbol get 

depends on the strategy chosen (plus one or dividing by two). After donating tokens, 

the donor diminishes the number of tokens donated. 
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Figure 5.3a Biggest FS 

a} Assign FNT to FS 
b) As symbols are input: 

If the symbol is new 

Else 

Escape gets tokens from symbol 
with Biggest frequency count 

Go to step c) 
c) Biggest symbol donates tokens to the 

incoming one 
d) Perform sorting procedure 
e) Go to step b) 

Figure 5.3b Biggest EF 

a) Assign FNT to EF 
b) As symbols are input: 

lffreq . count of escape = I 
donor= B1ggest 

Else 
donor = Escape 

Lncoming symbol gets tokens 
from donor 

Perform sorting procedure 
Go to step b) 

Figure 5.3c Smallest FS 

a) Ass1gn FNT to FS 
b) As symbols are input: 

If symbol is new 
donor = Smallest >= 3 
Escape gets tokens from donor 

Else 
donor= Smallest >= 2 

Incoming symbol gets tokens 
from donor 

Perform sorting procedure 
Go to step b) 

Figure 5 .3d Smallest EF 

a) Assign FNTto EF 
b) As symbols are input: 

lf freq . count of Escape = I 
donor= Smallest >= 2 

Else 
donor= Escape 

Incoming symbol gets tokens from donor 
Perform sorting procedure 
Go to step b) 
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Figure 5.3e Smallest FS DJS 

a) Assign FNTto FS 
b) As symbols are input: 

If symbol is new 
donor= (Smallest >= 3) DIS 
Escape gets tokens from donor 

Else 
donor = (Smallest >= 2) DIS 

[ncoming symbol gets tokens from donor 
Perfotm sorting procedure 
Go to step b) 

Figure 5.3f Smallest EF DIS 

a) Assign FNTto FS 
b) As symbols are input: 

If Escape= 1 
donor = (Smallest >= 2) D!S 

Else 
donor= Escape 

Incoming symbol gets tokens fi·om donor 
Perfom1 sorting procedure 
Go to step b) 

Figure 5.3g L Neighbour 

a) Assign FNT to FS 
b) As symbols are input: 

l f Left Neighbour >=2 

Else 

donor = Left Neighbour 
Incoming symbol gets tokens 
from donor 

There is not redistribution of tokens 
Go to step b) 

Figure 5.3h LR Neighbour 

a) Assign FNT to FS 
b) As symbols are input: 

If Left Neighbour >=2 
donor = Left Neighbour 

Else 
If Right Neighbour >=2 

donor= Right Neighbour 
Else 

There is no redistribution of tokens 
Incoming symbol gets tokens from donor 
Go to step b) 
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Figure 5.3 Algorithms and examples of methods for model updating in PPMC 
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All the simulations in this chapter assume that the model is coupled with a ' perfect' 

coder to compute the number of output bits; the coder is in reality the entropy formula 

explained in section 4.2. Also, the escape symbol (Chapter 4, section 4.2) is considered 

as any other symbol, so avoiding the need for computing escape frequency counts 

every time a symbol is not found. Next we show the common assumptions for the 

methods simulated: 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

0111 order model. A low order model allows us to focus on the 
model updating without involving the order of the model 

256 positions which is the maximum number for symbols of 
8 bits, plus one position for the 'end of file' symbol 

4,096 bytes, this size representing a typical packet size found 
in many computers and telecommunication systems 

Canterbury Corpus 

Not required 

As FNT is the most important parameter at this moment, it is required to determine its 

best value, i.e. the value that provides the better compression ratios. So, we now 

describe in some detail one of our methods and once the value is found other methods 

consider it. 

5.4.1 'Biggest plus one EF' Method for Model Updating 

Following the algorithm of this method, FNT is assigned to the first symbol that 

occurs, Escape. As symbols come in, the symbol with the biggest frequency count 

donates tokens to the incoming one. Figure 5.4 shows an example of this method. 
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(j) ..... 
c 
~ 1:: ... . j'ggest donates 1 token 

(.) 94 
c 
(1.) 
::::s 
0"' 
(1.) 
'-4-

~~~n;i~9 .sr~.b?' ............... . ~~m b o Is 
sorting 

Figure 5.4 Example of 'Bi ggest Plus One EF ' method 

In the figure, it can be seen how the symbol with the biggest frequency count donates 

one token to the current or incoming symbol and later they are soried again. The value 

of the biggest fl·equency count was 100 before the incoming symbol arrived, and the 

next biggest freq uency count was 94. As the incoming symbol was the second biggest, 

the new frequency counts of them are 99 and 95 tokens respectively. This process 

continues until Escape has just one token left. Then the symbol with the biggest 

freq uency count continues donating tokens. The operations invo lved are one addition 

and one subtraction, and later the sorting a lgoritlun is executed. This sorting algorithm 

wi 11 be discussed later. 

Assumptions 

Number of tokens: 256, 512, 1 ,024, 2,048, all of these are powers of two that 
later on permit the simplification of the divide operations 

Other assumptions have been mentioned before. 

Method 

The simulation of this method helps us to identify the most appropriate number of 

tokens, apart from providing the results for this method. The value that helps the 

model to provide the best compression ratio is later used to simulate the other methods 

to understand how they perform. 
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Results 

Figure 5.5 shows the compresswn ratios that the 'Biggest plus one EF' method 

provides with different numbers oftokens. 
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~ 
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E 0.65 
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0.63 
256 512 1024 2048 

Total number of tokens. FNT 

Figure 5.5 Compression ratios obtained with 'Biggest Plus One EF' method 

From the results shown in Figure 5.5 we observe that: 

• 256 tokens do not give flexibility to the model to represent the real statistics of the 

data. In the worst case, where all symbols occur, just one token could be assigned 

to each symbol , which means an equal probability distribution for all the symbols, 

as it occms in a - 1 order model. 

• A similar situation occurs with 512 tokens, although not as severe as with 256. An 

improvement in compression ratio of about 3.2% is observed. 

• 1 ,024 tokens provide compression ratios about 6.5% better than with 256 tokens. 

This indicates that the model have more fl ex ibility to represent the stati stics of the 

data. 
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• 2,048 tokens degrade the compression ratio considerably, about 2.4% with respect 

to 1,024 tokens. This is caused by the high probability assigned to the first symbol 

and the slowness to reduce it or to share the tokens with other symbols. 

Conclusions 

It is c lear that the value of FNT has an impact on compression ratio . On the one hand, 

big values make some symbols have higher probabilities that do not reflect in reality 

the occurrence of the symbols in the input stream. On the other hand, small values of 

FNT do not allow the model to make a proper redistribution of tokens and this fact is 

reflected in the stati stics of the data. In both cases the model can not gather 

appropriately the probability information of the source of data and thus poor 

compression ratios are obtained. It is best to find a balance between compression and 

FNT value and it is provided by 1,024 tokens, then, for other methods 1,024 tokens 

will be used. 

5.4.2 Other Methods - Experiment 

The previous experiment gave an insight of the compressiOn ratios that can be 

expected from a single method. However, we have a variety of them and they need to 

be explored and simulated. This is the purpose of this section: to find the compression 

ratios these methods provide and to compare them with the compression results of 

PPMC model. This comparison will serve to decide whether or not is worth 

reorganising the PPMC model in this way. 

Assumptions 

Number of tokens: 
1 ,024, as this number showed in the previous experiment that 
it gives enough flex ibility for the model to redistribute tokens 

Other assumptions are as mentioned before. 
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Methodology 

The simulation of all the methods provides compression results to evaluate their 

performance. An analysis of the behaviour of the methods will later reflect why such 

results were obtained. Compression results and the analysis should help to evaluate 

whether or not these methods are suitable fo r fast and simple model updating. If the 

compression results are satisfactory then we may select the method that is closer to our 

expectations for further experimentation. 

Results and analysis 

Figure 5.6 shows the compress ton performance of all the methods simulated. It 

includes the compression ratios obtained with all the variants of the two strategies 

mentioned and PPMC to serve as a reference. 

From Figure 5.6 we observe that: 

• The plus one strategy is considerably better than dividing by two, except for the 

first two methods. This is because in general, the plus one strategy allows slow 

adaptation of the model, and this is similar to how it is done in PPMC model, while 

dividing by two provokes abrupt changes to the frequencies of the symbols, which 

results in imprecise symbol probabili ties and thus poorer compression ratios. 

• The methods where the smallest symbols donate tokens are the worst performers 

because sometimes there is not proper redistribution of tokens and in many cases 

there is not adaptation at all, depending on the method. 
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Figure 5.6 Compression ratios obtained with methods to approximate the updating 

process of the PPMC model 

• The two neighbour methods perform simi larly to the biggest ones when they 

follow the plus one strategy, not so when they fo llow dividing by two, where the 

difference about strategies is considerably larger. This is because the speed of 

adaptation, additional to the fact that neigl1bour and biggest methods generally do 

not affect symbol frequencies, al lows continually the adaptation of the models. 

To compare and analyse in more detail the different methods, the compression process 

may be divided in two states, shown in Figure 5.7. The first state is transitory where 

the model is gathering the statistics of the model (1 and 2 in the figure). The second 

one is the steady state of the process, where the model has learned the statistics of the 

data: the area marked 3 in the figure. 

Esc has its 
real value 

ESC"Trl G) ( @YJ i .··. 
o X 1024 2500 

.., 

4096 

Figure 5.7 Stages of the compression process 

,.. Numberof 
input symbols 
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Stages of the compression process 
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Figure 5.8 Detail of the stages of the compression process 

Taking as an example the escape first methods (Figure 5.3b, Figure 5.3d, and Figure 

5.31) where FNT value is assigned to the Escape symbol at the beginning of the 

compression process, and looking at the Figure 5.7 and Figure 5.8, we observed that: 

• As symbols come in, the escape donates tokens and eventually it reaches its real 

value at point X (the real value is the number of times the model has escaped to a 

lower order). 

• Afler point X, escape continues donating tokens until it has only one token Jell, at 

this time it has reached point Y. 

• When the model is poin( Y, the compression ratio does not suffer if escape has just 

one token lc fl since at this moment it is expected that most of the possible symbols 
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Chapter 5 Reorganisation of the PPMC Algorithm 

have occurred. In steady state, there is a redistribution of tokens among the 

incoming symbols, where the key symbol (smallest, biggest or neighbour) a lways 

donates them. 

The first three methods, with the smallest symbol donating tokens, do not compress at 

all because a symbol with a number of tokens smaller than two can not donate tokens, 

and the model has not the flex ibility to redistribute them. Thus, during the transitory 

state the model does not learn the statistics of the data con·ectly. 

With the plus one strategy, the two 'biggest' methods perform wel l because the 

symbols are sorted according to the number of tokens they have, and the more frequent 

symbols are located at the beginning of the array, so tokens can be constantly 

redistributed. That means that the model adapts as symbols are input. 

'Biggest plus one escape first' perfonns closest to PPMC. The biggest symbol has 

always tokens to donate so there is always adaptation. When escape donates tokens 

first, the method improves compression ratio about 7%. 

In addition to the compression results, the number of operations performed by the 

methods and their resource requirements must be considered. The simplest strategies 

are the neighbour ones, as they do not require sorting whi le 'smallest EF DIS' method 

is the more complex due to the number of operations it requires for every symbol, e.g. 

sorting, but most importantly the operations to choose the donor symbol. 

Conclusion 

• One of the goals of model reorganisation is to find simple methods that allow 

accurate modelling. However, it was seen that not all the alternatives are simple, 

neither do they generate acceptab le compression ratios. So, additionally to the 

compression ratios generated, complexity is also to be considered, and among the 

methods, 'biggest plus one EF' is the alternative that represents the best balance. 
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• When the model is flexible enough to distribute the tokens, the dividing by two 

strategy is better in a transitory state because it quickly adapts the model to the 

statistics of the data. Then, in the steady state it is required that the model adapts 

s lower, thus making the plus one strategy better for this state. 

As these two strategies provide an approp1iate adaptation, each one for each state of 

the compression process, it may seem natural to think that a combination of them may 

offer better results. This is what the next experiment shows. 

5.4.3 Combining Strategies- a New Method 

The previous experiment showed that plus one strategy g ives a slow adaptation to the 

model, while dividing by two is faster to adapt. So, as the analysis of the stages in the 

compression processes showed, it is desired a fast adaptation in transitory state and a 

slow adaptation in steady state. This experiment shows results of a combination of 

strategies to find out if this new method can provide closer compression ratios to 

PPMC model. Also we test a different combination that wo uld adapt faster than plus 

one but slower than dividing by two in transitory state and later in steady state plus five 

is considered. 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Number of tokens 

Data set: 

Discarding policy: 

01
h order model. A low order model allows us to foc us on the 

model updating without involving the order of the model 

256 positions which is the maximum number for symbols of 
8 bits 

4,096 bytes, this size representing a typical packet size found 
in many computers and telecommunication sys tems 

1,024 

Canterbury Corpus 

Not required 
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Methodology 

The method to consider is the 'Biggest EF' using both strategies, dividing by two in 

transitory state and plus one in steady state and plus eight and plus five respectively. 

That means that the redistribution of tokens whj le Escape has not finished with the 

FNT tokens is done dividing by two or diminishing by eight its frequency count. Once 

Escape has one token left, the symbol with the biggest freq uency count donates one or 

five tokens every time it is required. This simulation must provide compression results 

to evaluate the performance of this combination of strategies. 

Results 

Figure 5.9 shows the compression ratios obtained with th e two 'Combined strategies' 

described above. The 'Biggest plus one, EF' is also shown as it was the best method 

that we obtained with the previous experiment and it serves as a reference along with 

the PPMC model. 

1.40 ............ .................................... . .. .. -······· ···························-············-····················· 
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Biggest EF Div. By 2, plus 1 Plus 8, plus 5 PPMC 

Approaches for model updating 

Figure 5.9 Compression ratio on combined strategies 
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In the figure, the Y -axis shows the compression ratio of the methods, keeping the scale 

used for Figure 5.6 to appreciate the di fference in compression as with the other 

methods. There is a slight degradation with the first combination of strategies of about 

1.04% with respect to 'Biggest plus one EF' method. Also there is a slight 

improvement in compression with the second combination of about 3.94% with 

respect to 'Biggest plus one EF' method. However, it still is 8. 75% worst than the 

PPMC model. 

Conclusion 

Any improvement in compression ratio helps to close the gap between the methods 

and PPMC model, however, we consider that a method with a maximum degradation 

of about 5% is good enough to be taken into account for further investigation. 

Unfortunately it was not the case of any of our methods. 

5.4.4 Effect of Sorting - Experiment 

We have mentioned that it is better for the methods to keep symbols sorted according 

to the number of tokens they have (Section 5.2). There are several sorting algorithms, 

its selection depends on factors such as the number of symbols involved, the 

knowledge of the orderliness of the symbols, or the cost of comparing vs. the cost of 

moving symbols, etc. We are interested in the fastest algorithm that is probably 

quicksort [Knuth97] where several groups of comparisons are required. 

We thought about other algorithm that sorts partially the symbols. It compares 

fi·equency counts of the symbols in alternate form, e.g. compare symbols 1-2, 3-4, etc. 

and the next time compare 2-3, 4-5, etc. In this way, when implemented in hardware 

the comparisons may be done in parallel and thus this 'parti al' sorting algorithm would 

require 0(1) time. 
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Table 5.2 shows a companson of the complexity of perfect and partial sorting, 

considering the quicksort algoritlun for the perfect sorting. It is worth noting that the 

figure of the complexity of the quicksort algorithm is the one of its software 

implementation, which is purely sequential. However, a hardware implementation may 

be able to add some degree of paralleli sm at the expense of hardware complexity. 

Number of 
comparators 

Number of 
corn pan sons 

Running time 

Other operations 

Perfect (Quicksort) 

0 (n log2(n)) 

0 (n log2(n)) 

Adds and subtracts to 
maintain indexes and 

compute the algorithm 

Partial (Parallel) 

n - I 

n/2 

0 (1) 

Just 
pennutations 

------------~---- --------~-------------
Table 5.2 Complexity of perfect and partial sotting 

It is difficult to know if the compression ratio of the PPMC model is affected by using 

partial sorting without experimentation. So, nex t, we experiment and compare 

compression results with both types of sorting. 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Number of tokens: 

Data set: 
Discarding policy: 

oth order model for being the simplest fonn of evaluating this 
expetiment. 

257 positions, 256 for the symbols plus the 'end of fi le' 
condition 

4,096 bytes, tills size representing a typical packet size found 
in many computers and telecommunication systems 

1 ,024, as this number showed in the previous experiment 
that it gives flexibi lity for the model to distribute tokens 

Canterbury Corpus 
Not required 
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Method 

The simulation of both sorting strategies, perfect and partial, must provide the 

knowledge to evaluate the impact of these strategies on compression. The only strategy 

tested is ' biggest plus one EF' as simi lar results are expected for the other strategies. 

Resulrs 

Compression results are showed in Figure 5.1 0. 
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E 
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Sorting 

Figure 5.10 Perfect and partial sorting in 'Biggest plus one EF' method 

Sotiing the symbols may require a great number of operations to be perfonned by the 

model, which may slow down substantia lly the compression process and make it 

impractical for implementations. However, with partial sorting the time is not a 

problem and as Figure 5. l 0 shows, neither it is the compression ratio. It shows how 

partial sorting achjeves about 0.06% better compression ratio and it is an acceptable 

sorting method that we may use. 

97 



Chapter 5 Reorganisation ofthe PPMC Algorithm 

Conclusions 

From this experiment we conclude that: 

• Considerably compression speed can be gained by partially sorting the symbols 

rather than using a perfect sorting algorithm. 

• The cost of implementing a partial so1ting strategy is the increase in hardware logic 

compared with the perfect sorting. 

5.4.5 Conclusions 

The statistical nature of the PPMC model requires a careful study when looking for an 

approximation to the model updating process. Experimental results have shown 

significant degradation of the compression ratio due to small changes in the updating 

procedure ofthe model. 

From aJI these strategies and methods we have learnt that the updating process may be 

simplified considerably at the cost of some degradation in compression ratio. Results 

of the experiments showed that the degradation was about 15% for the best case, 

'biggest plus one EF' (Section 5.4.2), compared with the PPMC model and a 

combination of the strategies is still 8.75% worse (Section 5.4.3). Most of these 

strategies do not assign symbol probabilities according to the method C and that is 

why they do not provide compression ratios similar to PPMC algorithm. 

A general revi ew of our strategies and the functionality ofPPMC lead us to understand 

that there is no form of approximating the model updating strategy close enough to the 

PPMC model unless the probabilities of the symbols are assigned proportionally to the 

symbol occurrence. Then, a strategy that, having a fi xed number of tokens, 

redistributes them in such way that follows the behaviour of the PPMC model, may be 

more accurate. In the next chapter we explore this strategy. 
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5.5 SUMMARY 

In this chapter we looked into the reorganisation of the PPMC algorithm, including the 

simplification of arithmetic coding and the implications in the model. Also the 

exploration of some methods that substitute complex operations used commonly by the 

PPMC compression system. The researched methods are capable of fast model 

updating for the PPMC model that may also help to speed up the compression process. 

We identified the performance impact that these methods have on compression, from 

which we deduced that a slight modification in the updating process may bring 

significant degradation in compression ratio if the model is not studied carefully. Also 

we have detected some of the key design issues in the implementation of the PPMC 

model. 

We have learnt that if the proposed modifications in the arithmetic coder are done as in 

Section 5.3, then, the coding process must perform faster. However, to ensure that the 

PPMC model continues providing accurate information, further study in the model is 

required to guarantee proportional frequency counts to the PPMC model. 
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CHAPTER6 

SHIFT ALGORITHM 

6.1 REVIEW OF OBJECTIVES 

This chapter explores the interaction between software algorithms and efficient 

hardware structures, looking into the implementation of a statistical model. More 

specifically, the objectives of the chapter are to : 

• Give an overview on the issues involved in optimising the PPMC model for its 

hardware implementation. 

• Show the integration of these Issues 111 a single algorithm and observe its 

perfom1ance. 

This investigation will address the following questions: 

• Is the model suitable for hardware implementation? 

• How the model performs against PPMC software implementation? 

• What are the main design issues of this algorithm? 

• How these design issues influence compression performance? 

6.2 OPTIMISATION OF THE PPMC MODEL FOR HARDWARE 

IMPLEMENTATION 

In Chapter 5, the simplification of the arithmetic coder was studied. In this chapter we 

will focus mainly on the model, keeping in mind the interaction between the model 

and coder. Chapters 4 and 5 analysed issues related to the PPMC compression 

algorithm. The knowledge gained from these chapters is applied here to design a 
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PPMC algorithm, focusing on the model, to be implemented in hardware. From now 

on we wi ll call our method the Shift algorithm to distinguish it from the PPMC 

algorithm. 

6.2.1 Order of the Model - Experiment 

The order of the model was studied in Chapter 4. We learnt that a higher order model 

provides more accurate statistics, therefore the better the model is. However, its space 

requirements are directly related to the order of the model, so, a good balance between 

space and compression is required to make the model suitable for practical 

implementation. 

To select the order of the model we take into account that there is a gain of about 16% 

in compression ratio when using the 2nd order model rather than the 1st one and about 

6% when using the 3rd rather than the 2nd (Chapter 4, section 4.6.2). We may predict 

that a 4111 order model would provide a further improvement in compression. However, 

it may be not worth given the increase in space requirements. Thus, a 3 rd order model 

is a good option. However we can simpli fy the experiments by using a 2nd order model 

when necessary. 

As part of a study of the order of the model, we considered the percentage of 

predictions made by each context order within the model. Also, the experiment 

involves the use of the Memory Data Set (Appendix A) to observe whether or not the 

type of data effect these results. This inf01mation can be used later to take some 

decisions for the design. 

This experiment helps to identify how much weight each context order has in the 

model and if the type of data influence that result. This fact may help later on to 

determine the size of the dictionary. 
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Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Method 

Shift Algorithm 

15
\ 2nd and 3rd order PPMC model 

2,048 positions for 3rd, 2nd and 151 order contexts 
257 and 256 posibons for 01

h and - 151 orders respectively 

4,096 bytes, due to thj s size representing a typical packet 
size found in many computers and telecommunication 
systems 

Canterbury Corpus and Memory Data to observe if the 
percentage of predictions in each order context could be also 
related to the type of data 

LRU 

This invo lves the simulation of the models under the assumed conditions and 

monitoring the order of the context where the predictions are made. The resu lts wi ll be 

obtained as the percentages of predictions made by each context order. For example, a 

3rd order model has contexts of 3rd, 2nd, 15
\ 0111 and - 151 order. So, we measure how 

many of the symbols are predicted in each context order. 

Results and Discussion 

The percentage of predictions for Canterbury Corpus is showed in Table 6. I. The first 

row shows results for a 3rd order model and indicates the percentage of the order of the 

contexts that compose it. The second and third rows show results for 2nd and I 51 order 

mod-els respectively. 

Order of Order of the contexts 
the model 3rd 2nd 1st 0111 _1st 

3ra 58.75 13.34 16.12 8.74 3.05 

2nd 74.12 15.04 7.91 2.93 

I St 89.32 7.80 2.88 

Table 6. I Percentage predictions for each order of the model with Canterbury Corpus 
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More than 50% of the predictions are made by the 3rd order contexts and surprisingly, 

more symbols are predicted by the 1st order contexts than by the 2nd order ones. Table 

6.2 shows the percentage of predictions for Memory Data. It can be seen that the 

predictions made by oth order contexts, in any order of the model, is considerably 

higher. 

Order of Order of the contexts 

the model 3rd znd 1 Sl 0th -1 Sl 

3rd 48.35 11.14 15.66 20.12 4.74 

2nd 60.70 15.61 19.42 4.26 

1st 77. 15 18.94 3.92 

Table 6.2 Percentage of predictions for each order of the model with Memory Data 

By comparing the previous two tables, it may be observed that the percentage of 

symbols predicted by the contexts of different orders varies according to the data type. 

This is because more redundant data has strings of symbols that are expected to occur 

more often and thus the highest order contexts would predict more symbols than w ith a 

less redundant type of data, where the number of predictions is distributed among the 

different contex t orders. 

Conclusions 

• The results in this experiment show how, as the order of the model increases, the 

percentage of predictions given in the highest order context is redistributed among 

the two highest order contexts in the next higher order model. 

• The data type being compressed influences also the percentage of symbols 

predicted in each contexts and thus compression ratios. 

• The statistics of the model gathered by the highest order contexts are more 

accurate; for this reason, although in higher order models the percentage of 

predictions in the highest context seems to diminish, the compression ratios 

improve. 
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6.2.2 Dictionary Size- Experiment 

Practical implementations of any data structure have a limitation in size, particularly 

taking into account that storing space is expensive in digital techno logy. Furthermore, 

space restrictions may guarantee that the system fits in a digital device as FPGA or 

ASIC. Naturally, severe restrictions in space lead to compression degradation and care 

must be taken to identify a good trade-off between space and compression. 

From Chapter 4 we leamt that the larger the dictionary the better the compression. 

However, this knowledge is not sufficient to decide the size of the dictionary to be 

implemented, which guarantees a good trade-off between space requirements and 

compression perfom1ance. 

The decision about the size of the dictionary may be linked to parameters such as the 

block size or the order of the model; but in order to study one of the parameters, the 

others must remain fixed. However, one of the parameters that we considered 

important in this experiment is the type of data (Appendix A), as it would effect the 

size of the dictionaries. So, next, we show the assumptions of this experiment. 

Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

2nd order PPMC model 

Without space restrictions to avoid this parameter effecting 
compression and to effectively verify the number of 
positions used 

4,096 bytes, due to this size representing a typical packet 
size found in many computers and telecommunication 
systems 

Memory Data, Thesis Data and Canterbury Corpus as 
different types of data may require different dictionary sizes 

Not required 
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Method 

As a measure to observe the appropriate dictionary size, we carried out an experiment 

to determine the number of locations required for the model when compressing 

different types of data. The results are the average number of positions used by all 

blocks compressed in the entire set of fil es. 

Results 

Table 6.3 shows how fo r almost all types of data, the average number of positions used 

in the dictionary of order 1 is one third of the one used in order 2. This means that if 

contexts of different order could be stored in separated dictionaries, the dictionary 

storing contexts of order 1 could be three times smaller that the one of order 2 and this 

could represent great savings in storage space. 

Canterbury 
Memory Data Thesis Data _ _ Corpus 

Dictionary 1 Sl 2nd 1 Sl 2nd 1 Sl 2nd 

Order 

Average 685 1,947 1,250 3,446 2,157 6,551 

Table 6.3 Average number of positions used in the dictionaries 

The Canterbury Corpus contains fi les of different types (Appendix A). However, a big 

percentage (57.8%) of it is text. Text has a high degree of redundancy as it can be 

compressed more than other types of data (see compression ratios achieved in text fi les 

in [Bell90] Appendix B). So, because text is more redundant, the same entry in a 

dictionary it is expected to be used more times, and thus, fewer positions in the 

d ictionary are used. 

For the Thesis Data Set, the image fil es increase considerably the average number of 

positions required. This set contains text, object, audio and image fi les (Appendix A). 

Here, while the text files required about the same dictionary s ize as Canterbury 

Corpus, the images required up to 4,400 positions for order 1 and 12,000 for order 2, 

and this increased considerably the average. 
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Conclusions 

If separated dictionaries are used, each keeping contexts of certain order, we may 

conclude that: 

• If the average length of the dictionaries is restricted to 2K positions and 4K 

positions for l 51 and 2nd order contexts respectively, compression ratios would not 

be affected. 

• If the nature of the data to compress is text biased, lK and 2K dictionary sizes for 

151 and 2nd order contexts respectively should be enough space to guarantee good 

performance. 

6.2.3 Multi-dictionary Model - Experiment 

Multi-dictionary model strategy was mentioned in Chapter 4 as an alternative for 

simplifying the complexity of LRU discarding policy. A different policy, resetting the 

entire dictionary, was shown to be the best choice as the simplest form of reclaiming 

space once the dictionary becomes full and before continuing the model adaptation; 

however it affects considerably the compression performance. 

We consider that the Shift model may benefit from the combination of both strategies 

by using multiple dictionaries, one for storing contexts of each order of the model so 

when one of the dictionaries (except for orders - 151 and 01h) becomes full, it can be 

reset. In this way, a 3rd order model will have 5 dictionaries for -1 5
\ 01

h, 15
\ 2nd and 3rd 

order models respectively. 

This combined discarding policy has not been tested, so there is not knowledge about 

the performance of the model under these conditions. The following experiment that 

implements this policy should provide this knowledge: 
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Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Method 

Shift AlgoritJm1 

3rd order PPMC model 

2,048 positions for 3rd, 2nd and 151 order models 
257 and 256 positions for 01

h and - 151 orders respectively 

4,096 bytes, due to this size representing a typical packet 
size found in many computers and telecommunication 
systems 

Canterbury Corpus 

LRU and resetting the dictionaries that fill up 

The Shift model is simulated under the assumptions mentioned and considering one 

dictionary to store contexts of the same order. When the di ctionaries fill up the space 

assigned to them they are reset, except for orders - 1 and 0. To compare the results, a 

model with separated dictionaries but using the LRU policy was simulated. 

Results and discussion 

Table 6.4 shows the compression ratios obtained with the models. Storing data in 

separated dictionaries and resetting one of the dictionaries does not harm compression 

ratios, just a minimum I% degradation is observed compared with the LRU policy. 

PPMC 
single dictionary 

0.389 

LRU policy 

0.388 

Resetting an 
entire dictionary 

0.393 

Table 6.4 Compression performance of the compression model 

It should be worthy mentioned that from past experiments (Chapter 4, Section 4.6.1) 

we know that implementing the model with a single dictionary provides compression 

ratios of 0.389, wnile Tab le 6.4 shows 0.388 for separated dictionaries with LRU 

discarding poli cy. This slight improvement in compression may be due to more space 
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is assigned to contexts of order 1 and 2 and there are more predictions in this order 

rather than in 0111 and - 151 orders. So, compression ratio does not seem to be a problem 

when using one or more dictionaries to store the model. However, the space 

requirements may vary considerably. Next, we estimate the requirements in every 

case, showing the results in Table 6.5 and Table 6.6. 

Table 6.5 shows the space requirements for the model that stores the data in a single 

dictionary and uses an LRU di scarding policy. The extra requirements for maintaining 

the policy are to be considered, at least 2,048*9 (length of the dictionary * width) bits 

are required. 

Dictionary 
Space requirements (bits) 

order Symbols Frequencies 
Cumulative 
frequencies 

----ya. 2nd 1 sl 65,536 73,728 73,728 , 

0111 2,3 13 3,084 3,084 

-1 2,048 2,048 2,048 

Total 227,617 bits 

Table 6.5 Space requirements for a single dictionary 

Table 6.6 shows the space requirements for the model that stores the data in separated 

dictionaries. No further space is required for discarding policies apart from a few bits 

to keep the number of positions being used in each dictionary. 

Dictionary 
Space requirements (bits) 

order Symbols Frequencies 
Cumulative 
:freguencies 

3rd 65,536 24,576 24,576 

2nd 49,152 24,576 24,576 
1 Sl 32,768 24,576 24,576 

0111 2,3 13 3,084 3,084 
-1 SI 2,048 2,048 2,048 

Total 309,537 bits 

Tab le 6.6 Space requirements for separated dictionaries 
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From these estimates, we observe up to 2 1% of extra space required when the model is 

stored in separated dictionaries. 

Conclusions 

• Independently of the discarding policy used, separating the modelling information 

in several dictionaries does not harm compression ratios, as this experiment 

showed. 

• Resetting part of the model when one of the dictionaries has filled up provides 

compression ratios close to the LRU policy and simplifies considerably the 

complexity of the model at the cost of lligher space requirements. This may be the 

equivalent to the discarding policy used in [Moffat90] , where the trie is deleted and 

2,048 nodes of the trie are kept to reinitialise the model. 

6.2.4 Multi-dictionary Model Experiment- Resizing the Dictionary 

From the two previous experiments we know the percentage of predictions that each 

order context has and that the model could use separated dictionaries for every order of 

the contexts without really harming compression ratios. Taking into account both 

results, it seems helpful to resize the dictionaries according to the percentage of 

symbols predicted in each context. This could result in considerable savings in space. 

However we do not have this knowledge but the following experiment can provide it. 

109 



Chapter 6 

Assumplions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Shifl Algorithm 

3rd order PPMC model 

2,048, 512 and I ,024 positions for 3rd, 2"d and I 81 order 
contexts respectively 
257 and 256 pOSitiOnS for oth and - )51 OrderS respectively 

4,096 bytes, due to this size representing a typical packet size 
found in many computers and telecommunication systems 

Canterbury Corpus 

LRU 

The dictionary sizes are considered always m powers of two as normally the 

commercial memories come in those si1.es. 

Method 

Simulation of the model separating contexts of the same order in different dictionaries 

and having different space limitations proportionally to the percentage of predictions 

made by each context order. 

Results and Discussion 

The compression ratio obtained was 0.397, just about I% of degradation compared 

with the model that uses multiple dictionaries but has 2,048 positions for each of them. 

In this case, the dictionary of 2"d order contexts saves 75% of the positions and the 

dictionary of 151 order contexts halves its size. 

Then, there are significant savings in space requirements, about 59% as shown m 

Table 6. 7 and compared with Table 6.6. 
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Dictionary 
Space requirements 

order Symbols Frequencies 
Cumulative 
fre uencies 

3rd 65,536 24,576 24,576 
2nd 12,288 6, 144 6,144 
1 SI 16,384 12,288 12,288 

01h 2,3 13 3,084 3,084 
-J SI 2,048 2,048 2,048 

Total J 94,849 bits 

Table 6.7 Space requirements resizing the dictionaries 

Conclusions 

• It is possible to change the dictionary s izes according to the percentage of 

predictions given in each context order. This gives a s light degradation m 

compression ratio but saves considerab le amounts of space. 

• A good measure to minimise space requirements in this model is to further study 

the order of the model to implement, and the weight that the contexts of each order 

have in the predictions. If possib le, the study of the type of data also helps to 

define well-balanced dictionaries in tem1s o f s ize, as this experiment confirms. 

6.2.5 Constant Tota l Frequency Counts - Analysis 

From Chapter 4 we learnt that one of the most expenstve operations tn the 

compression system (PPMC model plus aritlunetic coder) in terms of complexity and 

time is the div ision operation the coder perfom1s. Because of that, some strategies have 

been developed to remove division fi·om the ari thmetic coder operations. 

The PPMC model uses an ever-increasing total freq uency count as a ll symbols 

increase their count when they come in. To obtain the probability of occun·ence of 

each symbol, the arithmetic coder di vides the symbol freq uency by the total frequency 

count. This division operation in the worst case, when a symbol is predicted in a - 1 s i 
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order model, is performed o+2 times, where o is the order of the model. Furthermore, 

because arithmetic coding inputs cumulative frequency counts, two division operations 

are performed at a time, see the fo llowing formulae taken from Chapter 4. 

range= high - low+ 1; 

. CFs, 
htgh =low+ range*--·-' -1 · 

CF ' 
So 

CFs 
low = low + range * - -' · 

CF ' 
So 

Generally, at the beginning of the compression process it is expected that most of the 

symbols are predicted in order - 1 as the model starts empty and begins to learn the 

statistics of the data, and in this state the compression process is slower. 

In a software implementation of the PPMC model, entire files are compressed. If the 

files are too small, by the time the model has learnt the statistics of the data the entire 

fi le has been compressed. This means that , according to Table 6.1 , about 60% of the 

time the arithmetic coder performs just two division operations (both at once) per 

symbol but 30% of the time it performs from four to six di vision operations. This latter 

fi gure may rise with different type of data, as with Memory Data that is 50%. These 

figures are obtained considering that if a symbol is predicted in order 3, the arithmetic 

coder just performs its operations once for these symbols. However, if a symbol is 

predicted in 1st order, the model escapes from 3rd order, from 2"d order and finally the 

symbol is predicted in 1 st order, so arithmetic coder perform its operations three times 

(two divisions at a time) for this symbol. 

A division operation in hardware is expensive in terms of complexity. The number of 

cycles required per division multiplied by the number of divisions required per symbol 

makes the compression process too slow. This is why avoiding the division operation 

in the arithmetic coder may improve considerab ly the compression time. 

One of the strategies that may simplify the type of operations performed by the coder, 

and thus can speed up the whole system, is to consider constant the total number of 
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symbols seen, as mentioned in Chapter 5. Since it is a contradiction to call 'constant' 

the total number of symbols seen because this amount is ever increasing, we adopt a 

different terminology. In this, we have called these constant counts fixed number of 

tokens (FNT). Keeping constant the total frequency counts to a power of two benefits 

the system by allowing the replacement of 'divide ' operations in arithmetic coding by 

simple 'shifts ' which are faster to execute. The a1ithmetic coder then needs to shift to 

the right the cumulative frequency counts by log2FNT positions to substitute the 

division operation. From now on, where we refer to shift operations they will be 

considered to the right. 

The new formulae to be used in arithmetic coding would be: 

range = high - low + I; 
high= Low+ (range*CF5 ) >> FNT- 1; ,_ , 

low = low + (range* CF5 ) >> FNT; 
I 

as shown in Chapter 5, formulae 5.1. The saving in computation costs comes from the 

type of operations perfom1ed. A shift operation is simpler and may be done faster than 

a division. However, th is strategy affects the method for updating the frequency counts 

in the modelling unit. We learnt from Chapter 4 that to obtain efficient compression 

ratios having a fixed number of tokens, the number of tokens assigned to the symbols 

must change proportionally to their occurrence in the input stream. So, updating 

frequency counts involves a redistribution of tokens. These points are covered in detail 

in the following two sections. 

6.2.6 Number of Tokens- Experiment 

In this section we study the FNTparameter to determine the value that helps the model 

to provide the best compression ratios. 

Model updating differs now from the PPMC model, as can be seen in Table 6.8. As 

FNT is a constant value, frequency counts no longer increase by one. Instead of that, 
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all symbols donate tokens to the incoming one to redistribute tokens proportionally to 

the probability of occurrence of the symbols. This donation is performed through a 

division operation where, if the dividend is kept to a power of two, the operation may 

be substituted by simple shifts of m positions, with m = log2(dividend). The result of 

this operation is the number of tokens they donate, TIS. In higher order models other 

than 01
h only symbols sharing the current context may donate tokens. 

Updating 
frequency counts 

PPMC model 

Nls =Is + 1 
' ' 

NJ Escape = I Esrnpe + 1 

Shift model 

SDs == fs >> m 
I I 

Nfs
1 

== f s
1 

- SDs
1 

k 

TIS= "'SD5 , 
i= l 

Nfs .. == f s, + TJS 

arithmetic coding 
operations 

CF 
high = low+ range* -

5
-' ' -I; 

CF5, high =low+ (range*Cf's ) >> FNT- I; ... 
low = low + range * CFs, . low = low + (range * CF5, ) >> FNT; 

CF ' 
Su 

Table 6.8 Formulae required for the PPMC and Shift algorithms 

In Table 6.8, SD5 represents the tokens donated by symbol j, Nls indicates new 
J I 

frequency count of symbol i. The '>>' symbol indicates shift operation to the right and 

in the case of the arithmetic coder, the range is obtained by subtracting low to high 

values for both models. k is the number of different symbols seen, and c is the index of 

the current symbol. The Shift algorithm using the formulae in Table 6.8 would be: 

1. Initialise the model with the Escape symbol having its frequency count set to FNT 

2. Repeat for every incoming symbol: 

3. Search symbol in all context orders 

4. From context order where the symbol is found (except - 151
) and above do: 

5. All symbols donate tokens - obtaining Nlsj, for j = 1 to k 

6. Compute TIS adding all the donations from other symbols 

7. Compute frequency count of current symbol adding TIS 

8. If symbol is new verify if there is space in every dictionary 

9. Ifthere is space, 

114 



Chapter 6 Shift Algorithm 

10. Add new symbol, frequency and cumulative frequency counts 

11. Else 

12. Reset the dictionary where there is not space 

13. Add new symbol, frequency and cumulative frequency counts 

14. Update cumulative frequency counts of all symbols with same context 

15. Perform arithmetic cod ing operations 

16. Go to step 2 

The following is an experiment to detennine the vest value of FNT parameter: 

Assumptions 

Order of the model: O'h, IM and 2"d PPMC order models 

4,096 positions for I st and 2"d orders to simulate no space 
Dictionary size: restrictions, 257 and 256 positions for 0111 and - 151 orders 

respectively 

4,096 bytes, due to this size representing a typical packet 
Block size: size found in many computers and telecommunication 

systems 

Data set: Canterbury Corpus 

Discarding policy: ot required 

Number of tokens (FN1) Varied, from 512 to 262, 144 

Positions to shift FNT, m Varied from 1 to 9 

Methodology 

We set a value to m and FNT and execute the simulation. Then, we vary FNT to find 

the best value that generates the best compression ratios. All context levels have the 

same value of FNT and m. The first symbol to occur is Escape and to this symbol is 

assigned FNT value. As symbols are entered, the tokens are reclistributed. 
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Results and discussion 

Figure 6.1 shows the compression performance obtained with the oth order Shift 

algorithm. As can be seen, compression ratios similar to PPMC are obtained with large 

values of FNT, for example when FNT is between 32,768 and 262,1 44. These values 

together with the number of positions to shift, m, guarantee that the model adapts as in 

PPMC, i.e. reflecting the statistics of the data. Smaller values of FNT do not give 

enough flexibility to model to redistribute tokens and thus to adapt correctly to the 

changes in the input. 

Naturally, the bigger the count in FNT, the higher the number of bits required to 

represent them. Thus, for the oth order model, a FNT value of 65,536 offers the best 

balance between hardware requirements and compression results. 
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Figure 6.1 Compression ratio as FNT changes for oth order model 
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Figure 6.2 shows the compression performance obtained with the 1st order Shift 

algoritlun. As can be seen, the closest compression ratio to PPMC is 0.468 and it is 

obtained with 4,096 tokens for FNT, while shifting four positions. That means, 
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contexts of order 0 and 1 have a maximum number of tokens of 4,096. As symbols 

come in, the updating process redistributes frequency counts corresponding to the 

current context by shifting four positions and later updating the cumulative 

frequencies. 
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Figure 6.3 shows the compression performance of the 2nd order model. The closest 

compression ratio to the PPMC algorithm is achieved with a value of FNT of 2,048 as 

Figure 6.3 shows, providing a compression ratio of 0.427. 
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From these experiments it can be noticed that as the order of the model increases, the 

difference in compression ratio with respect to the PPMC algorithm also increases. 

This is because the speed of adaptation is affected by the order of the model. As the 

order of the model increases, the adaptation of the model becomes slower due to the 

higher number of contexts present. Slow adaptation leads to poorer compression 

performance because the model does not reall y gather the statistics of the data 

according to their occurrence in the input stream. 

The best choice of values for FNTparameter that we found in this experiment is shown 

in Table 6.9. 

Order of the model FNT 
oth 262,144 
151 4,096 

2nd 2 048 
' 

Table 6.9 Best choice of values for FNT and positions to shift 
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Although this experiment is about FNT values, it is almost impossible to decide the 

best choice without considering also the positions to shift, as these two parameters are 

closely linked. However, m is further analysed in the next section. 

Conclusions 

• The value of FNT is a very important parameter to consider, as it effects 

compression performance. As the order of the model increases, its value must 

diminish to ensure better adaptation of the model that leads to better compression 

performance. 

• The FNT parameter can not fully determine the success of the algorithm as it is 

closely linked with m. It can be thought that these two values measure to a certain 

degree the speed of adaptation of the model in addition to the order of the model. 

• The fact that a slight degradation in compression ratio compared with the PPMC 

model is observed when the order of the model increases, leads us to think that 

probably there is one more parameter to consider that may help to better adjust 

symbol probabilities. 

6.2. 7 Positions to Shift Frequencies- Experiment 

In this section we study the impact that the number of positions to shift the frequency 

counts has on the compression ratio. Although from the previous experiment we learnt 

that this parameter is not independent of the FNT value, it has been analysed as 

independent as possible. 
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Assumptions 

Order of the model: 0111
, 151 and 2"d PPMC order models 

4,096 positions for 151 and 211
d orders to simulate no space 

Dictionary size: restrictions, 257 and 256 positions for 0111 and - 151 orders 
respectively 

4,096 bytes, due to this size representing a typical packet 
Block size: size found in many computers and telecommunication 

systems 

Data set: Canterbury Corpus 

Discarding policy: Not required 

Number oftokens (FN1) Varied, from 512 to 262,144 

Positions to shiftFNT Varied from 1 to 9 

Methodology 

For this experiment we simulated the model, fixing FNT and varying m, to find the 

value of m that helps the model to generate the best compression ratios . We have been 

ab le to rean·ange the data used to generate Figure 6.1, Figure 6.2 and Figure 6.3, 

inverting the axis, to identify the number of positions to shift frequency counts. 

The first symbol to occur is Escape and FNT value is assigned to it. As symbols are 

entered, the tokens are redistributed. All context levels (dictionaries) have the same 

value of FNT and m. 

Results and Discussion 

Figure 6.4 shows the results of varying FNT and m in a 0111 order model. When m is 

small, the model does not reflect symbol probabilities according to their occurrences in 

the input stream due to symbols donating fewer tokens than they shou ld and this fact 

leads to poor compression. 
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Figure 6.4 O'h order model compression results as m and FNT varies. 

From this figure we observe that: 

• In general, small FNT values do not generate proper adaptation of the model since 

there are not enough tokens to reflect the occurrences of the symbols. 

• Very good compression ratios can be observed, close to PPMC, shifting the 

frequency counts up to seven positions. Clearly, the value of m that yields the best 

compression ratios is seven. 

Figure 6.5 shows the simulation results of the I st order model as the number of 

positions to shift the frequency counts varies. From this figure it can be seen that 

" hen shifting between three and six positions, the frequency counts provide good 

compression ratios with the best results for m equal to four. 
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From the fi gure we observe that: 

• In the I 51 order model, small values of m generate poor compression ratios but not 

as much as in the 0111 order modeL However, large values degrade compression 

more. This difference in compression is due to the high number of possible 

contexts in the I st order model, while in the 01
h order there is just one possible 

'context' (empty); in the l st order model there are many contexts and their 

probabi lity o f occurrence is lower. So, each of these contexts have less opportunity 

to redistribute the tokens assigned to the Escape symboL If m has a large value, the 

Escape remains with high probability, while the symbols have lower probabilities 

than the one they should have and thjs causes poorer compression ratios. 

• When m has a large value, Escape may deplete its tokens when new symbols are 

still coming, so the model continues escaping w ith low probabilities in Escape 

symbols, w hjch requjres more bits to represent these low probabilities and the 

compression ratio worsens. 
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If the previous explanation of the changes in compression is accurate, the 2nd order 

model should maintain this tendency, i.e. large values of m should generate even 

poorer compression ratios, and the resu lts confirm this. Figure 6.6 shows the 

compression ratios obtained with the 2nd order model. In general, the better 

compression ratios are obtained when shifting frequency counts three or four positions. 

When comparing the changes in this model against 0111 and 1st order models, it can be 

seen how the compression ratios with small values (1 and 2) of m are slightly better; 

however, for values of m bigger than 4 the compress ion ratios degrade considerably. 
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Figure 6.6 Compression ratios with 2 nd order model 

From this experiment, we summarise the best choices for the number of positions to 

shift to the right, m, the frequency counts as in Table 6. 1 0. 

Order of the model m 
ot ' 7 
1st 4 

2nd 3 

Table 6.1 0 Best choices for m 
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Conclusions 

• This experiment showed that m, the number of positions shifted, has a significant 

impact on compression ratio. This value must be chosen carefully if the best 

compression ratio is to be obtained. From the last section we learn that the best 

choices of FNT depends on m and here we have seen also that the best choice of m 

depends on the value of FNT, but also on the order of the model. 

• Parameter m measures the speed of adaptation in symbol probabilities. Large 

values of m make symbols donate fewer tokens to the incoming symbol and small 

values of m make symbols donate more tokens. 

To summarise, we have learnt that the higher the order of the model the more contexts 

may occur and the lower probability of occurrence the contexts may have. Thus, 

bigger changes in frequency counts are needed to adapt faster the model to the 

statistics of the data and so the m parameter must be smaller as the order of the model 

mcreases. 

6.2.8 Frequencies and Positions Shifted -Experiment 

From the previous two sections, we found that FNT and m must differ according to the 

order of the model to obtain the best compression ratios. This led us to think that 

probably varying the values of the FNT and m among the different context levels could 

improve compression ratios. In this section we study both parameters, differing among 

the context orders. 

We learnt that as the order of the model increased, the value of FNT and m decreased. 

We will simulate a model with different values among the orders of the contexts. 

Contexts of lower order will have larger values of FNT and m, and contexts of higher 

orders will have smaller values. 
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Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Number of tokens (FNT) 

Positions to shift FNT 

Methodology 

Shift Algorithm 

oth, 1st and 2"d PPMC order models 

4,096 positions for 151 and 2nd orders to simulate no space 
restrictions, 257 and 256 positions for 0111 and - 151 orders 
respectively 

4,096 bytes, due to this size representing a typical packet 
size found in many computers and telecommunication 
systems 

Canterbury Corpus, Memory and Thesis Data Sets were 
compressed 

Not required 

Varied, from 512 to 262,144 

Varied from 1 to 9 

Firstly, we study a 01
h order Shift algorithm, we simulate the algorithm similarly to 

those in the two previous sections. Then, once knowing the best FNT value for the 01
h 

order model, we simulate the 1st order Shift modeL The 0111 order contexts use the value 

found in the first simulation and the 151 order contexts vary the value of this parameter 

to find the one that gives the best compression ratio. We follow the same procedure for 

the 2nd order model and later modify the value of FNT. 

When a frequency count is going to be updated, other symbols donate tokens to the 

incoming one. Tokens donated are added together and assigned to the corresponding 

frequency count. In this way, it is guaranteed that the tokens are not lost and the FNT 

value remains constant along the compression process. 

Results and analysis 

Sections 6.2.5 and 6.2.6 are the bases of Table 6.11 that shows the FNT and m 

parameters that exhibit the best compression ratios for the model; they are shown for 
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models of orders oth to 211
d. In order - 1 both parameters are not relevant since the 

symbols wi ll have the same probabilities. Thus the same results are obtained 

independently of the values chosen for those parameters. 

Model Context Order 

Order o•h 1 SI 2"d 

- h n rderO'" 65,536 
;<:; Order I st 65,536 16,384 
t:.t.; 

Order 2nd 32,768 8, 192 4,096 
Order ot11 7 

~ Order 1st 7 5 
Order 2nd 6 4 3 

Table 6. 11 Fixed number of tokens, FNT, and number of positions to shift, m 

For example, Table 6. 11 indicates that in a 211
d order model, the FNT value for contexts 

of the oth order is 32,768 and their freq uencies are shifted seven positions when 

updated. The FNT value for contexts of the 1st order is 8,192 and frequencies are 

shifted fou r positions while 211d order contexts have a FNT of 4,096 and shift just three 

positions to the right. 

At the beginning of the compression process the FNT value is assigned to the escape 

symbol. As symbols come in, this va lue is redistributed among the symbols. The 

adaptation speed of the Escape is different fo r every context order. H igher order 

contexts adapt slower than lower order ones because the number of possible contexts is 

higher; so, when a symbol is predicted by the highest order context, among all the 

contexts on ly one is updated. The higher the order of the model , the more possible 

contexts, so, it is more probable that Escape wi ll have a high probabili ty at all times. 

As explained in Chapter 5, Escape has a large number of tokens in a transitory state, 

i.e. at the beginning ofthe compression process, which represents a high probability of 

occurrence. This high probability is mapped into few bits by the coder. Wl1ile in this 

state, if tokens are redistributed according to the strategy of this section, other symbols 

get fewer tokens that the number that would reflect their real occurrence in the input 
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stream . Then, in this state it is expected that the model escapes more frequen tl y, which 

is when the Escape has higher probabi li ties. In a steady state, Escape symbol has the 

lowest possible probability while more probable symbols have divided among them 

the tokens corresponding to Escape, assigning them higher probabilities than they 

deserve. ln thi s way, Shift model benefi ts in both states of the compression process. 

Conclusions 

• ln higher-order models when FNT and m val ues differ among the order of the 

contexts improves compression. This fact is related to the possible number of 

contex ts and the chances of every of these contex ts to predict a symbol. 

• The relation that explains the previous improvement is that, as the number of 

different contexts increases, they have a lower chance of predicting the incoming 

symbol, so large FNT values adapt slowly. In thi s case, a close behaviour to PPMC 

is achieved with small FNTvalues. 

• Using each context order different FNT and m parameters, the arithmetic coder 

must input the order of the context as well as symbol frequency counts. This is to 

ensure the proper calcu lation of symbo l probabilities and so the correct 

functionality of the arithmetic coder. 

6.2.9 Parallel Frequency Updating- Discussion 

To update frequency counts, the tokens must be redistributed among the symbols 

according to the symbol occurrence in the input stream. The shift operation (equ ivalent 

to the division) allows the redistribution of tokens according to this occurrence. All 

symbols in the current context must donate tokens to the incoming symbol. Their 

frequency counts are sl1ifted m positions to the right (equi valent to d ivide by 2111
) and 

the resul ts of these operations are added together. This sum is then assigned to the 

incoming symbol. 
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When implementing the Shift model in hardware, the redistribution of tokens may be 

done in serial or parallel form. The former requires one shifter to shift all the 

cotTesponding frequency counts (Figure 6.7a). This process is time consuming since in 

the worst case all symbols may have occurred and all of them donate tokens. The 

second form requires more operators but all shift operations may be done in parallel 

(Figure 6.7b). 

I[ 
•t >> l-rfJ TIS 

• • L 

._.] 

a b 

Figure 6.7 Architecture for frequency updating 

Shift model is focused on increasing compression speed, thus the second form for 

redistributing tokens (Figure 6.7b) is suggested. 

6.2.10 An Approximation for Updating Symbol Frequencies - Experiment 

As mentioned above, the model adds together the tokens for the incoming symbol 

(TIS) . The adding operation when implemented in hardware would require either an 

adder tree or a single adder. The first case is costly in terms of logic and requires 

O(log2q) time, where q is the size of the alphabet. The second case requires O(k) time 

where k is the number of different symbols seen in the current context (that in the 

worst case k = q), it is cheap and simpler to implement but costly in speed. Since our 

model is being designed for fast perfonnance we consider it more convenient to follow 

the first approach. 
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Even this approach could be very expensive in terms of time and complexity because a 

network of connections wou ld be required to connect the output of the shift operations 

to the input of the tree. So, in this section, we explore a form of approximating the TIS 

value that could be fast and simple without degrading the compression performance. 

Reviewing how the process is done currently we observe that the fixed number of 

tokens, FNT, is constant along the compression process, that means that at any 

moment of the compression process: 

k 

FNT= L f s
1 

(6. 1) 
j =l 

where f s is the frequency count of the/11 symbol and k is the number of symbols seen 
I 

in the current context. 

Recalling the formulae of Table 6.8, when symbols donate tokens the frequency counts 

f s are shifted m positions to the right, thus, the new frequency count, Nf5 is obtained 
I I 

as in (6.2). 

Nfs · = fs - (fs >>m) 
1 J J 

(6 .2) 

TIS value is obtained by adding the tokens donated as in (6.3). 

k 

TIS = IC/ 1 >>m) (6.3) 
j= l 

The fo llowing experiment simulates Shift a lgorithm and observes how TIS value varies 

during the compression process. 

129 



Chapter 6 

Assumptions 

Order of the model : 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Number of tokens (FNT) 

Positions to shift FNT 

Methodology 

Shift Algorithm 

0111 order PPMC model 

257 positions, no space restrictions 

4,096 bytes, due to this size representing a typical packet 
size found in many computers and telecommunication 
systems 

Canterbury Corpus and Memory Data Set 

Not required 

65,536 , shown in previous experiments to be a good 
value for the performance of the model (Section 6.2.6) 

7, shown in previous experiments to be a good value for 
the perfom1ance of the model (Section 6.2.6) 

To compare how the number of tokens for the incoming symbols is computed, we 

observed the real ' assignation ' of tokens to the incoming symbol, i.e. without 

approximating the value of TIS, running Canterbury Corpus and Memory Data. Wben 

a fi·equency count is updated, other symbols donate tokens to the incoming one. 

Tokens donated are added together and assigned to the corresponding freq uency count. 

The simplest approximation is to consider the TIS value constant, so no computation is 

required. The Shift model was simulated assigning a constant value to TIS; we 

observed the results and later on we simulated with a different approximation 

explained below. 

Results and Analysis 

The constant approximation consisted in setting TIS as in (6.4). In this case, TIS = 512. 

However it generated overflow in the arithmetic coder for almost every type of data. 

Diminishing this value avoids overflow but the degradation it generates in 

compression resu lts makes this approximation unsuitable for this model. 
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TIS = FNT >>m (6.4) 

Then, without the approximation, we compressed Canterbury Corpus and Memory 

Data and observed that the number of tokens assigned to the incoming symbol was 

related to the number of symbols seen, as Figure 6.8 shows. The values of the figure 

are the average number of tokens donated to a symbol for all the values of k (number 

of different symbols seen in the cwTent context) in the different files. The first value of 

TIS is 511, that is: 

TISs, = (FNT >> m) - 1 (6.5) 

This value diminishes as new symbols are entered, that is subtracting the value of k. 

IJ) 

c: 
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z 

300 .................................................. ......................... ............................................. . 

250 .... ..................... ..................... ...... ... . ............................................................. . 

k 

Figure 6.8 Average TIS as the number of symbols are seen in the current context 

m creases 

From the figure, it can be observed that the value of TIS s, diminishes with the number 

of symbols seen in the current context, k. So, we approximate the value of TIS as 

formula (6.6). 
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TIS5 = ((FNT >>m) - 1) - k 
r 

(6.6) 

The amount in (6.5) is computed only once at the beginning of the compression 

process and it is kept constant, we refer to it as C, then: 

TIS5 = C -k 
r 

(6.7) 

Formula (6.7) requires only subtracting k from C per each incoming symbol when 

obtaining TIS number for the current symbol. This approximation implies that from 

now on, FNT is no longer fixed in the model, but for coding it remains fixed so that the 

shift operations may be done. 

The Shift model was simulated for orders 0, I and 2 with the best values of FNT and m 

of Table 6.11 . It showed a degradation in compression ratio of abo ut 3 % to 5% for 1st 

and 211
d order models respectively with respect to the simulations with 'perfect' TIS 

value, which is not significant considering the savings in space, complexity and time. 

These savings are due to the simplification of the computation of TIS value as showed 

in Figure 6.7. 

Conclusion 

• It is possible to approximate the value of TIS with very significant savings in time 

and complexity at a low cost in terms of compression ratio (3% to 5%). The 

savings include performing a simple subtraction instead of the sum of the tokens 

donated. 
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6.3 SHIFT ALGORITHM 

This section summarises the Shift algorithm including what we learnt from this and 

previous chapters. We explain the algorithm and show it in serial and 'parallel' form. 

The second form takes its name due to the parallel frequency updating process. We 

also mention its characteristics like dictionary size, discard policies, model order, 

approximations for model updating, etc. 

The Shift algorithm, simi larly to the PPMC algorithm, predicts symbols based on 

statistics of the past symbols. The best prediction is made by the longest context that 

provides more accurate probabilities. If the symbol can not be predicted in this context, 

the model escapes to the next lower order model. The operation is repeated until the 

model predicts the symbol or reaches the order '-I ' where all the symbols have the 

same probability. 

Figure 6.9 shows the Shift algorithm. 

Clear the dictionary; 
set context order (CO) to order of the model; 
set longest context (LC) to CO previous symbols; 
DO 
{ 

read in a symbol from the data stream; 
DO 
{ 

search for LC & incoming symbol in the dictionary; 
IF (found) 
{ 

} 
ELSE 
{ 

} 

output cumulative frequencies; 
IF(C0!=' -1 ') update in the d ictionary LC contexts; 
Add symbol from LC+ 1 to CO contexts; 

output 'escape ' cumulative frequencies from LC; 
subtract 1 from CO; 
IF(CO>O) 'drop' the most left symbol from the context; 

}WHILE(symbol is not predicted); 
update LC; 
compute arithmetic coding operations; 

} WHILE( more data is to be compressed); 

Figure 6.9 Shift algorithm in serial form 

133 



Chapter 6 Shift Algorithm 

This algmithm executes serial search operations; however, to speed up the 

compression system we redesigned the updating process for hardware implementation 

(Section 6.2.9), executing so parallel search operations. This algorithm is shown in 

Figure 6.1 0. 

Clear the dictionaries; 

Set LC to context; 
set CO (context order) to order of the model; 

DO 
{ 

read in a symbol from the data stream; 
search for LC & incoming symbol in all the dictionaries; 
selec t best match and set BMO = order o f best match; 
IF (order of best match = CO) 
{ 

output symbol cumulative frequenc ies; 
update frequencies in dictionary of CO; 

} 
ELSE 

{ 
from BMO to CO do: 

} 

output 'escapes' (CFEsc ) of orders BMO+ 1 to CO; 
output CFs from BMO; 
add LC +symbol to dictionaries of orders BMO+ 1 to CO); 
update frequency counts in dictionary of BMO; 

recompute cumulative frequencies, CFs; 
update LC; 
compute arithmetic coding operations; 

} WHILE( more data is to be compressed) ; 

Figure 6.10 Shift model in parallel form 

This parallel algorithm for the Shift model uses the formulae in Table 6.8, but 

considering the approximation for TIS value as in section 6.2.1 0, would be: 

1. Initialise the model with Escape symbol having its frequency count set to FNT 

2. DO 

3. { 

4. Search symbol in all context orders; 

5. From context order where the symbol is found (except - 1 51
) and above do: 

6. All symbols w ith current context donate tokens Nfs
1 

== f s
1 
-(fs

1 
>>m) '<:/) E {l, .. ,k}; 
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7. Compute TIS= C -k,whereC=(FNT >> m)- l ; 

8. ln the order of best match: compute Nfs == f s + TIS; 
r r 

9. If symbol is new verify if there is free space in every dictionary 

1 0. If there is space, 

11. Add new symbol, frequency and cumulative frequency counts 

12. Else 

L3. Reset the dictionary where there is not space 

14. Add new symbol, frequency and cumulative frequency counts 

15. For all symbols with same context do CFsr == CFsr_, + Fs, 

16. Perform arithmetic coding operations 

17. WHILE(more symbols in file) 

In the algorithm, Nfs indicates new frequency count of symbol i. The '>>' symbol 
J 

indicates shi ft operation to the right, k is the number of different symbols seen and c is 

the index of the current symbol. 

As mentioned in Section 6.2.5, arithmetic coding operations now are: 

high = low+ (range*CFs ) >> FNT -1 ; .. , 
low = low + (range * CFs ) >> FNT; 

where range is obtained by subtracting the low bound to the high bound. Divide 

operations have been substituted by simple shifts, which impact compression speed, 

making the algorithm faster. Since the FNT value can be different for every context 

order, the arithmetic coder requires this parameter together with the cumulative 

frequency coW1ts of the symbol being codified. Other operations for the normalisation 

procedure are as Section 6.2.5 states them and they remain unchanged. 
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6.3.1 Assumptions 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

Number of tokens (FNT) 

Positions to shift FNT 

Shift Algorithm 

01h, l Sl and znd order PPMC models 

For 2nd order model: 256, 256, 2K and 4K pos itions for 
I 5\ 01

\ 1st and znd order contexts respecti vely 
For 1st order model: 256, 257 and 4K positions for - 15

\ 

01
h and 151 order contexts respectively 

4,096 bytes, due to this size representing a typical packet 
size found in many computers and telecommunication 
systems 

Canterbury Corpus, Memory and Thesis Data 

Reset a complete dictionary once its space allocated has 
been consumed 

as shown in Table 6. 11 

as shown in Table 6.11 

The model stores escape frequencies as any other symbol frequency. 

6.3.2 Methodology 

To simplify the investigation, we studied the model and coder independently of each 

other. The model reads serially the data to be compressed and produces cumulative 

frequency counts of the symbols that are then transmitted as input to the coder. The 

arithmetic coder was taken from [Witten87] and adapted to the proposed model, i. e. 

substituting the divi sion operation by shifts and accepting the FNT value as a 

parameter together with the cumulative frequency counts. Models of orders 0, 1 and 2 

were simulated in Visual C++. 

6.3.3 Results and Analysis 

Figure 6. 11 shows the compression results for Canterbury Corpus. As it can be seen in 

this figure, for all the fi les the Shift algorithm has a s light degradation compared with 

PPMC algorithm. 
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Figure 6. 11 2nd order Shift algorithm compression for Canterbury Corpus 

Memory Data compression is shown in Figure 6. 12. Again, as for Canterbury Corpus, 

Shi ft algorithm degrades compression fo r all the files when compared with PPMC. 
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Figure 6.13 shows the results of the compression of the Thesis Data Set. The first 

group of data comprises audio data, where it can be seen that for some files Shift 

algorithm gives a slight improvement in compression. For almost all the files of image 

data Shift algorithm performs better than PPMC and for text data it is the opposite, 

PPMC compressing better. 
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Figure 6.13 Compression ratios for Thesis Data 

Table 6.12 shows a summary of the average the compressiOn ratios that Shift 

algorithm provides for Canterbury, Memory and Thesis Data Sets showing 

compatisons with PPMC algorithm for each of them. 

Order 
Data Set Model 

0
,11 1St 2"d 

PPMC 0.56 0.45 0.40 
Canterbury Corpus 

Shift 0.57 0.47 0.43 

PPMC 0.61 0.46 0.45 
Memory Data 

Shift 0.61 0.49 0.47 

PPMC 0.75 0.68 0.66 
Thesis Data 

Shift 0.75 0.68 0.67 

Table 6.12 Compression ratio results obtained with PPMC and Shift algorithms 
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[n Table 6. 12 for each set of data, the first row shows results from PPMC and the 

second one from Shift algorithm. This table shows how Shift algorithm provides 

compression ratios close to PPMC. 

A comparison of the computational cost of PPMC and Shift models, is presented in 

Table 6. 13. 

Process 

Updating 

Searching 

Arithmetic 
coding 

Algorithm 

PPMC 

Few operations 

Many operations 
Complex process 

Slow process 

-----------------
Shift 

Many simple operations 

Few operations 
Fast process 

Fast process 

Table 6. 13 Comparing complex ity of PPMC and Shift a lgori thms 

It is difficult to do a fair comparison of the complex ity of the PPMC and Shift 

algorithms since PPMC has been implemented in software, and Shift is PPMC being 

reorganised for hardware implementation. However, based on hardware 

implementations of other compression a lgorithms, we know that the data structure as 

well as the type of operations proposed for Shift algorithm are suitable for hardware 

implementations, and thus we expect Shift algorithm to perfom1 faster than a direct 

implementation ofthe PPMC algorithm. 

6.3.4 Conclusions 

• It has been shown that it is possible to rearrange PPMC algorithm for its hardware 

implementation and it is expected to perform faster than if the original PPMC were 

implemented. 
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• The redistribution of tokens guarantees a proportional adjustment of symbol 

probabi lities according to its occurrence in the input stream. However, this may 

add some complexity in the updating process. 

• Approximating the number of tokens to assign to the incoming symbol (TIS) 

represents great savings mainly for hardware complexity. It changes either an 

adder tree or a single adder with O(n) delay by a simple subtractor. However, it 

yields, in most of the cases, a small degradation in the compression ratio. 

• Storing contexts in separated dictionaries has the advantage of reducing 

complexity mainly when dealing with discard policies other than resetting the 

dictionary. Properly 'tuning' the dictionary sizes, the space requirements may even 

diminish (see Section 6.2.4). 

6.4 SUMMARY 

This chapter gives an overview on the issues involved in optimising PPMC algorithm 

for its hardware implementation. On the one hand, the coder is reorganised by using 

simple operations, which lead to faster implementations. On the other hand, the model 

is also reorganised to adapt to these changes in the coding whi le maintaining the 

performance of PPMC algorithm. Additional ly, some changes that help to further 

simplify a hardware implementation involves approximating some values. This 

modification leads to small degradation in compression ratios that are not significant 

when we consider the savings in complexity. 

The set of modifications proposed give birth to a new algorithm, that albeit a s light 

degradation in compression ratio, it keeps its statistical nature and adaptability and is 

suitable for hardware implementation. However, the experimentation in this chapter 

has been through simulations of the algorithm, but no hardware modelling has been 

done that may test the hardware suitabi lity, and this is the topic of the next chapter. 
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CHAPTER 7 

HARDWARE MODELLING 

7.1 OBJECTIVES OF THE CHAPTER 

This chapter looks into the hardware architecture for the Shjft algorithm and presents 

an estimation of hardware requirements and performance. The outcomes are analysed 

to determine how close it corresponds to the expected results. This chapter also 

describes the tools uti lised in the hardware implementation. More specifically, the 

objectives of this chapter are to: 

• Provide hardware support for the Shift algorithm. 

• Analyse and evaluate how close its performance corresponds to the expected 

resu lts. 

• Explain its hardware architecture requirements and present an estimation of the 

performance. 

7.2 HARDWARE MODELLING 

This section shows the architecture of the Shift algorithm where a 151 order hardware

modelling unit proves its hardware suitability. The model is coupled with an arithmetic 

coder module. 

7.2. 1 Design Tools 

The SystemC modelling platfonn [SystemCOO] from the Open SystemC Initiative 

(OSCI) is used for the hardware modelling. This platform allows creating system-level 
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designs in a C++ environment. SystemC is a C++ class library and a methodology that 

can be used to create cycle-accurate models of software algorithms, hardware 

architectures and interfaces of SoC (System on a Chip) and system-level designs 

[SystemCOO]. Our system is compiled with the VC ++ compiler, version 6.0, on a 

Windows NT platform. 

7.2.2 Assumptions 

This hardware modelling is an implementation of the Shift algorithm simulated in C 

language and described in Chapter 6. 

Order of the model: 

Dictionary size: 

Block size: 

Data set: 

Discarding policy: 

1st order PPMC model to simplify the implementation 

has 4096 positions for l 51 order and 256 and 257 positions 
for oth and - 1st respectively 

4096 bytes, due to tills size representing a typical packet size 
found in many computers and telecommunication systems 

Canterbury Corpus 

Not required 

An arithmetic coder was implemented as a separated module using the code from 

[Witten87), which was adapted to the new requirements for Shift model. It interacts 

with the model by encapsulating it into a sub-block so it can accept the output signals 

that the model produces. 

7.2.3 Model Architecture 

This section explains the architecture of the model. We implement a 1st order model to 

which we will refer from now on as 'hardware Shift model '. Both, compressor and 

decompressor were built and the compression results were verified against the C 

mode] described in Chapter 6. 
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Figure 7.1 Architecture of the Shift compression model 

Figure 7.1 illustrates the architecture of the compressor model: the bold lines indicate 

the flow of data and the others indicate the flow of control signals. Input data are 

entered to a shift register that assembles the context and the input symbol to produce 

the input for the dictionaries. When indicated by the control, this context and symbol 

are searched in parallel in the dictionaries. Each dictionary inputs the contexts 

according to its order. Signals indicating the result of the search operations are entered 

to the control and the cumulative frequency counts are transferred from the 

dictionaries to the output logic. If the search operation in a dictionary is not successful 

then the cumulative frequencies of the escape symbol are output. The output logic 

selects the best match and sends it to the coder together with other s ignals needed to 

codify them and form the compressed data. 

There is one dictionary for every order of the model. Each of the dictionaries of order 

higher than - 1 s i have the architecture as shown in Figure 7.2. The dictionary of order -

1 is simpler, it just contains the contro l logic and, instead of the memory block, an 

an·ay with the frequencies of the symbols in cumulative form, where the index in the 

array indicates the symbol. Dictionaries of order 0111 and above contain a memory block 

and two registers as the figure shows. They are managed by simple control logic that 

indicates them when a searching or updating operation is to be performed. The 

memory block includes a CAM anay to store the input data and two register files to 
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store the frequency counts and cumulative frequency counts of the symbols and their 

contexts. Search operations in the CAM array produce the address where the symbol is 

located. This address is then used to access the frequency counts from the arrays. The 

two registers, shown below the memory block in the figure, store the number of 

positions used in the dictionary and the match position of the symbol found 

respecti vely. 
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The decompressor has s imilar archi tecture to the compressor, including its 

dictionaries. The task of the decompressor is more compJex and requires more 

operations to perform it. These operations include serial and parallel searches. Serial 

searches are required when the model, inputting cumulative frequencies, looks for 

symbols. When the model is being updated, it requires searching for escape symbols 

and, in this case, when parallel searches in all the dictionaries are performed. Thus, the 

dictjonarjes in the decompressor perfonn the same operations as the compressor ones, 

just adapted for the decompressor requirements. Instead of searching for symbols, the 

decompressor looks for contexts to mark the valid ones from which the decoder can 

predict the incoming symbol. 

The addition of one higher order in the model is straightforward, just one dictionary 

similar to the one of Figure 7.2 is required for every new order plus the appropriate 

signals to connect and extra wi.res for the control logic. 
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7.2.4 Test bench 

Although test bench is the common term for referring to a test harness in the VHDL 

environment, we have adopted it. The test bench is used to exercise and verify the 

functional correctness of the hardware model in a simulation environment [Smith96). 

The test bench, as well as the hardware Shift model, has been implemented 111 

SystemC modelling platfom1. 

Input data ------1 

Compressed data 

I 
Verification 

and analysis 
of results 

I Shift model 
,... in C language Compressed data 

Figure 7.3 Flow of data in the test bench 

Figure 7.3 shows the flow of data in the test bench where the output of the hardware 

Shift model is compared against the output obtained from the Shift model simulated in 

C language. Both outputs are the compressed data and must contain the same bit 

stream if the functionality of the hardware model is correct. It is worth mentioning that 

previously the Shift model , simulated in C language, was tested when the output of the 

decompressor matched the input data. 

7.3 HARDWARE REQUIREMENTS 

As seen in the previous section, the main component of the model is the memory block 

that contains a CAM array to store the symbols input, and two arrays of registers to 

store the statistics of these symbols. The architecture of the model, although simulated 

in behavioural fom1, was analysed to get an estimated number of gates required. The 

estimated gate count of the model is based on a 151 order model and is shown in Table 
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7.2. The estimated gate count was obtained with the help of Table 7.1 that shows the 

number of gates required per bit in every component. 

Component 
-------- -------

CAM aJTay 
Register 
Counter 
Sub tractor 

Implementation Estimated gate count 
------------

3x 1 Mux, DFF, XOR, AND 15 gates 
FF 8 gates 
FF, HA 12 gates 
FA, NAND 10 gates 

Table 7.1 Estimated size of compression components 

The first colunm of the Table 7.1 shows the type of components used in the Shift 

model design. The next co lumn shows the sub-components that integrate each 

component and the last colunm the estimated gate count per bit. From this table, the 

less common component is the CAM array. The architecture of the basic storage unit 

for a CAM array is illustrated in [Gooch96] and has been taken as the basis for the 

calculation of the gate count estimation of this component in Table 7.2. 

The estimated gate count of the design of Figure 7. 1 is shown in Table 7.2. The first 

co lumn indicates the order of the contexts stored in a dictionary for which the 

components, in the second co lumn, are required. The third co lumn shows the size of 

the components, length and depth in case of CAM arrays, number and width of 

registers in case of freq uency tables and number and width of other components. 

The estimated of size of the compressor architecture is about 3 million NAND 

equivalent gates, from which most of the space is assigned to storage and updating of 

data. From the contribution figure in the table, it is clear that the components, which 

heavily affect the system size, are the memory and the arrays of the frequencies and 

cwnulative frequencies. The parallel updating of cumulative frequency counts could 

simpli fy the complex ity of the model by eliminating the frequency array, thus reducing 

its space requirements about 16%. 
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If devices with embedded memory\ ere used for the hardware implementation, about 

one third of the total gate count must fit in this memory. 

Order Component Implementation 
Estimated 

Contribution 
gate count 

- I CAM array 256 x 9 bits 18,432 0.56% 
CAM array 257 x 9 bits 34,695 1.05 % 
Frequency array 257 x 16 bits 32,896 1% 

0 
Cumulative 257 x 16 bits 

32,896 1% 
frequency array 
Shift logic, 257 x 16 bits 

53,456 1.62 % 
Adder/subtractor 
CAM array 4096 x 18 bits 1,105,920 33.61 % 
Frequency array 4096 x 16 bits 524,288 15.94 % 
Cumulative 4096 x 16 bits 524,288 15.94 % 
frequency array 
Shift logic, 4096 x 16 bits 

85 1,968 25.9 % 
Adder/subtractor 
Mux 4096 x 9 bits 11 0,592 3.36 % 
Shift register 1 x 18 bits 144 < 0.0 1% 

Additional Control Unit I x 4 bits register 32 < 0.0 1% 
Logic Output Logic I x 9 bits register 72 < 0.01 % 

Sub tractor 2 x 16 bits 320 0.01 % 

Total Gate Size 3 289,999 

Table 7.2 Estimated system stze based on a I,, order Shift model 

l f one higher order were added to the model, the size of the 151 order dictionary would 

be adjusted to 2K positions while the 2"d order would be 4K positions long. The 

reason, as explained in previous chapters, is that most of the matches are generated in 

the highest context, thus less space is required for one lower order, so, the sizes of the 

lower order dictionary may be even smaller. Thus, if a 2"d order is increased to the 

model, the overall gate count estjmation for I )1 order should increase about 1.5 million 

gates. That means that a 2"d order model would require about 4.5 million gates. The 

decompressor requires about the same number of gates as the compressor. 

On average, 3.29 and 7.5 behavioural clock cycles are required per symbol for 

compressor and decompressor respecti vely. These figures were obtained dividing the 

number or behavioural clock cycles required to compress the sets of data in Canterbury 

Corpus by the number of symbols compressed. Note that the figures are simulation 
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times that do not necessarily correspond to machine cycles since synthes is tools may 

expand a behavioural cycle into several machine cycles. 

From the total estimated gate size, this implementation approach is feasible to achieve 

using present day implementation technology. The system may be implemented in a 

single digital YLSI integrated circuit or in other technologies such as FPGAs, e.g. 

Xilinx FPGA Virtex-Il fami ly, that has up to lO million usable gates. 

Further work involves the synthesis of the SystemC model to directly produce a netlist 

without translating the model into a HDL language. This saves time by eliminating 

errors that may be introduced during translation and later may take significant time to 

track down. 

7.4 SUMMARY 

It was mentioned that the hardware implementation of the statistical PPMC 

compression model is impractical due to the nature of the algorithm. In the previous 

chapter we studied in detail the Shift model, derived from PPMC but suitable for 

hardware implementation. This chapter presented the hardware support for this Shift 

model. 

The Shift model was designed w ith the aim of speeding up the compress ion process, 

not skimping gates in the design. The fulfilment of this design in SystemC language 

shows the suitabi li ty of the model for hardware implementation although unfortunately 

no speed measures were obtained since no real-time implementation was done. 

According to the estimated gate counts of the model, it has been shown that the Shift 

model can be implemented in avai lable digital devices. 
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CHAPTERS 

CONCLUSIONS 

8.1 OBJECTIVES OF THE CHAPTER 

Conclusions 

This chapter concludes this thesis by summarising the main points and discussing 

whether the objectives have been achieved. Specifically, the objectives of the chapter 

are to: 

• Review the objectives set out in Chapter 3. 

• Summarise the conclusions of the investigations detailed in the previous chapters. 

• Examine the strengths and limitations of the work. 

• Outline fUJ1her research areas that may be of interest. 

8.2 REVIEW OF THE OBJECTIVES 

This thesis tackles the problem of understanding how to design high-performance 

compression algorithms suitable for hardware implementation and to show that the 

knowledge gained from the thesis can be used to provide hardware support for an 

efficient compression algorithm. 

From the review of data compression and compression implementations three key 

issues were identified as the lines of research in the pursuit of the objectives: 

• Statistical compression algorithms, particularly the PPM class. 

• Simplification of the PPMC algorithm for fast hardware implementation. 

• Hardware support of this statistical algorithm. 
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No high-order statistical compression models have been implemented in hardware 

before, so it was necessary to gain a better understanding of the issues surrounding 

such models, their design and hardware architectures used in compression 

implementations of other algorithms that could be used in the implementation of 

statistical models. Thus, the following objectives were set for the work in this thesis: 

• To identify the key computational requirements of efficient compressiOn 

algorithms. 

• To simplify the algorithmic processes and understand how they improve the 

performance of a compression system. 

• To analyse the interaction and tradeoffs between algorithmic desired 

characteristics and hardware capabi lities for ensuring the effective mapping of 

algorithmic computational requirements into compression architectures. 

To fulfil these objectives, we analysed the issues involved and chose the investigations 

presented in detail in Chapter 3. Taking the PPMC model as the starting point of 

research, these investigations lead us to develop and simulate the compression model 

to identify its key computational requirements and to study whether other factors may 

impact its performance. Also, these simulations helped to observe if the model could 

be focused towards hardware implementation by using efficient hardware structures 

and simplifying its functionality. Then, further investigations and the integration of an 

entire system based on the previous results were followed doing software simulations 

to determine if the system could be able to reproduce the expected behaviour. Finally, 

hardware support was developed to detennine if it wou ld be possible to implement the 

system using present day implementation technologies. 
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8.3 CONCLUSIONS 

In Chapters 1 and 2 we discussed the lack of a hardware implementation of high

performance statistical data compression algorithms and presented their potential 

benefits. From this, in Chapter 3, and in response to the objectives, we outlined the 

research investigations of this thesis that would lead us to develop such hardware 

implementation. The main conclusions drawn from these investigations are: 

• The PPMC model is a very prom1smg data compressor for hardware 

implementation as results of comparing it with commercial compression 

implementations that place it as the best performer. 

• By reorganising and optimising the PPMC algorithm it is possible to produce a 

model that is suitable for hardware implementation. 

From the statistical data compressiOn investigation about the key computational 

requirements of PPMC compression model and some other factors that influence its 

compression performance we conclude that: 

• The updating process of the PPMC model is the most computationally demanding, 

as it requires to compute cumulative frequency counts and total frequencies to 

estimate symbol probabilities. The operations used to compute such counts are 

complex and a large number of them have to be performed. Another 

computationally demanding process is searching, as it requires a large number of 

operations mainly in high order models. So, if these main features of the algorithm 

were simplified, practical hardware applications of this model could be 

implemented. 

• Other factors such as the order of the model, the dictionary size, the input data 

block size and the discarding policy, that are not directly related with the algorithm 

itself but with the implementation, contribute in great part to the achievement of 

high performance in compression implementations. The higher the order of the 

model the better compression ratio but also the higher the space requirements. The 
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larger the size of the block to compress, the more accurate statistics the model can 

gather and thus the better the compression ratio. The simpler discarding policies 

the faster the model. So, the more resources we assign for the model and the 

simpler the operations to compute, the better overall performance will be achieved. 

Unfortunately practical implementations present space restrictions and care must 

be taken to find a balance between compression and space. 

From the investigation about the simplification of the PPMC algorithm that could 

reduce the complexity of the hardware implementation we conclude that: 

• The statistical nature of the PPMC algorithm requires a careful study when looking 

for some reorganisation of the model. Small changes in the model updating may 

lead to significant degradation of the compression ratio. 

• The updating process may be simplified considerably at the cost of some 

degradation in compression ratio. We found a small degradation when compared 

with the PPMC model with the approximations that we investigated. These 

approximations were simple but failed at assigning probabi1ities to the symbols 

according to their occurrence in the input stream. 

• The task of the arithmetic coder may be simplified and sped up by keeping 

constant and to a power of two the total frequency counts in the model. In this way, 

division operation may be substituted by simple shifts when computing symbol 

probabilities. 

From the investigation about the Shift model implementation we conclude that: 

• It is possible to implement practically a statistical model for lossless data 

compression that may be fitted in digital devices cun·ently available. 

• By keeping constant the total number of tokens assigned to contexts and 

redistributing them among the incoming symbols using a division operation, it is 
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possible to update accurately the model, leaving its performance very close to the 

PPMC model. 

• It is difficult to compute symbol statistics as in the PPMC model without involving 

complex or large numbers of arithmetic operations, which may restrict its practical 

implementation. However, it is possible to find alternative implementations 

without compromising significantly the compression ratios. 

• The use of tokens for the frequency counts allows parallel updating m the 

frequencies, although it adds some complexity in the hardware design. 

• Approximating the number of tokens to assign to the incoming symbol (T!S) 

yields, in most of the cases, a small degradation in compression ratio. However, it 

represents great savings in hardware complexity. 

• Storing contexts in separated dictionaries according to their order has the 

advantage of reducing complexity, mainly when dealing wi th discarding policies if 

other that deleting the complete di ctionary were used. Although, depending of their 

size, this also may increase the space requirements. 

8.4 MEASUREMENTS OF SUCCESS 

After reviewing the conclusions of the chapters, it is clear that all the objectives set out 

in the beginning of the thesis and in chapter three have been met. Specifically, the 

work in this thesis has resulted in the following: 

• The work sets a test bench of commercially available lossless data compressors 

that may be used for benclunarking other possible compression implementations. 

• We stated in Chapter 2 that not many hardware implementations of statistical data 

compression algorithms have been developed and even less statistical models. In 

fact, the only stati stical models developed in hardware have been of oth order and 
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have been coupled generally with the arithmetic coder. In this work we have 

studied higher-order statistical models to be implemented in hardware. By 

simulating and analysing the model, we have identified the requirements of the 

models as well as other factors that have an impact in their compression 

performance. 

• Through experimentation it was shown how the PPMC compression model is 

implemented using efficient data structures utilised for hardware implementations. 

• It was showed how the PPMC algorithm could be restructured and reorganised for 

its implementation in digital technologies. As a result of this reorganisation, a 

novel variant of PPMC, the Shift algorithm, was introduced. It exploits hardware 

architectures to speed up the compression process by substituting complex 

operations required to compute symbol probabilities by simple shifts. Although the 

new algorithm requires larger number of operations, they can be done in parallel, 

which improves compression speed. 

• It was also shown how Shift algoritlm1 was capable of reproducing the behaviour 

of the PPMC algorithm and its feasibility for hardware implementation. This work 

has also shown how the algorithm performs if space restrictions have to be 

imposed. 

• The cycle-accurate implementation of the Shift algorithm has been proved to be 

feasible to implement while maintaining its excellent compression performance. 

This class of algorithms can be implemented with cun-ent technology and, as 

technology improves, the limits set by the implementation size will be reduced, 

making higher-order models of this algorithm even easier to implement in 

hardware. 

8.5 SHORTCOMINGS OF THE WORK 
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Despite the good results obtained, this research has some limitations: 

• High-order PPMC models were studied. However, when all the knowledge gained 

from the experiments was 'consolidated' in the Shift model, it considered just the 

2nd order for further experiments. Once the experiments were finished, we 

proceeded to simulate in SystemC a 1st order model since this was enough to 

demonstrate the feasibility of its implementation. And although estimations of the 

requirements for 2nd order model were given, it was not implemented. 

• Considering the limitation of time, we developed an approximation to compute the 

tokens to assign to the incoming symbol, which simplifies considerably the 

complexity of the updating process of the model. However, we did not study how 

to approximate the computation of cumulative frequencies , which may cause the 

system to be slow in this part due to possible serial computations of these counts. 

• The design was simulated under ideal conditions but was not tested in real-time. 

Also, most of the simulations were measured in terms of compression ratios and 

although it could be deducted whether or not some models could compress fast, the 

compression speed was not measured. 

• At the time of writing, tools for synthesis of SystemC were not available. If they 

were, the model could be synthesised to provide speed information and to give 

better and more accurate compression performance and hardware requirements. 

8.6 FUTURE INVESTIGATIONS 

In the work presented in this thesis, the statistical PPMC compression algorithm was 

modelled in hardware. However, some issues, as how to update cumulative frequency 

counts in parallel was not addressed. Therefore, the natural progression of this work 

would be to implement such a system so the compressor may simplify the hardware 

requirements by 16% as observed in Chapter 7. 
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Other compression algorithms of the PPM class [Teahan95 and Bloom 96b] employ a 

technique called local order estimation to predict symbols with the context that 

provide the highest probability, thus producing further compression. In the Shift model 

the searches are in parallel in all the dictionaries of the model. Thus, the 

implementation of this teclmique requires little work, just some extra comparisons are 

required and the logic to implement it. We consider that time and space requirements 

would not be affected and the improvements in compression ratio could be 

considerable. 

As the thesis gave hardware support of Shift model by simulating it in SystemC 

language, a natural step to follow is to provide a netlist and obtain speed information 

and evaluate more accurately its compression speed and hardware requirements. 

8.7 SUMMARY 

This chapter has presented the main conclusions that were reached as a result of the 

investigations described in this thesis. We have shown how these objectives have been 

achieved. The final conclusion was then drawn from these, which proved the 

feasibility of implementing the PPMC model in hardware. 

Within the bounds of these investigations the thesis has achieved its objective. The 

strength and contribution to knowledge of this thesis lies in the quantitative 

conclusions, which enable us to identify under what conditions Shift model offers 

performance benefits. Suggestions were made on other possible future investigations 

that would extend this work. Furthermore, they may help designers in implementing 

statistical compression models in future compression chips. 
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APPENDIX A 

DATA SETS 

A.l CANTERBURY CORPUS 

Canterbury Corpus [Amold97] is a data set for evaluating lossless data compression 

methods. It is freely available by anonymous ftp from http://corpus.canterbury.ac.nz. 

The paper 'A Corpus for the Evaluation of Lossless Compression Algorithms' 

[Arnold97] explains how and why these files were chosen. The corpus consist of 11 

files, which range in size from 3K to 1 ,029K, from C and LISP source code, html fi les, 

technical writings and text files. Table A-1 lists the files in the corpus, their size and 

their category. The average size of a file is 255,564 symbols (characters) and the total 

number of symbols is 2,811,21 0. 

File Category Size (Bytes) 

alice29.txt text (English text) 152,089 
asyoulik. txt play (Shakespeare) 125,179 
cp.html HTML 24,603 
fields.c Csrc (C source) 11 ,150 
grammar.lsp lisp (LISP source) 3,721 
kennedy.xls Excl (Excel Spreadsheet) 1,029,744 
lcetlO.txt tech (Technical writing) 426,754 
plrabn12.txt poem (Poetry) 481,861 
ptt5 fax (CCITT test set) 513,2 16 
sum SPRC (SPARC Executable) 38,240 
xargs. l man (gnu manual page) 4,227 
TOTAL 2,811,21 0 

Table A-l. Files in Canterbury Corpus 

A random collection of larger fi les consists of 3 files of textbooks and the genome of 

the E.Co\i. bacterium. These files are "useful for algorithms that can't ' get up to speed' 

on smaller files, and the other collections may be usefu l for particular fi le types", 

according to the information provided in the mentioned web page. Table A-2 lists the 

files in the corpus, the total number of symbols is 11,159,482 and it is likely that more 

files are added to this collection. 
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File 

E. Coli 

bible.txt 

world192.txt 

TOTAL 

Category 

Complete genome of the E.Coli 
bacterium 

Size (Bytes) 

4,638,690 

The King James version of the 
bible 4,047,392 

The CIA world fact book 2,473,400 
~------------~~~~----

11,159,482 
Table A-2. Fi les in Canterbury Corpus 

A.2 MEMORY DATA SET 

Memory Data Set contains memory data samples from 8 applications as well as the 

operating system itself of about 80 MB. A detailed explanation about how the files 

were obtained is in [Kjelso97] from were the table A-3 is taken. The set contains data 

from the SunOS operating system, Netscape, Emacs, Textedit, Ghostview, Xman, and 

Matlab. The Vlabplus and Logsyn are part oflntergraph's commercial CAE tool suit. 

File 

Sun OS 

Netscape 

Emacs 

Textedit 

Ghostview 

Xman 

Matlab 

Vlabplus 

Category 

Approximation to the operating system memory 
resident working set 
Captured during use of Netscape WWW browser, 
after some 'net-surfing ' activity 
Captured during use of Ernacs text editor, with a few 
buffers open 
Acquired during use of Textedit, having a small C 
source file open 
Sample obtained from Ghostview postscript viewer, 
with a technical paper open 

Captured from Unix manual-page viewer 

Captured from Matlab whilst rwming a benchmark 
program 
Obtained during execution of netlisting and spicer 
simulation of a 4-bit parallel multiplier 

Size (Bytes) 

10,842, 112 

7,172,096 

6, 111 ,232 

3,223,552 

5,160,960 

3,145,728 

12,025,856 

8,769,536 

Logsyn Collected during logic synthesis area optimisation of 20,336,640 
______ a_4_-...:...b_it...._p_a_ra_ll_el multi lier ------------ -----

TOTAL 76,787,712 

Table A-3. Files in Memory Data Set 
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A.3 THESIS DATA SET 

Thesis data set is a collection of 65 files, which range in size from 3K to 450K, from 

audio, images, object and text files. This set was obtained from [Gooch96]. Tables A-

4, A-5, A-6 and A-7 list the audio, object, image and text files respectively. All the 

tables show the corresponding files, its category and size. The total number of 

characters is 8,045,584. 

Files 

audOO.dat 
audOI .dat 
aud02.dat 
aud03.dat 
aud04.dat 
aud05.dat 
aud06.dat 
aud07.dat 
aud08.dat 
aud09.dat 
aud10.dat 
aud 11.dat 
aud12.dat 
audl3.dat 
aud14.dat 
audl5.dat 
aud16.dat 

TOTAL 

Category Size 
(Bytes) 

Male voice. 6 seconds, mono, 8 bit a-law encoding 48,032 
Female voice. 7 seconds, mono, 8 bit u-law encoding 56,032 
Male voice. 15 seconds, mono, 4 bit g721 encoding 60,032 
Male voice. 9 seconds, mono, 8 bit pcm encoding 72,032 
Classical music. 12 sec., mono, 8 bit a-law encoding 96,032 
Female voice. 13 seconds, mono, 8 bit pcm encoding I 04,032 
Music. 29 seconds, mono, 4 bit g721 encoding 116,032 
Classical music.8 seconds, stereo, 8 bit u-law encoding 128,032 
Female voice. 17 seconds, mono, 8 bit a-law encoding 136,032 
Music. 20 seconds, mono, 8 bit u-law encoding 160,032 
Female voice. 21 seconds, mono, 8 bit pcm encoding 168,032 
Male voice. 25 seconds, mono, 8 bit u-law encoding 200,032 
Classical music, 15 sec., stereo, 8bit a-law encoding 240,032 
Classical music. 18 sec. , stereo, 8 bit pcm encoding 288,032 
Music. 18 seconds, stereo, 8 bit a-law encoding 288,032 
Music. 19 seconds, stereo, 8 bit u-law encodjng 304,032 
Music. 23 seconds, stereo, 8 bit pcm encoding 368,032 

--------~------------~--
2,832,544 

Table A-4. Audio files in Thesis Data Set, sampling rate 8 KHz 

159 



Appendix A 

File 

imgOO.dat 

img01.dat 
img02.dat 

img03.dat 

img04.dat 

img05.dat 

img06.dat 

img07.dat 

img08.dat 

img09.dat 

imglO.dat 

imgll.dat 

imgl2.dat 

imgl 3.dat 

img14.dat 

imgl5.dat 

TOTAL 

Category 

Raquel Welsh - 320x200 1 bit Portable Bitmap Image 
(pbm) 
United Nations Flag - drawperfect v1.1 format 
Outline map of the world - drawperfect v 1.1 format 
Plan of Welsh farmhouse - 640x400 1 bit Poriable 
Bitmap Image (pbm) 
Kate Bush album cover - 320x200 GIF format (b&w 
64 shades) 
Photograph of a mountain valley - 533x759 JPEG 
format 
Photograph of an oriental womans face - 300x350 8 bit 
Portable Greymap Image (p gm) 
Photograph of a castle- 950x800 JPEG format 
Photograph of a cablecar and scenery - 400x400 8 
plane sun rasterfile 
Photograph of a house - 256x256 24 plane sun 
rasterfile 
Photograph of football action - 512x480 8 plane sun 
rasterfile 
Photograph of a house on a bleak hill side - 500x500 8 
bit Portable Greymap linage (pgm) 
Mona Lisa- 500x650 GIF format 
Photograph of a yacht race - 250x400 24 plane sun 
rasterfile 
Photograph of a cornfield and tractor - 440x260 24 bit 
Portable Pixmap Image (ppm) 
Photograph of an F 16 flying over mountains - SOOx300 
24 bit Portable Pixmap Image (ppm) 

Table A-5. Image files in Thesis Data Set 

Data Sets 

Size 

8,012 

11 ,773 
15,1 61 

32,0 12 

51 ' 184 

76,407 

105,015 

119,969 

160,686 

196,640 

245,792 

250,016 

263,472 

300,032 

343,216 

450,016 

2,629,403 
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File 

objOO.dat 

objO l.dat 

obj02.dat 

obj03.dat 

obj04.dat 

obj05.dat 

obj06.dat 

obj07.dat 

obj08.dat 

obj 09.dat 

obj 1 O.dat 

obj ll .dat 

obj 12.dat 

obj 13.dat 

obj 14.dat 

objl5.dat 

obj 16.dat 

TOTAL 

Category 

Unix DU command (displays disk blocks per file or 
directory). Sun Microsystems release 4.1 (09/09/87). 
Image edge detection program compiled on 80386 
architecture (from Pascal source). 
DOS V5. 1 edlin command (text editing program) on 
80386 architecture. 
Unix LS command (lists contents of a directory). Sun 
Microsystems release 4.1 (02/1 0/89). 
Image display program compiled on 80386 
architecture (from Pascal source). 
DOS V6.0 fdisk command (disk formatting program) 
on 80486 architecture. 
Huffman code length calculation program compiled on 
Sun SPARC-1 architecture (from C source). 
Unix SED command (stream editor). Sun 
Microsystems release 4.1 (03/02/89). 
DOS V5. 1 smartdrv command (RAM disk program) 
for 80386 architecture. 
Loss less data compression algoritlun (bstwOO l by 
Mark Gooch) compiled on Sun SP ARC-I architecture 
(from C source). 
Windows V3.1 calendar program (calendar display and 
diary) on 80386 architecture. 
Image rotation program (pnmrotate from pbmplus 
toolkit) compiled on Sun SP ARC-1 architecture (from 
C source). 
Fractal landscape generation program (ppmforge from 
pbmplus toolkit) compiled on Sun SPARC-1 
architecture (from C source). 
Windows V3.1 cardfile progran1 (electronic card 
storage system) on 80386 architecture. 
Power circuits analysis program compiled on Hewlett 
Packard HP9000/800 system (from FORTRAN 
source). 
Unix TAR command (tape archiving program). Sun 
Microsystems release 4.1 (16/02/88). 
Image type conversion program (convert from 
lmageMagick toolkit) compiled on Sun SPARC-LX 
architecture (from C source). 

Table A-6. Object fi les in Thesis Data Set 

Data Sets 

Size 
(Bytes) 

4,8 16 

7,385 

12,642 

13,336 

25,28 1 

29,333 

32,768 

40,960 

42,073 

49,152 

59,824 

65,536 

81,920 

93, 184 

139,264 

147,456 

348,388 

1,193,318 
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File 

txtOO.dat 

txtOl.dat 
txt02.dat 
txt03.dat 

txt04.dat 

txt05.dat 
txt06.dat 

txt07.dat 

txt08.dat 

txt09.dat 

txtlO.dat 

txtll.dat 
txt12.dat 

txt13.dat 

txt14.dat 

TOTAL 

Category 

C source code for entropy calculation (heavily 
connnented) 
Text of connnon provisions from the Maastrict Treaty 
Text of Desert Storm speech by George Bush 
Text of Antartic survey trip by Peter Amati 
C source code for bstw data compression algorithm 
(heavily commented) 
Text of Examination Regulations for LUT 
A translation of the Magna-Carta by Gerald Murphy 
A document on Networking Standards by A. M. 
Rutkowski 
Sun Microsystems manual entry for 'make' command 
(release 4.1 , 15/09/89) 
Text ofProtocols from the Maastrict Treaty 
Text and graphics of a report on storage media (in 
WordPerfect format) by Mark Gooch 
A Christmas Carol by Charles Dickens 
Alice Through The Looking Glass by Lewis Carol 
Text of 'A Vision of Change for America' by Bill 
Clinton 
The War of the Worlds by Herbert George Wells 

Table A-7. Text files in Thesis Data Set 

Data Sets 

Size 
(Bytes) 

3,648 

4,476 
8,407 

12,409 

16,013 

22,211 
28,469 

31,231 

53,731 

97,390 

149,006 

156,583 
156,635 

306,132 

343,978 

1,390,319 
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