12,750 research outputs found

    Error tolerance in an NMR Implementation of Grover's Fixed-Point Quantum Search Algorithm

    Full text link
    We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance (NMR) quantum computer, searching for either one or two matching items in an unsorted database of four items. In this new algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, and so the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored.Comment: 5 Pages RevTex4 including three figures. Changes made at request of referees; now in press at Phys Rev

    Algorithms for Lattice QCD with Dynamical Fermions

    Full text link
    We consider recent progress in algorithms for generating gauge field configurations that include the dynamical effects of light fermions. We survey what has been achieved in recent state-of-the-art computations, and examine the trade-offs between performance and control of systematic errors. We briefly review the use of polynomial and rational approximations in Hybrid Monte Carlo algorithms, and some of the theory of on-shell chiral fermions on the lattice. This provides a theoretical framework within which we compare algorithmic alternatives for their implementation; and again we examine the trade-offs between speed and error control.Comment: Review presented at Lattice2004(plenary), Fermilab, June 21-26, 2004. 14 pages, 8 figure

    Topological Flat Band Models and Fractional Chern Insulators

    Get PDF
    Topological insulators and their intriguing edge states can be understood in a single-particle picture and can as such be exhaustively classified. Interactions significantly complicate this picture and can lead to entirely new insulating phases, with an altogether much richer and less explored phenomenology. Most saliently, lattice generalizations of fractional quantum Hall states, dubbed fractional Chern insulators, have recently been predicted to be stabilized by interactions within nearly dispersionless bands with non-zero Chern number, CC. Contrary to their continuum analogues, these states do not require an external magnetic field and may potentially persist even at room temperature, which make these systems very attractive for possible applications such as topological quantum computation. This review recapitulates the basics of tight-binding models hosting nearly flat bands with non-trivial topology, C0C\neq 0, and summarizes the present understanding of interactions and strongly correlated phases within these bands. Emphasis is made on microscopic models, highlighting the analogy with continuum Landau level physics, as well as qualitatively new, lattice specific, aspects including Berry curvature fluctuations, competing instabilities as well as novel collective states of matter emerging in bands with C>1|C|>1. Possible experimental realizations, including oxide interfaces and cold atom implementations as well as generalizations to flat bands characterized by other topological invariants are also discussed.Comment: Invited review. 46 pages, many illustrations and references. V2: final version with minor improvements and added reference

    Hidden Non-Abelian Gauge Symmetries in Doped Planar Antiferromagnets

    Full text link
    We investigate the possibility of hidden non-Abelian Local Phase symmetries in large-U doped planar Hubbard antiferromagnets, believed to simulate the physics of two-dimensional (magnetic) superconductors. We present a spin-charge separation ansatz, appropriate to incorporate holon spin flip, which allows for such a hidden local gauge symmetry to emerge in the effective action. The group is of the form SU(2)US(1)UE(1)SU(2)\otimes U_S(1) \otimes U_E(1), where SU(2) is a local non-Abelian group associated with the spin degrees of freedom, U_E(1) is that of ordinary electromagnetism, associated with the electric charge of the holes, and U_S(1) is a `statistical' Abelian gauge group pertaining to the fractional statistics of holes on the spatial plane. In a certain regime of the parameters of the model, namely strong U_S(1) and weak SU(2), there is the possibility of dynamical formation of a holon condensate. This leads to a dynamical breaking of SU(2)U(1)SU(2) \to U(1). The resulting Abelian effective theory is closely related to an earlier model proposed as the continuum limit of large-spin planar doped antiferromagnets, which lead to an unconventional scenario for two-dimensional parity-invariant superconductivity.Comment: 32 pages LATEX, one figure. (More details given in the passage from the Hubbard model to the long wavelength lattice gauge theory; one figure added; no changes in the conclusions.

    A precise CNOT gate in the presence of large fabrication induced variations of the exchange interaction strength

    Get PDF
    We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a Heisenberg Hamiltonian. This method easily applies to a general two-qubit Hamiltonian. We show how the robust CNOT gate can achieve a very high fidelity when a single application of the composite rotations is combined with a modest level of Hamiltonian characterisation. Operating the robust CNOT gate in a suitably characterised system means concatenation of the composite pulse is unnecessary, hence reducing operation time, and ensuring the gate operates below the threshold required for fault-tolerant quantum computation.Comment: 9 pages, 8 figure
    corecore