7 research outputs found

    The Belle II DEPFET Pixel Vertex Detector : Development of a Full-Scale Module Prototype

    Get PDF
    The Belle II experiment, which will start after 2015 at the SuperKEKB accelerator in Japan, will focus on the precision measurement of the CP-violation mechanism and on the search for physics beyond the Standard Model. A new detection system with an excellent spatial resolution and capable of coping with considerably increased background is required. To address this challenge, a pixel detector based on DEPFET technology has been proposed. A new all silicon integrated circuit, called Data Handling Processor (DHP), is implemented in 65 nm CMOS technology. It is designed to steer the detector and preprocess the generated data. The scope of this thesis covers DHP tests and optimization as well the development of its test environment, which is the first Full-Scale Module Prototype of the DEPFET Pixel Vertex detector

    Readout Electronics for the Upgraded ITS Detector in the ALICE Experiment

    Get PDF
    ALICE is undergoing upgrades during the Long Shutdown (LS) 2 of the LHC to improve its performance and capabilities, and to prepare the experiment for the increases in luminosity provided by the LHC in Run 3 and Run 4. One of the most extensive upgrades of the experiment (and the topic of this thesis) is the replacement of the Inner Tracking System (ITS) in its entirety with a new and upgraded system. The new ITS consists exclusively of pixel sensors organized in seven cylindrical layers, and offers significantly improved tracking capabilities at higher interaction rates. And in contrast to the previous system, which would only trigger on a subset of the available events that were deemed “interesting”, the upgraded ITS will capture all events; either in a triggered mode using minimum-bias triggers, or in a “trigger-less” continuous mode where event data is continuously read out. The key component of the upgrade is a novel pixel sensor chip, the ALPIDE, which was developed at CERN specifically for the ALICE ITS upgrade. The seven layers of the ITS is assembled from sub-assemblies of sensor chips referred to as staves, and the entire detector consists of 24 120 chips in total. The staves come in three different configurations; they range from 9 chips per stave for the innermost layers, and up to 196 chips per stave in the outer layers. The number of control and data links, as well as the bit-rate of the data links, differs widely between the staves as well. Data readout from the high-speed copper links of the detector requires dedicated readout electronics in the vicinity of the detector. The core component of this system is the FPGA-based Readout Unit (RU). It facilitates the readout of the data links and transfer data to the experiment’s server farms via optical links; provides control, configuration and monitoring of the sensor chips using the same optical links, as well as over CAN-bus for redundancy; distributes trigger signals to the sensor, either by forwarding the minimum-bias triggers of the experiment, or by local generation of trigger pulses for the continuous mode. And the field-programmable devices of the RU allows for future updates and changes of functionality, which can be performed remotely via several redundant paths to the RUs. This is an important feature, since the RUs are not easily accessible when they are installed in the cavern of the experiment and will be exposed to radiation when the LHC is in operation. Radiation tolerance has been an important concern during the development of the FPGA designs, as well as the RU hardware itself, since radiation-induced errors in the RUs are expected during operation. Techniques such as Triple Modular Redundancy (TMR) were used in the FPGA designs to mitigate these effects. One example is the radiation tolerant CAN controller design which is introduced in this thesis. A different challenge, which is also addressed in this thesis, is the monitoring of internal status and quantities such as temperature and voltage in the ALPIDE chips. This is performed over the ALPIDE’s control bus, but must be carefully coordinated as the control bus is also used for triggers. The detector and readout electronics are designed to operate under a wide set of conditions. Considering events from Pb–Pb collisions, which may have thousands of pixel hits in the detector, a typical pp event has comparatively few pixel hits, but the collision rate is significantly higher for pp runs than it is for Pb–Pb runs. And the detector can be used with two triggering modes, where the continuous trigger mode has additional parameters for trigger period. A simulation model of the ALPIDE and ITS, presented in this thesis, was developed to simulate the readout performance and efficiency of the detector under a wide set of circumstances. The simulated results show that the detector should perform with a high efficiency at the collision rates that are planned for Run 3. Initial plans for a dedicated hardware, to handle and coordinate busy status for the detector, was deemed superfluous and the plans were canceled based on these results. Collision rates higher than those planned for Run 3 were also simulated to yield parameters for optimal performance at those rates. For the RU, which was designed to interface to three widely different stave designs, the simulations quantified the amount of data the readout electronics will have to handle depending on the detector layer and operating conditions. Furthermore, the simulation model was adapted for simulations of two other ALPIDE-based detector projects; the Proton CT (pCT) project at University of Bergen (UiB), a Digital Tracking Calorimeter (DTC) used for dose planning of particle therapy in cancer treatment; and the planned Forward Calorimeter (FoCal) for ALICE, where there will be two layers of pixel sensors among the 18 layers of Si-W calorimeter pads in the electromagnetic part of the detector (FoCal-E). Since the size of a calorimeter pad is relatively large, around 1 cmÂČ, the fine grained pixels of the ALPIDE (29.24 ”m × 26.88 ”m) will help distinguish between multiple showers and improve the overall spatial resolution of the detector. The simulations helped prove the feasibility of the ALPIDE for this detector, from a readout perspective, and FoCal was later approved by the LHCC committee at CERN.Doktorgradsavhandlin

    Ultra high-density hybrid pixel sensors for the detection of charge particles

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Development, Characterization and Operation of the DCDB, the Front-End Readout Chip for the Pixel Vertex Detector of the Future BELLE-II Experiment

    Get PDF
    The BELLE-II detector is the upgrade of its predecessor named BELLE at KEK research centre in Tsukuba, Japan, which was successfully used in the past to find evidence for CP violating decays. The upgraded SuperKEKB accelerator is specified to produce a luminosity of 8*10^35 cm^-2 s^-1. Consequently, the BELLE-II detector and particularly the innermost pixel vertex detector (PXD) suffers from enormous occupancy due to background events. Coping with this harsh environment while providing the required physics performance results in tough specifications for the front-end readout electronics. The PXD pixel detector system is based on the DEPFET technology. DEPFET transistors combine particle detection and signal amplification within one device. The DCDB chip is developed to sample and digitize signals from these transistors while complying with the specifications of BELLE-II. The presented work illustrates the chip’s features and describes its implementation process. The device is comprehensively characterized using an individually developed test environment. The obtained results are presented. The DCDB’s ability to serve as a readout device for particle physics applications is demonstrated by its successful operation within a DEPFET detector prototype system. Highlights are a decay spectrum measurement using Cd-109 and the successful operation in a beam test experiment at CERN

    Continuing The Search For Nothing: Invisible Higgs Boson Decays And High Luminosity Upgrades At The Atlas Detector

    Get PDF
    This thesis presents two main projects involving the ATLAS experiment at the Large Hadron Collider: a search for invisible decays of the Higgs boson produced via vector boson fusion, and the design and simulation of an application specific integrated circuit produced for the Inner Tracker Strip detector upgrade project, the Hybrid Controller Chip (HCCStar). The HCCStar will be installed in the ATLAS detector around 2026 for High Luminosity LHC operations, which will see the rate of collisions increased to 200 every 25 ns. Verification of the HCCStar design was performed using cocotb, a Python framework for testing digital logic. The search for invisible Higgs decays was conducted using 139 fb−1 of recorded proton-proton collision data with a center-of-mass energy of \sqrt{s} = 13 TeV collected between 2015 and 2018. Observed (expected) upper limits were set on the branching ratio of the Higgs boson to an all-invisible final state at B(H \to inv.) = 0.15 (0.11) at a 95% confidence level. No significant disagreement from the Standard Model, which predicts B(H \to inv.) ∌ 1.0 × 10^{-3}, was observed. This result is then reinterpreted in the context of Higgs portal dark matter and compared to various direct detection experiments searching for evidence of weakly interacting massive particles (WIMPs)

    Interconnect technologies for very large spiking neural networks

    Get PDF
    In the scope of this thesis, a neural event communication architecture has been developed for use in an accelerated neuromorphic computing system and with a packet-based high performance interconnection network. Existing neuromorphic computing systems mostly use highly customised interconnection networks, directly routing single spike events to their destination. In contrast, the approach of this thesis uses a general purpose packet-based interconnection network and accumulates multiple spike events at the source node into larger network packets destined to common destinations. This is required to optimise the payload efficiency, given relatively large packet headers as compared to the size of neural spike events. Theoretical considerations are made about the efficiency of different event aggregation strategies. Thereby, important factors are the number of occurring event network-destinations and their relative frequency, as well as the number of available accumulation buffers. Based on the concept of Markov Chains, an analytical method is developed and used to evaluate these aggregation strategies. Additionally, some of these strategies are stochastically simulated in order to verify the analytical method and evaluate them beyond its applicability. Based on the results of this analysis, an optimisation strategy is proposed for the mapping of neural populations onto interconnected neuromorphic chips, as well as the joint assignment of event network-destinations to a set of accumulation buffers. During this thesis, such an event communication architecture has been implemented on the communication FPGAs in the BrainScaleS-2 accelerated neuromorphic computing system. Thereby, its usability can be scaled beyond single chip setups. For this, the EXTOLL network technology is used to transport and route the aggregated neural event packets with high bandwidth and low latency. At the FPGA, a network bandwidth of up to 12 Gbit/s is usable at a maximum payload efficiency of 94 %. The latency has been measured in the scope of this thesis to a range between 1.6 Όs and 2.3 Όs across the network between two neuron circuits on separate chips. This latency is thereby mostly dominated by the path from the neuromorphic chip across the communication FPGA into the network and back on the receiving side. As the EXTOLL network hardware itself is clocked at a much higher frequency than the FPGAs, the latency is expected to scale in the order of only approximately 75 ns for each additional hop through the network. For being able to globally interpret the arrival timestamps that are transmitted with every spike event, the system time counters on the FPGAs are synchronised across the network. For this, the global interrupt mechanism implemented in the EXTOLL hardware is characterised and used within this thesis. With this, a synchronisation accuracy of ±40ns could be measured. At the end of this thesis, the successful emulation of a neural signal propagation model, distributed across two BrainScaleS-2 chips and FPGAs is demonstrated using the implemented event communication architecture and the described synchronisation mechanism

    A SystemVerilog-UVM Methodology for the Design, Simulation and Verification of Complex Readout Chips in High Energy Physics Applications

    No full text
    The adoption of a system-level simulation environment based on standard methodologies is a valuable solution to handle system complexity and achieve best design optimization. This work is focused on the implementation of such a platform for High Energy Physics (HEP) applications, i.e. for next generation pixel detector readout chips in the framework of the RD53 collaboration. The generic and re-usable environment is capable of verifying different designs in an automated fashion under a wide and flexible stimuli space; it can also be used at different stages of the design process, from initial architecture optimization to final design verification
    corecore