
Simon Voigt Nesbø

Readout Electronics for the
Upgraded ITS Detector in the
ALICE Experiment

2022

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Simon Voigt Nesbø

Readout Electronics for the Upgraded
ITS Detector in the ALICE Experiment

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 03.06.2022

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Simon Voigt Nesbø

Name: Simon Voigt Nesbø

Title: Readout Electronics for the Upgraded ITS Detector in the ALICE Experiment

Year: 2022

i

“How hard can it be?”

Jeremy Clarkson

iii

Abstract

ALICE is undergoing upgrades during the Long Shutdown (LS) 2 of the LHC to
improve its performance and capabilities, and to prepare the experiment for the in-
creases in luminosity provided by the LHC in Run 3 and Run 4. One of the most
extensive upgrades of the experiment (and the topic of this thesis) is the replacement
of the Inner Tracking System (ITS) in its entirety with a new and upgraded system.
The new ITS consists exclusively of pixel sensors organized in seven cylindrical lay-
ers, and offers significantly improved tracking capabilities at higher interaction rates.
And in contrast to the previous system, which would only trigger on a subset of the
available events that were deemed “interesting”, the upgraded ITS will capture all
events; either in a triggered mode using minimum-bias triggers, or in a “trigger-less”
continuous mode where event data is continuously read out.

The key component of the upgrade is a novel pixel sensor chip, the ALPIDE, which
was developed at CERN specifically for the ALICE ITS upgrade. The seven layers of
the ITS is assembled from sub-assemblies of sensor chips referred to as staves, and
the entire detector consists of 24 120 chips in total. The staves come in three different
configurations; they range from 9 chips per stave for the innermost layers, and up to
196 chips per stave in the outer layers. The number of control and data links, as well
as the bit-rate of the data links, differs widely between the staves as well.

Data readout from the high-speed copper links of the detector requires dedicated
readout electronics in the vicinity of the detector. The core component of this system
is the FPGA-based Readout Unit (RU). It facilitates the readout of the data links and
transfer data to the experiment’s server farms via optical links; provides control, con-
figuration and monitoring of the sensor chips using the same optical links, as well
as over CAN-bus for redundancy; distributes trigger signals to the sensor, either by
forwarding the minimum-bias triggers of the experiment, or by local generation of
trigger pulses for the continuous mode. And the field-programmable devices of the
RU allows for future updates and changes of functionality, which can be performed
remotely via several redundant paths to the RUs. This is an important feature, since
the RUs are not easily accessible when they are installed in the cavern of the exper-
iment and will be exposed to radiation when the LHC is in operation. Radiation

iv

tolerance has been an important concern during the development of the FPGA de-
signs, as well as the RU hardware itself, since radiation-induced errors in the RUs are
expected during operation. Techniques such as Triple Modular Redundancy (TMR)
were used in the FPGA designs to mitigate these effects. One example is the radiation
tolerant CAN controller design which is introduced in this thesis. A different chal-
lenge, which is also addressed in this thesis, is the monitoring of internal status and
quantities such as temperature and voltage in the ALPIDE chips. This is performed
over the ALPIDE’s control bus, but must be carefully coordinated as the control bus
is also used for triggers.

The detector and readout electronics are designed to operate under a wide set of
conditions. Considering events from Pb–Pb collisions, which may have thousands of
pixel hits in the detector, a typical pp event has comparatively few pixel hits, but the
collision rate is significantly higher for pp runs than it is for Pb–Pb runs. And the de-
tector can be used with two triggering modes, where the continuous trigger mode has
additional parameters for trigger period. A simulation model of the ALPIDE and ITS,
presented in this thesis, was developed to simulate the readout performance and effi-
ciency of the detector under a wide set of circumstances. The simulated results show
that the detector should perform with a high efficiency at the collision rates that are
planned for Run 3. Initial plans for a dedicated hardware, to handle and coordinate
busy status for the detector, was deemed superfluous and the plans were canceled
based on these results. Collision rates higher than those planned for Run 3 were also
simulated to yield parameters for optimal performance at those rates. For the RU,
which was designed to interface to three widely different stave designs, the simula-
tions quantified the amount of data the readout electronics will have to handle de-
pending on the detector layer and operating conditions. Furthermore, the simulation
model was adapted for simulations of two other ALPIDE-based detector projects; the
Proton CT (pCT) project at University of Bergen (UiB), a Digital Tracking Calorimeter
(DTC) used for dose planning of particle therapy in cancer treatment; and the planned
Forward Calorimeter (FoCal) for ALICE, where there will be two layers of pixel sen-
sors among the 18 layers of Si-W calorimeter pads in the electromagnetic part of the
detector (FoCal-E). Since the size of a calorimeter pad is relatively large, around 1 cm2,
the fine grained pixels of the ALPIDE (29.24 µm× 26.88 µm) will help distinguish be-
tween multiple showers and improve the overall spatial resolution of the detector.
The simulations helped prove the feasibility of the ALPIDE for this detector, from a
readout perspective, and FoCal was later approved by the LHCC committee at CERN.

v

Acknowledgements

Well, here it is. Finally. The culmination of almost six years of work, two years over
time. I hope you will enjoy it. If not, you can always keep it by your bedside as a
sleeping aid. But at least it is out of my hands now.

I guess I did not fully grasp what I was taking on when I decided to pursue a
Ph.D. degree. Back in 2015, I was perfectly content with my Master’s degree and job
in the electronics industry, and I did not anticipate that I would ever pursue a Ph.D.
What would I even research, and how would I get funding for it? But then I ran
into Johan Alme one day, whom I knew from when I studied for my Bachelor’s at
Høgskulen på Vestlandet (HVL)1,2. Johan would be supervising a Ph.D. position at
HVL and tried to persuade me into applying. Although it seemed like a once-in-a-
lifetime opportunity for me, I was reluctant at first. But I guess the appeal of referring
to myself as Dr. Nesbo in the future was too strong to ignore, so after some time I
decided to give it a go. And how hard can it be to do a Ph.D., anyway, I thought.

The Ph.D. was essentially a collaboration between three institutions. The research
project itself was part of a much larger project in the ALICE experiment at CERN’s
Large Hadron Collider (LHC). The UiB would award the Ph.D. degree. And I would
be employed and paid by HVL.

The Ph.D. project would revolve around some major upgrades that were planned
for the ALICE experiment. The details were a bit scarce, but it would involve research
and development of instrumentation and electronics, which were likely to feature FP-
GAs. Now, you may wonder what an FPGA is, and to answer the question I have
come up with this scientific definition: An FPGA is a particularly nerdy type of pro-
grammable microchip. There are, of course, many types of programmable chips, but none that
are not as cool as FPGAs. Needless to say, I was excited about the opportunity to work
on a real-world FPGA project. And, let us not forget, it was a project at CERN, one of
the world’s most famous and highly regarded research organizations.

I had my first day as a Ph.D. student on April 1st, 2016. There was not much time
to adjust as we had scheduled the first trip to CERN in my second week. Fortunately,
Johan and Håvard, two of my supervisors on the Ph.D., came along and were there

1Known as the Western Norway University of Applied Sciences in English.
2The campus in Bergen was formerly known as Høgskolen i Bergen (HiB), or Bergen University

College in English.

vi

to help me register and get started. And, not to mention navigating the maze of
buildings and corridors at the CERN complex. More details about the project had
been carved out at this point. Along with my supervisors and other colleagues at
HVL and UiB, I would be working on the upgrades for the Inner Tracking System
(ITS) of the ALICE experiment. The project had already been in progress for several
years, and the new system would be fully based on a custom pixel sensor chip that
had been developed at CERN for this project. We had a chance to meet some of
our new colleagues at CERN, in particular the group of people responsible for the
development of the readout electronics for the detector, with whom we were going to
join forces.

That first trip to CERN really set the pace for the next couple of years. There
was never a dull moment. My schedule was very busy with travel which I had to
carefully balance between my teaching duties at HVL and courses at UiB. I attended
conferences and workshops in California, USA; Antwerp, Belgium; Santiago de Com-
postela, Spain; Adelaide, Australia; as well as a few in Norway. But most of my travel
was to CERN, where I went several times a year to perform testing and development,
present our work and discuss the project, as well as to perform shift duties in the
ALICE control room until the LHC shut down for the upgrades in December 2018.

It was all very overwhelming, with so many activities and responsibilities, proba-
bly more than one person could realistically handle. But I am very fortunate to have
had three excellent supervisors whom I could always turn to for help. I have been
able to meet with them frequently, it has never been hard to find time for a discus-
sion, and they have all been actively involved in my Ph.D. project as well as ALICE
and ITS as a whole. I also think the different backgrounds and areas of expertise, and
experience among my three supervisors, combined really well to guide me in the best
possible way.

I want to thank Johan Alme, my main supervisor, for having so much faith in
me and convincing me to pursue the Ph.D. in the first place. For the last six years,
I have been bugging him with emails and messages at practically any time of the
day. At times he has had to put up with my rants and negativity, my weird sense
of humor, yet he always remained positive and had a unique ability to motivate me
and make me see the light at the end of the tunnel. His knowledge of electronics,
instrumentation, and particularly FPGAs, has been an important resource for me.
He is also an excellent teacher, who has had an enormous impact on my career and
education ever since I was a Bachelor’s student at HVL.

Håvard Helstrup, my supervisor from HVL, was usually the person I would go to
with more theoretical questions in physics, and I thank him for that. And he deserves

vii

extra thanks for his detailed review of this thesis and for spotting several small mis-
takes that most people would have overlooked. He has also been enormously helpful
with some of the practical matters relating to the Ph.D., CERN, as well as teaching
duties and my employment at HVL. I also want to highlight the great work Håvard
has done as the Ph.D. Programme Coordinator at HVL. Such as the annual Ph.D. sem-
inars he organized at Geilo in the winter and making sure that the voices of the Ph.D.
students are heard, which has meant a lot for me and the other Ph.D. students.

And last, but not least, thanks to my supervisor Dieter Röhrich. He does an im-
pressive job coordinating CERN-related projects in heavy-ion physics across multiple
institutions in Norway, as well as research in medical physics. His vast knowledge
about subatomic physics, and the CERN experiments, makes him the person I would
go to after a long discussion to find out what the true answer is.

I want to thank all three of them for all the time and effort they spent reviewing
several drafts of this thesis. Thanks to their feedback and suggestions, the end result
is much better than anything I could have written purely on my own.

There are, of course, several other people that helped me along the way, and de-
serve to be mentioned. My colleagues in the ALICE collaboration at CERN have been
most welcoming. There are too many names to mention individually, but a thanks
goes out to Luciano Musa, Piero Giubilato, Gianluca Aglieri Rinella, Joachim Scham-
bach, Paolo Martinengo, Felix Reidt, Marcel Rossewij, and Krzysztof Marek Sielewicz.
And I would especially like to thank Matteo Lupi, Matthias Bonora, and Arild Velure,
whom I have been working with on a daily basis, both remotely and when I have
visited CERN. I can not emphasize enough how hard they were working and how
dedicated they were to making the ITS upgrade a success. But there was still time for
the occasional coffee break, usually brewed with Matteo’s Espresso machine, which
he had carefully configured to produce an Espresso so strong that the aftertaste would
linger for days. And for Arild and I, I think it was almost tradition to end the day with
a fine meal of french fries and a glass of Cardinal beer in CERN’s Restaurant 1.

I also want to give a special thanks to Ruben Shahoyan at CERN, for helping me
generate input data for my own simulations using AliRoot, and to Ilker Meric at HVL
for providing me access to a computing cluster that became crucial for the simulations
I was running. And at UiB, I would also like to thank Attiq Ur Rehman, who has also
collaborated with us on the readout electronics for the ITS. In the early days of my
Ph.D., when I still had no idea what I was doing, he would often patiently explain
things to me. I should also mention Kjetil Ullaland, who until recently was the head
of the microelectronics program at UiB. Although he was not directly involved in my
Ph.D. project, I have had many interesting discussions with him, and he has been
administering a lot of software and licenses that I have relied on for my work.

viii

At UiB I shared an office with Ola Grøttvik, Magnus Rentsch Ersdal, Are Haslum,
and Shiming Yuan, who were all Ph.D. students associated with the microelectronics
program. It is great having a bunch of smart people like you nearby when you are
stuck on a problem. And I really enjoyed the many fun and nerdy scientific discus-
sions we had over the years, which may sometimes have gotten in the way of the
work we were actually supposed to be doing. Often late in the evening over a pizza
and some beers, with Magnus and Ola, the music experts, bickering over what consti-
tutes a good guitar solo. We were often joined by Lucas Altenkämper, a fellow Ph.D.
student in ALICE, when he was not too busy sweating over his computer because
his physics analysis would not work. Lucas has been a great friend these years and
deserves special thanks. My wife would jokingly refer to us as "the particle pals." He
has been my go-to guy for questions about physics in general and the ROOT frame-
work. And I will never forget the time he helped me study the night before an exam
in particle physics which I was a bit ill-prepared for. I think we stayed at the office till
2-3 AM; without his efforts, it would probably have been a disaster.

I was also happy to find great company among the other Ph.D. students and post-
docs at HVL. Unfortunately, there are too many to mention individually. But I would
like to especially thank Fernando Macias Gomez de Villar, Rui Wang, Andreas Ram-
stad Urke, and Espen Nilsen. Although unrelated to my project, I had a lot of interest-
ing discussions about IoT and sensor networks with Andreas and Espen during the
early days of my Ph.D. As fresh Ph.D. students it also felt like the three of us were
in the same boat figuring out what to do for our Ph.D. projects, and we learned a lot
from each other. Fernando and Rui were also most welcoming when I started, and
I think our friendships grew much closer over the years. Fernando appeared to be
one of the few people in this world who appreciates all the delicate nuances of my
weird sense of humor. He is always an entertaining person to be around, who can
brighten up any room. And Rui was always an interesting person to talk with, and he
would often share his culture. Such as when he kindly invited me to his Chinese New
Year celebration to enjoy the delicious food he had prepared. At some point, the three
of us started organizing a weekly meeting for the Ph.D. students at HVL, a tradition
that has since been continued by other Ph.D. students, and we also organized other
activities.

Among other colleagues at HVL, I would first and foremost like to thank Kristin
Fanebust Hetland, leader of the Department of Computer science, Electrical engineer-
ing and Mathematical sciences. I remember the first day of my Ph.D. very well. A
clean desk and a new computer awaited me in the Ph.D. students’ office space on the
fifth floor, which had a fantastic view of Ulriken and the areas surrounding Kronstad.
Kristin gave me a nice tour of the building, introduced me to my new colleagues, and

ix

helped me feel welcome. I think she is a great leader who genuinely cares about those
under her. Teaching was part of my position at HVL and this was an interesting expe-
rience. I came to realize that it is a bit harder than it looks, when my best attempts to
liven up my lectures with a joke would fail to elicit a response from the students. The
first course I was teaching was about metrology and statistics, a mandatory course for
most engineering students at HVL, where I was responsible for the laboratory exper-
iments along with Kjell Eivind Frøysa. I think we made a good team, and I hope our
students learned as much as I did from Kjell Eivind. I also taught parts of a program-
ming course together with Pål Ellingsen and Atle Geitung, and I want to thank them
all for their guidance.

At this point, I would like to express my utmost gratitude towards Høgskulen på
Vestlandet as a whole. It is an excellent educational institution that I hold in very
high regard, and I have always felt welcome and at home there. HVL has played an
instrumental role in my life ever since I decided to pursue higher education. And I
am extra thankful to have been provided with the funding and unique opportunity
to pursue a Ph.D. degree.

And finally, I would like to thank my parents and brothers for their support. And
my wife, Jillian, for her patience, love, and support.

xi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Subatomic Physics . 2
1.2 Particle Detectors . 5
1.3 The Large Hadron Collider . 7
1.4 The ALICE Experiment . 9
1.5 ALICE Long Shutdown 2 Upgrades . 10
1.6 Outline of Thesis and Main Contributions 11

2 The ITS Upgrade 15
2.1 ITS Detector in Run 1 and Run 2 . 15
2.2 Long Shutdown 2 Upgrade of ITS . 16
2.3 ITS Upgrade Detector Layout . 16
2.4 The ALPIDE MAPS for the ITS Upgrade 18
2.5 ITS Detector Staves . 23
2.6 Trigger Distribution . 25

2.6.1 Triggered Operation . 27
2.6.2 Continuous Operation . 29
2.6.3 Busy Signaling . 29

2.7 ITS Upgrade Readout Electronics . 30
2.7.1 Radiation Environment . 31
2.7.2 Readout Unit . 31
2.7.3 Optional Busy Unit for the ITS 38
2.7.4 ITS Power Board . 38

2.8 Detector Control System and Online-Offline (O2) 39

3 Main FPGA Design for the ITS Readout Unit 41
3.1 General Structure . 42

3.1.1 Wishbone Bus . 43

xii

3.1.2 FEE ID . 43
3.2 Detector Datapath . 44

3.2.1 Datapath and Data Lanes . 45
3.2.2 GBT Data Packer . 46

3.3 Trigger System . 47
3.4 FIFO Interface to the Auxiliary FPGA for Configuration Data 49
3.5 Board Control Interfaces and DCS . 50

3.5.1 GBT . 51
3.5.2 CAN Bus . 51

3.6 Alpide Control . 55
3.7 Alpide Monitor . 55

3.7.1 Sequencer . 57
3.7.2 Sniffer . 61

3.8 Mitigation of Radiation Effects . 62
3.9 Radiation Tolerant CAN Controller . 66

3.9.1 Bit Timing Logic . 67
3.9.2 Bit Stream Processor . 70
3.9.3 Transmit FSM for CAN Frames 73
3.9.4 Receive FSM for CAN Frames 75
3.9.5 Error Management Logic . 76
3.9.6 Radiation Tolerance . 77
3.9.7 Resource Utilization . 78

4 Auxiliary FPGA Design for the ITS Readout Unit 79
4.1 General Structure of Design . 80
4.2 Communication Interfaces . 81

4.2.1 I2C Interface . 81
4.2.2 UART Interface . 81

4.3 Blind Scrubber Solution . 83
4.3.1 Configuration of Xilinx UltraScale FPGAs 83
4.3.2 SelectMAP Interface . 84
4.3.3 External Flash . 85
4.3.4 Read and Write Controllers, and ECC 89
4.3.5 Configuration Controller . 90

4.4 Mitigation of Radiation Effects . 91

5 FPGA Design Verification and Testing 93
5.1 Test Software for the FPGA Designs . 93

xiii

5.1.1 Board Support Package for the RU and Main FPGA 93
5.1.2 Testbench Software . 96
5.1.3 Regression Test Suite for the Main FPGA 96

5.2 Verification of Main FPGA Design . 96
5.2.1 Python Co-simulation . 97
5.2.2 Module Testbenches . 98

5.3 Verification of Auxiliary FPGA Design 100
5.4 Hardware Testing of FPGA Designs . 101

5.4.1 Canola CAN Controller . 102
5.4.2 CAN HLP . 104

5.5 Beam Testing . 107
5.6 Commissioning . 109

6 Simulation Model of the ITS Upgrade and ALPIDE 111
6.1 Simulation Challenges . 112

6.1.1 Requirements for the Simulation Model 112
6.1.2 Input Stimuli . 114

6.2 Implementation of the Simulations . 117
6.2.1 Event Generation . 118
6.2.2 Stimuli and Trigger Distribution 120
6.2.3 ALPIDE Model . 120
6.2.4 Readout Unit Model . 128
6.2.5 Top-level Detector Model . 130
6.2.6 Simulation Settings and Output Data 131

6.3 Adaptation of the Simulation Model for FoCal and pCT 132
6.3.1 FoCal . 133
6.3.2 Proton CT . 137

7 Simulations and Results 143
7.1 ITS Simulations . 143
7.2 ITS Simulation Results . 145

7.2.1 Readout Efficiency . 145
7.2.2 Pileup . 149
7.2.3 Data Rates . 150

7.3 FoCal Simulations and Results . 153
7.3.1 Data Rates and Readout Efficiency 154
7.3.2 Pileup of Showers . 157

7.4 pCT Simulations and Results . 159

xiv

8 Conclusions 163
8.1 Readout Electronics and FPGA Designs 164
8.2 Simulations . 165
8.3 Outlook . 166

A List of Publications 169
A.1 Papers Published as First Author . 169
A.2 Papers Published as Co-Author . 169
A.3 ALICE Collaboration Papers . 170

B Internal Readout Logic of the ALPIDE 171
B.1 Pixel Front-End and Multi Event Buffer 171
B.2 Priority Encoder . 171
B.3 Data Link . 173
B.4 Control Link and Trigger Input . 175

B.4.1 Control Protocol . 175
B.4.2 Trigger Input . 176

B.5 Digital Readout Circuitry . 177
B.5.1 Frame and ReadOut Management Unit (FROMU) 177
B.5.2 Busy Management Unit (BMU) 178
B.5.3 Region Readout Unit (RRU) . 178
B.5.4 Top Readout Unit (TRU) . 180
B.5.5 Data Management Unit (DMU) 181
B.5.6 Data Transmission Unit (DTU) 181

C Protocols for Trigger, Readout, and Control over GBT 183
C.1 GBT Frames . 183
C.2 Heartbeat Triggers and Frames . 184
C.3 CTP/LTU Protocols . 185
C.4 CRU Control Words . 186

C.4.1 Idle Control Word . 187
C.4.2 Start Of Packet (SOP) Control Word 187
C.4.3 End Of Packet (EOP) Control Word 187
C.4.4 Single Word Transaction (SWT) Control Word 187

C.5 CRU Data Words . 187

D SystemC-based Simulation Model for ALPIDE and ITS 191
D.1 Configurable Settings . 191
D.2 Output Data and Data Formats . 195

xv

D.2.1 Simulation Output Files . 195
D.2.2 Pixel Readout Statistics . 197

D.3 Monte Carlo Simulated Events for ITS in the SystemC Model 199
D.3.1 File Formats for Events in the SystemC Simulations 203
D.3.2 Monte Carlo Events . 204

E UART Protocol and Debug Software for Auxiliary FPGA 209
E.1 Connections to the Readout Unit . 209
E.2 Protocol . 209

E.2.1 No Operation Command . 210
E.2.2 Read Command . 210
E.2.3 Write Command . 210

E.3 Software . 212
E.3.1 Connecting to Auxiliary FPGA 212
E.3.2 Direct Access and Monitoring of Wishbone Registers 212
E.3.3 Uploading Firmware to External FLASH 213
E.3.4 Flash Interface Testing . 214
E.3.5 SelectMAP Interface Testing . 214
E.3.6 Logging . 215

F Concept for Busy Unit 217
F.1 Impact on Readout Data . 218
F.2 Busy Handling . 219
F.3 Busy Unit . 221

G Register Maps 225
G.1 Main FPGA Design . 225

G.1.1 Alpide Monitor - Sequencer . 225
G.1.2 Alpide Monitor - Sniffer . 226
G.1.3 CAN HLP . 226
G.1.4 FIFO Interface to PA3 FPGA for Configuration Data 227

G.2 Auxiliary FPGA Design . 228

H Simulation Results 233
H.1 ITS - pp . 233
H.2 ITS - Pb–Pb . 235
H.3 FoCal - pp . 238
H.4 FoCal - Pb–Pb . 241

xvi

Bibliography 243

Abbreviations and Index 255

xvii

List of Figures

1.1 The Standard Model . 3
1.2 Phase diagrams . 5
1.3 Map of the LHC and experiments . 8
1.4 Timeline of LHC operation . 9
1.5 ALICE Run 1 and Run 2 configuration 10
1.6 ALICE Run 3 configuration . 11

2.1 The upgraded ITS detector . 16
2.2 ITS Upgrade tracking efficiency and impact parameter resolution . . . 18
2.3 Cross-section of charge collection diode and CMOS-logic for a pixel in

the TowerJazz 180 nm process . 19
2.4 ALPIDE pixel front-end timing . 19
2.5 Triggered mode waveform . 24
2.6 Continuous mode waveform . 24
2.7 Stave assemblies . 25
2.8 Inner barrel stave schematic . 25
2.9 Wire-bonding of ALPIDE chips to Flex PCB 26
2.10 Outer barrel stave schematic . 26
2.11 Outer barrel module schematic . 27
2.12 Events separated in time by more than the trigger latency 28
2.13 Events separated in time by less than the trigger latency 29
2.14 Readout Unit and main interfaces . 30
2.15 Total Ionizing Dose (TID) in ALICE for Run 3 32
2.16 High-energy hadron fluence in ALICE and for the ITS RU 32
2.17 Readout Unit PCB . 33
2.18 Readout Unit illustration . 36
2.19 Readout Unit configuration paths for the FPGAs 37

3.1 FPGA design for the Xilinx FPGA. 42
3.2 IB datapath in the main FPGA design 45
3.3 Block diagram of GBT packer . 46
3.4 Illustration of packaged data output from GBT packer 48

xviii

3.5 Trigger system in the main FPGA design 48
3.6 FIFO interface to the auxiliary FPGA for configuration data 49
3.7 Implementation of CAN-based interface to the WB bus for DCS 54
3.8 Alpide Control module . 56
3.9 Alpide Monitor block diagram . 57
3.10 Alpide Monitor Sequencer FSM diagram 58
3.11 Sequencer Read Instruction Word . 59
3.12 Sequencer Write Instruction Word . 59
3.13 Sequencer Wait Instruction Word . 60
3.14 Sequencer End Instruction Word . 60
3.15 Alpide Monitor Sniffer FSM Diagram 61
3.16 Sniffer result word . 62
3.17 Example TMR wrapper module for the UltraScale FPGA design 64
3.18 Block diagram for Canola CAN controller 67
3.19 Block diagram for Bit Timing Logic (BTL) in Canola CAN controller . . 68
3.20 CAN bus bit timing . 69
3.21 FSM diagram for Rx-synchronization in the BTL of the Canola CAN

controller . 70
3.22 Block diagram for the Bit Stream Processor (BSP) in the Canola CAN

controller . 71
3.23 State diagram for the Tx-FSM of the BSP in the Canola CAN controller 72
3.24 State diagram for the Rx-FSM of the BSP in the Canola CAN controller 73
3.25 CAN-frame in base format with electrical levels without stuff-bits . . . 73
3.26 Transmit Frame FSM state diagram for the Canola CAN controller . . . 74
3.27 Receive Frame FSM state diagram for the Canola CAN controller . . . 76

4.1 Block diagram for the Auxiliary FPGA design 80
4.2 UART software for testing of Auxiliary FPGA 83
4.3 Functional block diagram for the flash memory chip of the Readout Unit 86
4.4 Flash array organization . 86
4.5 Parameter page in the external flash memory (1/2) 88
4.6 Parameter page in the external flash memory (2/2) 88
4.7 Simplified FSM diagram for the Configuration Controller 91

5.1 General structure of the BSP for the RU 94
5.2 Overview of Communication classes in the BSP 94
5.3 Overview of Wishbone slave for CAN HLP in the BSP software 95
5.4 Software communication stack for CAN 95
5.5 Zynq and Pmod CAN boards for Canola CAN controller test 103

xix

5.6 Modified Pmod-CAN PCB for Canola CAN controller test 103
5.7 Zynq system for Canola CAN controller test 104
5.8 CAN HLP counter values from commissioning runs 106
5.9 ITS commissioning in CERN building 167 clean room 109
5.10 Threshold tuning for half-layer 0 . 110

6.1 Uncorrected multiplicity distribution of charged particles in the TPC . 115
6.2 Charged–particle pseudorapidity density for ten centrality classes over

a broad η range in Pb–Pb collisions at
√

sNN = 5.02TeV 115
6.3 ALPIDE cluster shapes and sizes . 116
6.4 Overview of SystemC simulation model for ITS 117
6.5 Single chip readout efficiency simulated for the innermost layer of the

ITS . 120
6.6 Pulse shape in SystemC model of the ALPIDE chip 122
6.7 Simplified UML class diagram of Alpide class in SystemC simulation

model . 123
6.8 ALPIDE SystemC model . 126
6.9 FROMU FSM in the SystemC simulation model 127
6.10 Region valid FSM in the SystemC simulation model 128
6.11 Region header FSM in the SystemC simulation model 128
6.12 Region readout and clustering FSM in the SystemC simulation model . 129
6.13 RRU pixel readout flowchart in the SystemC simulation model 130
6.14 TRU FSM in the SystemC simulation model 131
6.15 Example of lost event due to wrongly configured trigger filter 131
6.16 Simplified UML class diagram of setup for ITS in SystemC simulation

model . 132
6.17 Proposed layout of Focal detector plane 134
6.18 Patches and staves of ALPIDE chips for Focal detector 135
6.19 Occupancy map of pp MC-data for FoCal 136
6.20 Occupancy map of Pb–Pb MC-data for FoCal 136
6.21 Comparison of dose-profiles with x-ray and proton treatment 137
6.22 ProtonCT detector and readout . 138
6.23 Pencil beam scan pattern . 139
6.24 Hit intensity versus layer in MC data for the pCT DTC 140
6.25 Scan pattern in MC data for the pCT DTC 140

7.1 Frame readout efficiency for ITS in Pb–Pb simulations at nominal inter-
action rates . 145

xx

7.2 Frame readout efficiency for ITS in Pb–Pb simulations at interaction
rates beyond the specifications . 146

7.3 Pixel hit readout efficiency for ITS in Pb–Pb simulations at nominal
interaction rates . 147

7.4 Pixel hit readout efficiency for ITS in Pb–Pb simulations at interaction
rates beyond the specifications. 147

7.5 Busy counts for ITS at 200 kHz Pb–Pb 148
7.6 Frame readout efficiency for ITS in pp simulations 148
7.7 Pixel hit readout efficiency for ITS in pp simulations 149
7.8 Pixel hit readout efficiency for ITS in pp simulations at high interaction

rates with a 1 µs strobe . 150
7.9 Pileup of events in readout frames for ITS in Pb–Pb simulations 151
7.10 Pileup of events in readout frames for ITS in Pb–Pb simulations 151
7.11 Average data rate per link for ITS simulations 152
7.12 Total data rate per stave/RU for ITS simulations 152
7.13 Simulated data rates for Pb–Pb in layer 0 of the ITS 153
7.14 Simulated data rates for Pb–Pb in layer 3 of the ITS 153
7.15 Average data rate (per chip) versus radius simulated for FoCal 155
7.16 Frame readout efficiency versus radius simulated for Focal at nominal

interaction rates for ALICE . 156
7.17 Frame readout efficiency versus radius simulated for FoCal 156
7.18 Map of frame readout efficiency for Pb–Pb simulations of FoCal 157
7.19 Average pileup of shower events per readout frame in FoCal simulated

for 500 kHz pp . 158
7.20 Pileup of showers per readout frame in FoCal for 1 MHz pp with a 10 µs

strobe . 159
7.21 Simulated data rates for the pCT detector 160
7.22 Data rate over time for the pCT detector 161
7.23 Readout efficiency for the pCT in terms of pixel hits 162

B.1 Block diagram of ALPIDE pixel cell . 171
B.2 Priority encoder and double column readout 172
B.3 ALPIDE data stream example (inner barrel) 173
B.4 ALPIDE data stream example (outer barrel) 173
B.5 ALPIDE data words . 174
B.6 CHIP TRAILER readout flags . 174
B.7 ALPIDE readout architecture . 177
B.8 ALPIDE readout and FIFO overview . 179

xxi

B.9 ALPIDE DTU simplified schematic . 182
B.10 ALPIDE DTU and DTUL block diagram 182

C.1 Heartbeat triggers and frames, and continuous triggers for ITS 184
C.2 Raw Data Header (RDHv6) for GBT . 188
C.3 Raw Data Header (RDHv6) in CRU . 189
C.4 Raw Data Header (RDHv6) in FLP memory 190

D.1 Pixel hit multiplicity of Pb-Pb event pool for ITS simulations 205
D.2 Pixel hit multiplicity of QED event pool for ITS simulations 206
D.3 Pixel hit multiplicity of pp event pool for ITS simulations 206

E.1 Header format in the modified UART to Bus protocol 210
E.2 NOP command in the modified UART to Bus protocol 210
E.3 Read command in the modified UART to Bus protocol 211
E.4 Write command in the modified UART to Bus protocol 211
E.5 Auxiliary FPGA debug software. File menu and sub-menus 212
E.6 Firmware upload . 213
E.7 Flash interface tab with a variety of test features 214
E.8 SelectMAP tab . 215
E.9 The log interface . 215

F.1 Illustration of busy signals from ALPIDE 217
F.2 Illustration of busy and busy violations 218
F.3 Illustration of poor quality events due to busy violations 218
F.4 Illustration of improved quality events with busy handling 220
F.5 Illustration of busy processing . 220
F.6 Busy link map and counts for an RU in the innermost ITS layer at 100

kHz Pb–Pb . 221
F.7 Busy violation map and counts for an RU in the innermost ITS layer at

100 kHz Pb–Pb . 222
F.8 Busy Unit and connections to Readout Units 222
F.9 Daisy-chained busy signals between Readout Units 223
F.10 Busy module for daisy-chained Readout Units 224

H.1 Simulated data rates per stave/RU in layer 0 for ITS - pp 233
H.2 Simulated data rates per stave/RU in layer 1 for ITS - pp 233
H.3 Simulated data rates per stave/RU in layer 2 for ITS - pp 234
H.4 Simulated data rates per stave/RU in layer 3 for ITS - pp 234
H.5 Simulated data rates per stave/RU in layer 4 for ITS - pp 234

xxii

H.6 Simulated data rates per stave/RU in layer 5 for ITS - pp 235
H.7 Simulated data rates per stave/RU in layer 6 for ITS - pp 235
H.8 Simulated data rates per stave/RU in layer 0 for ITS - Pb–Pb 235
H.9 Simulated data rates per stave/RU in layer 1 for ITS - Pb–Pb 236
H.10 Simulated data rates per stave/RU in layer 2 for ITS - Pb–Pb 236
H.11 Simulated data rates per stave/RU in layer 3 for ITS - Pb–Pb 236
H.12 Simulated data rates per stave/RU in layer 4 for ITS - Pb–Pb 237
H.13 Simulated data rates per stave/RU in layer 5 for ITS - Pb–Pb 237
H.14 Simulated data rates per stave/RU in layer 6 for ITS - Pb–Pb 237
H.15 Simulated data rates per layer for FoCal - 200 kHz pp 238
H.16 Simulated data rates per layer for FoCal - 500 kHz pp 238
H.17 Simulated data rates per layer for FoCal - 1 MHz pp 238
H.18 Simulated readout efficiency per layer for FoCal - 200 kHz pp 239
H.19 Simulated readout efficiency per layer for FoCal - 500 kHz pp 239
H.20 Simulated readout efficiency per layer for FoCal - 1 MHz pp 239
H.21 Pixel hit occupancy per layer for FoCal - 200 kHz pp 240
H.22 Pixel hit occupancy per layer for FoCal - 500 kHz pp 240
H.23 Pixel hit occupancy per layer for FoCal - 1 MHz pp 240
H.24 Simulated data rates per layer for FoCal - 50 kHz Pb–Pb 241
H.25 Simulated data rates per layer for FoCal - 100 kHz Pb–Pb 241
H.26 Simulated readout efficiency per layer for FoCal - 50 kHz Pb–Pb 241
H.27 Simulated readout efficiency per layer for FoCal - 100 kHz Pb–Pb . . . 242
H.28 Pixel hit occupancy per layer for FoCal - 50 kHz Pb–Pb 242
H.29 Pixel hit occupancy per layer for FoCal - 100 kHz Pb–Pb 242

xxiii

List of Tables

2.1 Radius, stave and chip counts, per layer for ITS upgrade 17
2.2 Comparison of triggered and continuous modes in the ALPIDE 23
2.3 Number of staves, readout units and power boards per layer 39

3.1 FEE ID . 44
3.2 CAN HLP commands . 52
3.3 Canola CAN controller resource utilization 78

4.1 Typical I2C transaction . 81
4.2 Configuration interface to Xilinx UltraScale FPGA 85

5.1 Simulation coverage of Canola CAN controller 100
5.2 Simulation coverage of Canola CAN controller submodules 100
5.3 Simulation coverage of the Auxiliary FPGA design 101

7.1 Simulation setup for Pb–Pb and pp simulations of ITS 144
7.2 Simulation setup for Pb–Pb and pp simulations of FoCal 154

B.1 ALPIDE control bus opcodes . 176

C.1 GBT frame format . 183
C.2 Trigger message over GBT . 185
C.3 Trigger Type (TType) bits . 186
C.4 CRU Idle Control Word . 187
C.5 CRU SOP Control Word . 187
C.6 CRU EOP Control Word . 187
C.7 CRU SWT Control Word . 187

D.1 ALPIDE simulation settings . 192
D.2 Data output simulation settings . 192
D.3 General simulation settings . 193
D.4 Event generation simulation settings . 193
D.5 FoCal-specific simulation settings . 193
D.6 ITS-specific simulation settings . 194

xxiv

D.7 pCT-specific simulation settings . 194
D.8 Data format for trigger files . 196
D.9 Data format for busy event files . 196
D.10 Data format for files storing busy violations and similar events 197
D.11 Readout count and oversampling of pixels 198
D.12 Binary file format for events in ITS simulation 204
D.13 Average event size and pixel hit density for the MC event pool used in

simulations of the ITS. 207

G.1 Main FPGA Register Map - Alpide Monitor Sequencer Registers 225
G.2 Sequencer Control Register Fields . 225
G.3 Sequencer Status Register Fields . 226
G.4 Main FPGA Register Map - Alpide Monitor Sniffer Registers 226
G.5 Sniffer Status Register Fields . 226
G.6 Sniffer Control Register Fields . 226
G.7 Main FPGA Register Map - CAN HLP Registers 226
G.8 CAN HLP Control Register Fields . 227
G.9 CAN HLP Status Register Fields . 227
G.10 CAN HLP FSM State Register Fields . 227
G.11 Main FPGA Register Map - PA3 FIFO Interface Registers 227
G.12 Auxiliary FPGA Register Map – Version Registers 228
G.13 Auxiliary FPGA Register Map – Git-hash Registers 228
G.14 Auxiliary FPGA Register Map – Debug Registers 228
G.15 Auxiliary FPGA Register Map – Clock Registers 228
G.16 Auxiliary FPGA Register Map - Config Controller Registers 229
G.17 Auxiliary FPGA Register Map – Read Controller Registers 229
G.18 Auxiliary FPGA Register Map – SelectMap Registers 230
G.19 Auxiliary FPGA Register Map – Read FIFO Registers 230
G.20 Auxiliary FPGA Register Map – Write Controller Registers 230
G.21 Auxiliary FPGA Register Map – Flash Interface Registers 231
G.22 Auxiliary FPGA Register Map – ECC Registers 232
G.23 Auxiliary FPGA Register Map – CRC Registers 232

xxv

Listings

3.1 Example of FSM encoding in VHDL for Xilinx FPGA 65
3.2 Example of type definitions for FSM state register in VHDL for Xilinx

FPGA . 66
4.1 VHDL attributes for TMR in the auxiliary FPGA design 92
D.1 Excerpt of example settings file for the simulation 192
D.2 itsuTestBench setup for Pb–Pb . 200
D.3 itsuTestBench setup for pp . 201
D.4 itsuTestBench setup for QED . 202
D.5 XML file format for events in ITS simulation 204

xxvii

1

Chapter 1

Introduction

As the story famously goes, Sir Isaac Newton was sitting in his garden one day and
watching as apples fell to the ground. He pondered over this observation, wondering
why they fell straight to the ground. Why straight down, why not a little sideways?
Why fall at all? He came to the conclusion that bodies of mass attract, and eventually,
he went on to formulate his theory of gravitation. Observations like these, either
by serendipity or from purpose-built experiments, have led to enormous advances
in physics and other sciences the past few centuries. Newton humbly said of his
many achievements, that “If I have seen further it is by standing on the shoulders of
giants.” And with the advances in physics and other sciences, mankind has reached
an unprecedented understanding of the world and the universe. The idea of four
elements are gone, and so is the notion of a flat earth. We no longer invoke ideas of
witchcraft or magic when faced with unexplained phenomena; it has become second
nature for us all to seek out scientific explanations. Today our understanding of nature
reaches so far that the rudimentary experiments of the previous centuries can not offer
us much in terms of new insight. Much of the research in physics is now focused on
subatomic and quantum physics, as well as studies of distant galaxies1. Advances in
these fields require complex equipment and experiments. It would seem as though
today, climbing the shoulders of the giants is an enormous challenge in itself, let alone
seeing further. The words of President John F. Kennedy, from his famous speech at
Rice University in 1962, resonates well almost sixty years later:

We choose to go to the moon. We choose to go to the moon in this decade
and do the other things, not because they are easy, but because they are
hard, because that goal will serve to organize and measure the best of our
energies and skills, because that challenge is one that we are willing to
accept, one we are unwilling to postpone, and one which we intend to
win, and the others, too.

1Of course, there are many other important fields of physics, such as solid-state, medical, fluid,
acoustics, to name a few.

2 Chapter 1. Introduction

It is commonly said that curiosity drives science. But the challenges help make
it exciting, and there are few things that appeal more to a scientist than the idea of
solving a near impossible task. Progress in physics may require complex experiments,
but there is little reason for concern, as the scientific community is more than willing
to build those experiments.

1.1 Subatomic Physics

The electron was the first subatomic particle to be discovered in 1897, by J. J. Thomp-
son and his colleagues, in an experiment on cathode rays [1]. It was followed by the
first models of the atom. The first half of the 20th century saw the discovery of the
proton and neutron, the nucleons of the atomic nucleus. And studies of atmospheric
cosmic rays led to the discovery of the positron, which is the positive anti-particle of
the electron; the muon, a more massive cousin of the electron; and the pion. The sec-
ond half of the 20th century saw the discovery of numerous other subatomic particles.
Scientists were struggling to make sense of this “particle zoo”, as it was commonly
called. They were not convinced that they were all elementary particles in their own
right. An important discovery was the realization that protons and neutrons have
substructure. This led to Richard Feynman’s parton model in 1969 [2], which pro-
poses that neutrons and protons consist of several smaller partons. Gell-Mann and
Zweig had previously proposed the quark model in 1964 [3], as an explanation to
the zoo of particles. Their model did not see wide spread acceptance in the physics
community at first, but eventually the partons of the parton model were recognized
as the quarks of the quark model. These discoveries eventually gave rise to the Stan-
dard Model of particles in 1975 [4], which stands to this day as the de facto model
of particle physics. The Standard Model allowed the particles of the “particle zoo”
to be identified as either; composite particles consisting of a number of quarks; or as
elementary particles in the Standard Model.

The Standard Model

The Standard Model (SM) introduces several groups of elementary particles, as shown
in fig. 1.1. Leptons and quarks are the massive particles that all the known matter in
the universe is composed of. They come in three generations, with increasingly larger
mass per generation, and each lepton or quark has a corresponding anti-particle with
opposite electric charge.

1.1. Subatomic Physics 3

FIGURE 1.1: The Standard Model (SM) of Elementary Particles [4].

Quarks. Individual quarks have non-integer charge (i.e. ±1
3 e or ±2

3 e) and do not
appear in isolation. At least two or more quarks are confined in a composite parti-
cle called a hadron, and only certain combinations are possible. For instance, the sum
of charges must add up to an integer, typically 0 or ±1, but higher charge is also
possible2. Hadrons are further divided into mesons and baryons. Mesons are quark
and anti-quark pairs, and baryons consists of three quarks (or three anti-quarks). The
pion, which was mentioned earlier, is an example of a meson. It comes in three combi-
nations: π0, π+, or π−, and consists of combinations of up/down and anti-up/down
quarks. The most famous examples of baryons is the proton and the neutron, which
consist of; two up and one down quark, and one up and two down quarks, respec-
tively.

Leptons. There are three charged leptons; the electron (e), muon (µ), and tau (τ),
each carrying a charge of−1. Each of them has a corresponding neutrino; the electron-
neutrino (νe), the muon-neutrino (νµ), and the tau-neutrino (ντ). The neutrinos have

2More specifically, +2e known to exist for ∆++ (and −2e for its anti-particle).

4 Chapter 1. Introduction

no charge and have a very small rest mass (until recently they were thought to be
massless).

Bosons and Forces. Among the bosons in the SM we find:

• The photon, which is the carrier of the electromagnetic force. Electromagnetic
interactions are governed by the theory of Quantum electrodynamics (QED).

• The gluon, which is the carrier of the strong force (also called the colored force),
which keeps the quarks bound together in hadrons. A related force is the nuclear
force, which binds the nucleons in the atomic nucleons3. Quantum chromody-
namics (QCD) is the theory that describes the strong interaction. An important
consequence of QCD is the confinement of quarks; free quarks are never ob-
served, they are always confined to a hadron consisting of a multiple of quarks.

• The Z and W bosons of the weak interaction, which is responsible for the ra-
dioactive β-decay.

• The Higgs boson. The Higgs mechanism explains why particles have mass.

• The existence of a graviton boson is also hypothesized, and it would be the
carrier of the gravitational force. But considering how weak the gravitational
force is relative to the strong and electromagnetic force, it is unlikely that we
will be able to confirm its existence in the near future, perhaps never.

Quark Gluon Plasma

It was mentioned earlier that quarks are confined to hadrons, however the theory
of QCD also predicts that there should be an energy regime where the quarks are
no longer confined. Quark matter can appear in different states, as indicated in the
phase diagram in fig. 1.2A, in a similar fashion to ordinary elements of matter, such as
for water in fig. 1.2B. At temperatures of around 2× 1012 K, or around 175 MeV, the
quarks are able to break free from the confinement of the strong interaction. Quark
matter in this deconfined state is referred to as Quark Gluon Plasma (QGP), and the
Universe is believed to have been in this state the first few microseconds after the Big
Bang. This is commonly referred to as the quark epoch.

Physics experiments that study Quark Gluon Plasma (QGP) produce the plasma
by colliding large nuclei at very high energies. As two heavy nuclei collide, they
create a hot “fireball” (not in the literal sense), or essentially a drop of liquid QGP

3The nuclear force is not an elementary force in its own right; it is a derivative of the strong inter-
action.

1.2. Particle Detectors 5

(A) (B)

FIGURE 1.2: Phase diagram of strongly interacting matter (A) [5], and for
water (B) [6] included for comparison.

matter. The QGP behaves as a near-perfect fluid, and as this drop of QGP expands
it cools and hadronizes, a process in which the free quarks in the QGP form hadrons
which they are confined to again.

A couple of experiments are particularly focused at studying the QGP: A Large
Ion Collider Experiment (ALICE) at CERN, and the experiments at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The ALICE
experiment primarily studies lead ion collisions at energies of 5.5 TeV per nucleon,
and collisions with ions of gold and other heavy elements are studied at the RHIC
experiments, at energies of 200 GeV per nucleon.

1.2 Particle Detectors

When a beam of radiation passes through a material, it is able to “knock off” electrons
in the atoms of the material. In other words, the atoms are ionized. The radiation must
be sufficiently energetic for this to happen, and such radiation is typically referred to
as ionizing radiation. The radiation itself can be of gamma rays or charged particles.
Electrons may be ejected from an atom subjected to gamma rays, if the rays interact
with atoms via the photoelectric effect, Compton scattering, or pair production, depending
on the energy of the gamma rays. And when a charged particle passes in the vicinity
of an atom, it can interact with the atom’s electrons via their electric fields and transfer
energy to the electrons. If sufficient energy is transferred, an electron can be freed
from the grasp of the atom’s nucleus.

These principles are utilized in a range of radiation detectors. Early experiments
with radiation, including cosmic radiation experiments, in the late 19th and early 20th

6 Chapter 1. Introduction

century, used photographic films for detection. When the films were subjected to ra-
diation, they would darken due to a chemical reaction following the ionization of the
material. This approach to detection offers limited information about the type of ra-
diation and no tracking of the particles. Later experiments from the 1920s used cloud
chambers, where droplets are formed in an evaporated liquid, i.e., a cloud, as it is
exposed to ionizing radiation. The droplets tend to form around ions in the cloud.
When an ionizing particle passes through the cloud, it leaves a trail a of ions, which
causes a trail of droplets to form for a brief moment, and these trails were visible
to the naked eye. A camera would continuously take photographs of the chamber,
which could be studied later. If a magnetic field was present in the chamber, charged
particles would curve as they went through it. The curvature of the tracks depends
on the mass and kinetic energy of the particle. It can be used to identify the type of
particle. From the 1950s and on, the bubble chamber was a popular particle detector.
It shared many similarities with the cloud chamber but used a superheated transpar-
ent liquid, and several cameras at different angles allowed the events to be captured
in three dimensions.

But decades of research since the bubble chamber has seen the emergence of an
extensive range of detector technologies, which are now available to modern exper-
iments. The choice of technology depends on the application and type of measure-
ment, such as the type of particle, whether it is for tracking or measuring energy. To
stay in line with the topic of this thesis, the following discussion will focus on tech-
nologies that have been used for tracking.

Gas detectors

Detectors like the bubble and cloud chambers required photographs to be analyzed by
hand. Advances in electronics and computer technology paved the way for the gas-
filled Multi-Wire Proportional Chamber (MWPC) in 1968 [7]. In configurations with
wires running perpendicularly in several layers, it is possible to measure a particle’s
incident angle and trajectory, as well as its energy. A further improvement came with
drift chambers, which also measured the time it took for the charge to drift to the
wires. With the additional information, the full track of the particle in the chamber
can be reconstructed. These developments eventually lead to the Time Projection
Chamber (TPC), a detector type that is used to this day at some collider experiments.
It is a large cylindrical gas detector that encompasses the collision point, with either
an MWPC endcap at each end of the cylinder [8], or, in more recent times, a Gas
Electron Multiplier (GEM)-based endcap.

1.3. The Large Hadron Collider 7

Silicon detectors

As with other materials, ionizing particles can liberate electrons in the silicon sub-
strate of semiconductor devices. Silicon strip and drift detectors are the semicon-
ductor equivalent of MWPCs and drift chambers. They are implemented by running
lines of n-doped and p-doped material along the top and bottom of the silicon die and
are used for energy measurements and tracking. But superior tracking performance is
offered by silicon pixel detectors, which is currently the preferred technology for the
innermost trackers at collider experiments. They generally consist of thousands of
pixel chips, typically organized in multiple cylindrical layers with close proximity to
the collision point. The die of a pixel sensor chip is divided into a matrix of reverse-
biased diodes, where each diode forms the sensitive area of a pixel responsible for
charge collection. The signals from the diodes are continuously amplified, digitized,
and sampled, to detect hits from incident particles.

Detector Electronics and Challenges

It is an unavoidable fact that any particle detector, such as a pixel detector chip, will
interact with and affect the particles that it measures. Generally speaking, a detec-
tor should be as simple as possible to limit the amount of material a particle must
traverse. Only basic signal amplification, and possibly digitization, is performed in
the sensitive part of the detector, since most detectors will have external Front End
Electronics (FEE) or readout electronics for more advanced data processing. Field-
Programmable Gate Arrays (FPGAs) or custom-made Application Specific Integrated
Circuitss (ASICs) are often employed in the FEE to process large amounts of data com-
ing from many sensors or channels. Signal integrity considerations usually mandate
that the FEE are placed in close proximity to the detector itself. As a consequence, the
FEE itself is often exposed to radiation from the experiment, which can cause a range
of operational faults and errors.

1.3 The Large Hadron Collider

The Large Hadron Collider (LHC) is a synchrotron accelerator at CERN4, which, as it
name implies, accelerates hadrons and collides them. With a circumference of 27 km,

4The European Organization for Nuclear Research (CERN) was founded in 1954 with the original
intent of studying the atomic nucleus. It is located right outside of Geneva, Switzerland, on the French-
Swiss border. A number of important discoveries have been made at CERN over the years, and the
research has spanned far beyond the study of the atomic nucleus.

8 Chapter 1. Introduction

it is the worlds largest particle accelerator, and it is capable of accelerating particles to
energies around 7 TeV.

The accelerator is located a circular underground tunnel, which was originally
built for the Large Electron-Positron Collider (LEP). It is built up of sections of parallel
beam pipes, surrounded and enclosed by a dipole magnet assembly. Particles move
in opposite directions in the two beam pipes, and the beam pipes cross at four points
along the LHC ring, at the so-called Interaction Points (IPs). It is at the IPs that the
particles moving in opposite directions have a chance of colliding, and it is around
the IPs that the 4 main experiments at the LHC are situated (see fig. 1.3), namely:

• A Large Ion Collider Experiment (ALICE)
• A Toroidal LHC ApparatuS (ATLAS)
• Compact Muon Solenoid (CMS)
• Large Hadron Collider beauty (LHCb)

FIGURE 1.3: Map of the LHC and experiments [9].

The experiments consists of different types of particle detectors, to allow them to
detect and identify a wide range of particles, and measure their paths and properties
such as momentum and mass. Although the experiments share many similarities,
they are each uniquely configured and optimized for the particular field of physics
they seek to pursue. ATLAS and CMS, famous for the discovery of the Higgs boson,
are the largest of the experiments. Interactions between colliding protons (pp) are
best suited for their fields of physics, and hence the LHC is primarily running pp.

1.4. The ALICE Experiment 9

R1 LS1 R2 LS2 R3 LS3

2011: 7 TeV

2012: 8 TeV
75% of nominal
luminosity

2011-2012 2013-2014 2015-2018 2019-2021 2022-2024 2025-2027

R4/5

2027-2036

2015-2016:
13 TeV

2016-2017:
13.5-14 TeV

Injector
upgrade, etc

Experiment
upgrade phase 1

Experiment
upgrade phase 2

HL-LHC
installation

Nominal
luminosity

2 x Nominal
luminosity

5-7 x Nominal
luminosity

14 TeV14 TeV

R: Run
LS: Long
Shutdown

FIGURE 1.4: Timeline of LHC operation.

The LHC and experiments normally operate continuously around the clock, ev-
ery day of the week. Operation is halted for two to three months during the winter5.
Besides the winter shutdown and some shorter technical stops for maintenance, the
accelerator will only stop for critical problems or maintenance that requires immedi-
ate attention. But the long term schedule for the LHC does also include Long Shut-
downs (LSs), primarily to allow for major upgrades of the accelerator complex and
experiments. A summary of the schedule is shown in fig. 1.4.

1.4 The ALICE Experiment

ALICE is one of the four main experiments at the LHC, and it is situated at Interaction
Point 2 (IP2). The primary objective of the experiment is to study QGP and QCD.

Figure 1.5 show the ALICE experiment during Run 1 and Run 2, along with all
the subdetectors. Around the collision point at the center of the experiment, we find
the Inner Tracking System (ITS), which itself is surrounded by the TPC. These two
detectors are responsible for tracking and particle identification. Further out there are
patches of calorimeters to measure the energy of a variety of particle types. These are
all surrounded by the L3 magnet (in red), which causes charged particles to curve in
its magnet field. To the right in the figure, outside of the magnet, we find the detectors
for muons, as well as trigger detectors.

Although it is primarily protons that are collided at the LHC, some operational
time is also devoted to collisions of lead nuclei with protons (p–Pb), and lead with
lead (Pb–Pb). Pb–Pb collisions are of particular interest to the ALICE experiment, as
it offers the best data to study QGP. pp is also studied however, and pp also offers a
good reference for the studies of Pb–Pb collisions.

5The load on the electrical grid and prices of electrical power is the main reason for the winter
shutdown. The power consumption of the CERN site is around 80 MW during the winter shutdown,
compared to around 200 MW (around a third of Geneva’s power consumption) at its peak when the
LHC is operating [10].

10 Chapter 1. Introduction

FIGURE 1.5: The ALICE experiment in its Run 1 and Run 2 configuration,
with the various subdetectors indicated in the legend. [11].

1.5 ALICE Long Shutdown 2 Upgrades

The first LS of the ALICE experiment primarily saw the installation and upgrades
of several calorimeters, such as the Photon Spectrometer (PHOS), Electromagnetic
Calorimeter (EMCal), and Di-Jet Calorimeter (DCal), and upgrades to the TPC’s read-
out electronics.

With the LS2 upgrades the ALICE experiment will see substantial upgrades to the
trigger system, and an addition of the Fast Interaction Trigger (FIT) trigger detector.
But much of the upgrade is focused on the tracking detectors. This includes the instal-
lation of an entirely new detector, the Muon Forward Tracker (MFT), and both the ITS
and TPC are undergoing significant upgrades: the ITS will be replaced in its entirety
with a new tracking system that consists solely of silicon pixel chips, and the TPC will
have its MWPC-based chambers replaced with GEM and upgrades to the associated
readout electronics.

These upgrades will improve the tracking resolution of these detectors, making it
possible to reconstruct the tracks of particles in the experiment with better precision.
The new and upgraded detectors are also significantly faster than their pre-LS2 coun-
terparts and can operate at much higher collision rates. In previous runs, the LHC

1.6. Outline of Thesis and Main Contributions 11

FIGURE 1.6: The ALICE experiment as it will be in Run 3, with the vari-
ous subdetectors indicated in the legend [14].

could deliver pp collisions at 100 kHz and Pb–Pb at up to 8 kHz [12], but the read-
out rates in ALICE were substantially lower. With the LS2 upgrades, the ALICE ex-
periment will operate at 500 kHz pp6 and 50 kHz Pb–Pb [13], using either minimum-
bias triggers or a trigger-less continuous mode, thus gathering significantly more data
than before. With more data comes improved statistics and smaller uncertainties in
the results published by the collaboration, and studies of rare events that were previ-
ously out of reach.

1.6 Outline of Thesis and Main Contributions

Research and development for the ITS upgrade for LS2 dates back to 2010. It is a big
project involving hundreds of people. I joined the project in 2016, along with other
colleagues from the University of Bergen (UiB), and got involved in the group de-
veloping readout electronics for the ITS. At this point the group was in the process
of drawing up specifications for the readout electronics and finding suitable compo-
nents. Development of schematics and Printed Circuit Board (PCB) layout for the
Readout Unit (RU) started in early 2017, by a group of designers at Nikhef and the
University of Utrecht, with the full support of colleagues at CERN, University of
Texas, and at UiB, when it came to reviewing the designs. The first prototypes of
the RU were completed by the summer of 2017. Work on the FPGA designs for the
RU, as well as software development and testing, has been an ongoing activity since

6200 kHz pp was the original target for the ALICE upgrades, but this has been increased to 500 kHz.

12 Chapter 1. Introduction

the first units were available, and I have been actively involved in those tasks. In ad-
dition, I devoted a significant amount of effort into the development of a simulation
model for the ALice PIxel DEtector (ALPIDE) and ITS, and used it to run simulations
to investigate the necessity of dedicated busy hardware for the readout electronics;
determine the amounts of data the RUs have to handle and the readout performance
and efficiency of the detector itself, under a range of operating parameters.

This PhD thesis is focused on the activities that were just summarized, with special
emphasis on the FPGA designs, and the simulations which supported the develop-
ment. It will be structured into the following chapters:

The ITS Upgrade. This chapter will give a detailed introduction to the research and
development efforts of the ITS upgrade, dating back to the beginning of the project
before my involvement started. It will explain the designs of the pixel sensor chips
and the hardware for the readout electronics in detail, and provides the necessary
context for the chapters that follow.

FPGA Design and Verification Chapters. Two chapters will discuss the FPGA de-
signs for the Xilinx UltraScale and Microsemi ProASIC3 (PA3) FPGAs of the RU. The
design for the PA3 FPGA was led from Bergen in its entirety. The design for the
UltraScale FPGA was led from CERN, but I collaborated on several parts of the de-
sign. Both FPGA designs are introduced in full, along with challenges that had to
be overcome to enable reliable operation in a radiation environment. But special em-
phasis is devoted to the modules that I have been responsible for, which include;
Controller Area Network (CAN) controller and associated systems; monitoring of
ALPIDE chips; FIFO between the FPGAs for fast transfer of configuration data; de-
bug interface for the PA3 FPGA via Universal Asynchronous Receiver Transceiver
(UART).

A third chapter outlines our methodology when it comes to testing and verifica-
tion of the FPGA design, as well as the electronics in general.

Simulation Model and Results. The next chapter introduces a simulation model
I developed of the ALPIDE and ITS. The original purpose was to investigate if the
readout electronics would require dedicated “busy units”; a hardware module that
communicates with the RUs and aggregates the busy signals of the sensor chips, and
consolidates them into a busy map or global busy status for the entire detector. This
busy status could be used to coordinate the triggering of the detector to ensure that
complete events are recorded; the fear was that poor quality “swiss-cheese” events,

1.6. Outline of Thesis and Main Contributions 13

with holes of missing data in place of the busy sensors, would be read out on a regu-
lar basis without coordination of the busy and trigger signals. But as the performance
of the detector proved to be quite good in the simulations, the focus shifted to quan-
tifying the readout efficiency of the detector under different conditions (also beyond
specifications), and to quantify the amounts of data the RUs are faced with.

The model was also adapted to simulate two other detectors which are also based
on the ALPIDE; the Forward Calorimeter (FoCal) detector at ALICE, and the Proton
CT (pCT) at the University of Bergen (UiB). The chapter contains a brief introduction
to both of these detectors and how the simulation model was adapted for them.

The final chapter before the conclusion is dedicated to simulation results, which is
mainly focused on the ITS, but also includes some results for the other two aforemen-
tioned detectors.

15

Chapter 2

The ITS Upgrade

This chapter will discuss the ITS upgrade for ALICE in Run 3, with a technical introduction
to the Monolithic Active Pixel Sensor (MAPS) chip used in the ITS, the ALPIDE, as well as
some details on the development of the chip. The chapter concludes with a discussion of the
readout system for the ITS upgrade.

The chapter will serve as an important reference for later chapters in this thesis. In partic-
ular chapter 6, which discusses a simulation model for the ITS upgrade and ALPIDE chip.

2.1 ITS Detector in Run 1 and Run 2

The ITS which was used for the first two runs consisted of 6 cylindrical layers. From
innermost to outermost layer, there were 2 Silicon Pixel Detector (SPD) layers, 2 Sili-
con Drift Detector (SDD) layers, and 2 Silicon Strip Detector (SSD) layers. The accep-
tance of the detector ranged from |η| < 2.0 and |η| < 1.4 for the two SPD layers, to
|η| < 0.9 and |η| < 1.0 for the SDD and SSD layers [15]. The SDD and SSD layers were
used for Particle Identification (PID) by measuring the specific energy loss dE

dx , while
the SPD layers were used for vertex1 determination and also as a trigger detector [15].
All layers were used for tracking, but the two pixel detector layers offered the best
tracking capabilities. They were constructed of SPD staves, where each stave consists
of 4 SPD ladders. Each SPD ladder contains a pixel sensor matrix with 256x160 pixel
cells, and 5x ALICE1LHCb readout chips which are bump-bonded to the pixel sensor
matrix. In total the SPD detector consisted of 60 staves (240 ladders) and 1200 readout
chips. The size of each pixel cell was 50 µm× 425 µm, and the total number of pixels
in the SPD was around 9.8× 106 [16].

1The actual point at which the particles in an event collided, as opposed to the nominal IP of the
experiment.

16 Chapter 2. The ITS Upgrade

2.2 Long Shutdown 2 Upgrade of ITS

When Run 3 of the LHC commences, the LHC is scheduled to deliver beams to AL-
ICE of significantly higher luminosity than in the previous two runs. The increased
luminosity translates into higher interaction rates and more statistics, and new oppor-
tunities for the ALICE physics program. Details about how the program will benefit
from the upgrade is beyond the scope of this thesis2. But briefly speaking, the vast
increase in statistics of Run 3 will enable measurements of rare probes that were previ-
ously not feasible, as well as improving existing measurements. With interaction rates
of 50 kHz in Pb–Pb and 500 kHz in pp, a complete redesign of the ITS was necessary.
The existing system was limited to 1 kHz readout [12], [13] and could not possibly
cope with the increased interaction rates. Additional requirements for the ITS up-
grade was a reduced material budget, and pixel sensors for all layers with a reduced
pixel size, which should improve the precision of any measurement in general.

2.3 ITS Upgrade Detector Layout

The upgraded ITS consists of seven cylindrical layers of silicon pixel sensor chips,
and is situated directly around the Interaction Point (IP) and beam pipe. In this sense
it is a very traditional inner tracker with a design comparable to those of the ATLAS
ITk [17], the BPIX detector of CMS’ Phase-1 Pixel detector [18], or the planned MAPS-
based Vertex Detector (MVTX) detector for sPHENIX [19].

FIGURE 2.1: The upgraded ITS detector [13].

2For the interested reader it has been summarized very well in the Technical Design Report (TDR)
for the ITS upgrade [13].

2.3. ITS Upgrade Detector Layout 17

TABLE 2.1: ITS detector geometries, and maximum hit density at η = 0
for minimum bias Pb-Pb events at 100 kHz, including QED background
assuming integration time of 30 microseconds, and detector noise of 10−5

fake hits/pixel. Table reproduced from table 6.1 in the ALICE ITS TDR
[13].

Layer Length (mm) Radius (mm) (Half)-Staves a (#) Chips (#) Hit density (cm -2)
0 271 23 12 108 18.6
1 271 31 16 144 12.2
2 271 39 20 180 9.1
3 843 194 44 2464 2.8
4 843 247 56 3136 2.7
5 1475 353 80 7840 2.6
6 1475 405 92 9016 2.6

As seen in fig. 2.1, the layers of sensor chips in the ALICE ITS are further organized
into two barrels; the Inner Barrel (IB), consisting of the three Inner Layers (ILs) and
situated closest to the IP; and the Outer Barrel (OB), which consists of the two Mid-
dle Layers (MLs) and the two Outer Layers (OLs). “Staves” of sensor chips are the
building blocks of each layer, and come in two main configurations: The Inner Barrel
(IB) stave, consisting of 9 sensor chips; The Outer Barrel (OB) stave, which comes in
a configuration of 112 sensor chips for the MLs, and a 196 chip configuration for the
OLs.

The number of sensor chips and staves per layer is summarized in table 2.1, along
with the cylindrical layers’ radius from the beam pipe, and expected hit densities
for minimum-bias Pb–Pb at 100 kHz. As the particles that are produced in collisions
shoot out from the IP, the density of tracks (and hence, hits in the sensor chips) is
much higher in the innermost layers where the distance to the IP is shorter. Further-
more, the expected hit density in the innermost layers is even higher due to the so-
called “QED background” (electron-positron pairs produced in peripheral and ultra-
peripheral collisions [20]). These electrons and positrons are typically absorbed in the
inner layers and do not contribute significantly to the hit density in the outer layers.

Compared to the previous inner tracker, the upgraded ITS will have a significantly
improved tracking efficiency, as shown in fig. 2.2A. Another figure of merit is the
impact parameter resolution3, which is also improved with the new system.

3The impact parameter is the distance between the center of two colliding particles, an important
quantity to determine if a collision is central or peripheral.

18 Chapter 2. The ITS Upgrade

 (GeV/c)
T

p

-110 1 10S
ta

n
d

a
lo

n
e

 t
ra

c
k
in

g
 e

ff
ic

ie
n

c
y
 (

%
)

0

20

40

60

80

100

ALICE

Current ITS

Upgraded ITS

ALI-PUB-103028

(A)

 (GeV/c)
T

p

-110 1 10

m
)

µ
P

o
in

ti
n

g
 R

e
s
o

lu
ti
o

n

(

0

50

100

150

200

250

300

350

400
ALICE

Current ITS (data)

Upgraded ITS

z

ϕr

z

ϕr

ALI-PUB-103021

(B)

FIGURE 2.2: Tracking efficiency (A) [21], pointing and impact parameter
resolution (B) of the upgraded ITS compared to the old ITS [22].

2.4 The ALPIDE MAPS for the ITS Upgrade

In contrast to the former ITS, which combined a variety of silicon detector chips and
readout ASICs, the upgraded ITS was designed to utilize a custom MAPS4 chip for
all seven layers of the detector. It is the single most important component of the ITS,
and its development dates back to 2011.

The 180 nm TowerJazz Complementary Metal Oxide Semiconductor (CMOS) imag-
ing process was chosen because it allowed for CMOS-logic in a deep p-well in a p−

epitaxial layer. This is illustrated in fig. 2.3. The sensitive area of a pixel consists of
an n-well in the p− epitaxial layer, surrounded by a p+ guard-ring. The n-well and
p− epi-layer forms the charge collection diode, which is reverse biased via the pwell
that forms the guard-ring. The reverse-biasing increases the size of the depletion re-
gion, and the electric field allows charges to drift towards the n-well electrode where
it is collected. The digital logic is implemented in a deep p-well, and that effectively
isolates it from most of the charge liberated from particle hits [23].

Several early chip prototypes were developed to study the performance of dif-
ferent pixel designs and geometries in the TowerJazz technology, as well as designs
for the digital logic, which culminated with the final design for a pixel sensor: the
ALPIDE chip.

The ALPIDE has a pixel matrix of 1024× 512 pixels which covers a total area of
29.94 mm× 13.76 mm. The size of an individual pixel is 29.24 µm × 26.88 µm, and
each pixel includes a charge collection diode, amplification chain and discriminator

4A MAPS chip comprises both the sensitive elements and readout circuits on the same die, as
opposed to the hybrid pixel sensors of the previous ITS with the sensitive elements and readout circuits
on separate dies.

2.4. The ALPIDE MAPS for the ITS Upgrade 19

e e

e
e

h

h

h

h

PWELL PWELL NWELL

DEEP PWELL

NWELL

DIODE

NMOS

TRANSISTOR

PMOS

TRANSISTOR

Epitaxial Layer P-

Substrate P++

FIGURE 2.3: Cross-section of charge collection diode and CMOS-logic for
a pixel in the TowerJazz 180 nm process [13].

circuit. The full size of the chip is 30 mm× 15 mm, which also includes Digital to Ana-
log Converters (DACs), Analog to Digital Converters (ADCs), and a digital periphery
measuring 30 mm× 1.208 mm at the fringe of the chip. Everything is contained on
one die, owing to the MAPS design of the ALPIDE.

Analog Front-End and Pixel Discrimination

FIGURE 2.4: Illustration of pulse shape output from the pre-amplifier in
the analog front-end of the ALPIDE chip, and the digital pulse output

from the comparator. [24].

Each pixel in the ALPIDE chip features the amplifier stage in fig. 2.4. In summary
the process of detecting and storing a hit goes through the following steps:

20 Chapter 2. The ITS Upgrade

1. As a particle traverses through the chip it liberates charge (electrons) in the sub-
strate.

2. An electric field from the substrate to the N-side of the charge collection diode
(the “Sensing node” in fig. 2.4) causes the liberated charge to drift and be col-
lected by the charge collection diode 5. The collected charge, which may be of
the order of only a few electrons, gives rise to a weak voltage pulse.

3. A Pulse Shaping Amplifier (PSA) amplifies and shapes the pulse from the sens-
ing node. The width of the pulse after the PSA is typically on the order of 5 µs.

4. Next in the chain is a comparator, which takes the shaped pulse from the previ-
ous stage as one input, and a configurable threshold6 as the other input. When
the input pulse is higher in voltage than the threshold, the comparator output is
high.

5. The comparator output is gated with the strobe window7. One of the three
latches in the pixel memory is set when they coincide. Each pixel memory latch
is associated with one of the three slices of the chip’s Multi Event Buffer (MEB).

Readout

The internal readout logic of the ALPIDE, as well as triggering, framing of events,
and data output, is explained in more extensive detail in appendix B.

The chip features a MEB that can hold three events. It essentially consists of three
pixel buffers of 1024 × 512 bits, one buffer per event. When a trigger is received
the chip will latch hits into one of the MEB’s buffers. The 1024 columns of pixels
are divided into 32 regions of 32 × 512 pixels. Two pixel columns form a double
column, and hits in a double column are read out by a priority encoder (one encoder
per double column). The priority encoders within a region are read out in a round-
robin fashion into a region FIFO, and the 32 regions are read out in parallel. Data from
the region FIFOs are then read out, one region at a time, to be transmitted off the chip
as data frames.

The data is transported off the chip over a high-speed differential serial link, oper-
ating at 1200 Mbps for IB chips and 400 Mbps for OB chips, and employing a standard

5The substrate of the chip, which forms the P-side of the charge collection diode’s PN-junction,
may be biased at negative voltages (down to 6 V) at the chip’s PWELL and SUB pads, for enhanced
performance.

6The threshold is configured using the DACs on the chip.
7The length of the strobe window is configurable, and the each strobe window is associated with a

trigger.

2.4. The ALPIDE MAPS for the ITS Upgrade 21

K28.5 8b10b encoding scheme. For control and triggering of the chip there is a multi-
drop serial control link operating at 40 Mbps.

Pixel Clustering

The pixels in the ALPIDE share the same epitaxial layer, with no insulating barrier
between them, and the charge that is liberated by a particle hit is typically shared
among the surrounding pixels [25]. This generally leads to a cluster of pixels firing
per particle hit with a cluster size related to the amount of liberated charge. To reduce
the amount of data to transfer off the chip, up to eight neighboring hits in the same
double column can be clustered into a single data word, which reduces the amount
of data to transfer. This is explained in more detail in appendix B.5.3 of appendix B.

Modes of Operation

The ALPIDE chip is highly configurable with a rich set of registers that can be ac-
cessed via the Differential Control bus (DCTRL) link. Most of these configuration
options are out of scope for this thesis, but there are a few important modes and fea-
tures of the chip that needs to be mentioned:

1. Inner Barrel and Outer Barrel modes

2. Triggered and Continuous mode

3. Internal sequencer

Inner Barrel and Outer Barrel Modes. The ITS IB has a much smaller radius than
the OB, and consequently the IB ALPIDE chips have a much higher occupancy than
those of the OB. A dedicated data link operating at 1200 Mbps is absolutely needed
for the IB chips to cope with the hit densities they are subjected to. However, in the OB
the hit densities are so much lower that one 400 Mbps data link shared between seven
chips is sufficient, and this called for a chip that could operate in two different modes.
Of course it would be easier to design a chip with a dedicated data link operating at a
fixed data rate, but this would probably have made the OB stave design impossible,
as it would have required a dedicated differential data link to be routed to each of the
stave’s 196 chips.

For this reason, the ALPIDE features an IB mode where the chip transmits data on
a dedicated 1200 Mbps data link 8, and an OB mode where seven chips share one 400
Mbps data link.

8In IB mode the data rate is 1200 Mbps by default, but can also be configured for 600 Mbps and 400
Mbps. OB chips are limited to 400 Mbps only.

22 Chapter 2. The ITS Upgrade

An OB chip can either be configured to be a master or slave. The OB master chip
receives data from the slave chips on the 320 Mbps 9 parallel local bus, and transmits
their data, as well as its own data, on the 400 Mbps differential serial link that it
controls.

The choice of IB, OB master and OB slave is configured by the CHIPID pins, which
are typically hardwired on the stave to assign the geographical ID of a chip. The mode
can not be reconfigured in any configuration registers.

Triggered and Continuous Mode. Two major trigger modes are planned for AL-
ICE in Run 3: triggered mode and continuous mode. Events are captured in triggered
mode based on minimum-bias triggers distributed from the Central Trigger Proces-
sor (CTP), as seen in fig. 2.5, which is analogous to taking pictures with a camera.
The opposite analogy would be to record video with the camera, and that is basically
how the experiment operates in continuous mode where all events are continuously
captured, which is illustrated by fig. 2.6.

For the ITS the ALPIDE chips will be configured to have a short strobe, on the
order of 100 ns, for triggered mode. Longer periodic strobes are used in continuous
mode, on the order of 10 µs, with a short gap between each strobe.

The ALPIDE chip itself features two modes; triggered mode, and continuous mode.
As their names imply, they are intended to be used with the corresponding mode for
the experiment. However, it is important to note that the triggered mode and con-
tinuous mode in the ALPIDE have no effect on strobe length and how triggers are
processed in the chip. The main differences between the two modes are listed in ta-
ble 2.2, and relates only to how the MEB is handled. To summarize the table, new
events are dropped in triggered mode when the MEB is full, and continuous mode

9Local bus is not encoded. The 400 Mbps serial link is 10b8 encoded, and has an effective data rate
of 320 Mbps as well.

2.5. ITS Detector Staves 23

prioritizes new events and discards older data when the buffers are full.

TABLE 2.2: Comparison of triggered and continuous modes in the ALPIDE.

Triggered mode Continuous mode
Allows all 3 buffers of the MEB to be used Allows 2 buffers of the MEB to be used, keeps

one buffer free for new events
Busy when all 3 buffers of the MEB are useda Busy when 2 buffers of the MEB are useda

Rejects incoming triggers when busy, and sends
an empty frame marked with a “busy violation”
flag for the rejected trigger

Accept triggers even when busy as long as 1
buffer is available in the MEBb but flushes the
oldest buffer in that case. Flushed events are
marked with a “flushed incomplete” flag.

a The chip will also go busy when the frame FIFO is near full.
b If all buffers of the MEB are in use this would lead to a busy violation, just like triggered mode.

Should not happen with the foreseen triggering schemes for continuous mode.

In principle, it is possible to use the chip in triggered mode but with the exper-
iment running in continuous mode (i.e. periodic triggers/strobes, and long strobe
lengths). Chapter 6 includes some simulations where this has been performed.

Internal Sequencer. The ALPIDE chip features an internal sequencer which can
generate strobes with a configurable length, and with a configurable gap between
the strobes. When the sequencer is enabled, it must be activated by issuing one trig-
ger to the chip. The sequencer will then run indefinitely until it is deactivated via the
control bus.

The continuous mode envisioned for ALICE in Run 3 can be achieved using this
internal sequencer, along with the continuous mode in the chip. Or alternatively,
the periodic triggers for continuous mode can be issued externally, with the internal
sequencer deactivated. But the strobe must still be configured for an appropriate
length in the chip.

As previously mentioned, the continuous and triggered modes in the chip only
affect how the MEB is handled by the chip, so it is also possible to use the internal
sequencer with the chip in triggered mode.

2.5 ITS Detector Staves

For the stave assemblies the ALPIDE sensor chips are glued and wire-bonded10 to
FPCs, which routes the clock, control, and data signals to Samtec FireFly connectors
at the end of the stave. In addition to the FPCs, the general stave assembly consists of a

10Some sources mention laser-soldering the chips directly to pads on the Flexible (FPC), but due to
quality issues this technique was later discarded in favor of wire-bonding.

24 Chapter 2. The ITS Upgrade

Shaped
signal

Interaction
events

Interaction
triggers

Triggers to ALPIDE
(~1200ns delay)

ALPIDE strobe
window

TRG 3TRG 1 TRG 2

TRG 3TRG 1 TRG 2

Strobe 1 Strobe 2 Strobe 3

Threshold

FIGURE 2.5: Waveform illustrating operation with minimum-bias trig-
ger.

Shaped
signal

Interaction
events

Periodic
triggers

ALPIDE strobe
window

TRG 2TRG 1

Strobe 1 Strobe 2 Strobe 3

Threshold

TRG 3 TRG 4

Strobe 4

Event 1 Event 2 Event 3

Event 1 latched Event 1 and 2 latched Event 2 and 3 latched Event 3 latched

Time

Time

Time

Time

FIGURE 2.6: Waveform illustrating operation with continuous/periodic
trigger.

cooling plate with inlets and outlets for coolant, and a carbon-fiber space-frame which
holds the assembly together and gives the stave some structural rigidity. Illustrations
of the assemblies are shown in fig. 2.7.

The IB staves consist of just one FPC containing all nine chips, and the IB FPC
also routes power, ground and back-bias voltage to the chips. Figure 2.8 shows the
connections on the stave. Each chip has a dedicated data line, but the multi-drop
control bus is shared between the chips.

The OB stave assembly is more complex than the IB stave. It is assembled from
four or seven (depending on ML or OL stave) OB-HICs11. The HICs are connected at
each end, but the density of signals requires power to be routed by dedicated FPCs
for a Power Bus (PB) and Bias Bus (BB), which connects to cross-cables on the HICs
(see fig. 2.9A).

The connections on a OB half-stave is shown in fig. 2.10. One control line is shared
between one row of half-modules, and each half-module has a dedicated data line. A

11A Hybrid Integrated Circuit (HIC) in this context refers to an assembly of the FPC with ALPIDE
chips, e.g. IB-HIC of 9 chips, or OB-HIC of 14 chips.

2.6. Trigger Distribution 25

(A) (B)

FIGURE 2.7: Illustration of stave assemblies for the IB (A) and OB (B) of
the ITS [13].

ALPIDE #0
ID: 0000000

ALPIDE #1
ID: 0000001

ALPIDE #2
ID: 0000010

ALPIDE #8
ID: 0001000

MCLK
DCTRL

HSDATA1
HSDATA2

HSDATA9

HSDATA3

FIGURE 2.8: IB stave schematic (based on schematics from ALPIDE man-
ual [26]). The three Most Significant Bits (MSBs) of the CHIP-ID are all

low to put the chips in IB mode.

full OB stave consists of two half-staves like this.
The internal wiring of the OB module is shown in fig. 2.11. The master chip buffers

and distributes the clock to the slave chips, and relays the control transactions to and
from the slave. Data from the slaves is sent to the master on a shared local bus, which
it transmits off the stave on one dedicated data link. A local connection is also used
by the slaves to indicate busy status so the master can report it on the outgoing data
link.

2.6 Trigger Distribution

The upgrades to the ALICE Trigger and Timing System (TTS) introduces a new CTP
and a Local Trigger Unit (LTU). The CTP receives and processes inputs from trigger

26 Chapter 2. The ITS Upgrade

(A) (B)

FIGURE 2.9: A: Wire-bonding of ALPIDE chips to the FPC of an OB mod-
ule [27]. The chips are not visible in the picture, as they have been glued
to the FPC and are facing down in the wire-bonding machine. The pic-
ture also shows some of the cross-cables for ground, power, and bias,
which are connected to the PB and BB during stave assembly. B: Wire-
bonding of a ground or power via/pad on the FPC to a pad on the

ALPIDE chip (the small square in the middle) [27].

MCLK

HSDATA
DCTRL

OB module #1 OB module #2 OB module #3 OB module #4 OB module #5 OB module #6 OB module #7

MCLK
DCTRL
HSDATA
HSDATA
HSDATA
HSDATA
HSDATA
HSDATA
HSDATA

HSDATA
HSDATA
HSDATA
HSDATA
HSDATA
HSDATA

FIGURE 2.10: OB stave schematic (based on schematics from ALPIDE
manual [26]). The modules and HSDATA lines with dashed lines indicate
the three additional modules for the OL stave compared to the ML stave.

detectors in the experiment, and generates several levels of trigger signals. The trig-
gers are sent to the LTUs which distribute the trigger signals either directly to the
detectors or via the Common Readout Units (CRUs)12. The same hardware is used
for the CTP and LTUs, but in different configurations.

The trigger signals from the CTP and LTUs are used by the ITS in the triggered
mode. However, the alternative continuous mode does not use these trigger signals.

12The LTU can distribute triggers via a variety of protocols and optical standards, e.g. GigaBit
Transceiver (GBT) and TTC-PON, to cater for new and old detectors.

2.6. Trigger Distribution 27

ALPIDE #0
ID XXX0000

(master)

ALPIDE #1
ID XXX0001

(slave)

ALPIDE #2
ID XXX0010

(slave)

ALPIDE #6
ID: XXX0110

(slave)

MCLK
DCTRL
HSDATA

ALPIDE #3
ID XXX0011

(slave)

ALPIDE #4
ID XXX0100

(slave)

ALPIDE #5
ID XXX0101

(slave)

BUSY
CTRL

DATA

ALPIDE #8
ID: XXX1000

(master)

ALPIDE #9
ID: XXX1001

(slave)

ALPIDE #10
ID: XXX1010

(slave)

ALPIDE #14
ID: XXX1110

(slave)

MCLK
DCTRL
HSDATA

ALPIDE #11
ID: XXX1011

(slave)

ALPIDE #12
ID: XXX1100

(slave)

ALPIDE #13
ID: XXX1101

(slave)

BUSY
CTRL

DATA

HSDATA (from other modules)

HSDATA (from other modules)

6

6

MCLK
DCTRL

MCLK
DCTRL

HSDATA

HSDATA

C
on

ne
ct

io
ns

 to
 n

ex
t m

od
ul

e
in

 th
e

st
av

e

FIGURE 2.11: OB module schematic (based on schematics from ALPIDE
manual [26]). Note that CHIP-ID 7 (b0111) is skipped as this ID is re-
served for broadcast. All zeroes for the three Least Significant Bits (LSBs)
identifies a chip as an OB master chip. The three MSBs indicate the mod-
ule ID and at least one of them must be 1 to put the chips in OB mode.

All events are captured in this mode and triggers are not tied directly to events; they
are continuously generated and sent to the detector at a constant rate.

In either of the two aforementioned modes, the triggers are distributed to the
ALPIDE sensor chips by the main FPGA (see section 2.7.2) in the RUs using the control
links to the chips. The control links do not add significantly to the trigger delay due
to the fast trigger decoding of the trigger words (refer to appendix B.4.2).

The CTP is also responsible for the generation of the so-called HeartBeat (HB)
triggers [28], which should not be confused with the physics triggers. The concept of
HB trigger and frames is explained in more detail in appendix C.2. It is mentioned
here because they are also used as a time base for trigger generation by the ITS readout
electronics in continuous mode.

2.6.1 Triggered Operation

When the experiment operates in triggered mode the ITS relies on the new low-
latency Level Minus (LM) trigger which is introduced with the LS2 upgrades of the
TTS [29]. These triggers are sent to the readout electronics on dedicated GBT down-
links from one LTU. The LTU has eight optical SFP+ modules installed for the trigger
downlinks. The SFP+ outputs are split in a 1:2 ratio, with 16 trigger lines going to 16
sub-racks for the readout electronics. These lines are split again with a 1:16 ratio13 by
a passive optical splitter at each sub-rack, before they are distributed to the RUs in the
racks.

13The splitting ratios were carefully chosen to ensure that there is a sufficient optical power budget.
A lower splitting ratio would have required more than one LTU.

28 Chapter 2. The ITS Upgrade

Trigger Delay

Several delays are associated with the trigger signals that are distributed to the sen-
sor chips. When the FIT detects an interaction in the experiment it generates the LM
input signal for the CTP. It takes 425 ns for the signal to reach the CTP’s inputs. After
an additional 190 ns for CTP processing and distribution to LTUs, the trigger is trans-
mitted to the readout electronics over 35 m of optical cables, which delays the signal
by an additional 175 ns. Another 250 ns is required for processing and transmission
on the ALPIDE control links before it is received by the sensor chips. The total delay
adds up to 1230 ns [30].

Trigger Filtering

Since the Time over Threshold (ToT) for a pulse after the PSA is generally around
5 µs (see fig. 6.6), the pulse lives on in the analog front-end for much longer than the
trigger delay. As a consequence, when the time between two events is shorter than
the shaping time, pixel hits from both events may be sampled in the second trigger,
as indicated in fig. 2.12.

FIGURE 2.12: Two events happen with sufficient time between them so
that the first trigger only captures the first event. The second trigger

captures both events. [30]

In the case where the spacing between two events is even shorter than the trigger
latency, pixel hits from both events may be sampled in each of the two triggers. When
the first trigger arrives in the chips, hits from the second event may have gone over
threshold, so they are sampled in the first trigger. When the second trigger arrives,
the hits from the first event are still over threshold because of the long pulse shaping
time, so those hits are also included in the second trigger. This is illustrated in fig. 2.13.

2.6. Trigger Distribution 29

FIGURE 2.13: Two events happen with insufficient time between them,
both triggers would capture both events. [30]

Since both triggers would capture the same information in this case, issuing them
both is essentially a waste of bandwidth and buffers in the chips. To avoid this the RU
can filter out triggers that come too close to the previous trigger (i.e. the time between
triggers is less than the trigger latency).

2.6.2 Continuous Operation

The minimum-bias LM-trigger from the CTP is not used when running in continuous
mode. Operation in this mode is in principle much simpler. The periodic HB triggers,
which main purpose is for framing of detector data, are used as a time base by the RU
for generation of the continuous triggers, of which there are several per HB.

2.6.3 Busy Signaling

The sensor chips are in a busy state when they are (temporarily) unable to receive a
trigger without subsequent loss of data, typically because all event buffers are in use
(see table 2.2) and in some cases because the frame FIFO with trigger information is
full. More details are available in appendix B. Changes in busy status is reported to
the readout electronics using the data link and takes priority over normal event data.
Busy status for the sensor chips and readout electronics is reported to the CRUs. In
principle, a busy status for the entire ITS can be reported to the CTP which receives an
individual busy signal from each detector in the experiment. How these signals are

30 Chapter 2. The ITS Upgrade

First Level Processor (FLP)Readout Unit (RU)

GPIO

ALPIDE
control links

MGT
transceiver pairs

LVDS pairs
Xilinx

UltraScale
FPGA

GBTx 0

GBTx 1

GBTx 2

VTRx

VTRx

VTTx

Tr
ig

ge
r

Not used

Sensor data

Sensor data

Sensor data and
control responses

Control requests

Microsemi
ProASIC3

FPGA
GBT-SCA

I2C

Slow
Control

Local Trigger Unit
(LTU)

Common Readout Unit
(CRU)

Installed in PCIe slots of the FLP

CAN
transceiver

Detector Control System (DCS)

3.2 Gbps

3.2 Gbps

3.2 Gbps

3.2 Gbps

3.2 Gbps

I2C

Power Unit (PU)

I2C

ALPIDE clock 5

5

28

28

Inner layers:
- 9x data links @ 960 Mbps
- 1x control link and clock

Middle layers:
- 16x data links @ 320 Mbps
- 4x control link and clock

Outer layers:
- 28x data links @ 320 Mbps
- 4x control link and clock

FIGURE 2.14: RU and main interfaces for control, trigger, and data read-
out.

handled by the CTP will change with the LS2 upgrades: “In contrast to the Run114 sce-
nario, a detector which is busy will not interrupt the entire ALICE data acquisition.”
[29]. But the CTP will not send triggers to a busy detector. For the ITS it has been de-
cided to not report a busy status to the CTP, since the aforementioned behavior is not
desirable and would have a negative impact on readout efficiency. The round-trip to
report a busy status from sensor chip to the CTP via the CRU, and distribute a trigger
from the CTP back to the chips, is too long (order of 2 µs) for efficient busy handling
using the CTP. Determining a single busy status for the ITS based on the busy status
of over 24 000 sensor chips would also pose a challenge. And simulations have shown
that the readout efficiency of the detector is very good under all anticipated operating
conditions (see chapter 7).

2.7 ITS Upgrade Readout Electronics

The readout electronics for the ITS consists of the Readout Unit (RU) and the Power
Unit (PU). There are 192 RUs, one for each of the 192 staves in the detector. They
are responsible for trigger distribution, control and configuration, and of course data
readout from the sensor chips. The entire readout chain from pixel detector to the First
Level Processors (FLPs), and including trigger distribution from the LTU, is shown in
fig. 2.14. The PUs distribute power to the sensor chips, and they are controlled by the

14And Run 2.

2.7. ITS Upgrade Readout Electronics 31

RUs. A dedicated Busy Unit (BU) was also envisioned at some point, which would
monitor the busy status of the detector and use that to influence trigger distribution.
However, the BU concept was later discarded; it will be shown in later chapters that
the frequency of busy at nominal interaction rates was not high enough to justify its
existence.

2.7.1 Radiation Environment

The copper cables used for the ALPIDE data links requires the readout electronics
to be placed close to the IP. The signal integrity would deteriorate severely if the
distance is too long. Consequently the RUs for the ITS have to be placed in a radiation
environment, at around 3 m from the IP and 1 m from the beam line axis. The position
of the readout electronics is indicated in figs. 2.15 and 2.16, which shows the levels of
Total Ionizing Dose (TID) and high-energy hadron fluence in the experiment15.

The RUs are expected to be subjected to a TID of up to 10 krad, and a hadron flu-
ence of 1× 1011 cm−2 of 1 MeV Neutron Equivalent Fluence (NEF) [31]. These num-
bers are specified with a safety factor of ten16. The hadron fluence should not be a con-
cern with regards to component degradation and reliability. However, hadrons with
energies higher than 20 MeV can cause latch-ups and Single Event Upsets (SEUs) in
the electronics. The flux of high-energy hadrons is around 1× 103 cm−2 s−1 [31], also
with a safety factor of ten.

2.7.2 Readout Unit

The RU required a high-performance FPGA to handle several gigabits per second of
sensor data over the numerous high-speed interfaces. Several high-speed transceivers
and IOs were necessary for the data links of the ALPIDE sensor chips. High-speed
IOs were also required for the interface between the FPGA and the GBTX chips, which
are used for the optical GBT interface.

The choice of FPGA fell on the Xilinx UltraScale XCKU060, which is an SRAM-
based FPGA (i.e. it uses volatile SRAM memory for its configuration). An SRAM-
based FPGA is blank and requires configuration after a power-on reset. Configuration
of the FPGA can be implemented in different ways (see section 4.3.1), but the con-
figuration image is typically stored in a non-volatile memory device external to the

15Note that the TID and hadron fluence has not been simulated for the RUs in these figures; the
boxes merely indicate the position of the RUs and were added to the figures.

16Figure 2.15 does not show these numbers as the position of the readout electronics is superim-
posed on the plot. However, one would expect the levels to be similar to the levels of the TPC FEE
outside the TPC (excluding the safety factor), estimated to 0.86 krad [32].

32 Chapter 2. The ITS Upgrade

FIGURE 2.15: TID in ALICE for Run 3. The beam-line runs parallel to the
Z-axis at R = 0, and R is the distance from the beam-line. The red box
with the dashed lines was added to indicate the position of the crate for

the RUs. Source: [32].

FIGURE 2.16: High-energy (> 20 MeV) Hadron fluence in ALICE and for
the ITS RU [32].

2.7. ITS Upgrade Readout Electronics 33

Main FPGA:
Xilinx UltraScale

GBT-SCA ASIC

GBTx ASIC

DIP switches

Optical transceivers

CAN connector
(below mezzanine)

ALPIDE mezzanine

Aux FPGA:
Microsemi ProASIC3

Flash memory

VME connector

FIGURE 2.17: RU PCB version 2.1 [35].

FPGA. The FPGA’s (internal) configuration memory is also susceptible to SEUs and
requires scrubbing17 if the FPGA is operating in a radiation environment. For this rea-
son, the RU has an additional auxiliary FPGA for configuration and scrubbing of the
UltraScale main FPGA. A low-end flash-based FPGA, the Microsemi ProASIC3 (PA3),
was chosen for the task along with an external flash memory device to store the main
FPGA’s configuration image. The auxiliary FPGA itself is configured using JTAG
and does not require reconfiguration after a power-on reset due to its non-volatile
flash-based configuration memory, which is considered immune to SEUs [33]. This
is a proven method for external scrubbing which has seen use in other detectors and
experiments, such as for the Readout Control Unit (RCU) of the ALICE TPC [34].

A possible alternative to the two-FPGA approach would have been to use a single,
high-performance, flash-based FPGA. Some flash-based FPGAs were considered for
the RU design, such as the Microsemi SmartFusion 2, but ultimately the choice fell on
the UltraScale as it offered better performance 18.

The circuit board for the ITS RU is shown in fig. 2.17. The next few paragraphs
will discuss the design in more detail.

17Continuously refreshing the configuration to restore bits that have flipped due to radiation.
18Budgetary considerations also played role in the decision, which for instance ruled out the Mi-

crosemi RTG4.

34 Chapter 2. The ITS Upgrade

Transition Board and Interface to Sensor Chips

A custom Samtec Twinax FireFly cable assembly is used to bring clock, control and
data signals, to and from the sensor staves. The FireFly-cables connect to the transition
board, which is a mezzanine board on the RU. The transition board for the ITS is shown
in the upper right of fig. 2.17.

Modern FPGAs feature high-speed Multi Gigabit Transceivers (MGTs) which are
generally the preferred way to receive data from interfaces of ≥ 1 Gbps, such as the
1200 Mbps ALPIDE data links of the IB staves, although the standard LVDS GPIOs of
the UltraScale FPGAs are fast enough to implement a GPIO-based front-end for the
links of the IB staves, as proven by the Proton CT (pCT) design at UiB [36], [37]. How-
ever, it should be noted that the pCT readout unit required a GPIO-based solution
due to the high count of ALPIDE data links per pCT Readout Unit (pRU) and limited
number of transceivers available in the FPGA. The FPGA transceiver count is not a
limitation for the ITS, and a transceiver-based front-end to the 1200 Mbps ALPIDE
data links is preferable. But the GTH/GTY transceivers of the Xilinx UltraScale FP-
GAs require a minimum line rate of 500 Mbps [38], which means they can not be used
in a front-end for the 400 Mbps data links of the OB staves. A GPIO-based front-end
is therefore still required for the OB staves.

The transition board connects to the main RU board via two 100-pin connectors.
These two connectors provide connections to 28 transceiver pairs on the UltraScale
FPGA, as well as 28 standard LVDS GPIO pairs on the FPGA. Signals are routed to
the transceiver or GPIO pairs from five Firefly connectors on the transition board; one
for the IB stave interface which connects to transceiver pairs; and four for the OB stave
interface which connects to the LVDS pairs.

The limited space on the front panel required some of the FireFly connectors to
be stacked. Figure 2.18 is an illustration of the RU board and front panel, and shows
the stacked FireFly connectors on the left. The connectors could not have been placed
directly on the RU PCB to achieve this, it was necessary to place them on the transition
board. But the transition board solution also allows the ITS RU to be used by other
detectors. For instance the MFT detector in ALICE, which is also based on the ALPIDE
pixel sensor [39]. The MFT requires a different number of transceivers for the ALPIDE
data links, and a dedicated transition board design for the MFT makes it possible to
use the ITS RU.

2.7. ITS Upgrade Readout Electronics 35

Optical GBT Interface

The GBT interfaces are based on CERN’s GBT chipset, which comprises the GigaBit
Transceiver ASIC (GBTX) along with the Versatile Twin-Transmitter (VTTx) and Ver-
satile TransReceiver (VTRx) optical transceivers. Based on prior simulations of the
readout for the ITS [40], it was determined that three GBT uplinks were sufficient
to transfer data upstream to the FLPs. One dedicated GBT downlink is required for
control requests from the Detector Control System (DCS) (see section 2.8), and one is
required for triggers. Control responses are multiplexed with data on one of the up-
stream links. As illustrated in fig. 2.14, the optical interfaces are realized with: three
GBTX chips; one VTTx transceiver with two uplinks for data; one VTRx transceiver
with a downlink for control, and an uplink shared for data and control; and a final
VTRx with a downlink for triggers. The latter has an uplink which is not used.

There is also a GBT Slow Control Adapter (GBT-SCA) ASIC on the RU board. It
provides some control and monitoring functionality that rely solely on GBTX 0 (see
fig. 2.14) using the dedicated slow control bits in the GBT frame for communication
(more details in appendix C.1). The GBT-SCA is used to monitor voltages and tem-
peratures on the RU board, enables external control of the auxiliary FPGA using one
of the GBT-SCA’s I2C interfaces, and allows for remote configuration of the FPGAs
using JTAG.

Other Interfaces

Figure 2.18 shows the RU board with the front-panel. The interfaces for the ALPIDE
and GBT links have already been discussed, but there is also a number of other in-
terfaces. The power supply is normally connected to the leftmost connector on the
front-panel, but can also be supplied via the Versa Module Eurocard (VME) connec-
tor at the back of the board. This is the only purpose of the VME connector, it will not
be connected when the boards are installed in crates in the experiment. On the right
side of the front-panel, there are LEDs for status indication; JTAG connectors for both
FPGAs; PU connector; an auxiliary connector to communicate busy status between
RUs; and a connector for CAN bus (bottom right). The CAN interface is used by
the DCS to control the RUs. This is normally performed using GBT, but an additional
control path is provided to the DCS for redundancy in case the GBT interface is down.

Clock Distribution

The two beams that circulate the LHC, in opposing directions, consists of bunches of
particles (technically, they are not continuous beams) [42], [43]. An orbit is divided

36 Chapter 2. The ITS Upgrade

FIGURE 2.18: Illustration of RU design with front-panel and cooling
plate. [41]

into 3 564 bunch positions, each separated by approximately 25 ns, and the Bunch
Crossing (BC) clock has a frequency of 40.079 MHz19 (typically referred to as the LHC
clock). This clock is distributed to all four experiments and their detectors to keep
them synchronized with bunch crossings.

There are two primary clock sources for the FPGAs on the ITS RU:

• A local 160 MHz oscillator on the RU board.

• An external 160 MHz clock provided by one of the GBTX chipsets.

The latter is derived from the LHC clock, as the GBTX recovers the LHC clock from
received GBT frames (which are synchronized with the LHC clock) [44].

The main FPGA will primarily use the external clock, when available, but has a
clock multiplexer in the design to automatically switch to the local clock if the optical
links are down. There are several clock domains in this FPGA. The internal data
bus and most of the logic runs at 160 MHz, and there is a 40 MHz clock domain for
the ALPIDE control links, as well as some other clocks such as for the GPIO-based
ALPIDE data frontend.

The auxiliary FPGA performs no functions that require synchronization with bunch
crossings. It runs solely off the local 160 MHz clock, which makes it immune to any
potential issues with the external clock. The design for this FPGA has a single 40 MHz
clock domain (derived from the local 160 MHz clock using a clock divider module).

19For brevity, 40 MHz will be used in place of 40.079 MHz (and 160 MHz for the related 160.316
MHz clock).

2.7. ITS Upgrade Readout Electronics 37

Configuration Paths for the FPGAs

Configuration of the two FPGAs is possible via a number of different paths using
the different interfaces and features of the RU board. They are illustrated in fig. 2.19.
The JTAG interface allows for direct configuration of the FPGAs. The interface is
connected to both FPGAs and to the GBT-SCA chip. It allows for local configuration
of the FPGAs by connecting a JTAG programmer to one of the JTAG connectors and
remote configuration over GBT slow control [45].

Xilinx
UltraScale

FPGA

Microsemi
ProASIC3

FPGA

JTAG

Slow
Control

I2C

JTAG
header

Xilinx
programmer

Microsemi
FlashPro

programmer

Flash
memory

FIFO for
configuration data

SelectMap

GBT-SCA

GBTx

UltraScale FPGA configuration
Slow option via GBT-SCA

UltraScale FPGA configuration
Fast option via GBTx

Configuration of both FPGAs
using JTAG via GBT-SCA

JTAG

GBT from
CRU/FLP

FIGURE 2.19: Readout Unit Configuration Paths for the FPGAs.

It was mentioned earlier that the UltraScale FPGA is normally configured by the
PA3 FPGA using configuration data stored in the external flash. There are two paths
by which the configuration data in the external flash can be updated: using the GBT-
SCA and its I2C interface to the PA3 FPGA, or via the GBTX to the UltraScale and
to the PA3 using a parallel interface between the two FPGAs. The latter option is
significantly faster, but requires the UltraScale FPGA to be configured and running
already.

Radiation Tolerance

The active components in the RU design must tolerate the expected levels of radia-
tion. The GBTX chipset, which comprises the GBTX and GBT-SCA ASICs, and the
VTTx and VTRx transceivers, were designed for radiation tolerance [46]. Their ra-
diation performance has already been tested and characterized by the GBT group
at CERN. The other components on the board are Commercial off-the-shelf (COTS).
CERN maintains a database of COTS components and their radiation performance,
and the COTS components on the RU were primarily chosen from this database. This

38 Chapter 2. The ITS Upgrade

includes the PA3 FPGA and Samsung K9WBG08U1M Flash chip, the CAN transceiver,
and the DC-to-DC (DC/DC) converters.

In addition to the board design and component choices, techniques for mitigation
of Single Event Effects (SEEs) must be employed in both FPGA designs. The measures
that were taken in the main FPGA design are described at the end of chapter 3. The
scrubbing solution and the mitigation techniques employed in the auxiliary FPGA
design are described in chapter 4.

2.7.3 Optional Busy Unit for the ITS

In principle there are two reasons why the ITS would be in a busy status:

1. The ALPIDE sensor chips are busy, either because no event buffers are free, or
the frame FIFO reached the busy threshold (see appendix B.5.2).

2. FIFOs in the RUs’ datapath are filling up faster than the RUs can transport the
data upstream.

The second scenario is unlikely, because the total bandwidth of the three GBT
uplinks is higher than the total bandwidth of all the ALPIDE data links. This is true
for all three stave types. It should not be possible for the RU’s datapath FIFOs to
overflow unless the system is run without utilizing all the GBT data uplinks20.

The primary concern is how the busy signals from the sensor chips should be
handled. System simulations have shown that the amount of data loss due to busy
sensors is relatively low (see chapters 6 and 7), and it was not necessary to include a
dedicated BU or busy logic in the RUs.

Nevertheless, the readout electronics were designed to cater for a BU, although
a BU has not been designed for the system. This makes it possible to add a busy
solution to the system if the need should arise, for instance if the experiment should
run at higher interaction rates than foreseen for Run 3. Some concepts for a busy
system is described in appendix F.

2.7.4 ITS Power Board

The ALPIDE sensor chips requires an 1.8 V analog and digital supply, as well as a
negative back-bias21. On the IL staves the supply lines are routed on the flex-PCB for

20This is ignoring the protocol overhead associated with the heartbeat frames, which should be a
very small fraction of the links capacity. The capacity of the GBT links are higher than the combined
capacity of the ALPIDE data links.

21Typically −6 V.

2.8. Detector Control System and Online-Offline (O2) 39

TABLE 2.3: Number of staves, RUs and PBs per layer.

Layer Stave count RU count PB count
0 12 12 6
1 16 16 8
2 20 20 10
3 24 24 12
4 30 30 16
5 42 42 42
6 48 48 48

the chips themselves. The ML and OL staves have dedicated power-bus and bias-
bus layers in the assembly, with connections going to flex-PCBs for the half-modules
of seven sensor chips. Each half-module is powered individually in the middle and
outer layers.

The necessary voltages to operate the sensor chips is generated and supplied by
the ITS Power Board (PB) [47]. One PB is an assembly consisting of a sandwich of
two near identical22 PU boards23, with a cooling plate between them. Each PU has
16 power channels which can be controlled individually. The PU itself is controlled
and monitored by the main FPGA of an RU over an I2C interface. There are also con-
nections for PT100 temperature sensors on the sensor staves, which are continuously
monitored by the RUs via the PU board.

The ML and OL staves use one PU channel per half-module [48]. A full PU is
used for the 16 half-modules of an OB half-stave, and a full PB for a full OB stave.
One PU is sufficient to power a full ML stave, which consists of 16 half-modules (8
half-modules per half-stave). An IL stave requires power from two channels of a PU.
In principle, it would have been possible to supply power to eight IL staves with one
PU. But each IL stave has a dedicated PU since the PU has to be controlled from the
stave’s RU.

2.8 Detector Control System and Online-Offline (O2)

The Detector Control System (DCS) is used for control and monitoring of power sup-
plies and voltages, temperatures, pressures, etc., for all detectors and associated sys-
tems in the ALICE experiment. It is implemented using WinCC OA, a commercial
Supervisory Control And Data Acquisition (SCADA) system [49]. Communication
with the ITS RUs is done primarily over GBT via the FLPs, but CAN bus is also used.

22The PU comes in a left configuration, and a right configuration, which are essentially mirrored
versions of the same board design.

23The terminology can be a bit confusing since the term PB refers to an actual assembly of two
boards.

40 Chapter 2. The ITS Upgrade

The actual detector data is shipped from the FLPs to the server farms of the Online-
Offline (O2) system, where the data is combined into complete events and stored for
later analysis.

Further details about these two systems and their upgrades are out of scope for
this thesis, but they are introduced here for the sake of completeness.

41

Chapter 3

Main FPGA Design for the ITS
Readout Unit

This chapter provides an overview of the FPGA design for the Xilinx UltraScale main FPGA.
The development of the design was led from CERN, and the main contributors were Joachim
Schambach, Matteo Lupi, Matthias Bonora, Gianluca Aglieri Rinella, Arild Velure, and Ola
Slettevoll Grøttvik. Joachim was the project’s leader, and he also developed the GBT commu-
nication, control and communication with the PU, and early trigger handler and datapath.
Matthias developed the initial versions of the Alpide data decoder and datapath, and created
the regression framework for hardware test and simulation. Matteo devised the methods for ra-
diation hardening and triplication that were employed in the FPGA design, and was the main
developer and maintainer of the Alpide Control module. The final version of the datapath
and trigger handling was developed by Matteo, Arild, Gianluca, and Joachim. Gianluca con-
tributed with his experience and expertise and also initiated development of extensive UVM
testbenches for verification of several modules. Arild did a tremendous job setting up the CI
build environment for both FPGA projects. He also made countless improvements and fixes
to every aspect of the FPGA design, and so did Ola, who joined the project in 2021 and has
had the important job of maintaining the project during the late commissioning phase and
preparing for the start of Run 3. They deserve credit for all their hard work, and I apologize
for any inaccuracies. My main contributions to the project were the modules for the CAN bus
interface, the Alpide Monitor, and also the FIFO interface to the PA3 for configuration data.

42 Chapter 3. Main FPGA Design for the ITS Readout Unit

3.1 General Structure

The design for the main FPGA is illustrated in fig. 3.1. The design does not feature
a Central Processing Unit (CPU)1,2, but is a pure logic design for the programmable
fabric of the FPGA, designed at the Register Transfer Level (RTL) using Hardware
Description Language (HDL)-code. It implements the main functionality of the RU
for triggering and readout, as well as other functionality. To control the FPGA there
are three communication interfaces that can be used: GBT, CAN, and Universal Serial
Bus (USB). These interfaces allow for direct access to certain registers in the FPGA
design via an internal bus.

Sensor data

ALPIDE chips

USB WB
data

GBT Controller 0/1

CAN

WB Master WB MasterWB Master

Alpide
Control

Alpide
Datapath

Alpide
Monitor

Trigger
Handler

Power Unit
Control

Lab use only
(not included in

final version)

GBT
Controller 2

ALPIDE chips
ALPIDE chips

GBTx #0 GBTx #1 GBTx #2

WB and
Sensor data

Sensor data

M
ai

n
FP

G
A

D
es

ig
n

(X
ilin

x
U

ltr
aS

ca
le

)

GBT packers

Trigger
Wishbone Bus

FIGURE 3.1: FPGA design for the Xilinx FPGA [35].

1A CPU would need to be protected with Triple Modular Redundancy (TMR), just like the other
modules in the design, and would require additional resources in the FPGA. The firmware that runs
in the CPU would require dedicated memory, which would also have to be protected, and a way to
transfer it to the FPGA is necessary.

2The use of a CPU can make some aspects of development easier, by allowing complex Register
Transfer Level (RTL)-logic to be implemented in firmware for the CPU. But for the main (and also the
auxiliary) FPGA design the challenges associated with a CPU were deemed too great compared to the
benefits.

3.1. General Structure 43

3.1.1 Wishbone Bus

The backbone of the FPGA design is a Wishbone (WB) bus with 15-bit address width
and 16-bit data width. Access to this bus allows for configuration and control of
every module in the design. In total, there are 49 WB slave modules, and 3 masters
which are tied to the aforementioned communication interfaces. Because of the bus’
importance in the design, the entire bus is protected using TMR (including the slave
and master interfaces).

Bus Masters

A generic WB bus master with two FIFO interfaces is used by all the interfaces that
provide master access to the WB bus, as indicated in fig. 3.1. The interface to the
WB master consists of one FIFO for WB transaction requests, and one FIFO for WB
transaction results. A round-robin arbiter (not shown in the figure) coordinates bus
access for the masters. The combination of the FIFO interfaces and arbiter allows
sequences of WB transactions to be queued, and execution of the transactions to be
performed asynchronously with respect to when they were scheduled.

Addressing Space

Internal registers in the modules are addressed using the lower eight bits of the 15-bit
address, and the modules are selected by the upper 7 bits in the address. The WB
masters’ FIFO interfaces use a data width of 32 bits, and each FIFO-entry contains
both the data and address for a transaction. The 32nd bit is used to indicate read or
write access in the request FIFO, and it is used to indicate bus errors in the result FIFO.

3.1.2 FEE ID

Each RU in the system is configured with a unique ID which identifies which detector
stave it is responsible for. This ID is configured using eight Dual In-line Package
(DIP)-switches3 on the RU board. Upstream data transmitted to the CRU is labeled
with the FEE ID, and the FEE ID is also used as a node ID in the CAN control interface.

Table 3.1 shows how the IDs are assigned. The stave number in a layer is indicated
by the LSBs of the ID, i.e. the bits below the Layer ID Mask. As an example, consider
the RU for stave number 5 in layer number 4. This RU would have Layer ID of 0110
0000, and the Stave ID would be 0000 0101 (i.e. Stave ID 5 in decimal notation). The
full FEE ID is obtained by computing the boolean OR of the Layer ID and Stave ID,
which yields: 0110 0101.

3DIPSWITCH[9:2] on the RU board design.

44 Chapter 3. Main FPGA Design for the ITS Readout Unit

TABLE 3.1: FEE ID.

Layer Layer ID Layer ID Mask Stave ID Mask
0 0000 XXXX 1111 0000 0000 1111
1 0001 XXXX 1111 0000 0000 1111
2 001X XXXX 1110 0000 0001 1111
3 010X XXXX 1110 0000 0001 1111
4 011X XXXX 1110 0000 0001 1111
5 10XX XXXX 1100 0000 0011 1111
6 11XX XXXX 1100 0000 0011 1111

To find the Layer ID and Stave ID for an FEE ID, the process is reversed, and con-
sidering the Layer ID first in this order:

• If the MSB of the FEE ID is 1, then the Layer ID is either 5 or 6, and the Layer ID
Mask of 1100 0000 should be applied.

• If the MSB of the FEE ID is 0, and any combination of the next two bits are 1,
then the Layer ID is either 2, 3, or 4, and the Layer ID Mask of 1110 0000 should
be applied.

• If the three MSBs of the FEE ID are all 0, then the Layer ID is either 0 or 1, and
the Layer ID Mask of 1111 0000 should be applied.

After the Layer ID has been extracted from the FEE ID, the corresponding Stave ID
Mask (the inverse of the Layer ID Mask) for that layer is applied to find the Stave ID.

3.2 Detector Datapath

One of the main purposes of the readout electronics is, as the name indicates, to re-
ceive and aggregate data from the sensor chips in the detector, and to transmit the
data upstream for storage and analysis. The datapath for the sensor data is conse-
quently one of the most important components of the FPGA design.

A whole range of modules and submodules come together to implement the dat-
apath in the design, but roughly speaking the datapath consists of two major compo-
nents:

• The IB and OB datapath modules, which implement the ALPIDE data lane logic
and FIFOs, and the front-end for each corresponding ALPIDE data link. The
datapath associated with an ALPIDE data link is referred to as a “lane”.

• The GBT packers which package data from several ALPIDE data lanes for trans-
mission on a GBT uplink.

3.2. Detector Datapath 45

3.2.1 Datapath and Data Lanes

en
ab

le
 la

ne
 8

alpide_frontend_gth

alpide_datapath lane_packager

control and status

alpide_frontend_gth_cdc

alpide_gth_monitor

en
ab

le
 la

ne
 0

reset signals

alpide_frontend_ib_wishbone

Data path for Inner Barrel

alpide_datapath lane_packager

. . .

. . .
ALPIDE_DATA_MGT_0 Lane 0 data

. . .

alpide_datapath_monitor

Lane 0
monitor
signals

Lane 8
monitor
signals

. . .

Lane 0

Lane 8

ALPIDE_DATA_MGT_1

. . .

. . .

Lane 0 read

Lane 8 read

Lane 8 dataALPIDE_DATA_MGT_8

To GBT Packer

FIGURE 3.2: IB datapath in the main FPGA design.

The datapath for sensor data comes in one configuration for the IB, and one for the
OB. The configuration for the IB is shown in fig. 3.2. It has a front-end for the ALPIDE
data links which is based on the GTH-transceivers that are available in the Kintex
UltraScale FPGA. The front-end receives data from the nine 1200 Mbps ALPIDE data
links of the IB, and performs 8b10-decoding of the data stream. The front-end is fol-
lowed by a data lane for each data link. The lane begins with a stage that processes the
raw ALPIDE sensor data4, performing idle suppression (i.e. removal of the ALPIDE’s
IDLE data words), and protocol checking and tracking. The idle-suppressed data is
stored in a 16 kB FIFO which is read by the lane packager of the next stage, where the
data is packaged in blocks of 9 bytes5 to be transmitted over GBT.

The datapath implementation for the OB staves is almost identical, but uses a
GPIO-based front-end for the slower 400 Mbps data links of the OB. It supports 28
data links and data lanes, but with a smaller lane FIFO size of 4 kB.

4The alpide_datapath block in the figure. Not to be confused with the full datapath for IB and OB.
5The payload size for one GBT frame is 80 bits, i.e. 10 bytes. One byte is reserved to indicate which

lane the data belongs to.

46 Chapter 3. Main FPGA Design for the ITS Readout Unit

3.2.2 GBT Data Packer

The data lanes from the IB or OB datapaths feed into the GBT packer where the data is
packed based on physics triggers6, and framed to conform with the Raw Data Header
(RDH)7 readout protocol that the CRU expects (see appendix C.5 for more details). A
block diagram of the GBT packer is shown in fig. 3.3. It consists of three GBT packer
channels (one channel per GBT uplink). The channels output data to be transmitted
on their GBT uplink and multiplex between ALPIDE lane data, when available, and
the different control words of the readout protocol over GBT (see appendix C).

 GBT Packer

 GBT Packer Channel

ALPIDE Lane Data

ALPIDE
datapath's
lane FIFOs

SOP

EOP

HSW

TSW

RDH0

RDH1

RDH2

RDH3

IDLE

Lane 1

Lane 2

Lane N

. . .

ALPID
E data in GBTx

Output
FIFO

GBT Packer FSM

Round-robin ALPIDE
data lane MUX

GBT data
word MUX

GBT uplink 0
GBT uplink 1
GBT uplink 2

24 bit @ 40 MHz

24 bit @ 40 MHz

24 bit @ 40 MHz

80 bit
@

40 MHz

FIGURE 3.3: Block diagram of GBT packer.

The FIFO interfaces of the ALPIDE data lanes are presented to the GBT packer. In
principle, the three GBT packer channels share access to all of the ALPIDE lane FIFOs,
but each channel is configured for a certain range of lanes in the top-level GBT packer
depending on which layer of the detector the RU is associated with (this is derived
from the FEE ID). The RUs for the IB staves use all three GBT packer channels and
GBT uplinks, with three ALPIDE data lanes assigned to each channel/uplink. But

6Either the LM-triggers from the CTP or the triggers that are periodically generated by the RU in
continuous mode.

7At the time of writing, version 6 of the RDH format is used.

3.3. Trigger System 47

for the OB staves, only two of the GBT uplinks and channels are used, where each
channel is responsible for half of the ALPIDE data lanes in the stave 8.

Packaged Data Format

The data is packed as illustrated in fig. 3.4 and transmitted on the GBT uplinks. Data
for a trigger is split into packages delimited by the Start Of Packet (SOP) and End
Of Packet (EOP) data words, and each SOP is followed by an RDH. Up to 512 GBT
payloads of ALPIDE data can be transmitted per package [50]. If this is exceeded the
page has to be closed with the EOP, and transmission resumed in a new package. The
new package should also contain an RDH, and the page counter should have been
increased in the RDH.

The GBT frames that carry ALPIDE data reserve one byte for a GbtId field, and the
remaining nine bytes are used for ALPIDE data [50]. The GbtId field identifies which
data lane the ALPIDE data in that GBT frame is coming from. This allows data from
several ALPIDE data lanes to be interspersed in the same SOP/EOP-package, and the
round-robin multiplexing between the lanes allow data to be transmitted efficiently
as they come in.

3.3 Trigger System

The trigger system [51] of the main FPGA design receives TTS messages from the
LTU via GBTX-2 under normal operation, such as the HB triggers and minimum-bias
physics triggers (refer to table C.3 for a complete list of trigger types). An overview
of the system is shown in fig. 3.5.

A timebase module has counters for Bunch Crossing ID (BCID) and orbit number,
and provides these signals as a timebase for the rest of the FPGA design. It has the
option of generating these itself, or synchronizing with TTS messages for orbit and
BCID from the LTU. The trigger sequencer has the ability to generate sequences of
TTS messages, essentially emulating the CTP/LTU. Together, these two modules can
provide inputs for the pulser and trigger handler in the absence of signals from the
LTU9.

The pulser module generates periodic pulses with programmable period and du-
ration relative to the timebase. One notable example is the INT_TRG signal which is
the periodic trigger signal for the ALPIDE chips in continuous mode. Another is the

814 ALPIDE data lanes per GBT uplink and packer channel for the OL staves, and 8 ALPIDE data
lanes per GBT uplink for the ML staves.

9Such as during testing in the laboratory.

48 Chapter 3. Main FPGA Design for the ITS Readout Unit

La
ne

 1

La
ne

 2

La
ne

 N

Round-robin MUX

ALPIDE data in

ALPIDE datapath
lane FIFOs

SOP

RDH

Data - Lane 1
Data - Lane 2

Data - Lane N
...

Data - Lane 1
...

EOP

4x GBT frames
for RDH

Output data to
GBTx controllers

GBT word 0
GBT word 1
GBT word 2
GBT word 3
GBT word 4
GBT word 5
GBT word 6

. . .

. . .

FIGURE 3.4: Illustration of packaged data output from GBT packer
(based on an illustration in the specification for the ITS upgrade data

format [50]).

TRIGGER HANDLER

PULSER

TRIGGER
SEQUENCER

RU TIMEBASE

WB SLAVE

INT_TRG

RORST
BCRST

ABGAP1
ABGAP2
SPARE

TO
DETECTOR

TO
DATALANES

TO
GBT_PACKERS

FROM
RO MONITOR

TRIGGER_TYPE

ORBIT

BCIDTTS

SEL TRIGGER SRC

LTU TTS

TTS_BCID
TTS_HB

TTS_ORBIT

SOX / EOX
HB / HBA / HBR

TF

PT

RU_TRIGGERTYPE

RU_BCID

RU_ORBIT
BCID

WB MONITOR

WB SLAVE

WB MONITOR

GBTx2

FIGURE 3.5: Trigger system in the main FPGA design [51].

ABGAP1/2 signals which indicates when the abort gaps of the LHC fill pattern are
passing through the IP at ALICE. These signals will be used for the planned Alpide
Monitor module, by allowing it to perform transactions on the ALPIDE control links

3.4. FIFO Interface to the Auxiliary FPGA for Configuration Data 49

during the abort gaps without interfering with the trigger messages.
And finally, the trigger handler distributes the physics triggers10 to the sensor

chips using the Alpide Control module, which has a dedicated trigger input11 to min-
imize the latency to the ALPIDE sensors. The physics trigger is also distributed to
the modules associated with the RU datapath, which need a trigger to associate each
frame from the ALPIDE sensors with, along with the HB triggers.

Another responsibility of the trigger handler is trigger filtering in the case where
triggers are very shortly spaced (refer to sections 2.6.1 and 6.2.4 for details about the
trigger filtering).

3.4 FIFO Interface to the Auxiliary FPGA for Configura-

tion Data

One of the possible configuration paths for the main FPGA is via the GBT12 to the
main FPGA itself, and out on a parallel interface to the auxiliary FPGA which updates
the external flash memory with the new configuration image (see section 2.7.2). A
simplified block diagram of the module is shown in fig. 3.6.

Data (8-bit)

Empty

Read enable

Read clock (40 MHz)Write clock

Write enable

Overflow

Overflow

Data (16-bit)

UnderflowReset
Asynchronous FIFO

2 sync stages

Underflow

CDC pulse

Read enable CDC pulse

Write enable

Counter monitor

WB clock
(160 MHz)

Registers

WB Interface

WB Interface

FIFO Interface to Auxiliary FPGA (PA3)

WB Interface
Main FPGA

I/O Interface
to Auxiliary

FPGA (PA3)

160 MHz 40 MHz

Clock
Buffer

FIGURE 3.6: FIFO interface to the auxiliary FPGA for configuration data.

10Physics trigger from the CTP in triggered mode, or INT_TRG from the pulser module in continu-
ous mode.

11Normal read and write transactions on the ALPIDE control bus are initiated via the Alpide Control
module’s WB interface.

12In principle, any of the WB master interfaces (GBT, CAN, USB) can be used to transfer configura-
tion data, although the FIFO interface is only intended for use with GBT.

50 Chapter 3. Main FPGA Design for the ITS Readout Unit

The parallel interface is a direct interface to the read-interface of the FIFO, i.e.
the data output (which is parallel), empty signal, and the read control signal. The
auxiliary FPGA itself controls when it should read the FIFO.

Writing to the FIFO is performed with a dedicated data register available from
the module’s WB interface. Any data that is written to this register will be put on
the FIFO automatically. The FIFO itself is implemented using an asynchronous FIFO
from the Xilinx Parameterized Macros (XPM) library, and Block RAM (BRAM) is used
for the internal memory. The data width out of the FIFO is 8 bits, which is limited by
the number of ports connected between the two FPGAs. But the data width into the
FIFO matches the WB data width (16 bits), which allows data to be written to the
FIFO more efficiently. The number of bytes that have been written or read, along with
overflow and underflow, is counted by the module’s counter monitor. The full signal
of the FIFO is not used since the auxiliary FPGA should read out the FIFO faster than
it can be written to.

The FIFO uses two Flip-Flop (FF)-stages for synchronization between the clock
domains, and the signals from the 40 MHz side that are counted and monitored are
passed through CDC pulse blocks from the XPM library [52]. Since the IO routes be-
tween the two FPGAs were not length-matched, it is possible that the rising clock
edge would lead the read enable signal, and this poses some challenges when it comes
to defining proper timing constraints for the interface. But since the interface is rela-
tively slow, a simple solution was to invert the 40 MHz clock input, which places the
rising clock edge in the middle of the read enable pulses with around 25 ns/2 = 12.5 ns
of wiggle room.

Radiation induced errors in the module and data are not expected, since the FIFO
will not be used during operation of the LHC. The module is still protected with
TMR, but this is primarily to prevent radiation induced errors from affecting other
modules in the design via the WB bus. The FIFO does not have built-in Error Cor-
rection Code (ECC) protection of its data, but the configuration data is typically ECC-
encoded beforehand, and the auxiliary FPGA calculates a Cyclic Redundancy Check
(CRC) checksum when configuration data is sent to the main FPGA over SelectMAP,
which allows the correctness of the data to be verified at a later point.

3.5 Board Control Interfaces and DCS

The readout boards are controlled by accessing registers on the WB bus. There are
three interfaces that provide access to the WB bus via a generic WB master module:
USB, GBT, and CAN (see fig. 3.1). The USB interface is only used for testing and de-
bugging in a lab setup, and will not be used when the detector is commissioned. The

3.5. Board Control Interfaces and DCS 51

optical GBT interface is the primary control path for the DCS, but a secondary control
path is offered by the much slower CAN interface [53], [54]. And even under normal
circumstances the CAN interface is used by DCS for monitoring of temperatures and
voltages. The DCS has a software interlock that will cut power for a rack if abnormal
temperatures are detected, and this system relies on communication over CAN bus.

3.5.1 GBT

Each GBTX interface is controlled by a set of 10 E-links which operate at 320 MHz [44].
The E-links are bidirectional, and each E-link consists of an output for downlink (re-
ceive) data and an input for uplink (transmit) data. The 10 E-links essentially work in
parallel to provide 80 bits of payload data, in each direction, per LHC clock period. A
SerDes in the GBTX performs the necessary serialization/de-serialization of the data.

Access to registers on the WB bus is implemented using Single Word Transaction
(SWT) frames over GBT, with a custom protocol on top of the SWT frames. The rele-
vant payload bits in the SWT frame are pushed and popped directly to and from the
FIFOs between the GBTX controller and the WB master module. The implementation
allows for one WB transaction per SWT, but since each WB transaction only requires
32 bits13, the full 32 bits of a WB transaction is duplicated in the SWT frame which
allows for an extra check for bit errors and utilizes the 80-bit GBT payload better.

3.5.2 CAN Bus

The CAN interface offers an additional control path for the DCS, and provides some
redundancy in situations where the GBT links may not be available, such as when
there are no beams, during maintenance periods, or because of hardware problems.
In a similar fashion to the GBT interface, the CAN interface allows for access to the
WB bus using a custom high-level protocol on top of the CAN frames.

CAN High Level Protocol for DCS

The High Level Protocol (HLP) for the CAN bus allows for access to any internal WB
register in the main FPGA, and also implements an addressing scheme that allows
multiple RUs to share a CAN bus line. The protocol was designed with the ITS RU in
mind, and is implemented in the payload of standard 11-bit CAN frames. It is based
on a similar protocol designed by Schambach et al. for DCS in the Time Of Flight
(TOF) detector in the STAR experiment [55]. The simplicity of this protocol made it an
appealing starting point for our custom protocol, instead of implementing a standard

1316 bit data, 15 bit address, and one bit to indicate read or write, for a total of 32 bits.

52 Chapter 3. Main FPGA Design for the ITS Readout Unit

protocol such as CANopen 14 or DeviceNet. These protocols are more complex, and an
implementation in the FPGA design would likely have required more resources, and
had a larger SEU cross-section.

In principle all nodes on a CAN network are masters and can initiate transactions,
with the arbitration field of the package used for arbitration of the bus to avoid colli-
sions. However, in our high-level protocol the DCS acts as a master on the bus which
initiates the HLP read and write transactions, and the RUs are slaves that respond.

The three LSBs of the 11-bit ID of the CAN frames are used to indicate the type of
command, and the upper eight MSBs of the ID are used for the node ID. The node ID
corresponds to the FEE ID that was introduced earlier, which is configured using the
DIP-switches on the RU board and should be unique for each RU. The payload field
of the CAN frame is used for WB register address and data.

The available commands in the current version of the protocol are shown in ta-
ble 3.2. An earlier version of the protocol was described in a previous publication
[35].

Write and Read Commands. The most important transactions are the commands to
write and read WB registers, and their corresponding responses. The DCS initiates
a WB transaction by sending a HLP write command or read command, and the RUs
responds with a write response or a read response.

TABLE 3.2: CAN High Level Protocol (HLP) commands and payload.

Command Size Byte 0 Byte 1 Byte 2 Byte 3 Bytes 4:7
Alert (0x0) 2 Data[15:8] Data[7:0] N/A N/A N/A
Write Command (0x2) 4 Addr[14:8] Addr[7:0] Data[15:8] Data[7:0] N/A
Write Response (0x3) 4 Addr[14:8] Addr[7:0] Data[15:8] Data[7:0] N/A
Read Command (0x4) 2 Addr[14:8] Addr[7:0] N/A N/A N/A
Read Response (0x5) 4 Addr[14:8] Addr[7:0] Data[15:8] Data[7:0] N/A
Status (0x6) 4 Data[31:24] Data[23:16] Data[15:8] Data[7:0] N/A
Test 8 0xAA 0xAA 0xAA 0xAA 0xAA

Other Command/Message Types. The alert and status messages in the protocol offer
a way for the nodes (RUs) to communicate status changes to the DCS. Transmission of
these messages is initiated by the node itself, and a custom payload can be sent with
the message. The alert message is intended as a fast and reliable way for the node
to report problems; it allows for two bytes of payload, and it is sent with the highest

14CANopen is limited to 127 nodes with its 7-bit node ID (one ID is reserved for broadcast). Al-
though all 192 RUs are not physically connected on the same CAN bus line, it would have complicated
the addressing of RUs.

3.5. Board Control Interfaces and DCS 53

possible priority. Status messages, in contrast, allows for four bytes of payload data,
and is sent with a lower priority.

The alert message utilizes the fact that the arbitration field of a CAN message is
transmitted with the LSB first. Since the HLP command is located at the LSBs of the
arbitration ID, commands with lower IDs have higher priority. When a node wants to
send an alert message, the alert will be sent before any other message type from any
other node (the exception being alert messages from nodes with lower node ID).

The lowest priority message is the test message. When a node is put in test mode it
will continuously send these messages. The payload of the test message is eight bytes,
which is the maximum allowed payload in a CAN frame, and consists of alternating
bits (0xAA-bytes). These messages produce many low-to-high and high-to-low tran-
sitions on the CAN bus lines, and can be used for eye diagram measurements, but
have also proven useful for debugging of the CAN installation.

Implementation of CAN HLP

The implementation of the HLP protocol over CAN bus consists of two layers. First,
there is the CAN controller which can transmit and receive standard CAN messages.
The HLP protocol is implemented on top of that, with a Finite State Machine (FSM)
that communicates with the CAN controller, implements the protocol logic and per-
forms the WB transactions using the generic WB master module. In addition, the HLP
layer has a WB slave for configuration.

An early implementation of CAN bus and HLP is illustrated in fig. 3.7A. It was
based an open source CAN controller available at the OpenCores website [56]. Inter-
facing with this module is performed via a bus interface (WB or Intel 8051) 15, and
this required an additional layer of “glue logic” between the HLP layer and the CAN
controller in the FPGA design.

The HLP logic and FSM is implemented in the can_hlp block in the figure. It used
the glue logic in the can_hlp_glue block to send and receive CAN frames, and inter-
faced with the WB master module using the two FIFOs. The glue logic itself commu-
nicated with the CAN controller on a local WB bus interface 16. Initial testing of the
CAN interface and HLP for DCS was performed using this version.

Current Version Based on a Custom CAN Controller. The CAN controller that was
used in the early version dates back to the year 2002. Although the controller is fully

15Documentation for this CAN controller is a little scarse, but the bus interface is compatible with
the SJA1000 CAN controllers, so it is essentially pretty well documented by referring to the SJA1000
datasheet.

16This WB interface was internal in the CAN HLP module, it is not connected to the main WB bus
of the FPGA design.

54 Chapter 3. Main FPGA Design for the ITS Readout Unit

 Readout Unit

Xilinx UltraScale Firmware

Generic WB Master
with FIFO interface

Generic WB Master
with FIFO interface

Wishbone BusWishbone Bus

CAN_RX

CAN Transceiver

Internal
WB-bus Interrupt

CAN_TX

CAN_RX

ProASIC3

Wishbone Bus

can_hlp

can_hlp_glue

CAN_TX

OpenCores CAN Controller

Outgoing
CAN msg

Incoming
CAN msg

1.8V IOs

CAN_L CAN_H

can_hlp_top

3.3V IOs

WB
Reponse

FIFO

WB
Request

FIFO

Generic WB Master
with FIFO interface

Wishbone interface

(A) Early version of CAN HLP, based on
OpenCores CAN controller and without

TMR.

 Readout Unit

Xilinx UltraScale Firmware

Wishbone BusWishbone Bus

CAN_RX

CAN Transceiver

CAN_TX

CAN_RX

ProASIC3

Wishbone Bus

Generic WB Master
with FIFO interface

can_hlp

CAN_TX

Canola CAN controller

Outgoing
CAN msg

Incoming
CAN msg

1.8V

CAN_L CAN_H

can_hlp_top
(triplicated)

3.3V IOs

WB
Reponse

FIFO

WB
Request

FIFO

 Wishbone interface

(B) Current version of CAN HLP, based
on custom CAN controller with full

TMR.

FIGURE 3.7: Implementation of CAN-based interface to the WB bus for
DCS.

functional and has stood the test of time, it is a bit dated from a design perspec-
tive: The controller was implemented purely using RTL and structural modeling, and
does not employ any of the higher level behavioral constructs that are available in
the most recent standards of HDLs. There are no recognizable FSM constructs in the
code, and for SEE mitigation using TMR this poses a challenge because the mitiga-
tion techniques employed in the main FPGA design can not be applied easily (see
section 3.8). The controller could possibly have been mitigated using some of the
automatic tools available, but these tools typically employ Local (LTMR) at the reg-
ister level [57]. This is suitable for flash based FPGAs, but is generally not the best
approach for SRAM based FPGAs such as the Xilinx UltraScale [58].

There were not many suitable CAN controllers that could be used as a replace-
ment. One of the few alternatives is HurriCANe, a radiation hardened CAN controller
IP developed by the European Space Agency (ESA). However, this IP is closed source

3.6. Alpide Control 55

and also rather old, the code appears to date back to 1999. And commercial CAN
controller IPs are rather expensive, and were avoided for budgetary reasons. Addi-
tionally these IPs are typically encrypted and closed source, which poses a challenge
when it comes to protecting them from radiation effects.

As a result, it was decided to design a custom CAN controller for the ITS RU.
The new controller is designed with TMR in mind, using the same techniques as the
remainder of the main FPGA design. The controller has a simple interface to trans-
mit and receive messages, which allowed the glue logic of the previous version of
CAN HLP to be eliminated. The other blocks of the HLP design remain relatively
unchanged, and the new CAN HLP design is shown in fig. 3.7B. Details about the
design of the new CAN controller is located in section 3.9 at the end of the chapter.

3.6 Alpide Control

A simplified block diagram of the Alpide Control module is shown in fig. 3.8. It
communicates with the ALPIDE chips via a half-duplex transceiver on the RU board
(SN65MLVD080, also shown in the figure). The module supports control transactions
(see appendix B.4) on five sets of control signals, allowing it to be used with the one
DCTRL line for IB staves, or all four DCTRL lines for OB staves17. The output stage
simply serializes and outputs one byte at a time on the bus. Write transactions and
triggers can be broadcasted on all connectors simultaneously. The input stage, which
operates independently, performs phase alignment, Manchester decoding and dese-
rializes the data received for read transaction results, for one connector at a time.
The BCRST, TRIGGER, and PULSE inputs to the module are used to issue the corre-
sponding hardware opcodes to the sensors. For other transactions, i.e. read and write
registers, the WB bus is the primary interface. But the figure also shows an interface
that is planned for the Alpide Monitor module, to allow the latter to perform read and
write transactions directly without going through the WB bus.

3.7 Alpide Monitor

During operation of the experiment the DCS will have to continuously monitor tem-
peratures and voltages on all the 24 120 ALPIDE sensor chips, with a reasonable re-
fresh rate (1 Hz is a typical rate for devices read by the DCS [54]).

17The ALPIDE transition board has a total of five DCTRL connectors. One is dedicated for IB staves,
the remaining four are dedicated for OB staves.

56 Chapter 3. Main FPGA Design for the ITS Readout Unit

DCTRL
Transaction

Alpide Control FSM Alpide Control
Output Stage

Alpide Control
Input Stage

WB Slave Regs

ALPIDE
Chips

DCTRL_T

DCTRL_D

DCTRL_R

SN65MLVD080

DCTRL
differential

signals

Interface to
Alpide Monitor

Wishbone
bus

WB control
of DCTRL
interface

DCTRL
transaction

results

Trigger input

BCRST
Pulse input

Control

Status

Results

Alpide Control

FIGURE 3.8: Alpide Control module.

In principle the monitoring could have been performed with the DCS initiating
control transactions via the Alpide Control module’s WB interface. However, this
would require several WB transactions to set up and initiate a control transaction
and an additional WB transaction to read out the result. This also requires polling
a status register, or waiting sufficiently long, to ensure that the transaction has been
performed before the results are read out. And more critical is the fact that the Alpide
Control module is used for triggering as well as control and monitoring, and care
must be taken to avoid having triggers blocked by ongoing control transactions for
monitoring.

As a consequence of these challenges, it was decided to develop a dedicated mod-
ule responsible for the monitoring of the ALPIDE sensor chips, which fulfills the fol-
lowing specifications: Autonomous monitoring of a configurable set of status regis-
ters, temperatures, and voltages, with a refresh rate of at least 1 Hz (for 10 monitored
values). The module should be split in two independent submodules: A sequencer
with a programmable instruction memory, which initiates the transactions on the
ALPIDE control bus using a direct interface to the Alpide Control module. And a snif-
fer that stores the results of read transactions in a result FIFO which can be accessed
via the WB bus. The entire module should be protected against radiation induced
upsets and effects, and the instruction memory and result FIFOs should both employ
ECC to protect against bit errors.

The term monitoring may imply that only read operations on the ALPIDE con-
trol bus are required. But write operations are also necessary to use the ADC in the
ALPIDE. The ADC can be used with several analog inputs such as for temperature
or onboard voltages [26]. It requires configuration to start sampling and conversion,
as well as switching between analog inputs18. And the support for write operations

18There is an auto-mode which is supposed to perform automatic measurement of all input sources
(placing the result in dedicated result registers for each source), but this mode does not work properly.

3.7. Alpide Monitor 57

may open for other uses in the future, such as configuration of pixel masks for the
ALPIDE19.

The general structure of the Alpide Monitor is shown in fig. 3.9. The sequencer and
sniffer components of the monitor each have a dedicated WB slave, and are controlled
by two FSMs. The WB bus operates at 160 MHz in the RU, but the Alpide Monitor
also communicates with the Alpide Control module which runs at 40 MHz. A choice
had to be made as to whether the FSM logic in the Alpide Monitor should operate at
40 MHz or 160 MHz. Allowing all the logic in the Alpide Monitor to run at 160 MHz
and crossing clock domains at the interface to the Alpide Control module appeared
to be the most clean solution. This is implemented in the CDC block in fig. 3.9, using
combinations of xpm_cdc_single, xpm_cdc_single_array, and xpm_cdc_pulse, which are
Xilinx’s parameterized macros for single and single-bit array synchronizers, and pulse
transfer, respectively [52].

Alpide Monitor

Sniffer

Sequencer

Wishbone Slave

SNIFFER_STATUS
SNIFFER_CTRL
RESULT_FIFO_WORD0
RESULT_FIFO_WORD1
RESULT_FIFO_WORD2
RESULT_FIFO_WORD3

Sniffer FSM

Wishbone Slave

SEQ_STATUS
SEQ_CTRL
INSTR_MEM_WORD0_WR
INSTR_MEM_WORD1_WR

...

Result FIFO

Sequencer FSM

Instruction Memory

FIFO for initializing
instruction memory

Result FIFO Interface

Instruction Memory
FIFO Interface

Sequencer WB Interface

Sniffer WB Interface

40 MHz

160 MHz

Initiate Transaction
(opcode, addr, data, chip/link)

Alpide Control Status
(busy, ack/nack)

Transaction
Result

Interface to Alpide Control

INSTR_MEM_ADDR

sniffer
ready

Clock Domain Crossing

FIGURE 3.9: Alpide Monitor block diagram.

3.7.1 Sequencer

The sequencer has a programmable instruction memory where sequences of read and
write operations to be performed on the ALPIDE control bus are configured. An FSM

19There may be a number of dead pixels in a chip, which will increase during the chips’ lifetime
as they are exposed to radiation. Dead pixels which are always on are problematic since they will
contribute fake hits to each event, and these will be masked out as they are discovered.

58 Chapter 3. Main FPGA Design for the ITS Readout Unit

(fig. 3.10) controls the execution of the sequences from the instruction memory, and
access to the Alpide Control module. It fetches an instruction word from the mem-
ory (with two wait states to account for BRAM read delay) and decodes the opcode
to determine which operation should be carried out. After execution, the sequencer
proceeds to fetch and execute the next instruction, until an end instruction is encoun-
tered, which marks the end of the sequence. Depending on whether the sequencer is
configured for single-shot or continuous operation, it will either stop at the end of the
sequence, or start over at the beginning of the instruction memory.

The transactions on the ALPIDE control bus are initiated via a direct interface to
the Alpide Control module, which primarily includes the follow set of signals: Op-
code (either read or write), register address, and data (for write operations). A busy
signal indicates if the Alpide Control module is already performing a control transac-
tion, or if there is not sufficient time to perform another control transaction before the
next bunch crossing with collisions. The Alpide Control module will always prioritize
trigger signals (from the trigger module), in the event that a trigger is requested on
the same clock cycle as a normal control transaction. The control module will indicate
if a request is executed or not with the acknowledge signals, so the sequencer knows
if it should retry the transaction when the control module is not busy again, or if it
can move on to the next instruction.

RESET STOPPED START

FETCH_
OPCODE_

WAIT0

FETCH_
OPCODE_

WAIT1

FETCH_
OPCODE

DECODE READ_OP WRITE_OP WAIT_OP ERROREND_OP
READ_OP
_BROAD

CAST

WAIT_
ALPIDE_

CTRL_NOT_
BUSY

Wait/delay done

WAITING

Got not ack

Got
ack

WAIT_ACK

2 delay states
to account for
BRAM read

delay

It is only neccessary to wait for BRAM
delay at the beginning, not for every
instruction.
Address is increased in FETCH_OPCODE,
so the BRAM delay has already passed the
next time FETCH_OPCODE is entered.

no errors &&
(run_single_shot ||
run_continuous)

Instruction memory address = 0

C
on

tin
uo

us

Si
ng

le
-s

ho
t

Start
timer

Wait for timer
done pulse

Set
unknown
OP error

status
flags

(Not implemented)

Double
bit error

FETCH_OPCODE state:
- Fetch a full 64-bit instruction word
 - (Which includes the opcode)
- Increment instruction memory address
- In case of single- or double-bit error:
 - Store address w/ error in WB reg
 - Indicate single/double-bit error in
 status register

sniffer_ready

FIGURE 3.10: Alpide Monitor Sequencer FSM Diagram.

3.7. Alpide Monitor 59

Instruction Words and Opcodes

Each instruction word is 64 bits. Four opcodes20 are implemented in the sequencer:
Read, Write, Wait, and End. The Read and Write opcodes (figs. 3.11 and 3.12) initiate
a register read or write. Read can only be performed for one ALPIDE chip at a time,
but a write to several chips can be performed if a broadcast chip ID is used. The Wait
opcode (fig. 3.13) delays further execution of the sequencer for the specified delay21, in
units of 6.25 ns, and finally the end opcode (fig. 3.14) indicates the end of the sequence.

4863

N/A

3247

ALPIDE Register Address

1620212324262731

N/A Read input
connector

N/A Write connector mask

0781415

N/A Chip ID Read Opcode 0x00

FIGURE 3.11: Sequencer Read Instruction Word.

4863

ALPIDE Register Data

3247

ALPIDE Register Address

16202131

N/A Write connector mask

0781415

N/A Chip ID Write Opcode 0x01

FIGURE 3.12: Sequencer Write Instruction Word.

Instruction Memory

The instruction memory is implemented using a Xilinx dual-port RAM primitive,
which allows for built-in ECC to be used. The built-in ECC requires a 64-bit internal
data width regardless of the chosen data width for the dual-port RAM. As a conse-
quence, a narrower data width would not allow for efficient use of the BRAM blocks
used by the dual-port memory. For instance, if a 32-bit data width was chosen, the

20Not to be confused with the opcodes on the ALPIDE control bus.
21Its primary use is to implement a necessary delay before reading ADC results after sampling and

conversion has been started.

60 Chapter 3. Main FPGA Design for the ITS Readout Unit

4863

N/A

3247

N/A

16232431

N/A Delay [15:8]

07815

Delay[7:0] Wait Opcode 0x04

FIGURE 3.13: Sequencer Wait Instruction Word.
4863

N/A

3247

N/A

1631

N/A

07815

N/A End Opcode 0x05

FIGURE 3.14: Sequencer End Instruction Word.

memory would still use 64 bits per address internally to allow for the ECC, but only
half of those bits are available to be used. The instruction words have a fixed with
of 64 bits for that reason. It made the design simpler, and the BRAM could not have
been utilized efficiently with a shorter width unless a custom error correcting scheme
was implemented.

Another limitation of this dual-port primitive is that, with ECC enabled, it only
allows for read on one port and write on the other. The read port obviously connects
to the sequencer state machine so that it can read and execute instructions. The write
port connects to the WB bus to allow for configuration of the instruction memory.
Therefore, it is not possible to read back the instruction memory from the WB bus. It
is likely that the instruction memory will experience bit errors at some point during
operation of the experiment, so it is important to have the ability to detect and correct
these errors in the instruction memory. This has been solved in the sequencer by
monitoring the single-bit and double-bit error outputs while reading the dual-port
memory. When a bit error is detected, a “sticky” bit indicating bit errors is set in
the sequencer’s status register on the WB bus. There is one bit like this for single-bit
errors, and one for double-bit errors. In addition, the last address where a bit error
was detected is available on a dedicated WB register for the sequencer. This allows

3.7. Alpide Monitor 61

bit errors in the sequencer to be detected by the DCS by monitoring the sequencer’s
status register, and the errors are quickly corrected by rewriting the data at the address
in the instruction memory indicated by the error address register. The sequencer is
allowed to continue when a single-bit error is detected, but execution is halted in the
case of a double-bit error.

3.7.2 Sniffer

The sniffer receives the results of read operations performed on the ALPIDE control
bus. Those operations may have been initiated from the sequencer, or via the Alpide
Control module’s WB interface. As implied by the submodule’s name, it passively
waits for incoming results and does not initiate anything itself. This is controlled
by a relatively simple FSM (fig. 3.15). The sniffer and sequencer operate more or
less independently of each other, with a few exceptions; a signal indicating that the
sniffer is running is used by the sequencer, which will wait for the sniffer to run before
starting execution from its instruction memory 22; and the sequencer should output
a sequence number to the sniffer, which is used by the sniffer to label entries in the
result FIFO23.

RESET STOPPED IDLE FIFO_
UPDATE

Reset bit in
CTRL register

IDLE, FIFO_UPDATE: sniffer_ready = 1
RESET, STOPPED: sniffer_ready = 0

Run bit in
CTRL register

Got done pulse
from

alpide control
Output write signal

pulse for result FIFO

FIGURE 3.15: Alpide Monitor Sniffer FSM Diagram.

Result FIFO and Result Data Words

The result FIFO is implemented using the Xilinx parameterized macro for a syn-
chronous FIFO [52], configured to use BRAM for the internal memory, built-in ECC,
and First Word Fall Through (FWFT). The built-in ECC has the same limitations as
described for the instruction memory of the sequencer (see the discussion in sec-
tion 3.7.1), and requires an internal data width of 64 bits. Consequently, the results
words are 64 bits wide. The format is shown in fig. 3.16. In principle, 32 bits would

22Might be removed, as it may be desirable to run the sequencer without the sniffer, e.g. for config-
uration of pixel masks.

23Planned, but not implemented.

62 Chapter 3. Main FPGA Design for the ITS Readout Unit

have sufficed for a minimal result entry consisting only of the 16-bit ALPIDE data
and 16-bit ALPIDE register address. This leaves an 32 additional bits in a result word,
which can be used for status and sequence numbers.

Result words are read out from the FIFO by reading the RESULT_FIFO_WORDx
registers on the WB bus (see fig. 3.9 and register map in table G.4). Reading the first
result register, RESULT_FIFO_WORD0, causes the read enable signal of the FIFO to
be toggled. A copy of the whole 64-bit result word for that entry is stored temporarily
in an internal register, so that the subsequent WB reads of RESULT_FIFO_WORD1,
RESULT_FIFO_WORD2, and RESULT_FIFO_WORD3 will output data from the same
result word24. This allows entries to be automatically removed from the FIFO as
they are read, without having to use an additional WB transaction. And because the
ALPIDE register address and data is located at the lower 32 bits of the result word, it
is sufficient to read the RESULT_FIFO_WORD0 and RESULT_FIFO_WORD1 registers
to obtain the address and data for the ALPIDE register25. The entry is still removed
from the FIFO, and the additional 32 bits of status data can be ignored.

48495052535463

N/A
Done
pulse Connector ID PH[2:1]

3238394041424344454647

PH[0] Status bits N/A Chip ID

1631

Alpide Register Address

015

Alpide Register Data

FIGURE 3.16: Sniffer result word.

3.8 Mitigation of Radiation Effects

Triple Modular Redundancy (TMR) is one of the primary mitigation techniques for
FPGA designs intended for operation in a radiation environment. But SRAM-based
FPGAs, like the Xilinx UltraScale, are not only susceptible to SEUs in the logic ele-
ments that constitute the digital design, but also in the configuration memory itself.
One important consequence is the need for scrubbing of the configuration memory.

24If the FIFO is empty, the RESULT_FIFO_WORDx registers are initialized to zero instead, and the
FIFO read signal is not toggled.

25It is not possible to know the chip ID for the data this way. But if the sequencer is used in single-
shot mode the chip ID can be determined based on the order of the sequence and results.

3.8. Mitigation of Radiation Effects 63

Another is the fact that the majority voters for TMR have an increased radiation cross-
section compared to an implementation in a flash-based FPGA, due to the added
cross-section of the configuration memory bits [58]. Voting every single register in
the design would be very costly in terms of resources, and since the voters them-
selves have a radiation cross-section it is not certain that such a strategy is the best in
terms of protection. Instead, the approach has been to triplicate larger blocks of logic
and vote their outputs, also referred to as Block-TMR by some sources [58], but with
the critical addition of feedback for correction of important registers and scrubbing.

Memory and registers, such as configuration registers on the WB bus, which retain
their value indefinitely should be protected with either ECC or TMR. The same also
applies to data streams and FIFOs. Distributed memory (i.e. memory implemented
with Look-Up Tables (LUTs)) is not allowed in the main FPGA design in order to
simplify the design of the external scrubber26.

Some of these design guidelines may be relaxed for modules that are not critical
during operation of the LHC. However, such modules should not be able interfere
with the operation of other modules, so the WB bus for instance has to be protected
in any case.

Triplicated Wrappers

A template design for implementation of TMR in the main FPGA design is explained
here. Submodules for the FPGA design are developed as one normally would, and
the triplication process consists of generating a TMR wrapper. TMR can be enabled or
disabled by a parameter to the TMR wrapper, and this allows parts or all of the FPGA
design to be synthesized and implemented with or without TMR. These wrappers
use HDL generate statements to either generate an individual (no TMR) instance of
a submodule, or generate three instances of the submodule along with the majority
voters necessary to vote the outputs from the three instances. Figure 3.17 shows an
example TMR wrapper for the FPGA design. It illustrates the different combinations
of single and triplicated inputs and outputs one can have on a TMR wrapper. For
triplicated inputs, each individual input would be assigned to one individual copy
of the logic in the TMR wrapper, whereas a single input to the wrapper would be
assigned directly to all copies of the logic. Outputs can be voted with an individual
majority voter if an individual output from the wrapper is desired. Or, they can be
voted with a triplicated voter, i.e. three voters, which leads to three voted outputs
from the wrapper. The single voter approach uses the least amount of resources, but

26In principle the GLUTMASK bit in a Xilinx device’s Configuration Control Logic can be used to mask
out LUT RAM, allowing LUT RAM to be used with the scrubber. But a side effect of this is that fault
injection to LUT RAM would not be possible.

64 Chapter 3. Main FPGA Design for the ITS Readout Unit

it leads to a single point of failure and is much less reliable than the fully triplicated
approach. The general strategy has been to use single voters for less critical signals,
and use fully triplicated voters and signals for critical signals, such as the entire WB
bus.

Important internal registers of a module, especially the FSM state registers, should
also be protected, and this will be discussed in more depth. But counters are a spe-
cial case. These are generally implemented using dedicated counter modules in the
FPGA design which are already fully triplicated. The counter modules are typically
instantiated by the wrapper and connected to signals to count up or down from the
module to be protected.

example_module_tmr_wrapper

example module

Majority
voter

Majority
voter

(single
output)

Majority
voter

(triple
output)

D QNext state
logic

Logic,
register,

etc

Logic,
register,

etc

A
B
C

Triple
inputs

Single
input

Voted
FSM
state

FSM state
register

FIGURE 3.17: Example TMR wrapper module for the UltraScale FPGA
design.

Generation of the TMR wrappers has been a manual process. However, since the
wrappers follow a standard recipe, in principle the generation of the wrappers could
probably have been automated.

FSM Protection

Most of the TMR protected submodules with internal FSMs have an output for the
current FSM state, and an input for the voted FSM state. A majority voter in the sub-
module’s TMR wrapper performs the vote of the FSM state of the three copies of the

3.8. Mitigation of Radiation Effects 65

submodule, and the voted state is returned on the aforementioned state input. The
FSM inside the submodule then uses this voted version of the state register as the cur-
rent state. This allows the state register to be “repaired” in case it suffered bit-flips due
to radiation effects, by using the FSM state of the other two copies of the logic. Lupi
et. al. has demonstrated that a 15-fold improvement in Mean Time To Failure (MTTF)
may be achieved when the state register is voted using triplicated voters [59]. The
latter is very important; in the case where a single voter is used, and the cross-section
of the voter is equal to the cross-section of the logic it is protecting, then the added
cross-section and single-point failure negates the benefit of the triplication. Their re-
sults show that there is no improvement in MTTF over the unprotected logic in this
case. Consequently, the TMR wrappers in the FPGA design always use triplicated
voters for the FSM state registers.

LISTING 3.1: Example of FSM encoding in VHDL for Xilinx FPGA

(Note: library use clauses are not shown).

1 entity my_module is

2 port (

3 CLK : in std_logic;

4 FSM_STATE_O : out std_logic_vector(C_MY_FSM_STATE_BITSIZE -1 downto 0);

5 FSM_STATE_VOTED_I : in std_logic_vector(C_MY_FSM_STATE_BITSIZE -1 downto 0));

6 end entity my_module;

7
8 architecture rtl of my_module is

9 signal s_fsm_state_out : my_fsm_state_t;

10 signal s_fsm_state_voted : my_fsm_state_t;

11 attribute fsm_encoding : string;

12 attribute fsm_encoding of s_fsm_state : signal is "sequential";

13 begin

14 -- Convert state register output to std_logic_vector

15 FSM_STATE_O <= std_logic_vector(to_unsigned(my_fsm_state_t 'pos(s_fsm_state_out)

, C_MY_FSM_STATE_BITSIZE));

16 -- Convert voted state register to to my_fsm_state_t

17 s_fsm_state_voted <= my_fsm_state_t 'val(to_integer(unsigned(FSM_STATE_VOTED_I))

);

18
19 p_my_fsm : process(CLK) is begin

20 if rising_edge(CLK) then

21 case s_fsm_state_voted is

22 when STATE1 =>

23 s_fsm_state_out <= STATE2;

24 when STATE2 =>

25 s_fsm_state_out <= STATE1;

26 end case;

27 end if;

28 end process p_my_fsm;

29 end architecture rtl;

66 Chapter 3. Main FPGA Design for the ITS Readout Unit

The FSM register itself is usually encoded using sequential encoding, where num-
bers are assigned to the states in a sequence, i.e. a binary encoding of the state. Repre-
senting N states with either sequential (binary) or gray encoding requires ceil(log2(N))

bits. Compared to one-hot encoding where each state has a dedicated bit, sequential
and gray allows the width of the state register to be smaller. This is especially true
for FSMs with a large number of states, where the reduced width helps decrease the
radiation cross-section of the state register.

LISTING 3.2: Example of type definitions for FSM state register in

VHDL for Xilinx FPGA.

1 library ieee;

2 use ieee.math_real.all;

3
4 package my_module_pkg is

5 type my_fsm_state_t is (STATE1 , STATE2 , STATE3);

6 constant C_MY_FSM_STATE_BITSIZE : natural := integer(ceil(log2 (1.0+ real(

my_fsm_state_t 'pos(my_fsm_state_t 'high)))));

7 end package my_module_pkg;

Listing 3.2 shows an example of type definitions for the FSM state registers in a
VHDL package file, where the states are defined using an enumerated type. These
types are used in listing 3.1, which shows an example of an entity with a synchronous
FSM. The state register ports are represented as a std_logic_vector, which allows them
to be voted easily with the previously mentioned majority voter modules. Conver-
sion to and from std_logic_vector is shown on lines 15 and 17. The case statement of
the process uses the voted FSM state register input to determine the current state, as
shown on line 21 of listing 3.1. The next state is assigned to the state register output,
as seen on lines 23 and 25.

3.9 Radiation Tolerant CAN Controller

To meet the requirements for radiation tolerance for the main FPGA design, a new
CAN controller called Canola was developed. It was designed with the aim of being a
fully featured CAN 2.0B [60] compliant controller with triplicated logic and a simple
control interface. The source code for the controller is available in a public GitHub-
repository [61].

The implementation of the controller is illustrated in the block diagram in fig. 3.18.
The controller is divided into blocks using terminology that is common among CAN
controllers, and was designed to be modular and configurable. The blocks drawn

3.9. Radiation Tolerant CAN Controller 67

with dashed lines indicate features that are typically part of a CAN controller, such as
receive and transmit queues, the Acceptance Filters (ACFs) and a bus interface. These
features are optional in the controller (and the blocks in red have not been imple-
mented). In the main FPGA design it is used in a minimal implementation consisting
of the blocks drawn with solid lines. In the minimal implementation it has a simple in-
terface to receive and transmit frames, along with some status counters and interrupt
signals. A minimal implementation like this may be desirable in some applications,
such as for the HLP protocol used in the ITS RU, which the controller was designed
for. Since the arbitration ID of received frames is checked by the HLP logic, it was not
necessary to include an ACF in the controller. And the WB transactions performed
by the HLP logic are already queued in the FIFOs of its WB master, which would
make receive and transmit queues in the CAN controller redundant. And finally, the
HLP logic was greatly simplified by having a direct interface to the CAN controller,
as opposed to communicating with the controller via a bus interface.

Send
Error Flag

C
AN

_T
X

C
AN

_R
X

Bit Timing Logic
Time quanta pulses

Time Quanta
Configuration

Time Quanta
Generator

Bit Stream Processor

D
at

a

Rx Msg
Interface

lo
op

ba
ck

_e
n

AC
K

Rx Errors

Send
Error
Flag CAN Rx FSM

Bit stuffing
Bit destuffing
CRC calculation on
Rx bitstream

D
at

a

arb_won

AC
K

Tx Errors

CAN Tx FSM

Acceptance Filter Rx Queue

Tx Msg
Interface

Tx Queue

Bit Segment
Configuration

Bus/Direct Interface
(AXI-slave interface available. AXI interface is not triplicated)

Rx edge detection
Rx edge resynchronization
Tx synchronization/timing
Idle bus detection

Tx FSM:

Serialization of
message
CRC calculation

Physical layer

Logical Link Control
(LLC)

Medium Access
Control (MAC)

Error Status

Error State

BU
S_

O
FF

(c
an

 b
e

de
riv

ed

fro
m

 e
rro

r s
ta

te
)

Error
Management

Logic

Rx FSM:

Generate
message from
serial bitstream
CRC verification

CAN Transceiver signals

FIGURE 3.18: Block diagram for Canola CAN controller [61].

3.9.1 Bit Timing Logic

The Bit Timing Logic (BTL) is part of the physical layer and is responsible for the
timing and sampling of incoming and outgoing bits. As shown in fig. 3.19, the BTL

68 Chapter 3. Main FPGA Design for the ITS Readout Unit

interfaces directly with an external CAN transceiver27 via the Tx output and Rx input,
and has a simple interface that allows one bit to be sent and received at a time.

s_sample_point_rx
proc_sample_rx_bit

proc_sample_points

s_sample_point_tx
proc_tx_sync

proc_rx_sync_fsm

Bit Timing Logic (BTL)

CAN_RX

BTL_TX_BIT_VALUE

BTL_TX_BIT_VALID

TIME_QUANTA_PULSE

BTL_RX_STOP

BTL_TX_ACTIVE

BTL_RX_BIT_VALUE

BTL_RX_BIT_VALID

CAN_TX

BTL_TX_DONE

BTL_TX_RDY

BTL_RX_SYNCED

SYNC_FSM_STATE_O

SYNC_FSM_STATE_VOTED_I

FIGURE 3.19: Block diagram for BTL in Canola CAN controller. The
blocks in blue are VHDL processes.

A bit in the CAN protocol consists of four segments: Sync, Prop, Phase 1 and Phase
2 (fig. 3.20). Each segment consists of a number of “time quantas”. The sync segment
is always one quanta, but the length of the remaining segments is configurable. Re-
ceived bits are sampled at the beginning of the Phase 2 segment. Figure 3.19 shows an
example of bit timing in CAN, where there is a total of 10 time quantas in a bit.

The logic of the BTL runs at the system clock, but bit timing is synchronized to
pulses which the BTL receives from the Time Quanta Generator (TQG), as shown in
fig. 3.18. The TQG block generates a pulse per time quanta, and is implemented with
a simple counter that essentially divides the system clock by a configurable amount to
generate the pulses. The name chosen for the TQG block may be a bit unconventional.
CAN controllers typically have a Baud Generator (BG) block for this purpose, but
since the TQG block in this controller generates a pulse per time quanta, and not per
baud, it was given a different name to reflect that.

Pulses are continuously generated by the BTL for the transmit and receive sample
points, even when it is not receiving or transmitting. As per the CAN 2.0B [60] spec-
ification, the BTL performs a hard synchronization when it receives the Start Of Frame
(SOF) of an incoming frame. During a hard synchronization, the BTL is aligned with

27A transceiver contains none of the protocol logic and provides only an interface for the differential
electrical signals on the CAN bus.

3.9. Radiation Tolerant CAN Controller 69

Sync Prop Phase 1 Phase 2

Nominal Bit Time

Time Quanta

Sample Point

previous bit next bit

FIGURE 3.20: CAN bus bit timing [62].

the sync segment, which puts it in sync with the falling edge of the received bit. On
subsequent falling edges in the frame the BTL may perform a soft synchronization. A
soft sync is limited to jumps by a given number of time quantas specified by the Syn-
chronization Jump Width (SJW), a configurable parameter in CAN controllers. The
soft sync kicks in when a falling edge is detected before or after the synchronization
segment, and not during the synchronization segment as expected. The phase error,
in terms of time quantas, is corrected for by either shortening the first phase segment
of the bit, or extending the second phase segment, depending on whether the phase
error is negative or positive.

The transmit side of the BTL’s interface consists of four signals; BTL_TX_RDY, an
output to indicate when the BTL is ready to transmit a new bit; BTL_TX_BIT_VALUE,
an input used to set up the value of the next bit to transmit; BTL_TX_BIT_VALID, an
input which is pulsed to start transmission of the next bit; and BTL_TX_BIT_DONE,
which indicates that transmission of the bit is done. Additionally, there is an input to
inform the BTL that a transmission is being performed on the bus, BTL_TX_ACTIVE,
in which case it should not re-synchronize on received bits.

On the receive side of the BTL there is a BTL_RX_SYNCED output which indicates
when a falling edge on the bus was detected, and that the BTL is synchronized with
this edge. The BTL_RX_BIT_VALID output is pulsed each time a bit has been received,
and the received bit value is output on BTL_RX_BIT_VALUE (which is valid when it
coincides with BTL_RX_BIT_VALID). Finally, the BTL_RX_STOP input is used when
a message has been received, and indicates to the BTL that it is allowed to perform a
hard synchronization the next time a falling edge is detected.

The logic for the synchronization and phase error correction is implemented by the
Rx-synchronization FSM. A simplified state diagram for this FSM is shown in fig. 3.21.
It consists of four states which corresponds to the segments that a bit is divided into
in the CAN specification. As indicated in fig. 3.19, there is a separate process that
generates the sample points based on the Rx synchronization FSM state. It outputs a
pulse for the Tx sample point when the FSM enters the ST_SYNC_SEG state, and a
pulse for the Rx sample point in the ST_PHASE_SEG2 state. The Tx and Rx sample

70 Chapter 3. Main FPGA Design for the ITS Readout Unit

!BTL_RX_SYNCED
&&

Falling edge on CAN_RX
&&

!BTL_TX_ACTIVE

ST_SYNC_SEG
Segment done

ST_PHASE_SEG1

Segment done

ST_PHASE_SEG2

Segment done

ST_PROP_SEG

Hard sync

Segment not done Segment not done Segment not done

FIGURE 3.21: FSM diagram for Rx-synchronization in the BTL of the
Canola CAN controller.

points are used by two dedicated processes, one which outputs the bits to transmit,
and the other which samples received data on the CAN bus.

3.9.2 Bit Stream Processor

The Bit Stream Processor (BSP) acts as a layer between the transmit and receive FSMs
and the BTL. It interfaces directly to the BTL in order to transmit and receive individ-
ual bits. The BSP itself handles transmission and reception of sequences of up to 64
bits28. Other responsibilities of the BSP include the CRC calculation of received and
transmitted data, bit-stuffing29 of the CAN message, and transmission and reception
of error flags.

Figure 3.22 shows an overview of the BSP. The main functionality of the BSP is
to transmit and receive sequences of data, and this is implemented by the two FSMs
shown in the figure, and the two corresponding signal interfaces. In addition there
are inputs and outputs to signal and detect error conditions, and also detection of
mismatch of transmitted versus received bit on the bus. The latter is not necessarily an
error. It is also used to detect loss of arbitration, and to detect the acknowledgement
bit. And finally there are outputs for the CRC calculations, which are used by the
higher-level frame FSMs of the controller, along with the voted CRC inputs which
allow for majority voting of the CRC when the TMR-version of the controller is used.

Transmit FSM for BSP. The state diagram for the BSP’s Tx FSM is shown in fig. 3.23.
From the idle state, the FSM waits for the BSP_TX_ACTIVE signal before moving to
the ST_WAIT_TX_DATA state. While in this state, the vectors BSP_TX_DATA and

2864 bits is the maximum length of the payload and is the longest possible field in a CAN message.
29Non-data bits that are added as necessary to the data stream to provide enough transitions for

synchronization.

3.9. Radiation Tolerant CAN Controller 71

s_
tx

_r
es

ta
rt_

cr
c_

pu
ls

e

proc_bsp_rx_fsm

proc_bsp_11_recessive_bits

proc_bsp_tx_fsm

s_tx_stuff_bit

Interface to BTL

To
external
majority

voter

BSP
interface
to send

data

BSP
interface
to receive

data

To
external
majority

voter

s_rx_bit

s_rx_update_crc_pulse

s_rx_restart_crc_pulse

BSP_RX_CRC_CALC_O

BSP_RX_CRC_CALC_VOTED_I

BSP_RX_ACTIVE_ERROR_FLAG

BSP_RX_PASSIVE_ERROR_FLAG

BSP_RX_IFS

BSP_RX_STOP

BSP_RX_ACTIVE

BSP_RX_DESTUFF_EN

BSP_RX_DATA_CLEAR

BSP_RX_DATA_COUNT

BSP_RX_DATA[63:0]

BSP_RX_DATA_OVERFLOW

EML_RECV_11_RECESSIVE_BITS

BSP_ACTIVE_ERROR_FLAG_BIT_ERROR

BSP_RX_SEND_ACK

BSP_TX_RX_STUFF_MISMATCH

BSP_TX_RX_MISMATCH

BSP_TX_BIT_STUFF_EN

BSP_TX_WRITE_EN

BSP_TX_DATA_COUNT

BSP_TX_DATA[63:0]

BSP_TX_DONE

BSP_ERROR_FLAG_DONE

BSP_TX_ACTIVE

BSP_TX_CRC_CALC_VOTED_I

BSP_TX_CRC_CALC_O

BTL_TX_BIT_VALUE

BTL_TX_BIT_VALID

BTL_TX_DONE

BTL_RX_BIT_VALID

BTL_RX_BIT_VALUE

BTL_RX_STOP

BTL_RX_SYNCED

RX_FSM_STATE_O

RX_FSM_STATE_I

To
external
majority

voter

TX_FSM_STATE_O

TX_FSM_STATE_I

To
external
majority

voter

INST_canola_crc_rx

BIT_IN

RESET

BIT_VALID

CRC_IN

CRC_OUT

INST_canola_crc_tx

BIT_IN

RESET

BIT_VALID

CRC_IN

CRC_OUT

Bit Stream Processor (BSP)

FIGURE 3.22: Block diagram for the BSP in the Canola CAN controller.
The blocks in blue are VHDL processes.

BSP_TX_DATA_COUNT should be set up with the data and number of bits to trans-
mit, respectively. The BSP_TX_WRITE_EN input should then be pulsed to indicate
to the FSM that the data is ready to be transmitted. The FSM will then process one
bit at a time, and transmit it using the BTL’s Tx interface. When all the data has been
transmitted, the FSM returns to the ST_WAIT_TX_DATA state, and indicates with the
BSP_TX_DONE signal that the bits were transmitted.

Sending the acknowledgement bit is also handled by the Tx FSM. This happens

72 Chapter 3. Main FPGA Design for the ITS Readout Unit

when the BSP_RX_SEND_ACK30 goes high, but since the acknowledgement bit is
always a dominant bit it is not necessary to set up the data vectors in this case.

And finally, the BSP_SEND_ERROR_FLAG input instructs the FSM to send an er-
ror flag immediately, regardless of the current state. The type of error flag (passive or
active) sent by the BSP is determined based on the controller’s current error state.

BSP_TX_ACTIVE &&
!BSP_RX_SEND_ACK

!BSP_TX_ACTIVE && !s_send_ack && !s_tx_send_error_flag

ST_IDLE

!BSP_TX_ACTIVE

BSP_TX_WRITE_ENST_WAIT_
TX_DATA

!BSP_TX_ACTIVE

else

BSP_TX_ACTIVE &&
s_tx_write_counter == s_tx_data_count

ST_
PROCESS_
NEXT_TX_

BIT

BSP_RX_SEND_ACK

BTL_TX_RDYST_WAIT_
BTL_TX_

RDY

s_tx_error_flag_shift_reg != b"000000"

s_tx_error_flag_shift_reg == b"000000" ST_SEND_
ERROR_

FLAG

else

BTL_TX_DONEST_WAIT_
BTL_TX_

DONE

!BTL_TX_DONE

BTL_RX_BIT_VALID &&
s_tx_send_error_flag

BTL_RX_BIT_VALID && !BSP_TX_ACTIVE && !s_tx_send_error_flag

BTL_RX_BIT_VALID && BSP_TX_ACTIVE &&
!s_tx_send_error_flag && s_tx_write_counter == s_tx_data_count

BTL_RX_BIT_VALID && BSP_TX_ACTIVE &&
!s_tx_send_error_flag && s_tx_write_counter != s_tx_data_count

ST_WAIT_
BTL_RX_

VALID

!BTL_RX_VALID

BSP_SEND_ERROR_FLAG
(regardless of previous state)

FIGURE 3.23: State diagram for the Tx-FSM of the BSP in the Canola
CAN controller.

Receive FSM for BSP. The Rx FSM waits in its idle state for the BTL to synchronize
on a falling edge, as shown in fig. 3.24. After synchronization it moves on to a state
where it waits for the BTL to sample a bit, indicated by BTL_RX_BIT_VALID, and then
proceeds to process this bit. Data bits are added to the received data register output
BSP_RX_DATA[63:0] and BSP_RX_DATA_COUNT is increased31. If the received data
should be de-stuffed32 then the receive FSM will detect and discard stuff bits, and
verify their value. Six consecutive dominant bits is always an error. Six recessive bits
is only an error for the parts of a CAN frame where bit-stuffing is enabled. When an
error condition is detected, or when BSP_RX_STOP goes high to instruct the BSP to
stop receiving, the FSM will move on to the states that checks and waits for the bus
to be idle. In these states the FSM waits for three recessive bits, which correspond to
the Inter-Frame Spacing (IFS), and moves back to the idle state. At this point, the BTL
is informed by the BTL_RX_STOP signal that the incoming bit stream, which it was
synchronized to, has stopped. This prepares the BTL for the next frame by allowing
it to do a hard-sync on the next falling edge it detects on the bus.

30Since the acknowledgement is sent by a receiving controller, the signal is named _RX_.
31BSP_RX_DATA_COUNT is reset when the BSP_RX_DATA_CLEAR input goes high.
32Controlled by the BSP_BIT_DESTUFF_EN input. Not all parts of a CAN frame are “stuffed”.

3.9. Radiation Tolerant CAN Controller 73

ST_IDLE
BTL_RX_BIT_VALIDST_WAIT_

BTL_RX_
RDY

BSP_RX_ BIT_DESTUFF_EN &&
no error flag detected &&
no stop receive signal

Stop receiving or
 error flag detectedST_

PROCESS_
BIT

ST_DATA_BIT

ST_BIT_
DESTUFF

ST_WAIT_
BUS_IDLE

ST_CHECK_
BUS_IDLE

BTL_RX_SYNCED &&
!BTL_RX_STOP

Else (data)

s_rx_bit_stream_window[5:1] == b"11111" ||
s_rx_bit_stream_window[5:1] == b"00000"

(i.e. bit 0 is a stuff bit to discard)

Error flag detected when s_rx_bit_stream_window[5:0] is
b"000000" (active error flag), or b"111111" (passive error
flag if it's a field that should be bit-stuffed, i.e.
BSP_RX_BIT_DESTUFF_EN is also '1')

s_rx_bit_stream_window[2:0] == b"111" (i.e. IFS)

FIGURE 3.24: State diagram for the Rx-FSM of the BSP in the Canola
CAN controller.

Simultaneous Transmit and Receive. An important feature of the controller is that
the BSP and BTL can receive and transmit bits simultaneously. This is used for read
back of the transmitted bits, which is necessary to check for transmit errors, arbitra-
tion loss, or to receive the acknowledgement bit when transmitting. It also allows the
receive and transmit FSMs for CAN frames (see the next sections) to operate simul-
taneously. If the transmit frame FSM loses arbitration because a different node was
transmitting a higher priority message at the same time, the receive frame FSM is able
to continue receiving the frame which originated from the other node.

3.9.3 Transmit FSM for CAN Frames

FIGURE 3.25: CAN-frame in base format with electrical levels without
stuff-bits [63].

A dedicated FSM is responsible for transmission of CAN frames on the bus, and
interfaces directly to the BSP in order to transmit fields of up to several bits (it should
not be confused with the transmit FSM of the BSP itself). The state diagram of the

74 Chapter 3. Main FPGA Design for the ITS Readout Unit

transmit FSM is shown in fig. 3.26. CAN is a complex protocol where the frames
consist of a number of different fields of varying widths, which are transmitted in a
sequence. An example of a base frame (without the stuff-bits) is shown in fig. 3.25.
The base and extended versions of the CAN frames are almost identical, with a few
additional fields in the extended frame to support the longer arbitration ID33. The
FSM has dedicated states for each field in the frame, and supports both base and
extended frame formats. Although this implementation leads to a relatively high
number of states, 39 in total, the state register is still only ceil(log2(39)) = 6 bits
wide, due to the sequential encoding of the state register which was mentioned in
section 3.8. And since the flow between the states mostly follow one path, with only a
couple of branches where the processing of base and extended frames differ, it should
be a comprehensible state diagram that is relatively easy to understand.

ST_IDLE
ST_WAIT_
FOR_BUS_

IDLE

ST_SETUP_
'SOF

ST_SETUP_
ID_A

ST_SETUP_
SRR_RTR

ST_SETUP_
IDE

ST_SETUP_
ID_B

ST_SETUP_
EXT_RTR

ST_SETUP_
R1

ST_SETUP_
R0

ST_SETUP_
DLC

ST_SETUP_
DATA

ST_SETUP_
CRC

ST_SETUP_
CRC_DELIM

ST_SETUP_
ACK_SLOT

ST_SETUP_
ACK_DELIM

ST_SETUP_
EOF

BSP_TX_DONE

ST_SEND_
'SOF

BSP_TX_DONE

ST_SEND_
ID_A

BSP_TX_DONE
ST_SEND_
SRR_RTR

BSP_TX_DONE
&& ext_id

BSP_TX_DONE
&&

!ext_idST_SEND_
IDE

BSP_TX_DONE

ST_SEND_
ID_B

BSP_TX_DONEST_SEND_
EXT_RTR

BSP_TX_DONE

ST_SEND_
R1

BSP_TX_DONE

ST_SEND_
R0

BSP_TX_DONE &&
!remote_request &&

data_length > 0

BSP_TX_DONE &&
(remote_request ||
data_length == 0)

ST_SEND_
DLC

BSP_TX_DONE

ST_SEND_
DATA

BSP_TX_DONE

ST_SEND_
CRC

BSP_TX_DONEST_SEND_
CRC_DELIM

BSP_TX_DONE &&
(s_tx_ack_recv ||
BSP_TX_RX_MISMATCH)

ST_SEND_
RECV_ACK_

SLOT

BSP_TX_DONE

ST_SEND_
ACK_DELIM

BSP_TX_DONE
ST_SEND_

EOF

ST_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

!BSP_TX_DONE

Reset

TX_START

!TX_START

FIGURE 3.26: Simplified state diagram for the Transmit Frame FSM in
the Canola CAN controller. Error states and handling not shown.

For each field in a CAN frame, there is a SETUP state where the FSM sets up the
data for the field in question, before it proceeds to the SEND state where it waits

33Base frames have 11-bit ID. Extended frames have 29-bit ID.

3.9. Radiation Tolerant CAN Controller 75

for the BSP to transmit the data. The transmit FSM indicates to the BSP when the
outgoing data should be bit-stuffed, using the BSP_TX_BIT_STUFF_EN signal, and
the necessary stuff bits are then automatically inserted in the outgoing data stream by
the BSP.

During the SEND states the FSM will monitor for mismatches between transmit-
ted and received bits, as reported by the BSP. Interpretation of the mismatch signal
depends on the field that is being transmitted. For the arbitration fields a mismatch
can indicate loss of arbitration (when a recessive bit is being transmitted). For most
other fields, and for dominant bits of the arbitration field, a mismatch is an error. And
finally, for the acknowledgement slot (in the ST_SEND_RECV_ACK_SLOT state), the
mismatch signal is use to detect acknowledgements from a listening node34.

The signals to control the transmit FSM is available at the top level of the CAN
controller. From the user’s perspective, the data to send and arbitration ID is set up on
a TX_MSG_IN input, and a TX_START input should be pulsed to start transmission.
The FSM will indicate if it is already busy with a TX_BUSY output. When a frame has
been successfully transmitted, a TX_DONE output is pulsed. If transmission failed,
either because of errors or loss of arbitration, the FSM has a ST_RETRANSMIT state
which attempts to re-transmit it35. If re-transmission fails, then this is indicated on a
TX_FAILED output and the FSM returns to the ST_IDLE state.

3.9.4 Receive FSM for CAN Frames

The implementation of the receive FSM follows the same approach as the transmit
FSM. There is one dedicated state for each field in the CAN frames, and both base
and extended format frames are supported.

The receive FSM operates in parallel to the transmit FSM. If the transmit FSM
should lose arbitration it will notify the receive FSM. In this case the receive FSM
will continue to receive the frame that won arbitration, which is being transmitted
by a different node on the bus, and it is allowed to acknowledge this frame. But
if the transmit FSM should win arbitration, then the receive FSM silently tracks the
frame but will not report errors or acknowledge the frame, as it originated from the
same node. The frame is not presented as a received frame on the CAN controller’s
interface in this case. In principle, an internal loopback mechanism could easily be
implemented by allowing the receive FSM to acknowledge frames that originate from
the transmit FSM.

34A sender transmits a recessive bit for the acknowledgement slot, and receivers transmit a domi-
nant bit to indicate successful reception.

35Re-transmission is configurable. The controller can retry forever, a specified number of times, or
it can be disabled altogether.

76 Chapter 3. Main FPGA Design for the ITS Readout Unit

BSP_RX_ACTIVE

Reset
ST_IDLE

s_bsp_rx_data_count == 1
&&

BSP_RX_DATA(0)
==

C_SOF_VALUE

ST_RECV_
SOF

s_bsp_rx_data_count
==

C_ID_A_LENGTH

ST_RECV_
ID_A

s_bsp_rx_data_count == 1

ST_RECV_
SRR_RTR

s_bsp_rx_data_count == 1
&&

(BSP_RX_DATA(0)
==

C_IDE_EXT_VALUE)
&&

(s_srr_rtr_bit
==

C_SRR_VALUE)

s_
bs

p_
rx

_d
at

a_
co

un
t =

=
1

&&

BS
P_

R
X_

D
AT

A(
0)

 !=
 C

_I
D

E_
EX

T_
VA

LU
E

ST_RECV_
IDE

s_bsp_rx_data_count
==

C_ID_B_LENGTH

ST_RECV_
ID_B

s_bsp_rx_data_count
== 1

ST_RECV_
EXT_

FRAME_
RTR

s_bsp_rx_data_count
== 1

s_bsp_rx_data_count == 1

ST_RECV_
R0

(s_bsp_rx_data_count
==

C_DLC_LENGTH)
&&

(!remote_request)

(s_bsp_rx_data_count
==

C_DLC_LENGTH)
&&

(remote_request)

ST_RECV_
DLC

s_bsp_rx_data_count
==

data_length

ST_RECV_
DATA

s_bsp_rx_data_count
==

C_CAN_CRC_LENGTH

ST_RECV_
CRC

s_bsp_rx_data_count == 1
&&

(BSP_RX_DATA(0)
==

C_CRC_DELIM_VALUE)

ST_RECV_
CRC_
DELIM

s_bsp_rx_data_count == 1
&&

(s_crc_mismatch || (!s_crc_mismatch && BSP_RX_DATA(0) != C_ACK_VALUE && s_reg_tx_arb_won))

ST_SEND_
RECV_

ACK

s_
bs

p_
rx

_d
at

a_
co

un
t =

=
1

&&

s_
cr

c_
m

is
m

at
ch

s_bsp_rx_data_count == 1 &&
!s_crc_mismatch &&
(BSP_RX_DATA(0) == C_ACK_DELIM_VALUE ||
s_reg_tx_arb_won)

ST_RECV_
ACK_
DELIM

(s_bsp_rx_data_count
<

C_EOF_LENGTH) &&
BTL_RX_BIT_VALID &&
(BTL_RX_BIT_VALUE

!=
C_EOF_VALUE)

s_bsp_rx_data_count
==

C_EOF_LENGTH

ST_RECV_
EOF

BSP_ERROR_
FLAG_DONE

!BSP_RX_ACTIVE && !BSP_RX_IFS

ST_WAIT_
BUS_IDLE

ST_DONE

BSP_RX_DATA_CLEAR is pulsed for a clock cycle when transitioning to a next state, in order to clear BSP_RX_DATA_COUNT.
It takes an additional clock cycle before the data count is cleared, so BSP_RX_DATA_CLEAR is checked to avoid processing the
old data during the first clock cycle of a new state.

ST_RECV_
R1

ST_WAIT_
ERROR_

FLAG

!s_reg_tx_arb_won

s_
re

g_
tx

_a
rb

_w
on

ST_ERROR

BSP_RX_ACTIVE && !BSP_RX_DATA_CLEAR is
a condition for most state transitions (not errors),
but is not shown to simplify the state diagram.

Stuff error detection:
s_fsm_state_voted != ST_IDLE

&&
BSP_RX_BIT_DESTUFF_EN

&&
(BSP_RX_ACTIVE_ERROR_FLAG ||
BSP_RX_PASSIVE_ERROR_FLAG)

Errors during the receive states leads to ST_ERROR:

CRC error
Form error (fixed value field had wrong value)
Stuff error (6 bits of same value detected in a
message)

FIGURE 3.27: Simplified state diagram for the Receive Frame FSM in the
Canola CAN controller.

The state diagram for the receive FSM is shown in fig. 3.27. For each of the states
that correspond to a field in a CAN frame, the receive FSM waits for the BSP to receive
the number of bits expected for that field. Fields that should have a fixed value are
verified, and so is the CRC field. De-stuffing of bits is handled by the BSP, but when
it should be performed is controlled with the BSP_RX_BIT_DESTUFF_EN signal by
the receive FSM.

At the end of a reception, the FSM will wait for the IFS period before returning to
the idle state where it is allowed to receive the next frame. And as for the transmit
FSM, a set of signals from the receive FSM is available at the top-level of the CAN
controller, so that the received frame can be retrieved.

3.9.5 Error Management Logic

An extensive set of rules for the error management logic in a CAN controller is de-
scribed in the CAN specification [60], and this is implemented by a dedicated Error
Management Logic (EML) block in the Canola CAN controller.

3.9. Radiation Tolerant CAN Controller 77

The EML has dedicated inputs for the different types of errors (examples include
stuff errors, form errors, and bit errors) that can be detected by the different sub-
modules of the design, as well as inputs for successful transmission and reception of
CAN frames. These inputs should be pulsed for one cycle, and the EML takes care
of increasing or decreasing the Transmit Error Count (TEC) and Receive Error Count
(REC) by the right value. The TEC and REC themselves are implemented using ex-
ternal counter modules (with built-in TMR) that can be increased or decreased by an
arbitrary value, but they are controlled by the EML.

And finally it is the EML that determines the error state for the entire controller,
based on the values of the TEC and REC. The error state determines the controller’s
ability to participate on the bus, to prevent a faulty node from interfering with the
communication between good nodes [60].

3.9.6 Radiation Tolerance

The Canola CAN controller achieves radiation tolerance by employing the same tech-
niques as other parts of the FPGA design, but it should be noted that a dedicated set
of majority voters and counter modules were implemented for the controller36.

There are dedicated TMR wrappers for all of the main modules of the Canola
controller. The wrappers generally have single inputs and outputs, and the outputs
from individual copies inside a wrapper are generally voted with a single–output
majority voter (this does not provide the same level of protection as triple voters, but
is a compromise made for less critical signals to limit the resource utilization of the
controller). The state registers are voted using triple–output majority voters, and uses
the “feedback” described in section 3.8 to correct errors. This additional protection
is also used for the calculated CRC value and the TQG counter value, since errors
here have the potential of accumulating and propagating to the next bit, as well as for
the counter module that is used for the TEC and REC, which has this functionality
built–in.

ECC has not been employed in the Canola design. Aside from all the registers
in the design, which are generally used for short–term storage, there are no memory
blocks or buffers. And the CAN protocol itself includes CRC for error detection.

36The voters and counters in the main FPGA design rely on mixed SystemVerilog and VHDL sup-
port. Since the Canola controller was developed as a standalone project and made available online, it
comes with its own set of VHDL-based voters which removes the mixed-language requirement. But a
configuration option allows the voters of the main FPGA design to be used.

78 Chapter 3. Main FPGA Design for the ITS Readout Unit

3.9.7 Resource Utilization

Resource utilization of the Canola CAN controller is shown in table 3.3. The num-
bers are from a test design for a Xilinx Zynq FPGA featuring four instances of the
controller (see section 5.4.1). Instance 0 in the table uses a top-level TMR-wrapper of
the controller, with TMR enabled, and requires around five times as many LUTs and
three times more registers than the other instances which are not triplicated. Only
the utilization of the controllers are shown (the design also included an AXI interface
and external counters, but resource count for these were omitted). The design does
not use distributed memory, and all LUTs in the table are used for logic. Instance 1
also uses the TMR-wrapper top-level entity, but with the TMR disabled. Its resource
utilization is about the same as for instance 2 and 3, which uses a standard top-level
entity for the controller with no TMR. This shows that the top-level TMR-wrapper
successfully creates singular logic when TMR is not enabled, and does not use more
resources in this case.

TABLE 3.3: Canola CAN controller resource utilization in a Zynq test design. Instance 0 is
using TMR. The remaining instances have no TMR. Values in percent are relative to the total

amount of resources in the xc7z010clg400-1 FPGA on the Digilent ZYBO Zynq board.

Instance TMR Slice LUTs Slice Registers F7 Muxes F8 Muxes Slice
0 Yesa 2701 (15.35%) 1733 (4.92%) 34 (0.39%) 12 (0.25%) 881 (20.02%)
1 Nob 545 (3.10%) 582 (1.65%) 3 (0.03%) 1 (0.02%) 245 (5.57%)
2 Noc 540 (3.07%) 582 (1.65%) 5 (0.06%) 0 (0.00%) 268 (6.09%)
3 Noc 535 (3.04%) 582 (1.65%) 10 (0.11%) 0 (0.00%) 244 (5.55%)

a Top-level TMR wrapper with TMR enabled.
b Top-level TMR wrapper with TMR disabled.
c Standard top-level instance with no option for TMR.

79

Chapter 4

Auxiliary FPGA Design for the ITS
Readout Unit

In this chapter we will look at the FPGA design for the Microsemi PA3 FPGA in the RU, also
referred to as the auxiliary FPGA. This design was developed almost entirely at UiB under
the lead of Associate Professor Johan Alme, who created the general structure of the design,
including the WB bus and register interface, and also the ECC module which decodes ECC
encoded data from the external flash memory. The interface to the external flash memory
was designed by Attiq Ur Rehman. Magnus Ersland and Gitle Mikkelsen designed and
tested the initial versions of the configuration controller which configures the main FPGA
with an image from the external flash memory, an important part of the blind scrubber
implementation. A fault injector which emulates SEUs in the main FPGA by flipping bits
on the data stream for the scrubbing was written by Magnus Rentsch Ersdal. The I2C slave
that communicates with the GBT-SCA was Arild Velure’s design, based on an I2C slave he
wrote for the Serialized Analogue-digital Multi Purpose ASIC (SAMPA) chip for the TPC
upgrade. My own contributions consists of a UART which acts as a master on the WB bus,
the necessary protocol and software to go with it, as well as debugging and testing of the
entire design. The UART and software was initially used for testing and configuration of the
auxiliary FPGA, and also to transfer configuration images for the main FPGA to the external
flash.

The primary purpose of the RU’s auxiliary FPGA is configuration and scrubbing
of the SRAM-based main FPGA, as discussed in section 2.7.2.

In principle, there are ways to implement configuration and scrubbing that would
not require a second FPGA. It is fully possible for the SRAM-based FPGA to con-
figure itself directly from an external flash memory1. This could have been paired
with Xilinx’s proprietary scrubbing solution; the Soft Error Mitigation IP (SEMIP)

1Some vendors even offer special configuration Integrated Circuits (ICs) with internal flash mem-
ory for this purpose.

80 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

core. The SEMIP is essentially implemented with a small microcontroller in the pro-
grammable logic of the FPGA, which detects and corrects SEUs in the FPGA. How-
ever, the SEMIP core itself is vulnerable to SEUs, and consequently Xilinx’s SEMIP
solution was deemed not sufficient for the ITS RU.

This is one reason why a second FPGA was used for the scrubber, but there are
some other benefits. The auxiliary FPGA offers a lot of flexibility when it comes to
configuration of the main FPGA as well as programming of the external flash memory
(see section 2.7.2). It also acts as a sort of fail-safe FPGA on the RU, controlling critical
systems on the board such as clock switches (see section 2.7.2).

UART I2C

Wishbone Bus (8b data/7b addr)

register
block

selectmap
interface

Config
ctrl

GPIO
status

(master) (master)

Clk Ctrl

SysClk
(40 MHz)

Local Clk
(160 MHz)

SCA
I2C_5

TMR

Xilin
x X

CKU
selectM

A
P

Sa
m

su
n

g
Fl

a
sh

A
u

x
FP

G
A

 (
PA

3) debug

Flash
Write

Controller

FIFO

Flash
interface

Flash Read
Controller

Xilinx
XCKU

FIFO

GBTx pinheader

ECC decoder

Reset
POR reset

SCA_GPIO Reset

Button_0 (debug)

256B FIFO

SCA
GPIO

CRC
CALC

Areset

POR_conf

I2C
(master)

SCA
I2C_0

IC#1

IC#2

Loss of
lock
cnt LOCAL_CLK_C2B

LOCAL_CLK_C1B

LOCAL_CLK_LOL

Jitte
r C

lea
n

er

FIGURE 4.1: Block diagram for the Auxiliary FPGA design [64].

4.1 General Structure of Design

The design for the auxiliary FPGA is illustrated in fig. 4.1. The design has a WB bus
with 8-bit data width, and 7-bit address width. There is only one slave connected to
the bus, and that is the register block. This block contains configuration and status
registers for all the other blocks of the design. Access to the WB bus is primarily

4.2. Communication Interfaces 81

TABLE 4.1: Typical I2C transaction with 7-bit address.

Bit number 0 1:7 8 9 10:17 18:25 ...
Field type Start Addr[6:0] R/W ACK bit Data byte 0 Data byte 1 ... Data byte N Stop

performed via one of the two I2C interfaces2 that connect to the GBT-SCA. A UART
with a protocol for WB bus access was also used during development.

Configuration data for the main FPGA is stored in the external Samsung
K9WBG08U1M flash chip. Configuration images can be downloaded to the exter-
nal flash via three interfaces; the I2C interface from the GBT-SCA; the UART interface;
or via a FIFO interface to the Xilinx FPGA, which allows high-speed transfer via the
main GBT-links3. The datapath for the configuration data begins with the flash mem-
ory at the bottom left of the figure, and goes through the bottom row of modules
before reaching the main FPGA.

4.2 Communication Interfaces

4.2.1 I2C Interface

The main control interface to the Auxiliary FPGA is the I2C interface to the GBT-SCA.
The GBT-SCA is an I2C bus master, and I2C transactions are initiated via GBT from the
FLP by accessing certain registers in the GBT-SCA. The I2C module in the Auxiliary
FPGA is itself an I2C-slave, however it is a master on the WB bus.

A typical I2C transaction is shown in table 4.1 for 7-bit device addressing. The
implementation of the I2C-slave in the Auxiliary FPGA breaks a bit with the official
I2C standard. Normally the device address (or chip address) is sent as the first byte
(the Addr[6:0] field), and the register address is sent as the second byte (the Data byte
0 field). But since the auxiliary FPGA is the only I2C slave on the bus, it is redundant
to specify a device address. Therefore, the device address field (Addr[6:0]) was used
to indicate register addresses on the WB bus directly, saving one byte per transaction.
The 7-bit width of the WB bus was chosen precisely to match the standard 7-bit device
address width of the I2C protocol.

4.2.2 UART Interface

The auxiliary FPGA design features a UART with a protocol that enables access to
the internal WB bus of the design. The associated software allows for full control of

2The FPGA is an I2C slave. The two I2C buses are separate with only one I2C slave per bus.
3This option requires that the Xilinx FPGA has already been configured, and can only be used for

updates.

82 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

the auxiliary FPGA, upload of Xilinx configuration images to the external flash, and a
number of other functions for test and debug. This functionality was not in place for
the main GBT and GBT-SCA interfaces during the early stages of the FPGA design.
The UART interface played a very important role back then, in particular by offering
the only way, at that time, to transfer configuration images to the external flash.

The UART and protocol logic for WB bus access was based on the UART to Bus
IP available on OpenCores [65]. The UART and baud generator were used as they
were, but the protocol was modified and the protocol parser rewritten for the aux-
iliary FPGA design. The modified protocol is described in appendix E. It allows for
transfers of up to 65 535 bytes per message with little overhead4.

The protocol did not include a checksum or CRC code in the message format. But
upload of configuration images to the external flash, via the UART, would be followed
by read-back and verification. And the configuration data itself includes a checksum
and would be rejected by the main FPGA if it was corrupted. With that in mind, the
lack of a checksum in the UART protocol was considered an acceptable limitation,
since the interface was primarily intended for testing and debugging, and not for use
in the experiment.

The baud rate used in the design is 921 600 baud. Each transmitted byte consists
of 10 bits: the start bit, stop bit, and eight data bits. This amounts to a transfer rate
of 92 160 B s−1. A data length of 4 096 bytes is typically used when transferring con-
figuration images, which allows a full page of the external flash to be transferred
per message. The data rate is close to the theoretical maximum of 92 kB s−1, since
the protocol overhead is practically negligible when transmitting messages that long.
The bitstream files for the main FPGA are 24 125 021 bytes, and this is transferred in
around five minutes.

UART Software for Auxiliary FPGA

A Graphical User Interface (GUI) and command-line tool was developed for testing
and debugging of the design for the auxiliary FPGA. A screenshot of the GUI is shown
in fig. 4.2. The software allowed access to any register in the design, as well as transfer
of configuration data for the main FPGA, and a number of test features for the Flash
Interface. The latter included writing known patterns to the external flash, which was
used during beam testing to estimate the cross-section of bit-flips from 0 to 1, and
from 1 to 0, in the external flash memory.

The software is described in more detail in appendix E.

44 096 bytes, the size of a page in the flash memory, is generally used for transfer of configuration
images.

4.3. Blind Scrubber Solution 83

FIGURE 4.2: UART software for testing of Auxiliary FPGA.

4.3 Blind Scrubber Solution

Configuration and scrubbing of the main FPGA is implemented by the chain of mod-
ules at the bottom of fig. 4.1. Configuration data stored in the external flash is read by
the Flash Interface, and is eventually transported to the main FPGA via the SelectMAP
Interface. The whole process is controlled by the Configuration Controller. These three
modules form the backbone of the blind scrubber design, and will be discussed in
detail later in this section.

4.3.1 Configuration of Xilinx UltraScale FPGAs

There are several options to configure a Xilinx FPGA; the configuration can be initi-
ated and controlled by the Xilinx FPGA itself, in so-called master mode; or an external
configuration controller implemented in a microcontroller or FPGA can configure the
Xilinx FPGA (slave mode). Master mode is suitable when the FPGA is configured
one time on power-on, and the FPGA can read the configuration data directly from
external flash memory. However, in cases where a finer degree of control of the con-
figuration process is required, such as partial reconfiguration or external scrubbing,
the slave mode is more suitable. Several interfaces are available for configuration,

84 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

such as JTAG, Serial Peripheral Interface (SPI) (standard, x4, or x8), serial configura-
tion mode, and SelectMAP. The latter is used between the auxiliary and main FPGAs
of the RU board. It is a proprietary configuration interface that Xilinx offers on their
FPGAs, such as the UltraScale [66]. SelectMAP uses a parallel data bus, typically
eight bits wide5, and allows for faster configuration of the FPGA than most of the
other interfaces.

The actual configuration logic in the Xilinx FPGA is more or less agnostic to the
configuration interface choice. The underlying data format is the same in any case,
and consists of two package types:

• Type 1: Used to read from or write to a register in the configuration logic

• Type 2: Used to write long blocks of data6.

There are 20 registers in the configuration logic that are available via the Type 1
packages. Reading and writing of frames, and control of the frame address, is possible
via these registers, as well as CRC verification of frames that have been written. The
actual configuration frames consist of 123 x 32-bit words (3,936) bits for UltraScale
FPGAs and are sent using the type 2 packages.

A bitstream file generated by the Vivado software suite to configure a Xilinx FPGA
consists of sequences of register accesses and frames being written to the configura-
tion logic, using the type 1 and type 2 packets. Several options are available when
generating the bitstream file, such as the target configuration interface, bit order in a
byte, and the so-called "persist" option. The latter is of particular importance for the
external scrubber as it allows the SelectMAP to remain active after configuration.

4.3.2 SelectMAP Interface

The Readout Unit uses 8-bit Slave SelectMAP for configuration of the main FPGA7. The
interface for configuration between the main and auxiliary FPGAs consists of the sig-
nals shown in table 4.2. The auxiliary FPGA design has a SelectMAP master controller
(referred to as the SelectMAP Interface in the design, see fig. 4.1), which interfaces di-
rectly with the main FPGA via this interface. It is based on an implementation that
was used for the FPGA design for the TPC RCU [34]. The controller provides a conve-
nient interface to the rest of the auxiliary FPGA design, which allows bytes of data to
be written to or read from the main FPGA, and also implements commands for init,

5Larger widths are possible on some FPGAs.
6Type 2 packages can not be sent arbitrarily; a type 1 package must first be sent that prepares the

logic for the type 2 package.
7The configuration interface is selected by the M[2:0] pins on the UltraScale FPGA, and these are

hardwired for Slave SelectMAP in the Readout Unit.

4.3. Blind Scrubber Solution 85

startup, abort8. The SelectMAP controller is typically controlled by the Configura-
tion Controller, as shown in fig. 4.1. However, it can also be controlled via wishbone
registers.

TABLE 4.2: Configuration interface to Xilinx UltraScale FPGA.

Signal Direction (UltraScale side) Function
D[0:7] Bidirectional Parallel data
CCLK Input Configuration clock
DONE Output (open-drain) Configuration done
PROGRAM_B Bidirectional (open-drain) Reset configuration logic and initiate new configu-

ration sequence
INIT_B Input Primarily indicates when the FPGA is resetting the

configuration logic or memory, or errors during
configuration.

RDWR_B Input Controls the direction of the data lines for the
SelectMAP interface (write or read to UltraScale
FPGA)

4.3.3 External Flash

The K9WBG08U1M flash memory chip has an 8-bit parallel IO interface for control.
This 8-bit interface is used to setup commands such as read or write, and is used to
transfer address and data.

External Flash Structure

Internally, the K9WBG08U1M actually consists of two K9K8G08U0A flash chips9. The
memory of a K9K8G08U0A chip is organized into 8 192 blocks, and each block con-
sists of 64 pages. A page consists of 4 096+128 bytes, where the additional 128 bytes
are intended for ECC data. In total, this adds up to 2 gigabytes per K9K8G08U0A
chip (excluding the additional 128 bytes per page), or 4 gigabytes in total for the en-
tire K9WBG08U1M chip.

Figure 4.4 shows how the data is organized in the flash with a 32-bit addressing
scheme. The first 13 bits of the address, A0 to A12, selects the column, and the remain-
ing bits A13 to A31 is the row address. The column address is equivalent to the byte
number in a page, and the row address is essentially the absolute page number. Since
there are 64 pages in a block, the first six bits of the row address, A13 to A18, specifies
the relative page number inside a block. And the remaining bits of the row address,
A19 to A31, is essentially the block number.

8These commands require the PROGRAM_B, INIT_B, or RDWR_B to be toggled for a certain num-
ber of clock cycles, and this is handled by the SelectMAP controller in the Auxiliary FPGA design.

9The CE1 and CE2 chip enable pins are used to select between the two K9K8G08U0A chips.

86 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

FIGURE 4.3: Functional block diagram for the flash memory chip of the
RU [67].

FIGURE 4.4: Flash array organization [67].

Invalid Blocks

The external flash memory may come with several invalid blocks10 when it is shipped
from the manufacturer11, and additional blocks may become invalid as the device
wears. The initial invalid blocks are disconnected from the data lines internally, and

10A block that behaves erroneously and should not be used.
11IC manufacturers achieve a higher yield for high-density ICs, such as memory chips, by identify-

ing and disabling defective regions of a chip during wafer–testing.

4.3. Blind Scrubber Solution 87

they can be discovered by reading a specific column address in the block. The man-
ufacturer also guarantees that the first block is valid for the first 1 000 program/erase
cycles12 [67].

The procedure for production testing of the RU boards involved generating a table
of invalid blocks for each board, and maintaining a database with this information for
all the RU boards.

File Format

A simple file format is used in the external flash memory to store the configuration
images for the main FPGA. The first page of the flash, which is guaranteed to be
valid by the manufacturer, is used to store a table that contains information about
the configuration images. This page is referred to as the parameter page, and the
format is shown in figs. 4.5 and 4.6. It allows three images to be stored in the flash;
two redundant copies of the configuration image for the main FPGA, and a scrubbing
image. For each of the images there is a four-byte pattern of 0x665599AA that must
be present to indicate that the image is valid. The format also allows the images to
be placed in a good section of the external flash based on the information from the
database of invalid blocks. And the second copy of the configuration image accounts
for the possibility that a block would go bad in the future, or that parts of the primary
configuration image should be corrupted due to radiation.

Radiation Cross-section. Beam-testing experiments have shown that the SEU cross-
section of a bit in the flash storing a zero is 10−16 cm2/bit, compared to 10−21 cm2/bit
for a bit storing a one. Since the configuration files for the Xilinx FPGA have around a
20 to 1 ratio of zeroes to one, the configuration images are stored inverted in the flash
which should improve the radiation cross-section by around six orders of magnitude
[68].

Error Correction Codes. The configuration images in the flash can be encoded using
ECC. Extended Hamming Codes13 are typically used for NAND flash memory [69], and
this requires a 2n bit code for 2n bits of data [70], [71]. The data in the external flash are
encoded in blocks14 of 128 bytes, and the ECC code for each block is 2× log2(128×
8) = 20 bits. But for practical reasons the ECC code is stored as three bytes (i.e. 24
bits), and the 128 data bytes are immediately followed by the three ECC bytes in the

12Assuming ECC with 1 bit correction per 512 bytes.
13Hamming distance of four.
14Not to be confused with the blocks of 64 pages in the flash.

88 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

0127

N/AByte 0

N/A
Cfg start
[18:16]

Byte 1

Config start page [15:8]Byte 2

Config start page [7:0]Byte 3

N/AByte 4

N/A
Cfg stop
[18:16]

Byte 5

Config stop page [15:8]Byte 6

Config stop page [7:0]Byte 7

Config valid pattern [7:0] - 0x66Byte 8

Config valid pattern [15:8] - 0x55Byte 9

Config valid pattern [23:16] - 0x99Byte 10

Config valid pattern [31:24] - 0xAAByte 11

0127

N/AByte 12

N/A
Scrub start

[18:16]
Byte 13

Scrub start page [15:8]Byte 14

Scrub start page [7:0]Byte 15

N/AByte 16

N/A
Scrub stop

[18:16]
Byte 17

Scrub stop page [15:8]Byte 18

Scrub stop page [7:0]Byte 19

Scrub valid pattern [7:0] - 0x66Byte 20

Scrub valid pattern [15:8] - 0x55Byte 21

Scrub valid pattern [23:16] - 0x99Byte 22

Scrub valid pattern [31:24] - 0xAAByte 23

FIGURE 4.5: Parameter page in the external flash memory (continued in
fig. 4.6). [64]

0127

N/AByte 24

N/A
Cfg2 start

[18:16]
Byte 25

Config 2 start page [15:8]Byte 26

Config 2 start page [7:0]Byte 27

N/AByte 28

N/A
Cfg2 stop

[18:16]
Byte 29

Config 2 stop page [15:8]Byte 30

Config 2 stop page [7:0]Byte 31

Config 2 valid pattern [7:0] - 0x66Byte 32

Config 2 valid pattern [15:8] - 0x55Byte 33

Config 2 valid pattern [23:16] - 0x99Byte 34

Config 2 valid pattern [31:24] - 0xAAByte 35

FIGURE 4.6: Parameter page in the external flash memory (continued
from fig. 4.5). [64]

4.3. Blind Scrubber Solution 89

flash. This brings the total page size up to 4 192 bytes15 and utilizes 96 of the 128
“spare bytes” in a page16.

Flash Interface. The Flash Interface module, shown at the bottom left of fig. 4.1, offers
a convenient interface that the rest of the FPGA design uses to access the external
flash17.

In a NAND flash memory like the K9WBG08U1M, transactions such as erasing
blocks or reading and writing pages is performed by writing predefined sequences
of command IDs, row and column address, and data, on the 8-bit IO-interface. The
auxiliary FPGA design uses a subset of the available commands; read ID code, read
page, write page, and block erase. Sequences for these commands are implemented
by the Flash Interface.

The interface to the rest of the FPGA design primarily consists of control inputs for
command, row address, and execute, and of course status outputs. For the datapath
the Flash Interface has a set of typical FIFO signals18 and reads or writes data directly
to and from FIFOs in the FPGA design.

The Flash Interface also has a simple pattern checker which compares each byte of
data that is read to a fixed value (or “pattern”). By reading a range of the flash that had
been initialized to this pattern, the number of bits that have flipped can be counted
easily without having to transfer the data via the slow I2C and UART interfaces. This
feature was used during beam testing to estimate the cross-sections of 0 → 1 and
1→ 0 transitions in the flash.

4.3.4 Read and Write Controllers, and ECC

Writing data to the flash is controlled by the Write Controller, shown at the center left of
fig. 4.1, which can accept data coming from the main FPGA, and also directly from the
WB bus in the auxiliary FPGA design. The Flash Interface reads from this FIFO when
it writes a page. Using the Flash Interface, the Write Controller writes data directly to
the flash starting at an address configured by a set of WB registers. These registers are
used regardless of data source, and must be configured via the I2C or UART interfaces,
so the write process can not be fully controlled from the main FPGA. Neither will

15The Flash Interface must be configured for the right page size in the FLASH_TRX_SIZE_LSB/MSB
registers, i.e. 4096 bytes without ECC and 4192 bytes with ECC.

16Note that the ECC codes are interwoven with the data, they are not fully stored in the spare section
of the flash. This simplified the auxiliary FPGA design and eliminated the need to buffer a full page.

17“Flash Interface Controller” might have been a better name to avoid confusion with the IO-
interface between the external flash and the FPGA.

18Data in, read enable and empty signals for the write FIFO, data out, write enable, and full signals for
the read FIFO.

90 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

the controller update the parameter page in the flash; the parameter data must be
generated externally and written in the same fashion using the Write Controller.

The FIFO for data that is read from the flash resides in the ECC module, also shown
in fig. 4.1. The Flash Interface writes data directly to this FIFO when it is reading a
page. When ECC decoding is enabled, the ECC module will automatically decode
the data stream using the aforementioned Hamming ECC codes, and strip away the
three code bytes. The process of reading pages is normally controlled by the Read
Controller, which also uses the Flash Interface. Access to the interface is multiplexed
between the Read and Write Controllers. Four commands are supported by the Read
Controller; read configuration image 1, read configuration image 2, read scrub image,
and read custom range. For the first three of these commands, the parameter page
is read automatically. In this case the Read Controller reads data from the read FIFO
in the ECC module, verifies the parameter page and determines where the desired
image is located, and proceeds to read data for the actual image. The last command
allows for random access to the flash by specifying a range of pages to read via a set
of WB registers. The controller itself does not read from the FIFO in the ECC module,
with the exception of when the parameter page is read before an image. It simply
makes the data available in the FIFO for either the Configuration Controller or the WB
bus interface.

Originally the auxiliary FPGA design had a 4 096-byte page buffer which was used
for both reading and writing, instead of the FIFOs and Read and Write Controllers.
But the addition of the FIFOs simplified the design of the ECC decoding, reduced the
number of resources required, and consequently reduced the radiation cross-section
for the design.

FIFO Interface to Xilinx FPGA for Configuration Data

The previous chapter introduced a FIFO interface between the two FPGAs (see sec-
tion 3.4). It allows for fast transfer of configuration images (for the main FPGA) to
external flash using the GBT links. The actual FIFO is part of a module in the main
FPGA, where it is a WB slave. The interface to read this FIFO is exposed on a set of IO
pins that connect to the auxiliary FPGA, and the interface is controlled by the Write
Controller of the auxiliary FPGA design, as shown on the left side of fig. 4.1.

4.3.5 Configuration Controller

The Configuration Controller is at the center of the scrubbing solution for the Xilinx Ul-
traScale main FPGA. As shown in fig. 4.1, it uses the Read Controller to read config-
uration data from the external flash memory, and writes ECC decoded configuration

4.4. Mitigation of Radiation Effects 91

data to the main FPGA via the SelectMAP Interface.
A simplified state diagram of the FSM in the Configuration Controller is shown in

fig. 4.7. The same FSM is used for both initial configuration and scrubbing. The se-
quence of state transitions are almost the same in both cases. An initial configuration
will reset the SelectMAP Interface and run one time through the process to configure
the main FPGA. Initial configuration can be executed automatically when the system
is powered up or reset, depending on the position of a DIP-switch on the RU board,
or it can be started via a WB register. Scrubbing does not start automatically and
must always be triggered a WB register. A continuous scrubbing mode allows the
scrubbing to run indefinitely in a loop once it has been started.

Execute
initial

configuration
IDLE INITIALIZE

SELECTMAP

Execute single or continuous scrubbing

INITIATE
READ FROM

FLASH

DATA
TRANSFER

Initial configuration

Scrub cycle

Resume continuous scrubbing
PAUSE
SCRUB

STARTUP

Single scrub cycle,
or stop scrubbing,
or initial configuration

Continuous scrubbing

Pause continuous scrubbing

CONFIG
DONE

Data is transferred from
flash to SelectMAP

FIGURE 4.7: Simplified FSM diagram for the Configuration Controller.

4.4 Mitigation of Radiation Effects

The mitigation strategies for the design primarily consists of the use of TMR, and the
aforementioned ECC encoding of the configuration data in the flash memory. But the
strategies for TMR differ from the techniques that were described in section 3.8 for
the main FPGA, which were aimed at minimizing the number of voters in the design.
Since the flash-based configuration memory of the auxiliary PA3 FPGA is not as sus-
ceptible to SEUs [72], an increased number of voters will not add to the cross-section
of the design. This makes LTMR, where each individual FF is triplicated and voted,
a suitable approach for the auxiliary FPGA design19. Manually adding LTMR to an
HDL design is a time-consuming and error-prone process. But the Synplify toolchain

19The design for the auxiliary FPGA is resource constrained and LTMR offered sufficient protection.
Better protection could likely have been achieved with Distributed (DTMR) [72], but at the expense of
requiring more resources in the FPGA.

92 Chapter 4. Auxiliary FPGA Design for the ITS Readout Unit

that is used for synthesis of the design supports automatic generation of the LTMR
[73], and takes place when the attribute shown in listing 4.1 is present in the architec-
ture declaration of a design entity. Almost the entire design is triplicated in this way
using the Synplify tools, with the exception of the I2C module which was manually
designed for LTMR.

LISTING 4.1: VHDL attributes for TMR in the auxiliary FPGA design.

1 attribute syn_radhardlevel : string;

2 attribute syn_radhardlevel of behave: architecture is "tmr";

93

Chapter 5

FPGA Design Verification and Testing

It goes without saying that a complex design like the ITS detector requires extensive testing
before it can be put to use. It has been an ongoing activity involving a large number of people
across different sites. A lot of the details are far beyond the scope of this thesis, but this chapter
will give an overview of some of the most relevant activities relating to the readout electronics,
ranging from verification of the FPGA designs, beam-testing of the readout electronics, and
commissioning of the detector. As with the previous chapters, a general overview will be
provided, with some extra focus on the work related to this thesis.

5.1 Test Software for the FPGA Designs

Accompanying the main FPGA design is an extensive software suite written in the
Python programming language. The software serves several purposes. It is used
for verification in the so-called “Python co-simulation” of the main FPGA design;
regression testing of the design using the actual RU hardware; and for control and
operation of the readout electronics and detector itself.

5.1.1 Board Support Package for the RU and Main FPGA

The Board Support Package (BSP) is a core component of the software suite. It primar-
ily targets the main FPGA, but also includes modules to control the auxiliary FPGA.
In broad terms the BSP is structured into a communication stack, software modules
for each individual WB module in the design, and an RU board class that ties it all
together, as shown in fig. 5.1.

The communication stack is agnostic to the underlying communication interface
and supports USB, CAN, and SWT (over GBT via the FLP) using the O2 software).
This is illustrated in fig. 5.2. The stack primarily allows for register access in each

94 Chapter 5. FPGA Design Verification and Testing

Communication

USB / CAN / SWT

Xcku

Wishbone Slave Modules

FIGURE 5.1: General structure of the BSP for the RU.

individual WB module in the design, but also includes some more advanced func-
tionality such as sequencing of WB access.

Communication

register_read(module, addr, data)
register_write(module, addr, data)

PyUsbComm

__init__(VID, PID, IF,
 PacketSize,
 serialNr,
 enable_rderr_exception)

PySwtComm

__init__(roc)

CanHlpComm

__init__(can_if, timeout_ms,
 initial_node_id, sim,
 enable_rderr_exception)

set_node_id(node_id)

CanHlp

__init__(can_if)
readHlp(dev_id, addr,
 timeout_ms)
writeHlp(dev_id, addr,
 data,
 timeout ms)

FIGURE 5.2: Overview of Communication classes in the BSP.

The WB slave modules in the BSP follows the pattern shown in fig. 5.3, which
specifically shows the implementation of the CAN HLP WB slave. A generic Wish-
boneModule has a reference to the Communication object and implements read and
write in the specific module in the design. The main module for the WB slave, Ws-
CanHlp in this case, inherits from the WishboneModule and implements functions spe-
cific to CAN HLP, such as changing the bit rate. It also has a reference to the cor-
responding counter monitor module, WsCanHlpMonitor, which is derived from the
generic WsCounterMonitor. Each WB slave module follows this pattern, both in the
BSP software and in the HDL design.

5.1. Test Software for the FPGA Designs 95

WsCanHlpMonitor

Communication

WsCounterMonitorAddress

LATCH_COUNTERS = 0x00
RESET_COUNTERS = 0x01

WsCanHlpMonitorAddress

HLP_READ_LOW = 0x02
HLP_READ_HIGH = 0x03
HLP_WRITE_LOW = 0x04
HLP_WRITE_HIGH = 0x05
...

WsCanHlpAddress

CTRL = 0x00
STATUS = 0x01
...

WsCounterMonitor

latch_all_counters()
read_counters()
read_counter()
...

WsCanHlp

get_bitrate()
set_bitrate()
...

WishboneModule

write()
read()
...

FIGURE 5.3: Overview of Wishbone slave for CAN HLP in the BSP soft-
ware.

CanHlpComm

Communication

Python
SocketCAN

library
vcan<x>

can<x>

Python
SocketCAN

library

SocketCan
SimWrapper

(Python)

FIFO
disk files

can_write()

CanComm
(System
Verilog)

can_read()
can_bfm
(System
Verilog)

can_hlp
(VHDL)

Simulation

UltraScale
FPGA design

SocketCAN
interface

SocketCAN
virtual interface

read_reg()

set_node_id()
write_reg()

inheritance

CAN bus

CAN
adapter

CAN
transceiver

Hardware

RU board

Python Board Support Package (BSP)

FIGURE 5.4: Software communication stack for CAN.

Software Communication Stack for CAN

As an example of a communication stack in the BSP software, fig. 5.4 shows the im-
plementation of CAN bus communication for both hardware testing and Python co-
simulation. CanHlpComm is derived from the Communication base class, and imple-
ments the CAN communication interface for the BSP software. It talks directly to a
SocketCAN interface, which can be either a real hardware interface (named can0, can1,
and so on), or a virtual SocketCAN interface (vcan0, vcan1, and so on). The Socket-
CAN interface is the end-point when communicating with real hardware, but for the
Python co-simulation there are several additional steps. An additional class, the Sock-
etCanSimWrapper, acts as a wrapper between the virtual SocketCAN interface and the

96 Chapter 5. FPGA Design Verification and Testing

“FIFO file”1 interface to the HDL simulation. In the HDL simulation the CanComm
class, implemented in SystemVerilog communicates with the Python co-simulation via
these files, and uses a Bus Functional Model (BFM) for CAN to send requests and
receive responses from the CAN HLP module in the FPGA design.

5.1.2 Testbench Software

A dedicated testbench script, also Python-based and using the aforementioned BSP, is
available for testing and operation of the RU. Manual access and control of individual
WB modules is possible from the script, along with triggering and data readout of the
ALPIDE sensor chips.

The testbench has been used extensively during commissioning of the detector.

5.1.3 Regression Test Suite for the Main FPGA

The Python-based regression test suite is heavily based on the BSP and features tests
for most aspects of the design, such as:

• Sanity check of each WB module and WB register in the design

• Test of communication interfaces such as GBT and CAN

• Test of control and data interfaces to the ALPIDE chips

• Test of the trigger and readout systems of the FPGA design

The regression test suite is used for hardware testing, but Python co-simulation of
the FPGA design is also possible.

5.2 Verification of Main FPGA Design

Verification is perhaps the most critical and challenging step of the entire FPGA de-
sign process. In contrast to the world of software, where execution is generally se-
quential and comprehensible, FPGAs add several dimensions of complexity; the par-
allel nature of signals, gates, and FFs; routing and distribution of signals across the
FPGA, and the associated signal delays; resource limitations, and synchronization
between clock domains, to name a few.

Among the most important steps in the verification process is functional verifica-
tion of the RTL design and static timing analysis. Functional verification comprises

1Explained in more detail in section 5.2.1.

5.2. Verification of Main FPGA Design 97

the simulation of the HDL code for an RTL design. Test vectors are generated for the
inputs of the design, and its outputs are observed to verify its functionality. Verifica-
tion frameworks like Universal Verification Methodology (UVM) for SystemVerilog,
or Universal VHDL Verification Methodology (UVVM) for VHDL, are usually em-
ployed for this purpose. Typically, the RTL design is treated as an ideal synchronous
circuit in the simulation [74]. But after the design has been synthesized and imple-
mented for an FPGA, it is possible to extract delays and timing information and sim-
ulate the design as it is implemented in the FPGA. Static timing analysis is performed
by the FPGA vendor’s toolchain as the design is synthesized and implemented. By
estimating routing delays for signals and propagation delays in combinational logic,
the arrival time of signals relative to clock edges is calculated. With this information,
the tools can verify that setup and hold times are not violated for each register in the
design. However, the static timing analysis relies on user-specified timing constraints
(usually specified in a constraint file of the industry-standard Synopsys Design Con-
straint (SDC) format), and specifying the necessary constraints for a design is a chal-
lenge in its own right.

The verification of the main FPGA design follows this classical approach of func-
tional verification and static timing analysis. Testbenches based on the UVM and
UVVM frameworks are used for verification of individual modules in the design, and
the regression test suite is used for tests of the top-level design in the Python co-
simulation. Simulations of the testbenches and regression tests are run automatically
in a Continuous Integration (CI) pipeline associated with the project’s Git repository
to ensure that existing features still work as expected as changes are made to the de-
sign.

5.2.1 Python Co-simulation

The so-called “Python co-simulation” has been an important part of the development
cycle for the FPGA design. It runs automatically when changes are made to the de-
sign, as part of a CI pipeline in the project’s git server.

The co-simulation uses the Python-based regression test suite to control an HDL
simulation2 of the full FPGA design. Most of the regression test suite can be used with
the simulation, including tests that involve communication with the sensor chips; a
lightweight HDL model of the ALPIDE in the simulation makes this possible.

On the HDL-side of the simulation there is a BFM for each communication inter-
face in the design. On the Python-side, there is an additional layer for simulation

2Simulation is possible using either Mentor Graphics’ ModelSim/QuestaSim, or Cadence’s Inci-
sive/NCSim.

98 Chapter 5. FPGA Design Verification and Testing

in the communication stack, which allows for communication with the BFMs. Data
is communicated between the HDL simulation and Python-scripts using disk files,
which essentially act as FIFOs for data to be written to or received from the BFMs.
The Python scripts also run an Remote Procedure Call (RPC) server that allows the
HDL-based BFMs some degree of control over the dataflow.

5.2.2 Module Testbenches

The regression test of the Python co-simulation can be likened to an integration test
since the whole FPGA design is simulated. The simulation time is quite long (around
1-2 hours), and the scope of individual tests is limited for that reason. It is challenging
to test most corner-cases and achieve a high coverage under such circumstances, so
it is also necessary to simulate and verify modules in isolation with their own indi-
vidual testbenches, as part of the CI-pipeline for the FPGA design. Some of the mod-
ules associated with the trigger system and datapath are verified with UVM-based
testbenches. In addition, there are several UVVM-based testbenches; for the Alpide
Monitor, which communicates with several instances of the Lightweight-Model of the
ALPIDE chips, via an instance of the Alpide Control module; the CAN HLP module,
which is tested with several instances on one CAN-bus line to test and verify address-
ing of nodes, as well as broadcasting; and the FIFO module for configuration data.

Canola CAN Controller Testbench

Verification of the Canola CAN controller is also described here, although it is a dedi-
cated project and verification of the controller is technically not part of the main FPGA
design project.

Bosch offers a CAN VHDL Reference verification suite for CAN controller designs.
Ideally, the CAN controller should be verified with this framework. But presently the
controller is verified with a set of custom testbenches aimed at verifying conformance
to the CAN specification. The testbenches are fully based on the UVVM framework,
and feature a custom CAN BFM for UVVM.

The submodules for the BTL, BSP, and EML are verified with dedicated test-
benches. It is verified that the BTL is able to synchronize with a falling edge, re-
synchronize during a bit stream3, and receive and transmit raw sequences of bits.
The BSP is tested by sending and receiving data with the BSP interface, using the
BTL. It is verified that the BSP correctly inserts stuff bits when transmitting, and dis-
cards stuff bits when receiving. The EML submodule in the Canola design has inputs

3Up to 1.5% error in bitrates should be tolerated according to the CAN specification.

5.2. Verification of Main FPGA Design 99

for different types of error and success conditions, and it maintains the REC and TEC
counters, and error state4 of the controller. The rules and behavior of these counters is
fully described in the CAN specification, and the testbench for the EML verifies that
the EML-logic conforms to the specification.

For verification of the full design of the controller there is a top-level testbench.
The FSMs for transmitting and receiving CAN frames are tested as part of the full de-
sign and do not have dedicated testbenches. The top-level testbench verifies aspects
of the CAN specification that are not covered by the other testbenches, such as ar-
bitration loss and retransmission, error state of the controller and detection of errors
such as form errors, stuff errors, and CRC errors, which are generated in frames by
the BFM. This includes TMR and non-TMR version of the controller. Both the TMR
and non-TMR versions of the controller are verified.

And finally, communication between the Canola controller and the CAN controller
design from OpenCores is tested in a dedicated testbench. The OpenCores design has
been verified with the Bosch CAN VHDL Reference, so this is an important test of
interaction with a proven CAN controller design.

Coverage. Table 5.1 shows reported numbers from the top-level testbench for in-
dividual design units in the non-TMR version of the controller, as well as the total
coverage for the top-level entity itself (canola_top). A total is also shown for the TMR
version, but numbers for individual design units are not included here. The voters
used in the TMR design are tested with 100% coverage in their own testbenches. The
voters are assumed to be fully verified and mismatches in the three paths are not sim-
ulated for the TMR version of the controller. Therefore, the reported coverage is lower
for the TMR version, and thus the numbers for the non-TMR version are a better rep-
resentation of coverage for the CAN controller. Coverage numbers from dedicated
testbenches for individual design units are reported in table 5.2. Certain submod-
ules, such as the EML, are hard to test in the full design but are verified with higher
coverage in their dedicated testbenches.

From table 5.1 the coverage of the full controller (canola_top) is 84.73%. This does
not take into account the coverage numbers from table 5.2. If these numbers could
be combined the total for the controller would quite possibly be higher. A coverage
of 100% can be extremely hard to achieve for an advanced design, but a higher num-
ber than 84.73% would be desirable. But it is worth noting that the design is not for
an ASIC but for FPGAs which are re-programmable. The coverage will likely be im-
proved in the future as the design matures, and it is always possible to fix bugs that
are uncovered in the FPGA design.

4Error active, error passive, or bus off.

100 Chapter 5. FPGA Design Verification and Testing

TABLE 5.1: Simulation coverage of Canola CAN controller from top-level
testbench.

Design unit Statement Branch
FEC
Expr.

FEC
Cond. Assertion Total

canola_frame_tx_fsm 82.70% 83.18% 100.00% 40.00% N/A 76.47%
canola_frame_rx_fsm 85.18% 83.73% N/A 68.88% N/A 79.27%
canola_bsp 96.22% 93.93% 90.00% 80.00% 100.00% 92.03%
canola_btl 96.42% 94.44% 0.00% 78.94% N/A 67.45%
canola_eml 77.55% 76.92% N/A 100.00% N/A 84.82%
receive_error_counter 75.00% 72.72% N/A 100.00% 100.00% 86.93%
transmit_error_counter 83.33% 81.81% N/A 100.00% 100.00% 91.28%
recessive_bit_counter 75.00% 62.50% N/A 100.00% N/A 79.16%
Total canola_top 88.33% 86.69% 76.47% 72.16% 100.00% 84.73%
Total canola_top TMR 80.85% 76.05% 74.46% 26.90% 100.00% 71.65%

TABLE 5.2: Simulation coverage of individual submodules of the Canola
CAN controller from their dedicated testbenches.

Design unit Statement Branch FEC Expr. FEC Cond. Assertion Total
canola_btl 97.32% 95.55% 0.00% 73.68% N/A 66.64%
canola_bsp 71.69% 67.67% 80.00% 13.33% 100.00% 66.54%
canola_eml 100.00% 100.00% N/A 100.00% N/A 100.00%
up_counter5 90.00% 87.50% N/A 100.00% N/A 92.50%
up_counter6 90.00% 87.50% N/A 100.00% N/A 92.50%
counter_saturating 100.00% 100.00% N/A 100.00% 100.00% 100.00%
TMR voters 100.00% 100.00% N/A 100.00% 100.00% 100.00%

5.3 Verification of Auxiliary FPGA Design

Since the design for the auxiliary FPGA is much simpler than that of the main FPGA,
functional verification is performed primarily through the top-level testbench for the
design, which is based on the UVVM framework. The tests encompass clock and reset
control, communication using the I2C interfaces, and the entire data path for configu-
ration data for the Xilinx FPGA (which includes the flash and SelectMAP interfaces).

I2C communication is tested directly using an I2C BFM, but also using an instance
of the I2C-master from the GBT-SCA HDL design in order to fully simulate interaction
between the GBT-SCA chip and the auxiliary FPGA.

A behavioral model of the Macronix MX30LF1G08AA flash chip is used for ver-
ification of the Flash Interface. This model has an interface that is compatible with
the Samsung K9WBG08U1M flash used on the RU. And verification of the SelectMAP
Interface is performed using a verification component from Xilinx.

The testbench uses the I2C interfaces to access WB registers and control the FPGA
design. Configuration data from a disk file is written to the flash model using I2C or

5.4. Hardware Testing of FPGA Designs 101

TABLE 5.3: Simulation coverage of the auxiliary FPGA design.

Design unit Statement Branch
FEC
Expr.

FEC
Cond. Toggle

FSM
State

FSM
Trans. Assertion Total

clock_lol_counters 100.00% 100.00% 100.00% N/A 66.66% N/A N/A N/A 91.66%
flash_interface 98.46% 97.71% 64.28% 0.00% 78.79% 99.27% 53.30% N/A 69.25%
selectmap_inter-
face 66.21% 63.24% 100.00% 33.33% 65.78% 62.50% 42.85% N/A 63.54%
config_controller 57.54% 57.37% 0.00% 15.38% 39.05% 53.84% 22.58% N/A 34.59%
read_controller 79.26% 75.31% 100.00% 28.57% 21.92% 72.72% 36.00% N/A 59.90%
write_controller 88.28% 82.19% 1.92% 53.84% 57.32% 100.00% 69.23% N/A 61.36%
ecc 59.91% 61.80% 4.00% 56.25% 36.37% 20.00% 0.00% N/A 38.05%
reg_block 86.16% 70.42% 25.00% 25.00% 34.97% N/A N/A N/A 48.31%
checksum 80.00% 80.00% N/A 50.00% 58.13% N/A N/A N/A 67.03%

top_level total 83.30% 80.36% 21.12% 34.31% 43.09% 87.69% 47.19% N/A 54.94%
clk_div 100.00% 100.00% N/A N/A 100.00% N/A N/A N/A 100.00%
reset_ctrl 93.33% 83.33% 60.00% N/A 71.87% N/A N/A N/A 77.13%
IO_buffers N/A N/A N/A N/A 57.57% N/A N/A N/A 57.57%
i2c_wb 90.00% 91.98% 91.66% 71.42% 92.01% N/A N/A 0.00% 72.84%
i2c_wb_2 90.00% 91.98% 91.66% 85.71% 73.49% N/A N/A 0.00% 72.14%

RU_auxFPGA
total 83.55% 83.65% 39.45% 47.22% 53.55% 87.69% 47.19% 0.00% 53.81%

a model of the FIFO interface to the main FPGA, which involves both the Write Con-
troller and the Flash Interface modules. And this data is then written to SelectMAP us-
ing the configuration chain, which allows the Read Controller, Configuration Controller,
ECC module, and SelectMAP Interface to be tested.

Coverage

Coverage for the auxiliary FPGA design achieved in the main top-level testbench is
summarized in table 5.3. The first nine rows shows the coverage of submodules that
are part of the top_level entity of the design, followed the total coverage for the top_-
level entity. But it is the RU_auxFPGA entity that has the connections to the IO-pins
in the FPGA, and this entity has an instance of top_level along with I2C-slaves, clock
and reset control. Thus, the last row for RU_auxFPGA shows the complete coverage
results for the design.

5.4 Hardware Testing of FPGA Designs

A hardware regression test step in the CI-pipeline allows the same regression tests
that are used with the Python co-simulation to be run in the actual RU hardware.
Additional hardware tests, which are manually triggered, runs on three sub-racks of
RUs connected to the actual detector, allowing for more extensive tests with all three
stave types.

102 Chapter 5. FPGA Design Verification and Testing

That briefly summarizes the structured and repeatable tests that are performed
for the main FPGA design7. Such tests are indispensable for the quality assurance of
the design. But it should also be recognized that ad hoc, and unstructured manual
tests, have played a role during the development of various modules for the design.
For example, long-term tests of a module8, or early smoke-tests and manual testing
of a new module in the lab. For instance, the Alpide Monitor module has only been
tested manually with an IB stave at UiB, as it has not been included in a release of
the design yet. But structured test cases are typically developed for the errors that are
uncovered by these test activities. A discussion of long-term and stress tests of the
CAN controller and HLP logic, for the main FPGA, follows in the next sections.

5.4.1 Canola CAN Controller

The design of the Canola controller was tested using a Digilent ZYBO Zynq-7000
board [75], which features a Xilinx Zynq-7000 FPGA9.

The Digilent Pmod CAN [76] extension boards were used to add a CAN transceiver
to the system. These boards are based on the Microchip MCP25625 chip, which fea-
tures both a CAN controller and CAN transceiver. The controller and the transceiver
are not connected internally in the chip; there is a set of TXD and RXD pins for the
transceiver, and RxCAN and TxCAN pins for the controller. On the Pmod CAN boards
these pins are connected and an SPI interface to the controller is available on the
header (J2) that connects to the ZYBO board. To offer a direct connection to the
transceiver for the Canola controllers in the Zynq-design the Pmod CAN boards had
to be modified. Figure 5.6 shows the modification. The SPI connections to the header
were cut, the traces for the Tx/Rx interface between the controller and transceiver
were cut, and wire straps were added from the traces for the transceiver’s TXD and
RXD pins to the header. The Pmod CAN boards were also too wide to fit next to each
other on the ZYBO board, so the ZYBO board itself was also modified to make two of
the Pmod-connections vertical. A PEAK System PCAN-USB [77] adapter was used to
connect the system to a computer for testing. The whole setup is shown in fig. 5.5.

Test Design for Zynq FPGA

The Zynq-based FPGA design features four instances of the Canola CAN controller
with an Advanced eXtensible Interface (AXI)-slave to interface with the Zynq CPU.

7A Python-based test-suite is also available for the auxiliary FPGA design, as well as some func-
tional tests that can be run via the CRU.

8There is typically a limited amount of time available for the structured test cases.
9Part number xc7z010clg400-1 is the exact FPGA model on the board. The Z-7010 is the smallest of

the Zynq-7000 FPGAs [75].

5.4. Hardware Testing of FPGA Designs 103

FIGURE 5.5: Digilent ZYBO Zynq and Pmod CAN boards with PEAK
CAN to USB adapter for testing of the Canola CAN controller.

(A) (B)

FIGURE 5.6: Modified Pmod-CAN PCB for Canola CAN controller test.
Red lines indicate where traces were cut. Green and yellow lines indicate

where wire straps were added.

104 Chapter 5. FPGA Design Verification and Testing

Two instances use the TMR version of the design, one with TMR enabled and one
where it is disabled. The other two instances are of the non-TMR version of the
controller. The Bus Tool (BUST) project [78] was used to automatically generate the
HDL-code for the AXI-slave as well as a C++ module for use in the Zynq firmware.
Figure 5.7 shows a block diagram of the Zynq design.

Zynq CPU

AXI

canola_axi_slave_tmr
RX_VALID_IRQ
TX_DONE_IRQ
TX_FAILED_IRQ

canola_axi_slave_tmr
RX_VALID_IRQ
TX_DONE_IRQ
TX_FAILED_IRQ

canola_axi_slave
RX_VALID_IRQ
TX_DONE_IRQ
TX_FAILED_IRQ

canola_axi_slave
RX_VALID_IRQ
TX_DONE_IRQ
TX_FAILED_IRQ

IRQ

CAN_TX

CAN_RX

CAN_TX

CAN_RX

CAN_TX

CAN_RX

CAN_TX

CAN_RX

AXI_CLK
AXI_RESET

AXI
AXI_CLK
AXI_RESET

AXI
AXI_CLK
AXI_RESET

AXI
AXI_CLK
AXI_RESET

AXI
AXI_CLK
AXI_RESET

Pmod CAN

JE2

JE3

JD2

JD3

JC2

JC3

JB2

JB3

Zynq FPGA block design

ZYBO Zynq-7000 board

Pmod CAN

Pmod CAN

Pmod CAN

PEAK CAN adapter

FIGURE 5.7: Zynq system for Canola CAN controller test.

A test was performed where the three controllers alternated between transmitting
a message. The messages were generated with random data and parameters, which
includes the arbitration ID, extended ID or not, remote request or not, data length
and data. A total of 4 070 951 messages were sent and successfully received without
errors among the controllers. Testing of simultaneous transmission from the three
controllers, as well as at random times, has also been perform to verify that the bus
arbitration rules are obeyed by the controllers. At this point the controller appears
to be working reliably, but a more long-term test of the controller still needs to be
performed.

5.4.2 CAN HLP

Early testing of the HLP for CAN primarily involved writing and reading register
values in a loop from the main FPGA design. Testing was performed in Bergen, where
two RUs were available for these tests, among the DCS group in Kosice, and at the
commissioning site in building 167 at CERN. Testing in Bergen was performed with

5.4. Hardware Testing of FPGA Designs 105

a PEAK System PCAN-USB [77] adapter. The other test sites used an AnaGate CAN
Quattro [79] gateway, which is the actual CAN hardware that will be used by DCS in
the experiment.

The first version of CAN HLP, which was based on the OpenCores CAN con-
troller, ran for most of the commissioning period10 at CERN. The system was online
most of the time during commissioning, and the CAN bus was actively used by the
DCS system for the interlock monitoring of temperatures and voltages. The final ver-
sion, based on the Canola CAN controller, ran for the last month of the commissioning
period. The plots in fig. 5.8 shows the counts of HLP read transactions, received CAN
messages, and CAN stuff errors from commissioning runs 603 823 to 603 896. The
graphs on the left-hand side are for RUs L1_00 to L1_07, and these RUs are electrically
connected on the same CAN bus line. The graphs on the right, for L1_08 to L1_15,
are on a different CAN bus line. The counters for the RUs track each other and are
normally not reset between runs. However, it appears that RU L1_11 was reset at
one point, as seen from the right hand graphs. This reset appears to coincide with
an increase in stuff error counts for RUs L1_08 to L1_15. The cause of some of these
stuff errors, or possibly all of them, is due to a missing feature in the Canola CAN
controller: when the controller is reset it should wait for the bus to be idle (i.e. 11 con-
secutive recessive bits) before attempting to receive. Since there is continuous traffic
on the bus for the DCS interlock, it is possible that when a controller is reset, it will
start receiving mid-message and raise an error flag, which is interpreted as a stuff er-
ror from the other controllers. No other types of errors were observed, however there
were some instances of arbitration loss. In principle this should not happen since the
broadcast feature of the HLP is not used by the interlock monitoring and the RUs are
accessed one by one. However, if an RU does not respond to a HLP request in time,
the request will time out and the DCS interlock monitoring will move on to the next
request. Considering that the AnaGate CAN adapter is accessed via Ethernet, a plau-
sible explanation is that intermittent network delays between the DCS computers and
the AnaGate device could cause some HLP transactions to time out before they are
delivered on the CAN bus by the AnaGate. If the next request gets bundled up with
the one that timed out then the RU that attempts to respond to the first request will
possibly lose arbitration to the next request.

Additional data was available from runs 604 000 to 604 24711. On average each RU
performed 3 185 568 HLP read transactions, and received and transmitted 47 775 615
and 3 185 567 CAN messages, respectively. On average there were 7.7 stuff errors, and
11.4 instances of arbitration lost and retransmitted frames, per RU. This amounts to

10See section 5.6.
11This was the last run of the commissioning period.

106 Chapter 5. FPGA Design Verification and Testing

20 30 40 50 60 70 80 90
Run +6.038e5

950000

1000000

1050000

1100000

1150000

1200000

1250000

1300000

1350000

HL
P_

RE
AD

HLP Read - RUs L1_00 to L1_07
RU_ID
L1_00
L1_01
L1_02
L1_03
L1_04
L1_05
L1_06
L1_07

(A)

20 30 40 50 60 70 80 90
Run +6.038e5

0

200000

400000

600000

800000

1000000

1200000

1400000

HL
P_

RE
AD

HLP Read - RUs L1_08 to L1_15

RU_ID
L1_08
L1_09
L1_10
L1_11
L1_12
L1_13
L1_14
L1_15

(B)

20 30 40 50 60 70 80 90
Run +6.038e5

1.4

1.5

1.6

1.7

1.8

1.9

2.0

CA
N_

RX
_M

SG
_R

EC
V

1e7 CAN messages received - RUs L1_00 to L1_07
RU_ID
L1_00
L1_01
L1_02
L1_03
L1_04
L1_05
L1_06
L1_07

(C)

20 30 40 50 60 70 80 90
Run +6.038e5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

CA
N_

RX
_M

SG
_R

EC
V

1e7 CAN messages received - RUs L1_08 to L1_15

RU_ID
L1_08
L1_09
L1_10
L1_11
L1_12
L1_13
L1_14
L1_15

(D)

20 30 40 50 60 70 80 90
Run +6.038e5

1

2

3

4

5

6

7

8

9

CA
N_

RX
_S

TU
FF

_E
RR

OR

CAN stuff errors - RUs L1_00 to L1_07

RU_ID
L1_00
L1_01
L1_02
L1_03
L1_04
L1_05
L1_06
L1_07

(E)

20 30 40 50 60 70 80 90
Run +6.038e5

2

4

6

8

10

12

CA
N_

RX
_S

TU
FF

_E
RR

OR

CAN stuff errors - RUs L1_08 to L1_15

RU_ID
L1_08
L1_09
L1_10
L1_11
L1_12
L1_13
L1_14
L1_15

(F)

FIGURE 5.8: CAN HLP counter values from commissioning runs 603 823
to 603 896.

5.5. Beam Testing 107

a stuff error rate of 2.41× 10−6 and a retransmit rate of 3.58× 10−6. There were no
other errors recorded.

5.5 Beam Testing

Several irradiation campaigns were performed during the development of the read-
out electronics for the ITS. Prior to the development of the final RU board design,
and before the Xilinx UltraScale devices were available on the market, a first study
was performed by Sielewicz, Rinella, Bonora, et al. with the Xilinx Kintex-7 device
(XC7K) of the RUv0 prototype [80]. It was irradiated with 22 MeV protons at the
U-120M cyclotron at the Nuclear Physics Institute of the Academy of Sciences of the
Czech Republic, located in Řež near Prague. The objective was to evaluate different
TMR test-structures, with and without scrubbing12, and determine the Configuration
RAM (CRAM) cross-section for the different configurations. The cross-section of the
test-structures improved by two orders of magnitude with the highest degree of trip-
lication and use of scrubbing, compared to the fully unmitigated case. The strategies
for SEU mitigation in the final FPGA designs for the RU were heavily based on this
study.

Prague Beam Test of RU Design. The first version of the RU design, the RUv1,
underwent several irradiation campaigns using early versions of the FPGA designs.
The first of these tests was also performed at the facilities near Prague. The main
FPGA and flash memory were irradiated, but the rest of the RU board was shielded
from the beam. The objective was to test blind scrubbing of the main FPGA using
the JCM tool13, and to measure the cross-section of SEUs in flash memory bits, σbit.
Unused portions of the flash memory were programmed with patterns of A5h

14 prior
to irradiation, using the UART software for the auxiliary FPGA. When the memory
was read out after the campaign, the number of flipped bits were counted and σbit

was estimated. For SEUs causing a 0→ 1 transition, σbit was estimated to 2.62 · 10−16,
compared to only 4.92 · 10−21 for a 1→ 0 transition [81].

CHARM Beam Test of RU and PU Design. The second irradiation campaign took
place at the CERN High energy AcceleRator Mixed field facility (CHARM). The fa-
cility is frequently used to evaluate electronics for the LHC and its experiments.

12The Configuration Manager (JCM) scrubber was used during proton irradiation. Fault injection
was also performed using Xilinx’s proprietary SEMIP which produced comparable results.

13The JCM tool was not intended for use in the final design, but allowed for testing of blind scrub-
bing before the scrubbing solution in the auxiliary FPGA design was complete.

14Binary 10100101.

108 Chapter 5. FPGA Design Verification and Testing

24 GeV/c proton beams from the Proton Synchrotron (PS) interact with a metallic
target to provide a mixed-field radiation environment for this purpose [82]. The tests
at CHARM were intended as a stress test of the readout electronics and FPGA de-
signs, where the RU and a PU were fully exposed to the radiation. The electronics
were expected to accumulate a high TID, and some components on the boards were
likely to fail.

After four hours of operation the main FPGA was no longer responsive and could
not be configured via the auxiliary FPGA. However, communication with the auxil-
iary FPGA was still possible, so the most likely culprit was SEUs in the external flash
memory, and not a catastrophic failure of the main FPGA itself15.

Oxford Beam Test of RU Design. A final irradiation campaign of the RU was
performed at the ChipIr facilities at Rutherford Appleton Laboratory near Oxford.
One of their facilities has a neutron beam with a base flux of 5× 106 cm2 s−1 (for
En > 10 MeV), and features a collimator and moving table that allows for control
of the beam size as well as targeting of specific components. The purpose of the tests
were to evaluate early versions of the main FPGA design, and also the auxiliary de-
sign which now included blind scrubbing of the main FPGA. The main FPGA design
was protected with TMR, but the auxiliary one was not at this point. The beam tests
were run in different configurations, with the beams targeting different combinations
of the two FPGAs and the flash memory of the RU board. CRC errors in the config-
uration data stream were counted16. The previous two beam tests had demonstrated
that the cross-section for SEUs causing 0 → 1 transitions in the flash memory were
significantly higher than for 1→ 0 transitions. Since the configuration and scrubbing
bit-files for the main FPGA had a ratio of 0 to 1 bits of approximately 20:1 and 50:1,
respectively, the images were inverted to reduce their cross-sections [83]. Tests with
irradiation of the main FPGA alone accumulated a fluence of 1.16× 1010 cm−2. No
errors were detected indicating that the mitigation in the main FPGA design com-
bined with the scrubber worked quite well, and the main FPGA was operated for
the entire duration. The tests with irradiation of both FPGAs had a total fluence of
3.389× 1010 cm−2, with 11 CRC errors recorded. And the tests with all three com-
ponents had a fluence of 1.175 cm−2, with 34 CRC errors recorded. Irradiation of the
flash memory did not appear to have an affect on the number of CRC errors, as the rel-
ative number of CRC errors per fluence is about the same for both of these tests. The

15Due to the nature of the CHARM facility being a parasitic user of the PS’ beams, it was not pos-
sible to extract the RU for several days. By then it was not possible to conclusively determine which
component had failed.

16This is a measure of the number of failed configuration attempts of the main FPGA, since the
FPGA will reject the configuration if the CRC is bad.

5.6. Commissioning 109

conclusion was that the unmitigated design for the auxiliary FPGA was the source of
the CRC errors [81].

Single Event Upset Rate for the Main FPGA. Based on the beam tests, the expected
SEU rate for the configuration memory of the main FPGA has been estimated to
0.0004 Hz (every forty minutes on average for one RU) [68]. Without mitigation and
scrubbing, this would quickly lead to failures in the ITS readout chain of 192 RUs.
But a scrubbing rate of 0.58 Hz has been achieved with the external scrubber, which is
three orders of magnitude faster than the upset rate [68]. Combined with the TMR of
the main FPGA design, the estimated MTTF of the data path ranges from 4 hours for
the entire OL, to 23 hours for the entire IL [84]. And sensitive resources in the FPGA
(such as clock nets and related circuits) are not expected to be statistically affected by
SEUs in a 10 hour run [85].

5.6 Commissioning

FIGURE 5.9: ITS commissioning in CERN building 167 clean room [86].
The picture at the top shows the racks housing the readout electronics.
The pictures at the bottom shows the assembled half-barrels of the detec-

tor.

110 Chapter 5. FPGA Design Verification and Testing

Commissioning of the new ITS detector took place in a clean room in building 167
at the CERN Meyrin site. The full detector was constructed there from pre-assembled
modules17. Figure 5.9 shows pictures of the assembled half-barrels of the detector in
the clean room, as well as the readout electronics. The half-barrels were connected to
the readout electronics and were in continuous operation for over a year from May
2019 [86] to December 2020.

untuned

tuned

Threshold [DAC]
0 5 10 15 20 25 30

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

Fr
e
q
u
e
n
cy

0

0 1023

0

511

Column [px]

R
o
w

 [
p
x
]

0

5

10

15

20

25

30

T
h
re

sh
o
ld

 [
D

A
C

]

0 1023

0

511

R
o
w

 [
p
x
]

Column [px]
0

5

10

15

20

25

30

T
h
re

sh
o
ld

 [
D

A
C

]

FIGURE 5.10: Threshold tuning for half-layer 0 [88].

The detector was primarily taking cosmic data in this period, but various test and
calibration runs were also performed, such as tuning of the threshold for the pixel
sensor chips to achieve a uniform threshold for the entire detector. The threshold is
tuned by adjusting a DAC in the ALPIDE chip that configures the threshold in terms
of the elementary charge e. Figure 5.10 shows a map of the threshold before and after
tuning, as well as the threshold distribution. The tuned threshold is around 10e with
a relatively small deviation.

The commissioning period was also actively used to develop, test, and refine the
FPGA designs for the RU, as well as data taking and DCS software for the ITS.

17IB-HICs were produced at CERN. OB-HICs at Bari (IT), Liverpool (UK), Pusan/Inha (KR), Stras-
bourg (FR), and Wuhan (CN). OB staves at Berkeley (US), Daresbury (UK), Frascati (IT), Nikhef (NL),
and Torino (IT) [87].

111

Chapter 6

Simulation Model of the ITS Upgrade
and ALPIDE

This chapter describes a simulation model of the ALPIDE chip and ITS detector that was
developed in C++ with the SystemC library. The objective of this project was initially
to investigate the effects of busy chips on the data collection, and to determine whether a
dedicated system to handle busy signals was necessary for the ITS. Eventually the simulation
model was used to estimate data rates and readout efficiency of the ITS, and also found
applications for other detectors that use the ALPIDE chip.

The ITS RU is a complex device designed to meet a long list of specifications which
include operation under a wide range of configurations. Its responsibilities include,
but are not limited to, data readout, trigger distribution, and configuration of the sen-
sor chips in one stave. There are three different stave configurations in the ITS, and
the number of sensor chips, data and control links, and expected occupancy differ
between the different staves and layers. And to complicate things further, the experi-
ment will run in both Pb–Pb and pp, at different interaction rates, and several possible
trigger schemes are foreseen. The RU has to work with any of these combinations of
staves and trigger schemes.

The specification and design of the RU hardware, as well as the FPGA designs,
required detailed knowledge of quantities such as what data rates to expect from the
sensor chips. Another question was how the RUs should handle sensor chips which
report that they are busy. Should there be mechanisms in the RU’s FPGA design
to hold back triggers in that case? And should it be coordinated between the RUs
with dedicated hardware for a Busy Unit (BU)? And for a given set of simulation
parameters, how many events are lost due to busy violations in the triggered mode
of the chip, compared to the flush mechanism in continuous mode?

The need to estimate these quantities called for a simulation of the ITS readout

112 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

chain. In principle, it may have been possible to model the readout using statistical
methods. For example, during the design phase of the ALPIDE a statistical method
was used to estimate how many event buffers were necessary [29], [89]. But this was
a problem with a rather limited scope. Given the complexity of the entire ITS readout
chain and the number of variables involved, a dedicated event-based simulation of
the ITS seemed like a more reasonable approach to estimate the numbers used as a
basis in the RU design phase.

6.1 Simulation Challenges

A simulation typically involves the following steps:

1. Create a model of the system to simulate

2. Apply input data (stimuli) to the inputs of the model

3. Observe the outputs of the model

How accurate the simulation is depends both on how accurately the model repre-
sents the real system, as well as to which degree the input data represents real-world
conditions. But simulating a system with arbitrary accuracy is often unnecessary or
even impossible to achieve. Higher accuracy typically translates into much longer
simulation times which can often be a show-stopper1. A large part of the challenge
then is making the right trade-offs between accuracy and simulation speed when the
model of the system is defined. Typically there are some parts of the system that play
a dominant role in shaping the system’s outputs. One would want to model those
with a higher degree of accuracy, but consider a lower degree of accuracy for parts
that play a negligible role, or even omitting them entirely.

6.1.1 Requirements for the Simulation Model

Roughly speaking the simulation must contain a model of the ITS detector itself, the
trigger distribution, and the RU. For the trigger distribution it is sufficient to model
the delays in the distribution path. The RU can also be modeled in simple terms,
since this is not an actual simulation of the readout chain in the RU’s FPGA design,
but primarily a simulation to quantify data rates from the detector, as well as data loss
via the busy mechanisms of the ALPIDE chip.

1For example, the full Verilog RTL design of the ALPIDE chip is available, but it was much too
slow for use in the simulations presented in this thesis.

6.1. Simulation Challenges 113

A model of the ALPIDE sensor chip is essential for these simulations considering
that the ITS detector is made exclusively of those chips in different groupings. And
most importantly, the model of the ALPIDE chip must include: the logic for trigger-
ing and handling of the MEB; readout from MEB regions into region FIFOs; readout
and framing of data from the region FIFOs; clustering of neighboring hits into DATA
LONG words; data transmission and busy signaling for both IB and OB chips; IB
mode, OB master and slave modes. It is also worth noting that the readout logic of
the chip is agnostic to what type of particle caused a pixel hit, its energy, and what
the track through the detector looks like. This fact can be exploited when the pixel
front-end is modeled. The pixel front-end stages before the discriminator can be sim-
plified or omitted since the discriminated pixel data, i.e. a pixel was either hit or not,
is essentially all that matters for the readout logic.

Simulation Models of the ALPIDE Chip. A reasonable starting point would be to
look at existing models of the ALPIDE. Early estimations of data rates for the ALPIDE
chips and RUs were performed by collaborators in the ITS project. They used a Sys-
temC-based simulation model of the early prototypes of the ALPIDE chip. SystemC
is a library that allows event-driven HDL-like simulations to be modeled with C++2.
Based on the results of these SystemC-based simulations of the ALPIDE, it was de-
cided that three GBT links would suffice for the RU design. But several important
aspects of the ALPIDE were not included in the previous simulation model, which
made it not suitable for further use3.

Another option is to base the simulations on the Verilog RTL design of the ALPIDE
chip. Simulations of around 10 000 Pb–Pb events were performed at some point with
one instance of the full Verilog design. But these simulations took around 24 hours
each, and this long simulation time makes the full design not feasible for simulations
with many ALPIDE chips and a greater number of events. A light-weight version of
the Verilog design is also available, but it is primarily intended for verification of the
RU FPGA design. It features the control bus and registers, the serial data interface
and a random data generator. But these features are not relevant for the simulations
that are discussed here. And more importantly, it is missing the pixel front-end, MEB
and readout logic. Hence, it could not be used for these simulations.

A final possibility would have been to convert the full Verilog design to SystemC
using Verilator [90]. A Verilator conversion may offer some increase in simulation

2SystemC models can be compiled and executed as a stand-alone binary, or used as a module in
an HDL simulator like ModelSim. There is also a synthesizable subset of SystemC for FPGA or digital
chip design.

3Most notably: the readout from regions are not implemented in sufficient detail, busy signaling is
not fully implemented, and OB modes are not fully implemented.

114 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

speed, but it would probably still be necessary to shave away unnecessary features of
the design.

6.1.2 Input Stimuli

To achieve simulation results that reflects the real ITS detector in operation the sim-
ulation model must receive input data that resembles real events from collisions in
the experiment. This requires an understanding of collisions in the LHC, such as the
number of pixel hits, how they are distributed in time, and triggering of the detector.
The following paragraphs will discuss the most relevant effects to consider.

LHC Fill Patterns and Collisions

The two rings of the LHC are filled with discrete bunches of particles, with each bunch
separated in time by 25 ns. An entire LHC ring is divided into a total of 2808 bunches4.
However, not all bunches are filled; there are specific filling patterns that are used
when running the LHC, and some bunches are empty. And for Pb–Pb there are three
empty bunches between each Pb bunch, making the effective bunch spacing 100 ns.

In addition to empty bunches, there are also certain filled bunches that will not
collide in the IPs for ALICE and LHCb, as shown by Hostettler et al [91]. This is due
to a combination of the asymmetric position of the IPs, and so-called “PACMAN”
effects where the first and last bunch in a train experiences a different net “kick” in
the accelerator compared to the bunches in the middle of the train.

The number of collisions during a time frame are approximately Poisson dis-
tributed [13]. The amount of particles that originate from a collision is known as the
multiplicity of the event. Most collisions are peripheral and have a low multiplicity.
Central collisions5 can have very high multiplicities but are relatively rare. This can
be seen in fig. 6.1, which shows a distribution of charged particle multiplicity in the
ALICE TPC for Pb–Pb events. The figure has not been corrected for the acceptance of
the TPC6, so it should be noted that this is not the full event multiplicity. The shape
of the distribution will be the same for events recorded in the ITS when accounting
for the difference in acceptance. The average hit density per chip, shown earlier in
table 2.1 for Pb–Pb, differ between the layers and is significantly higher in the inner-
most layers due to the proximity to the collision point. The hit density also depends
on pseudorapidity, as shown in fig. 6.2.

4There are 3564 25 ns slots in the orbit, but only 2808 of them are bunch crossings that may contain
particle bunches.

5“Head-on collisions.”
6Any detector such as the TPC or ITS will cover a limited range of pseudorapidity, and hence their

acceptance will never be 100%.

6.1. Simulation Challenges 115

FIGURE 6.1: Uncorrected multiplicity distribution of charged particles in
the TPC [92].

FIGURE 6.2: Charged–particle pseudorapidity density for ten centrality
classes over a broad η range in Pb–Pb collisions at

√
sNN = 5.02TeV [93].

Pixel Clusters

The charge that is liberated from particles hitting the sensitive areas of the chip is
usually not confined to the geometry of the incident pixel. Typically there are several
neighboring pixels that also collect sufficient charge to go over threshold and register
a hit. Consequently, there is generally a cluster of pixels associated with each particle
hit. Some common cluster shapes and their occurrences are shown in fig. 6.3A. The

116 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

size of a cluster depends on a number of factors: the amount of liberated charge,
which depends on the mass and energy of the incident particle; the incident angle
of the incident particle, as well as the configurable charge threshold in the chip, as
shown in fig. 6.3B.

O
th

er

Cluster Shapes

4−10

3−10

2−10

1−10

F
re

qu
en

cy

oBeam incident angle = 0

, negative pionsc6 GeV/

3 V, <threshold> = 99 e− = BBV

Monte Carlo

Experimental results

ALICE performance

25 October 2018

ALI−PERF−311628

(A)

 Beam incident angle (deg)
0 10 20 30 40 50 60

A
ve

ra
ge

 c
lu

st
er

 s
iz

e
(p

ix
el

)

0

0.5
1

1.5
2

2.5

3

3.5
4

4.5
5

 = 0V, <threshold> = 107 eBBV
 = 0V, <threshold> = 135 eBBV
 = 0V, <threshold> = 155 eBBV
 = -3V, <threshold> = 80 eBBV
 = -3V, <threshold> = 99 eBBV
 = -3V, <threshold> = 118 eBBV

ALICE performance

30 October 2018

, negative pions c6 GeV/

ALI−PERF−311870

(B)

FIGURE 6.3: ALPIDE cluster shapes and sizes. 6.3A: Relative occurence
of different cluster shapes. 6.3B: Average cluster size versus incident an-

gle. Figure credits: Kushpil, Krizek, and Isakov [94]. © 2019 IEEE.

Triggering and Events in the Sensor Chips

The FIT detector, which will be introduced in ALICE in Run 3, is responsible for fast
detection of events. It is used for triggered operation of ALICE. The CTP receives sig-
nals from the FIT detector, determines if the experiment should trigger on the event,
and distributes trigger signals to the other detectors. The ITS readout electronics re-
ceives the trigger 980 ns after the event occured and it takes an additional 250 ns for
the trigger to reach the sensor chips. In contrast, when the ALICE is running in con-
tinuous mode, which is the alternative triggering scheme, trigger signals are sent pe-
riodically to the sensor chips.

A strobe window starts with each trigger the sensor chip receives. The length of the
strobe is configurable, but triggered mode is intended to be used with a short strobe7,
whereas in continuous mode the strobe is typically about the same length as the trig-
ger period8. Refer to figs. 2.4 to 2.6, and the corresponding discussion in chapter 2
for more details. From the perspective of the simulation model it is important that all
viable triggering schemes can be simulated.

7Order of around 100 ns.
8Several microseconds typically, with a small gap of around 100 ns between each strobe. The TDR

specifies a maximum strobe length of 45 µs at 50 kHz Pb–Pb to avoid a loss of reconstruction efficiency
[13].

6.2. Implementation of the Simulations 117

6.2 Implementation of the Simulations

None of the existing models for the ALPIDE were suitable for the simulations de-
scribed in this chapter, which led to the development of an entirely new simulation.
The new simulation was also implemented in C++ using the SystemC library and fea-
tures a new model of the ALPIDE, but it and was inspired by several ideas from the
older SystemC-based simulation. It was required to simulate a much larger number
of events than what could be simulated with the HDL design for the ALPIDE, which
implies that it would have to be substantially faster than the HDL design. At the same
time, it should provide an accurate representation of the readout logic in the ALPIDE
chip.

An overview of the full simulation model is shown in fig. 6.4. Several instances
of the ALPIDE model are configured and connected to create staves for the different
layers, and the staves connect to RUs. A limited amount of logic is implemented in
the RUs; they primarily distribute triggers to their staves and aggregate data from the
sensor chips.

 Stimuli ITS

 Stave

Event
Generator

Trigger
Generation

Readout Unit
ALPIDE ALPIDE ALPIDE

MC
Event Pool

Event data (hits)

Trigger Data

Trig.

FIGURE 6.4: Overview of SystemC simulation model for ITS.

An event generator picks random events from a pool of Monte Carlo (MC) events
and distributes them in time to simulate the collisions in the experiment9. The stimuli
object is the top-level object in the simulation. It is responsible for the distribution
of the pixel hit data from the event generator to the pixel front-end of the ALPIDEs
chips, as well as generation of trigger signals.

The simulation runs until the desired number of events have been simulated. At
the end of the simulation, quantities such as busy events, data word counts, and trig-
ger information are stored to disk. The data can then be analyzed later and used to
estimate performance figures such as readout efficiency and data rates.

Different aspects of the simulation model will be discussed in more detail in the
following sections.

9It is technically not an event generator when it does not generate its own events. Although, it can
generate events with random hits to achieve a certain occupancy, but this is not a proper MC simulation
of the detector.

118 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

6.2.1 Event Generation

The event generator can generate two types of events: interaction events (collisions)
that the simulation can trigger on, and continuous background events. Interaction
events are distributed in time with an exponential distribution. As mentioned earlier,
the number of collisions within a time frame is Poisson distributed, and the time be-
tween events in a Poisson distribution follows an exponential distribution. The mean
of the exponential distribution is 1/λ, and λ is configured to achieve the average in-
teraction rate, i.e. λ = 1/(interaction rate).

A signal from the event generator indicates when a new event is available. The
Stimuli module will react to this signal by taking the event data and placing it in the
front-ends of the pixel chips. The signal can also act as a minimum-bias trigger.

Fill patterns and other bunch crossing effects are not taken into consideration by
the event generator. Instead the time of an event is computed and aligned to any 25 ns
interval, or bunch crossing, irrespective of fill patterns. This also applies to Pb–Pb sim-
ulations, although the effective bunch spacing is larger for Pb–Pb (see section 6.1.2).
These effects are not expected to have a large impact on the results considering the
relatively low interaction rates in ALICE as well as the long pulse shaping time of the
ALPIDE chip’s front-end.

Monte Carlo Event Input

To create realistic input events for the sensor chips the event generator can use pre-
generated event data from MC simulations. AliRoot, the analysis framework of the
ALICE experiment, has accurate definitions of the experiment’s geometry and inte-
grates several tools for MC simulations: the Hijing and Pythia event generators, for
Pb–Pb and pp, respectively; a custom event generator for the so-called QED back-
ground associated with Pb–Pb interactions [20], [95]; and Geant4 for simulation of the
interactions of particles with the detector material. A simulation testbench for the ITS
upgrade [96] is also available in the framework. It generates events for pp or Pb–
Pb and simulates the ALPIDE sensors’ response in the detector. This testbench was
used to generate event data for the SystemC simulations. Data were extracted from
each simulated event and stored to disk, one file per event. The extracted event data
consists solely of discrete pixel hit coordinates. Each coordinate fully specifies the co-
ordinates in the pixel matrix of a chip, as well as chip ID, module ID, and layer ID.
The MC simulation also performs clustering for each particle hit, and the event data
includes the additional pixel hits per cluster.

When the event generator of the SystemC model is simulating a collision it picks
a random event from this pool of MC events for pp or Pb–Pb. The same applies to the

6.2. Implementation of the Simulations 119

QED background except that input of these events happen at a continuous rate. Pixel
noise is not included in the event data and is also not simulated by the event generator.
However, in principle the pixel noise of the ALPIDE could have been simulated using
the continuous background process of the event generator, in the same fashion as for
the QED background.

In principle, it may have been possible to use real ALICE events as input to the
simulation. But these events would have been from previous runs and captured with
the old ITS, so they would have had to be adapted for the upgraded detector. With
that in consideration, and given the fact that a simulation framework was already
available for the ITS upgrade, using the data from the MC simulations as input was
the most reasonable approach.

Random Event Generation

As an alternative to MC-input, the event generator also includes a “toy event gener-
ator” which can generate events with random pixel hits for the sensor chips in the
detector. There is no physics behind these events, the pixel hits are uniformly dis-
tributed across the sensor chips in a layer. The multiplicity of the generated events
is also randomly generated, by picking from a discrete distribution, and the distribu-
tion is scaled to achieve the desired average hit density. The distribution of charged
particle multiplicity used for Pb–Pb simulations is shown in fig. 6.1. The hit density
is specified for each layer, typically with the values specified in table 2.1 for Pb–Pb.

This approach provides the sensor chips in the simulation with a work load which
resembles what the detector would experience in the LHC. However, it has several
shortcomings, primarily because the pixel hits are distributed uniformly; the hit den-
sity should depend on pseudorapidity, as seen in fig. 6.2; and there are no showers
of particles, so each sensor chip in the same layer experiences roughly the same oc-
cupancy per event. Nevertheless, the “toy event generator” has proved useful for
testing and debugging, and was also used for the first estimates of readout efficiency
of a single chip, shown in fig. 6.5. Those estimates were in good agreement with
estimates from the ITS TDR [13].

Pixel Noise

The hit density data in table 2.1 comes from the Technical Design Report (TDR) for
the ITS upgrade, and is a bit dated by now. It was simulated with an expected noise
of 10−5 fake hits/pixel, which has proven to be a very pessimistic estimate. The fake
hit rate depends on the threshold settings, and characterization of the ALPIDE chip
that were performed after the TDR was published have shown that a fake hit rate of

120 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 50 75 100 125 150 175 200

E
ff

ic
ie

n
cy

Event Rate [kHz]

Single Chip Simulation Readout Efficiency

19.5 hits/cm²
18.6 hits/cm² (ITS layer 0)
12.2 hits/cm² (ITS layer 1)
 9.1 hits/cm² (ITS layer 2)

FIGURE 6.5: Single chip readout efficiency for the innermost layer of the
ITS. Simulated using the “toy event generator” [97].

around 10−9 fake hits/pixel [94] can be achieved without sacrificing detection effi-
ciency. Consequently the hit densities will be significantly lower than indicated in the
table, especially in the MLs and OLs where the numbers in table 2.1 are to a large de-
gree dominated by pixel noise. Pixel noise was not included in the simulation model
for that reason.

6.2.2 Stimuli and Trigger Distribution

The Stimuli block in fig. 6.4 connects the event generator and detector together and
provides the ALPIDE chips of the detector with the event input data. It also generates
trigger signals based on the time of the event, when used in minimum-bias mode, or
generates the continuous triggers for continuous/periodic mode. The trigger signals
are delayed by a configurable amount before reaching the detector. This is typically
set up to mimic the trigger delay in the system (see section 2.6.1).

6.2.3 ALPIDE Model

At the heart of the SystemC simulation model is the class for the ALPIDE. The struc-
ture of the Alpide class was designed to have a structure that resembles the original
chip hardware, as shown in the simplified UML class diagram in fig. 6.7. The model
has a relatively detailed implementation of the readout logic of the ALPIDE. It com-
prises most of the modules described in appendix B. Specifically, it includes the FSMs

6.2. Implementation of the Simulations 121

and logic for the Region Readout Unit (RRU) and Top Readout Unit (TRU), the re-
gion FIFOs and frame FIFOs, busy FIFO, and master and slave communication for
OB chips. The pixel matrix and MEB are fully modeled, with readout and clustering
by the priority encoder and RRUs.

Other less critical aspects were simplified or omitted in its entirety to achieve faster
simulation speeds. A simpler version of the Frame and ReadOut Management Unit
(FROMU) was implemented. The Data Transmission Unit (DTU) and 8b10 encoding
of the data stream was omitted. Instead of serializing the data the model transmits
three full bytes per 40 MHz clock cycle to achieve 960 Mbps for IB mode, and one
byte per cycle to achieve 320 Mbps for OB mode. The data words transmitted on
the data link are fully implemented as shown in fig. B.510. Other features that were
not relevant for the simulation, such as the DACs and ADCs, were not implemented.
Like the previous simulation model, this work did not include an analog front-end.
The pixel hits were modeled as a rectangular pulse, with a fixed dead time and active
time11.

Pixel Hits and Pulse Shaping

Hits in the ALPIDE chip give rise to an analog voltage pulse, which is discriminated
with a comparator and configurable threshold, as seen in fig. 2.4. The duration of time
that the analog pulse is over the comparator’s threshold value is commonly referred
to as the ToT, and the time leading up to it is the rise time of the pulse, as shown in
the top graph of fig. 6.6.

The analog pulse is not modeled in the SystemC model of the ALPIDE. Instead,
only the discriminated digital pulse is modeled, as seen in the bottom graph of fig. 6.6.
It is characterized by the ToT and by the rise time, which for the SystemC model is
referred to as the active and inactive time of the pixel.

The active and inactive times are configurable settings in the simulation model,
but they are constant for all pixel hits during a simulation. The timing information
for a pixel hit is actually configured when the hit is created by the event generator.
In principle, the simulation model could have been improved with a variable pixel
active time (i.e. ToT) to model the “strength” (collected charge) of a hit, and the “fuzzy
border” of a pixel cluster could also have been modeled in this way12. However, it
was considered an acceptable trade-off to use one value for the ToT for all pixel hits,
and this also made the implementation simpler.

10Comma words are not included since 8b10-encoding is not implemented.
11Time over threshold.
12Pixels further out from the center of the hit should generally collect less charge, and die out faster.

122 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

Threshold

Time

Hit occured
at t=0

Rise time Time over threshold

Time

Inactive time Active time

CSA output

Pixel latch value

0

1

Only a digital representation of a hit is used in the SystemC model, with an
"inactive time" and "active time" representing the time before and time over threshold.

FIGURE 6.6: Illustration of pulse shape output from the preamplifier in
the analog front-end of the ALPIDE chip, and the digital pulse output
from the comparator. The SystemC model of the chip only models the

digital output.

Standard C++ Classes for Pixel Input

A pixel hit is stored in the PixelHit class, which contains the coordinates of the hit and
the time it occured. The PixelFrontEnd class of the model take these pixel hits as inputs.
A pixel hit is considered to be “expired” when the simulation time has progressed
beyond the active time of the pixel hit. The pixel hits are stored in a queue in the
front-end, and the expired pixel hits are removed from the queue as the simulation
progresses in time. A simple algorithm removes pixel hits starting with the oldest
entry in the queue, and stops at the first hit which has not expired yet. The algorithm
requires that all pixel hits have the same active time and dead time. A more advanced
implementation of the simulations could include variable active and dead times – if
some changes are made to the processing of the pixel hit queue13.

A strobe window starts when a trigger is received by the ALPIDE model. Pixel
hits are retained in the PixelFrontEnd while the strobe is active. Pixels that were active
during the strobe enter the PixelMatrix. This is performed at the end of the strobe, by
“gliding” the strobe window over the PixelFrontEnd’s pixel queue. An event entry is

13One cannot assume that expired and active pixel hits are ordered in the queue in this case.

6.2. Implementation of the Simulations 123

A
lp

id
e

: P
ix

el
Fr

on
tE

nd
, P

ix
el

M
at

rix

-

m
C
h
i
p
I
d

:

i
n
t

-

m
O
b
M
o
d
e

:

b
o
o
l

-

m
T
R
U

:

T
o
p
R
e
a
d
o
u
t
U
n
i
t

-

m
C
h
i
p
C
o
n
t
i
n
u
o
u
s
M
o
d
e

:

b
o
o
l

-

m
O
b
M
a
s
t
e
r

:

b
o
o
l

-

m
R
R
U
s

:

R
e
g
i
o
n
R
e
a
d
o
u
t
U
n
i
t
[
3
2
]

-

m
B
u
n
c
h
C
o
u
n
t
e
r

:

u
i
n
t
1
6
_
t

-

m
O
b
S
l
a
v
e
C
o
u
n
t

:

u
n
s
i
g
n
e
d

i
n
t

-

m
S
t
r
o
b
e
L
e
n
g
t
h
N
s

:

u
i
n
t
1
6
_
t

-

m
O
b
C
h
i
p
S
e
l

:

u
n
s
i
g
n
e
d

i
n
t

-

m
M
i
n
B
u
s
y
C
y
c
l
e
s

:

u
i
n
t
1
6
_
t

-

n
e
w
E
v
e
n
t
(
e
v
e
n
t
_
t
i
m
e

:

u
i
n
t
6
4
_
t
)

-

s
t
r
o
b
e
I
n
p
u
t
(
)

-

m
a
i
n
M
e
t
h
o
d
(
)

-

f
r
a
m
e
R
e
a
d
o
u
t
(
)

-

t
r
i
g
g
e
r
M
e
t
h
o
d
(
)

-

d
a
t
a
T
r
a
n
s
m
i
s
s
i
o
n
(
)

-

s
t
r
o
b
e
D
u
r
a
t
i
o
n
M
e
t
h
o
d
(
)

-

u
p
d
a
t
e
B
u
s
y
S
t
a
t
u
s
(
)

-

b
u
s
y
F
i
f
o
M
e
t
h
o
d
(
)

-

g
e
t
F
r
a
m
e
R
e
a
d
o
u
t
D
o
n
e
(
)

:

b
o
o
l

Pi
xe

lF
ro

nt
En

d

+

m
H
i
t
Q
u
e
u
e

:

s
t
d
:
:
d
e
q
u
e
<
P
i
x
e
l
H
i
t
>

#

g
e
t
E
v
e
n
t
F
r
a
m
e
(
e
v
e
n
t
_
s
t
a
r
t

:

u
i
n
t
6
4
_
t
,

e
v
e
n
t
_
e
n
d

:

u
i
n
t
6
4
_
t
,

e
v
e
n
t
_
i
d

:

u
i
n
t
6
4
_
t
)

:

E
v
e
n
t
F
r
a
m
e

+

p
i
x
e
l
F
r
o
n
t
E
n
d
I
n
p
u
t
(
p

:

P
i
x
e
l
H
i
t
)

+

r
e
m
o
v
e
I
n
a
c
t
i
v
e
H
i
t
s
(
t
i
m
e
_
n
o
w

:

u
i
n
t
6
4
_
t
)

Pi
xe

lM
at

rix

-

m
C
o
l
u
m
n
B
u
f
f
s

:

s
t
d
:
:
q
u
e
u
e
<
s
t
d
:
:
v
e
c
t
o
r
<
P
i
x
e
l
D
o
u
b
l
e
C
o
l
u
m
n
>
>

+

n
e
w
E
v
e
n
t
(
u
i
n
t
6
4
_
t

e
v
e
n
t
_
t
i
m
e
)

+

d
e
l
e
t
e
E
v
e
n
t
(
u
i
n
t
6
4
_
t

e
v
e
n
t
_
t
i
m
e
)

+

f
l
u
s
h
O
l
d
e
s
t
E
v
e
n
t
(
)

+

s
e
t
P
i
x
e
l
(
c
o
l

:

u
n
s
i
g
n
e
d

i
n
t
,

r
o
w

:

u
n
s
i
g
n
e
d

i
n
t
)

+

s
e
t
P
i
x
e
l
(
p
i
x
e
l

:

P
i
x
e
l
H
i
t
)

+

r
e
g
i
o
n
E
m
p
t
y
(
s
t
a
r
t
_
d
o
u
b
l
e
_
c
o
l

:

i
n
t
,

s
t
o
p
_
d
o
u
b
l
e
_
c
o
l

:

i
n
t
)

:

b
o
o
l

+

r
e
g
i
o
n
E
m
p
t
y
(
r
e
g
i
o
n

:

i
n
t
)

:

b
o
o
l

+

r
e
a
d
P
i
x
e
l
(
t
i
m
e
_
n
o
w

:

u
i
n
t
6
4
_
t
,

s
t
a
r
t
_
d
o
u
b
l
e
_
c
o
l
:

i
n
t
,

s
t
o
p
_
d
o
u
b
l
e
_
c
o
l
:

i
n
t
)

:

P
i
x
e
l
H
i
t

r
e
a
d
P
i
x
e
l
R
e
g
i
o
n
(
r
e
g
i
o
n
:

i
n
t
,

t
i
m
e
_
n
o
w
:

u
i
n
t
6
4
_
t
)

:

P
i
x
e
l
H
i
t

g
e
t
N
u
m
E
v
e
n
t
s
(
)

:

i
n
t

g
e
t
H
i
t
s
R
e
m
a
i
n
i
n
g
I
n
O
l
d
e
s
t
E
v
e
n
t
(
)

:

i
n
t

g
e
t
H
i
t
T
o
t
a
l
A
l
l
E
v
e
n
t
s
(
)

:

i
n
t

R
eg

io
nR

ea
do

ut
U

ni
t

-

m
C
l
u
s
t
e
r
S
t
a
r
t
e
d

:

b
o
o
l

-

m
P
i
x
e
l
M
a
t
r
i
x

:

P
i
x
e
l
M
a
t
r
i
x
*

-

r
e
a
d
o
u
t
N
e
x
t
P
i
x
e
l
(
m
a
t
r
i
x

:

P
i
x
e
l
M
a
t
r
i
x
&
)

:

b
o
o
l

-

u
p
d
a
t
e
R
e
g
i
o
n
D
a
t
a
O
u
t
(
)

-

f
l
u
s
h
R
e
g
i
o
n
F
i
f
o
(
)

+

r
e
g
i
o
n
U
n
i
t
P
r
o
c
e
s
s
(
)

+

r
e
g
i
o
n
H
e
a
d
e
r
F
S
M
O
u
t
p
u
t
(
)

+

r
e
g
i
o
n
M
a
t
r
i
x
R
e
a
d
o
u
t
F
S
M
(
)

:

b
o
o
l

+

r
e
g
i
o
n
V
a
l
i
d
F
S
M
(
)

:

b
o
o
l

+

r
e
g
i
o
n
H
e
a
d
e
r
F
S
M
(
)

To
pR

ea
do

ut
U

ni
t

-

m
C
u
r
r
e
n
t
F
r
a
m
e
S
t
a
r
t
W
o
r
d

:

F
r
a
m
e
S
t
a
r
t
F
i
f
o
W
o
r
d

-

m
C
u
r
r
e
n
t
F
r
a
m
e
E
n
d
W
o
r
d

:

F
r
a
m
e
E
n
d
F
i
f
o
W
o
r
d

-

m
C
h
i
p
I
d

:

u
n
s
i
g
n
e
d

i
n
t

-

m
I
d
l
e

:

b
o
o
l

-

t
o
p
R
e
g
i
o
n
R
e
a
d
o
u
t
O
u
t
p
u
t
N
e
x
t
S
t
a
t
e
(
)

-

t
o
p
R
e
g
i
o
n
R
e
a
d
o
u
t
S
t
a
t
e
U
p
d
a
t
e
(
)

-

g
e
t
N
e
x
t
R
e
g
i
o
n
(
r
e
g
i
o
n
_
o
u
t
:

u
n
s
i
g
n
e
d

i
n
t
)
:

b
o
o
l

-

g
e
t
N
o
R
e
g
i
o
n
s
E
m
p
t
y
(
)
:

b
o
o
l

11

321

Pi
xe

lD
ou

bl
eC

ol
um

n

-

p
i
x
e
l
C
o
l
u
m
n

:

s
t
d
:
:
s
e
t
<
P
i
x
e
l
H
i
t
,

P
i
x
e
l
P
r
i
o
r
i
t
y
E
n
c
o
d
e
r
>

+

s
e
t
P
i
x
e
l
(
c
o
l
_
n
u
m

:

u
n
s
i
g
n
e
d

i
n
t
,

r
o
w
_
n
u
m

:

u
n
s
i
g
n
e
d

i
n
t
)

:

b
o
o
l

+

s
e
t
P
i
x
e
l
(
p
i
x
e
l

:

P
i
x
e
l
H
i
t
)

:

b
o
o
l

+

c
l
e
a
r
(
)

+

i
n
s
p
e
c
t
P
i
x
e
l
(
c
o
l
_
n
u
m

:

u
n
s
i
g
n
e
d

i
n
t
,

r
o
w
_
n
u
m

:

u
n
s
i
g
n
e
d

i
n
t
)

:

b
o
o
l

+

r
e
a
d
P
i
x
e
l
(
)

:

P
i
x
e
l
H
i
t

+

p
i
x
e
l
H
i
t
s
R
e
m
a
i
n
i
n
g
(
)

:

u
n
s
i
g
n
e
d

i
n
t

Pi
xe

lH
it

-

m
C
o
l

:

i
n
t

-

m
R
o
w

:

i
n
t

-

m
C
h
i
p
I
d

:

u
n
s
i
g
n
e
d

i
n
t

-

m
A
c
t
i
v
e
T
i
m
e
S
t
a
r
t
N
s

:

u
i
n
t
6
4
_
t

-

m
A
c
t
i
v
e
T
i
m
e
E
n
d
N
s

:

u
i
n
t
6
4
_
t

+

g
e
t
P
r
i
E
n
c
P
i
x
e
l
A
d
d
r
e
s
s
(
)

:

u
n
s
i
g
n
e
d

i
n
t

+

g
e
t
P
r
i
E
n
c
N
u
m
I
n
R
e
g
i
o
n
(
)

:

u
n
s
i
g
n
e
d

i
n
t

+

i
s
A
c
t
i
v
e
(
t
i
m
e
_
n
o
w
_
n
s

:

u
i
n
t
6
4
_
t
)

:

b
o
o
l

+

i
s
A
c
t
i
v
e
(
s
t
r
o
b
e
_
s
t
a
r
t
_
t
i
m
e
_
n
s

:

u
i
n
t
6
4
_
t
,

s
t
r
o
b
e
_
e
n
d
_
t
i
m
e
_
n
s

:

u
i
n
t
6
4
_
t
)

:

b
o
o
l

Pi
xe

lP
rio

rit
yE

nc
od

er

o
p
e
r
a
t
o
r
(
)
(
l
e
f
t
I
n

:

P
i
x
e
l
H
i
t
,

r
i
g
h
t
I
n

:

P
i
x
e
l
H
i
t
)

:

b
o
o
l

Ev
en

tF
ra

m
e

- m
Ev

en
tS

ta
rt

Ti
m

eN
s

: u
in

t6
4_

t
- m

Ev
en

tE
nd

Ti
m

eN
s

: u
in

t6
4_

t
- m

Ev
en

tId
 :

in
t

- m
C

hi
pI

d
: i

nt
- m

H
itS

et
 :

st
d:

:s
et

<P
ix

el
H

it>

+
ad

dH
it(

p
: P

ix
el

H
it)

+
fe

ed
H

its
To

Pi
xe

lM
at

rix
(m

at
rix

 :
Pi

xe
lM

at
rix

&
)

Fr
am

eS
ta

rt
Fi

fo
W

or
d

+
bu

sy
_v

io
la

tio
n

: b
oo

l
+

B
C

_f
or

_f
ra

m
e

: u
in

t1
6_

t

N
ot

 p
ar

t o
f s

ta
rt

 w
or

d
in

 c
hi

p,
bu

t u
se

d
in

 s
im

ul
at

io
n:

+
tr

ig
ge

r_
id

 :
ui

nt
64

_t

Fr
am

eE
nd

Fi
fo

W
or

d

+
flu

sh
ed

_i
nc

om
pl

et
e

: b
oo

l
+

st
ro

be
_e

xt
en

de
d

: b
oo

l
+

bu
sy

_t
ra

ns
iti

on
 :

bo
ol

A
lp

id
eD

at
aW

or
d

+
da

ta
 :

ui
nt

8_
t[3

]
+

da
ta

_t
yp

e
: A

lp
id

eD
at

aT
yp

e
+

si
ze

 :
un

si
gn

ed
 in

t

N
ot

 p
ar

t o
f a

ny
 d

at
a

w
or

d
in

 th
e

ch
ip

, b
ut

 u
se

d
in

 s
im

ul
at

io
n:

+
tr

ig
ge

r_
id

 :
ui

nt
64

_t

A
lp

id
eC

hi
pH

ea
de

r
A

lp
id

eC
hi

pE
m

pt
yF

ra
m

e
A

lp
id

eB
us

yO
n

A
lp

id
eB

us
yO

ff

A
lp

id
eC

hi
pT

ra
ile

r
A

lp
id

eR
eg

io
nT

ra
ile

r
A

lp
id

eR
eg

io
nH

ea
de

r
A

lp
id

eD
at

aL
on

g
A

lp
id

eD
at

aS
ho

rt

FIGURE 6.7: Simplified Unified Modeling Language (UML) class dia-
gram of Alpide class in SystemC simulation model. The classes in green
and blue are pure C++ classes, of which the ones in blue are data classes.

The classes in dark gray are SystemC modules.

124 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

created in the PixelMatrix using the pixel hits for the strobe. The event entry consists
of 512 instances of the PixelDoubleColumn class, and the pixel hits are given to the
double column that matches its coordinates.

The PixelDoubleColumn stores the pixel hits in a set from the C++ standard li-
brary, and uses the PixelPriorityEncoder class as a sorting algorithm in the set. These
two classes were heavily influenced by the implementation in the previous SystemC
model for the ALPIDE [40] 14. When the pixels are read from the set, the sorting algo-
rithm ensures that they are read out in the same order as the Priority Encoder in the
ALPIDE, which is shown in fig. B.2 of appendix B. The implementation minimizes the
memory footprint of the simulation, since pixels without hits are not stored in the set,
and allows the hits to be read out fast in the correct order.

SystemC Modules for Pixel Readout

A SystemC module is a C++ class that inherits from sc_module15. A SystemC module
can use signals, ports, and other interfaces from the SystemC library, as well as declare
methods and processes with sensitivity lists. The ports and signals can be used to
connect SystemC modules together in a similar way to instances of entities or modules
in VHDL and Verilog. The SystemC kernel schedules and coordinates signal updates
in the simulation. It also executes methods and processes when the conditions in their
sensitivity lists are met, such as, on the rising edge of a clock signal.

The classes of the ALPIDE model that were discussed up till this point were all
implemented with standard C++ and did not use any SystemC constructs. The sig-
nals and interfaces of SystemC modules add complexity since the classes are not only
accessed with standard methods as in normal C++. And extensive use of SystemC
modules and signals can increase the execution time significantly when there are a lot
of signals and processes that needs to be updated on every simulated clock cycle. As
a consequence, the use of SystemC constructs in the ALPIDE model was limited to
where they were strictly needed, in order to reduce complexity and achieve a faster
simulation.

Figure 6.8 shows a schematic representation of the ALPIDE model, as imple-
mented in the Alpide class of fig. 6.7, and outlines the most important connections
between the different classes and SystemC modules16. The external interface to IB
and OB-master instances of the model consists of: pixel input to the front-end’s queue

14But the sorting algorithm was fixed to implement the “serpent”-like readout pattern, which was
not done correctly in the previous model.

15Alternatively, the SystemC modules can be declared with the SC_MODULE(“name”) macro.
16The 40 MHz system clock was omitted from the schematic.

6.2. Implementation of the Simulations 125

via the pixelFrontEndInput function; the SystemC-interface for Trigger input; and a Sys-
temC signal for Data out. No other connections are needed for IB chips, but for chips
in an OB module there are some additional connections. The OB-slave instances do
not use the normal data out signal; the dedicated OB slave data out signals of the OB-
slaves connect to the Data from OB slaves input of the OB-master. And each OB-slave
output their internal busy status, and each of these busy status signals connect to the
OB-master instance.

Trigger, Framing and Strobe Control. The top-level Alpide class has a simple FSM
to represent the FROMU (see appendix B.5.1), shown in fig. 6.9, which handles the
triggers and strobes. It signals when readout can start from an event buffer to the 32
instances of the RegionReadoutUnit, and also to the one instance of the TopReadoutUnit
class. The FSMs for the TRU and RRU were implemented based on documentation
from the Engineering Design Review (EDR) [98] of the ALPIDE chip, as well as the
operations manual [26], and are rather accurate models of the real implementation in
the ALPIDE.

RegionReadoutUnit Module. The RegionReadoutUnit implements three FSMs: the
region valid FSM, shown in fig. 6.10; the region header FSM (fig. 6.11); and the region
readout and clustering FSM (fig. 6.12).

The region event start signal issued by the TRU (simultaneously to all RRUs) starts
readout of an event from the regions. The region valid FSM indicates to the TRU if
there is still data to be read out from this region17, for the current event. A region is
not valid when the next word on the FIFO is a REGION TRAILER word, which is the
data word that is used to delimit data in the region FIFO, and this indicates to the
TRU that it should proceed with the next region. The pop signal, which is issued by
the TRU at the end of an event (simultaneously to all regions), instructs the regions to
“pop” the delimiting REGION TRAILER word.

The region header FSM is a simple two-state FSM, which essentially multiplexes
between the region FIFO and a hardcoded header for the region in question. This
saves a FIFO entry for the header words, which are always the same for a given region.
The header comes first, assuming that the region has data to be read out (i.e. it is
valid), otherwise the region is skipped entirely by the TRU (no header for empty
regions).

The actual readout of pixel hits from the priority encoders is performed by the
readout and clustering FSM. The hits are packed into DATA SHORT words for single

17Even if a region’s FIFO is empty, it may still be valid if there is more data in the MEB for this region
to be readout.

126 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

s_
re

gi
on

_d
at

a_
re

ad

BUSY_ON and BUSY_OFF data words

Wait for clock rising edge

strobeInput

frameReadout

dataTransmission

(see bottom right)

Bu
sy

 s
ta

tu
s

updateBusyStatus

mainMethod

Trigger input

triggerMethod

Local busy in
(OB master)

busyFifoMethod

s_
re

gi
on

_f
ifo

_e
m

pt
y

s_frame_readout_start

s_readout_abort

s_frame_readout_done
s_

re
gi

on
_d

at
a

s_
re

gi
on

_e
ve

nt
_s

ta
rt

s_
re

gi
on

_e
ve

nt
_p

op

PixelFrontEnd

. . .

pixelFrontEndInput()

Pixel hit queue
Each entry contains
X/Y coordinates and

timing information

Strobe start Strobe end

Pixel data
input to

event buffer

PixelMatrix

Multi Event Buffer (MEB)

. . .

. . .
MEB pixel data input to RRU

(via priority encoding)Region 0
Region 1

Region 31

0 1 2 63. . .
Frame Start FIFO

0 1 2 63. . .
Frame End FIFO

Frame info stored to
FIFOs at start of

strobe, and end of
event readout

Number of event buffers in use

N
um

be
r o

f e
ve

nt
 b

uf
fe

rs
 in

 u
se

Fr
am

e
FI

FO
 b

us
y

st
at

us

1. Set strobe active
2. Wait for strobe length
3. Set strobe inactive

strobeDurationMethod

210

OB slave data out

3210

Data out

"DMU" data FIFO

"BMU" busy FIFO

empty

Data from
OB slaves Data multiplexing:

IB: DMU FIFO
OB-master: Round-robin
OB-slave: Not used

No

YesStrobe
active?

Reject
trigger

Accept trigger

3

TopReadoutUnit

1. Frame Start FIFO not empty: start readout
2. Issue region start event
3. Wait till RRU FIFOs are not empty
4. Send CHIP_HEADER
5. Read one region at a time until the region is not

valid. Repeat for all regions.
6. Output data as it is read from region
7. Issue region pop event
8. Send CHIP_TRAILER (w/ frame end FIFO bits)

32 3232

Data from event buffer

RegionReadoutUnit

Puts BUSY_ON or BUSY_OFF
words in the BMU FIFO on

busy status transitions

Busy
status

32

Local busy out
(OB slaves)

RO &
Clustering

FSM

Region Valid
FSM

0
1

127
...

ou
tp

ut
 h

ea
de

r

R
EG

IO
N

_H
EA

D
ER

Header
FSM

s_
re

gi
on

_v
al

id

32

R
ea

d
FI

FO

(w
he

n
no

t h
ea

de
r)

dataTransmission

NOB-slaves

NOB-slaves
(emulates

local
parallel

bus)

FIGURE 6.8: ALPIDE SystemC model (as implemented in the Alpide
class).

6.2. Implementation of the Simulations 127

(MEBs in use > 1) or
(MEBs in use = 1 and strobe not active)WAIT

FOR
EVENTS

REGION
READOUT

START

s_readout_abort or
s_frame_readout_done_all

WAIT FOR
REGION

READOUT

REGION
READOUT

DONE

WAIT FOR REGION READOUT - Outputs:
s_frame_readout_start = 0

s_frame_readout_done_all
= s_frame_readout_done[0]
or s_frame_readout_done[1]
or ...
or s_frame_readout_done[31]

REGION READOUT START - Outputs:
s_frame_readout_start = 1
s_frame_readout_done_all = 0

WAIT FOR EVENTS - Outputs:
s_frame_readout_start = 0
s_frame_readout_done_all = 0

REGION READOUT DONE - Outputs:
s_frame_readout_start = 0
s_frame_readout_done_all = 0

Free oldest MEB, and put frame end
word for event on Frame End FIFO

FIGURE 6.9: FROMU FSM in the SystemC simulation model.

hits, or DATA LONG for clusters of hits, and put in the region’s FIFO. The clustering
is implemented with a standard method in the class. A flowchart for the method is
shown in fig. 6.13.

TopReadoutUnit Module. The TopReadoutUnit class implements the FSM shown in
fig. 6.14, and fig. 6.8 shows how it fits into the SystemC model of the ALPIDE. In
brief terms, it waits for the frame start FIFO to not be empty and issues a region start
event, and outputs a CHIP HEADER word (or CHIP EMPTY FRAME if none of the
regions contain hits, i.e. none of the regions are valid to begin with). It then proceeds
to read out the regions in a round-robin fashion, starting with the first region. A region
is done when it is not valid anymore, and regions that were not valid to begin with
are skipped. When all of the regions have been read out, a region pop event is issued
to the regions, instructing them all to pop the delimiting REGION TRAILER word.
And finally, the event is concluded with the CHIP TRAILER word, and the process
repeated for the next event (if any).

Clock Gating. To improve simulation time, a clock gating mechanism was imple-
mented for the state machines of the RegionReadoutUnit and TopReadoutUnit18. When
it is detected that there are no events to be read out in the chip, the sensitivity lists
of the processes that implement the state machines are modified; execution on clock
edges stops, and is re-activated when the next event is available.

18The real ALPIDE chip also has a clock gating feature that can be enabled for the TRU and RRU to
reduce power consumption [26].

128 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

s_region_event_start
and !s_readout_abort_in

IDLE

!region_fifo_empty
and !region_trailer

s_readout_abort_in

!region_fifo_empty and region_trailer

EMPTY

region_trailer

s_readout_abort_in

VALID

s_readout_abort_in
or s_region_event_pop_in

POP

Note:
region_trailer indicates that the next output from the RRU FIFO is a REGION_TRAILER word.
REGION_TRAILER is used to delimit events.

Region also valid in EMPTY state if RRU FIFO empty but Readout&Clustering FSM is just starting
readout

OUTPUT / STATE IDLE EMPTY VALID POP

s_region_valid_out 0 !region_fifo_empty and
!region_trailer !region_trailer 0

FIGURE 6.10: Region valid FSM in the RegionReadoutUnit class of the
SystemC simulation model.

!s_readout_abort_in && s_region_data_read_in

HEADER

s_readout_abort_in || s_region_event_pop_in

DATA

FIGURE 6.11: Region header FSM in the RegionReadoutUnit class of the
SystemC simulation model.

6.2.4 Readout Unit Model

The main focus of the simulation is to determine data rates and readout efficiency of
the ALPIDE chips. This depends solely on the input events and trigger parameters of

6.2. Implementation of the Simulations 129

matrix_readout_ready

s_readout_abort_in START
READOUT

!s_readout_abort_in
and s_frame_readout_start_in
and !region_matrix_empty

IDLE

s_readout_abort_in

!s_readout_abort
and matrix_readout_ready
and region_matrix_empty
and !s_region_fifo.full

READOUT
AND

CLUSTERING

s_readout_abort_in
or !region_fifo_full

REGION
TRAILER

s_readout_abort_in
or !s_frame_readout_start_in

The readout start input signal is normally low and pulsed high when readout can start. So the IDLE state normally outputs a high
readout done signal, which goes low when readout starts.

Pixels can be read out from the pixel matrix every 2nd or 4th clock cycle, depending on readout speed settings. The
matrix_readout_ready signal indicates when readout is possible. Clusters of neighboring pixel hits are collected and put on the
RRU FIFO as a cluster (DATA LONG), or as DATA SHORT for single-pixel clusters. Pixel readout is handled by the READOUT
AND CLUSTERING state.

OUTPUT IDLE START READOUT RO&CLUSTERING REGION TRAILER

s_frame_readout_done_out !s_frame_readout_start_in 0 0 0

FIGURE 6.12: Region readout and clustering FSM in the RegionReadoutU-
nit class of the SystemC simulation model.

the ALPIDE. As a consequence, the model of the RU has a limited scope in the sim-
ulation. Its primary function is to distribute triggers to the instances of the ALPIDE
and to act as an end-point for the ALPIDE data links.

Trigger Filtering. Section 2.6.1 describes a trigger filtering feature which is used in
the main FPGA of the RU. This feature is included in the RU model in the simulation
and the length of the trigger filtering window, as well as the trigger delay, is config-
urable. If t1 denotes the time of the first trigger, and Twindow is the length of the win-
dow, then the trigger at t2 is discarded if it falls within the interval [t1, t1 + Twindow].
However, it is important that the time-walk (or rise time) of the pulses in the front-end
is taken into account when the filtering window is defined. If Twalk is the time-walk
and the second trigger arrives in the interval [t1 + Twindow − Twalk, t1 + Twindow] then

130 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

readoutNextPixel

Yes

No

Clustering
enabled?

Yes

No

Cluster already
started?

No

Yes
New pixel

within cluster
hitmap
range?

Read out a
pixel

from matrix

Yes

No

Did pixel readout
return a pixel?

Yes

No
Did we have

more than 1 hit
in existing

cluster?

Put pixel in
DATA SHORT

word on
RRU FIFO

Put cluster in
DATA LONG

word on
RRU FIFO

Update cluster
hitmap with
new pixel

Yes

No
Last

possible
pixel in the

cluster?

Put cluster in
DATA LONG

word on
RRU FIFO

Yes

No
Did we have

more than 1 hit
in existing

cluster?

Put pixel in
DATA SHORT

word on
RRU FIFO

Put cluster in
DATA LONG

word on
RRU FIFO

Start new pixel cluster

Write
DATA SHORT
to RRU FIFO

No

Yes

Did pixel readout
return a pixel?

Set region
empty flag

Set region
empty flag

No

Yes

Did pixel readout
return a pixel?

Set region
empty flagStart new pixel cluster

Done

FIGURE 6.13: Flowchart of pixel readout in the RegionReadoutUnit class
of the SystemC simulation model.

the hits of the second event have not gone over threshold yet and are not included in
the strobe for the first trigger (assuming a very short strobe). And since the second
trigger is discarded when it falls within this interval the hits of the second event are
lost. This is illustrated in fig. 6.15.

To ensure that no data is lost because of the filtering mechanism the filtering win-
dow should be defined as Twindow ≥ Tdelay − Twalk, where Tdelay is the total trigger
delay.

6.2.5 Top-level Detector Model

The detector model “builds” the detector by creating instances of the Alpide class, the
stave objects that hold the chips, the instances of the RUs, and connecting them all
together. The class hierarchy for simulation of the ITS is shown in fig. 6.16.

The ITSDetector class accepts pixel hit input for the events that come from the event
generator (EventGenITS) via the StimuliITS class, as well as trigger input. Each pixel
hit object contains a unique chip identifier, and the detector distributes the hits di-
rectly to the chip in question. The triggers are distributed to all RUs in the simulation.

6.2. Implementation of the Simulations 131

CHIP_EMPTY_FRAME

Number of hits in event > 0

No hits in event

CHIP_HEADER

Data in current region?

REGION_HEADER

No pixels left in current region &
No data in FIFO for current region &

Not the last region

No pixels left in current region &
No data in FIFO for current region &

Last region

REGION_DATA

All MEBs empty

IDLE

All MEBs empty

All MEBs empty

All MEBs empty

CHIP_TRAILER

Notes on the TRU state machine:

If the TRU FIFO is full, nothing will be done and the state machine will "pause" until the TRU FIFO is not full again
A 24-bit word is written to the TRU FIFO in each state (except when TRU FIFO is full)
The states are named after the data words they write to the TRU FIFO
The REGION_HEADER state will write IDLE words to TRU FIFO while searching for a region with data. The REGION HEADER word is written one a
region with data is found
The REGION_DATA state will write IDLE words when it is waiting for more data from the Region Readout Unit (RRU) FIFOs.

FIGURE 6.14: TRU FSM in the SystemC simulation model.

0 ns
Time

Ev
en

t 1

Ev
en

t 2

1100 ns

1200 ns
Time

Trigger 1 Trigger 2 (filtered)

2300 ns

Ev
en

t 1
 a

ct
iv

e

400 ns 1500 ns

Ev
en

t 2
 a

ct
iv

e

0 ns

1200 ns filter time

Events in pixel
front-end

Triggers

Pixel pre-amplifier
pulse rise time

FIGURE 6.15: Example of lost event due to wrongly configured trigger
filter. The trigger filter time is too short to account for the pulse shaping
time of the second event, which is lost because the pixels’ pre-amplifier
outputs have not gone over the threshold at the time of the first trigger.

6.2.6 Simulation Settings and Output Data

There are a number of configurable settings in the simulation model, such as: The
number of staves to simulate per layer, event generation parameters like the inter-
action rate and event types, triggering scheme and trigger filtering. A number of

132 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

Use

Use

Use

StimuliITS

StimuliBase EventGenITS ITSDetector ReadoutUnit SingleChip

ReadoutUnit

StaveInterface

OuterBarrelStave MiddleBarrelStave InnerBarrelStave

HalfModule

Alpide

Alpide

Simulation of a single chip

FIGURE 6.16: Simplified UML class diagram of setup for ITS in SystemC
simulation model. Full detector simulation uses the ITSDetector class.
Simulation of a single chip uses the instance of the ReadoutUnit and Sin-

gleChip classes indicated with dashed lines.

settings pertaining to the ALPIDE is also available for all the simulation types. Most
importantly the choice between continuous or triggered mode, the strobe length, and
inactive and active time for the pixel hits. When combined with MC input for the
events (Pb–Pb or pp), the simulation model can be configured to simulate the most
likely operating conditions for the ITS (from a readout perspective).

An exhaustive list of settings available in the simulation model can be found in
appendix D.1.

6.3 Adaptation of the Simulation Model for FoCal and

pCT

While the ALPIDE chip was designed with the ALICE ITS upgrade in mind, the chip
was a natural choice for several other pixel detectors, owing to its wide range of con-
figurable settings and high performance, as well as its current status as the state of the
art among monolithic pixel sensors. The simulation model was adapted to simulate

6.3. Adaptation of the Simulation Model for FoCal and pCT 133

two of these projects, namely the planned Forward Calorimeter (FoCal) for ALICE
and the pCT project at UiB.

The simulation was adapted by implementing: dedicated Detector and Stimuli
classes for FoCal and pCT with a different number and organization of ALPIDE chips
and staves; a dedicated event generator for pCT and adaptations to the ITS event
generator (EventGenITS) to support FoCal; support for new input data formats for
FoCal and pCT.

6.3.1 FoCal

The electromagnetic calorimeter of the FoCal detector (FoCal-E) will consist of 20 lay-
ers, two of which are pixel layers [99]. The ALPIDE chip was a natural candidate for
the pixel layers but simulations were necessary to establish that the ALPIDE chips
can capture the data with a high efficiency. Data sets of simulated MC events, for pp
and Pb–Pb, were provided by the FoCal collaboration for use with the SystemC sim-
ulations. The “Event Generator” used for the ITS simulations could easily be adapted
to use this data for FoCal simulations. The pixel hit coordinates from the event data
had to be mapped to individual chips in the simulation, which required an adapted
Detector class for FoCal in the simulation. But a layout of sensor chips for the FoCal
layers had not actually been defined at the time the simulations were performed. As
a consequence, it became a part of this work to propose a layout of the sensor chips
for the FoCal detector.

Layer and Stave Layout

The FoCal detector plane will cover an area of around 1 m2. There is a rectangular gap
around the beam pipe at the center of the plane with dimensions of around 8 cm×
8 cm. The suggested layout of ALPIDE chips is shown in fig. 6.17. It consists of patches
of 15 × 6 ALPIDE chips. This layout makes the actual gap slightly larger at 8 cm
wide and 9 cm tall, since the height of six ALPIDE chips adds up to 9 cm. Ideally the
entire detector would be constructed of ALPIDE chips in IB mode. But that requires a
dedicated data link for each chip, and it would be hard to realize a stave design with
15 data links. A large number of RUs would also be required to handle all the links.
As a compromise, the suggested layout uses a combination of IB and OB chips. The IB
chips surround the beam pipe where the expected occupancy is high. The occupancy
falls off quickly at higher radii so OB chips can be used further out from the beam
pipe.

The layout of the detector can be realized with the two suggested stave designs in
fig. 6.18. The patches surrounding the beam pipe can use the Focal IB/OB stave design,

134 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

FIGURE 6.17: Proposed layout of ALPIDE chips in the FoCal detec-
tor plane. The red circle at the center represents the beam-pipe going
through the plane (exaggerated size). The gray rectangle surrounding
the beam pipe indicates the 8 cm× 9 cm gap around the beam-pipe. Each
solid rectangle is a patch of 15× 6 ALPIDE chips. The ten patches around
the gap consists of chips in both IB and OB-mode, and the remaining

twelve patches consists of chips in OB-mode only.

which consists of eight IB chips and seven OB chips. The addressing of the IB and OB
chips can be done with only one the control link. And limiting the number of IB chips
to eight allows chip ID 7 to be skipped. This is highly beneficial, since the decoding of
ID 7 on the control link does not work properly, and performs broadcast commands
to all the chips on the link.

The suggested Focal OB stave consists of 3× 5 chips in OB mode, where three of
them are OB master chips. The addressing on the control link will allow one control
link to be shared by two staves, so only three control links are necessary for a Focal
OB patch. However it is not possible to address more than one group of IB chips, so
the Focal IB patch will require six control links.

6.3. Adaptation of the Simulation Model for FoCal and pCT 135

FIGURE 6.18: Proposed layout of ALPIDE chips in staves and patches
used in the FoCal detector plane.

Input data

MC simulated events are used as input to the SystemC simulation of the FoCal de-
tector. Pythia was used for the pp-data, and Hijing for Pb–Pb and Pb–p. The simu-
lated data has hits over an area of 1600 mm× 1600 mm, divided into macro-pixels of
0.5 mm. The data contains the number of particle hits within a macro-pixel for a given
event, but not the exact hit coordinates within the macro-pixel. The event generator
for the SystemC simulation of FoCal generates N random hits within the area of a
macro-pixel, where N is the number of hits within the macro-pixel for a given event.
Random clusters of pixel hits are created around each random particle hit, using a
2D Gaussian distribution. Occupancy plots of the events from the pp and Pb–Pb data
sets are shown in figs. 6.19 and 6.20. The occupancy is plotted for each chip with
the detector layout suggested in figs. 6.17 and 6.18. The occupancy is clearly much
higher near the center of the detector plane and this is the reason why IB chips with
dedicated data links were used near the center.

136 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

FIGURE 6.19: Occupancy map of pp MC-data for FoCal.

FIGURE 6.20: Occupancy map of Pb–Pb MC-data for FoCal.

6.3. Adaptation of the Simulation Model for FoCal and pCT 137

6.3.2 Proton CT

The technologies developed at CERN have often found applications outside the fields
of nuclear and particle physics. A good example is the ALPIDE pixel sensor devel-
oped for ALICE, which is currently being used at UiB to implement imaging technol-
ogy for use with radiotherapy.

FIGURE 6.21: Comparison of dose-profiles with x-ray and proton treat-
ment. The absorbed dose and Bragg-peak is shown for several proton
beams of different energies (#1, #2, #3, ...). By combining several such
proton beams a so-called Spread Out Bragg Peak (SOBP) can be achieved
where a consistent dose is delivered to the area of the tumor. In contrast,
an x-ray beam deposits a much larger dose before and after the tumor

which will damage more healthy tissue. [100].

Radiotherapy is a common form of cancer treatment where a cancerous tumor is
subjected to radiation. Ideally, the dose of radiation should be perfectly localized to
the tumor, but with traditional forms of photon-based radiotherapy the surrounding
tissue is also subjected to a considerable dose. This is shown in fig. 6.21. However,
with particle therapy using protons and heavier ions, it is in principle possible to
target the tumor with much higher accuracy. But there are several technical challenges
to overcome. The so-called Bragg-peak19 has to be placed at the location of the tumor.
This requires advanced medical imaging techniques to create a map of tissue and bone
in the target organ, which allows the energy of the radiation to be calculated to achieve
a certain penetration depth. Traditionally, photon-based Computed Tomography (CT)

19The depth at which the stopping power, − dE
dx , is at its peak, and most of the particle’s energy is

deposited.

138 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

scanners have been used for the imaging and conversion factors were employed to
estimate the Relative Stopping Power (RSP) for charged particles like protons. But
these conversions introduce an error on the order of 2-3% [101]. Had the CT scan used
protons instead, then these errors could have been avoided which would make the
particle therapy more accurate and reduce the amount of damage to healthy tissue.

The pCT Project at UiB

Research and development of a Digital Tracking Calorimeter (DTC) for a pCT proto-
type is currently in progress at the University of Bergen (UiB) [36], [101]. The DTC
will consists of 41 layers of pixel chips. There is no absorber between the first two
layers which are used to establish the incident angle of the particles. But the remain-
ing 39 layers have absorbers between them which slow down the particles [36]. A
pencil beam (of protons) passes through the organ with the cancerous tumor on its
way to the DTC. The beam scans across the surface of the DTC, and the kinetic en-
ergy of incoming particles in the DTC is measured by reconstructing their tracks and
analyzing cluster sizes. The energy loss in the organ is calculated by comparing the
initial energy of the beam, which is a known quantity, with the residual energy of the
beam when it reached the DTC. The measurements are repeated at different angles to
perform the CT scan.

FIGURE 6.22: pCT detector and readout. [37].

Figure 6.22 shows an illustration of the UiB pCT and readout system. The tracking
layers of the DTC are based on the ALPIDE chip. Each layer consists of 12 IB-staves
identical to those of the ITS, i.e. a total of 9 × 12 = 108 ALPIDE chips per layer.
Readout is performed using the pCT Readout Unit (pRU) which is based on a Xilinx
Kintex UltraScale FPGA. There is one pCT Readout Unit (pRU) per layer responsible

6.3. Adaptation of the Simulation Model for FoCal and pCT 139

for readout of all 108 data links of the layer20, and up to four 10 Gb/s Ethernet links
are available per pRU to offload data [36].

The amount of data that the pRU will have to cope with, as well as the upstream
bandwidth that it requires, were among the questions that had to be answered dur-
ing the design phase of the pRU which called for simulations of the pCT using the
SystemC model.

Input Data

FIGURE 6.23: Pencil beam scan pattern example. The scan starts in the
upper left corner and moves in discrete steps as indicated by the arrows.

A set of MC data for the pCT was provided for use with the SystemC simulations.
The data had been generated using the Digital Tracking Calorimeter Toolkit21 which
was developed by Pettersen et. al. for the pCT [102]. A pencil beam of 230 MeV
protons, with an intensity of 1× 107 protons per second, had been scanned across
the DTC plane in those simulations and the coordinates of hits in each layer were
recorded. Figure 6.23 illustrates a typical pencil beam scanning pattern. The scan
pattern can also be recognized in figs. 6.25A and 6.25B, which shows hit positions in
the XY-plane of the first layer of the DTC in the MC data. The XY-plane covers an area
of 270 mm× 135 mm in the data set, a surface equivalent to 9× 9 ALPIDE chips22. The
beam scans across this surface with a speed of the order of 100 m s−1 in the X-direction
and covers the entire surface in around 6.5 ms.

The energy deposition and slowing of the protons in the sensitive layers and ab-
sorbers were simulated, leading to the decreasing occupancy at deeper layers, as
shown in fig. 6.24. A simple clustering algorithm based on a 2D-Gaussian distri-
bution had been applied to the primary particles23, creating random clusters with an

20Regular IOs pins are used to read out the 1.2 Gbit s−1 ALPIDE data links [36].
21The toolkit is based on the Geant4 Application for Tomographic Emission (GATE) MC software.
22As mentioned the final DTC design consists of 9× 12 chips, but 9× 9 is sufficient for the simula-

tions.
23The protons, which accounts for almost 99% of the particles in the simulation.

140 Chapter 6. Simulation Model of the ITS Upgrade and ALPIDE

0 5 10 15 20 25 30 35 40
Layer number

60

65

70

75

80

85

90

610×

H
its

 p
er

 s
ec

on
d

Pixel hits per second vs. layer

FIGURE 6.24: Hit intensity versus layer in the MC simulated data set for
the pCT DTC.

(A)

(B)

FIGURE 6.25: Scan pattern in MC data for the pCT DTC. All hits from
the first layer of the DTC are plotted, with the X-position shown in 6.25A
and Y-position in 6.25B. Note: The Y-axis scale differs between the two

plots.

average of 9 pixels hit per primary [102], which matches typical cluster size distribu-
tions from beam tests of the ALPIDE [25]. It should be noted that the actual energy

6.3. Adaptation of the Simulation Model for FoCal and pCT 141

deposition was not taken into account by the clustering algorithm, and larger clusters
are expected in the deeper layer where the energy deposition is higher.

143

Chapter 7

Simulations and Results

This chapter will discuss simulations and results achieved with the simulation model that was
introduced in the previous chapter. The main focus is on simulations for the ITS, but results
for the FoCal and pCT detectors are also included. Only a subset of the available simulation
data is presented in this chapter. More results can be found in appendix H.

7.1 ITS Simulations

The set of simulations that were run for the ITS is listed in table 7.1. Most of the results
and figures presented in this chapter, for the ITS, are based on a prior publication [103]
which was part of the work presented in this thesis. The parameters in table 7.1 were
chosen not just to address the original concern of a busy detector and data loss, but
also to predict how the detector will behave when operated beyond the ALICE Run 3
interaction rates of 50 kHz for Pb–Pb and 200 kHz for pp1.

The simulations used a pool of MC events as input which had been generated with
the AliRoot framework (see section 6.2.1 for more details). There were 10 000 discrete
Pb–Pb events with QED background data, and 100 000 pp events. The combinations
of parameters in the table adds up to 56 simulations. Each simulation included one
full stave per layer, which amounts to 643 ALPIDEs chips in total. Because of time
constraints2, the number of simulated collisions were limited to 100 000 for Pb–Pb,
and 1 000 000 for pp. Ideally this number would have been higher.

For Pb–Pb the simulations were run at interaction rates ranging from 50 kHz to
200 kHz, which is twice as high as the specification for ITS. It became apparent early
on that the detector performs quite well in the simulations when it is operated at inter-
action rates within the specifications. This offers limited statistics on the mechanisms

1An interaction rate of 200 kHz for pp was originally planned for Run 3. But this was later increased
to 500 kHz.

2The slowest Pb–Pb simulations ran for around 2-3 days each.

144 Chapter 7. Simulations and Results

for data loss in the ALPIDE, and it is another reason why simulating higher rates is
interesting; a lower readout efficiency is expected at those rates, and this allows for a
better comparison between different sets of parameters.

TABLE 7.1: Simulation setup for Pb–Pb and pp simulations of ITS [103].

Parameter Pb–Pb pp

Event rates [kHz] 50a, 100i, 150b, 200b 400i, 1000b, 2000b, 5000b

Number of events simulated 100 000 1 000 000
Strobe length (min-bias trigger) [ns] 100 100
Strobe length (periodic trigger) [ns] 4 900, 9 900, 19 900 4 900, 9 900, 19 900
Period (periodic trigger) [ns] 5 000, 10 000, 20 000 5 000, 10 000, 20 000

a ALICE Run 3 requirement i ITS specification b Beyond specification

Trigger Mode and Strobe Lengths. Each of the interaction rates listed in table 7.1
was simulated with minimum-bias triggers and periodic triggers. Minimum-bias was
simulated using the 100 ns strobe length and with the chip in triggered mode. But for
the continuous mode simulations with periodic triggers, the three different strobe
lengths and corresponding trigger period of the table were all simulated. The strobe
length that will be used in the experiment has not been decided yet, but a length of
10 µs to 20 µs is expected. A shorter strobe and period would likely be beneficial, since
that should reduce the pileup of events in each frame and make reconstruction easier.

The choice of triggered or continuous mode in the ALPIDE only pertains to the
handling of the MEB (see section 2.4). In principle, either mode can be used with a
short strobe and LM triggers from the CTP or periodic triggers and long strobes when
the experiment operates in continuous mode. The assumption is that the triggered
mode in the chip is better suited for the LM triggers, and the continuous mode is bet-
ter suited for the periodic triggers. To test this assumption, each simulation where the
experiment was in continuous mode (i.e. periodic triggers and long strobes) was run
with the chips in both continuous and triggered mode. To avoid confusion, the exper-
iment’s continuous trigger mode will be referred to as "periodic triggers" throughout
this chapter, and the continuous mode setting in the chip will simply be referred to as
continuous mode.

Finally, it should be noted that a pixel pulse shaping time of 5 µs was used for all
of the simulations.

Pixel Noise. As mentioned in the previous chapter, pixel noise3 was omitted in the
simulations. This leads to a discrepancy compared to some simulations that were

3Also called fake hits.

7.2. ITS Simulation Results 145

performed at an earlier stage in the development of the ITS [40], which were sim-
ulated with a fake-hit rate of 3-4 orders of magnitude higher than measured on the
production version of the ALPIDE.

7.2 ITS Simulation Results

7.2.1 Readout Efficiency

The number of frames (or triggers) is stored by the simulation, as well as how
many frames are lost. Let N be the total number of frames (triggers), where N =

NOK + NBV + NFlush. NOK is the number of frames that were fully read out, NBV the
discarded frames due to busy violations, and NFlush the number of frames that were
flushed and not fully read out. The readout efficiency in terms of frames is defined
as:

EFrames =
NOK

N
=

NOK

NOK + NBV + NFlush
(7.1)

NFlush will always be zero in triggered mode, but there can be both flush and busy
violations in continuous mode (but primarily flushes).

Readout Efficiency in Terms of Frames for Pb–Pb

Figures 7.1A and 7.1B shows the readout efficiency, in terms of readout frames, for Pb–
Pb at 50 kHz, the ALICE target in Run 3, and 100 kHz which is the specification for the
ITS. The efficiency is around 100% regardless of trigger mode and other parameters,
though there is an observable drop in efficiency for continuous mode with 5 µs, albeit
a small one.

0 1 2 3 4 5 6
Layer

99.995

99.996

99.997

99.998

99.999

100.000

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency PbPb 50 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 50 kHz

0 1 2 3 4 5 6
Layer

99.975

99.980

99.985

99.990

99.995

100.000

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency PbPb 100 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 100 kHz

FIGURE 7.1: Frame readout efficiency for ITS in Pb–Pb simulations at
nominal interaction rates [103]. Note: The y-axis has been truncated
and the range differs between the two graphs. The efficiency is approxi-

mately 100% in every case.

146 Chapter 7. Simulations and Results

At 150 kHz and 200 kHz, shown in figs. 7.2A and 7.2B, the drop in efficiency with
periodic triggers and 5 µs strobe becomes more pronounced. The explanation is likely
that the pulse shaping time was also 5 µs; unless the pulse for a hit lines up per-
fectly within the 5 µs strobe window, the hit will be sampled by two strobes. Most of
the events are effectively double sampled with this combination of pulse length and
strobe window, which effectively doubles the amount of data to read out.

0 1 2 3 4 5 6
Layer

97.5

98.0

98.5

99.0

99.5

100.0

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency PbPb 150 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 150 kHz

0 1 2 3 4 5 6
Layer

70

75

80

85

90

95

100

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency PbPb 200 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 200 kHz

FIGURE 7.2: Frame readout efficiency for ITS in Pb–Pb simulations at
interaction rates beyond the specifications [103]. Note: The y-axis has

been truncated and the range differs between the two graphs.

Readout Efficiency in Terms of Pixel Hits for Pb–Pb

The readout efficiency metric that was calculated based on frames is not an entirely
fair comparison of triggered and continuous mode, since the lost frames in continu-
ous mode were probably at least partially read out. The simulation also records the
number of pixel hits in the simulation, whether they were read out or not, as well as
statistics of how many frames they were read out in. Figures 7.3 and 7.4 shows the
readout efficiencies for Pb–Pb in terms of pixels, where the efficiency was calculated
in this manner:

EPixels =
NPixels read out

NPixels not read out + NPixels read out
(7.2)

At 100 kHz there is a tiny loss of data in the innermost layer when using minimum-
bias triggers. But the combination of periodic triggers, continuous mode, and a 5 µs
strobe appears to be the least efficient at nominal rates (50 kHz and 100 kHz), followed
by the same parameters with a 10 µs strobe. It should be noted though that the effi-
ciency is really close to 100% in every case in figs. 7.3A and 7.3B, and that is the main
conclusion that can be drawn with the limited statistics.

At the higher rates, 150 kHz and 200 kHz, the periodic triggering with 5 µs strobe
stands out again with the lowest efficiency. But compared to the frame efficiency in

7.2. ITS Simulation Results 147

0 1 2 3 4 5 6
Layer

99.975

99.980

99.985

99.990

99.995

100.000

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency PbPb 50 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 50 kHz

0 1 2 3 4 5 6
Layer

99.970

99.975

99.980

99.985

99.990

99.995

100.000

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency PbPb 100 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 100 kHz

FIGURE 7.3: Pixel hit readout efficiency for ITS in Pb–Pb simulations
at nominal interaction rates [103]. Note: The y-axis has been truncated
and the range differs between the two graphs. The efficiency is approxi-

mately 100% in every case.

fig. 7.2, the situation is reversed with the triggered mode performing slightly worse
than continuous mode. The combination of periodic triggers and continuous mode
also has a small drop in efficiency for layers 3 and 54, when using 5 µs or 10 µs strobes.
Minimum bias triggering shows some loss of efficiency in the innermost layers again,
but it is still well over 99% even at 200 kHz.

0 1 2 3 4 5 6
Layer

99.70

99.75

99.80

99.85

99.90

99.95

100.00

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency PbPb 150 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 150 kHz

0 1 2 3 4 5 6
Layer

96

97

98

99

100

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency PbPb 200 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 200 kHz

FIGURE 7.4: Pixel hit readout efficiency for ITS in Pb–Pb simulations at
interaction rates beyond the specifications [103]. Note: The y-axis has

been truncated and the range differs between the two graphs.

As a concluding remark, using minimum-bias triggers has an efficiency of over
99% at any of the simulated interaction rates, and outperforms periodic trigger with
5 µs strobe in any scenario. At higher interaction rates one should consider using
periodic triggering with at least a 10 µs strobe, and the continuous mode in the chip
appears to perform worse than triggered mode for the outer layers. Figure 7.5, which
shows busy counts for the 200 kHz Pb–Pb simulations, may illustrate this better. The
ALPIDE chips will frequently report busy in continuous mode, but rarely in triggered
mode. From the perspective of the readout electronics, there are only two ways to deal

4The first Middle Layer (ML) and the first Outer Layer (OL).

148 Chapter 7. Simulations and Results

with a busy chip: ignore it and accept that data is lost when the next trigger is sent5,
or withhold the next trigger6 to allow readout of the current frame to finish. The
latter beats the purpose of the flushing mechanism in continuous mode; one would
essentially be left with triggered mode with only two event buffers.

0 1 2 3 4 5 6
Layer

0

200000

400000

600000

800000

1000000

C
ou

nt
s

BUSY count PbPb 200 kHz

Min-bias/Trig. 100 ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

FIGURE 7.5: Busy counts for ITS at 200 kHz Pb–Pb.

Readout Efficiency for pp

Readout efficiency for pp is shown in terms of frames in fig. 7.6, and in terms of
pixels in fig. 7.7, for interaction rates of 400 kHz and 5 MHz. Plots for 1 MHz and
2 MHz were omitted since the detector is very efficient in pp at any of the simulated
interaction rates7, regardless of configuration.

0 1 2 3 4 5 6
Layer

99.99980

99.99985

99.99990

99.99995

100.00000

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency pp 400 kHz

Min-bias/Trig. 100ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 400 kHz

0 1 2 3 4 5 6
Layer

99.95

99.96

99.97

99.98

99.99

100.00

E
ffi

ci
en

cy
 [%

]

Frame Readout Efficiency pp 5 MHz

Min-bias/Trig. 100ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 200 kHz

FIGURE 7.6: Frame readout efficiency for ITS in pp simulations [103].
Note: The y-axis has been truncated and the range differs between the

two graphs. The efficiency is approximately 100% in every case.

5Unless the busy condition goes away before the next trigger.
6Keeping in mind that several chips share a control link, which is used for the trigger.
7Because of the significantly lower hit density compared to Pb–Pb.

7.2. ITS Simulation Results 149

Minimum-bias triggering was the least efficient in these simulations. The effective
trigger rate will be very high for minimum-bias triggering, but is limited to a maxi-
mum of around 800 kHz because of the trigger filtering8 (trigger rate is also limited
to ≈ 1 MHz by the speed of the control link [26], [98]). Considering that the 5 µs peri-
odic triggers have a trigger rate of 200 kHz, which is constant regardless of interaction
rate, it is not surprising that the minimum-bias triggers are less efficient. Besides that,
periodic 5 µs triggers show less than 100% efficiency in some cases, with the chips in
continuous mode, especially for the third layer as seen in fig. 7.7. But this is not seen
with the chip in triggered mode, which strengthens the claim that periodic trigger-
ing performs slightly better with the chips in triggered mode, and not in continuous
mode.

0 1 2 3 4 5 6
Layer

99.998

99.999

99.999

99.999

100.000

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency pp 400 kHz

Min-bias/Trig. 100ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(A) 400 kHz

0 1 2 3 4 5 6
Layer

0.006

0.007

0.008

0.009

0.010
E

ffi
ci

en
cy

 [%
]

+9.999e1 Pixel Hit Readout Efficiency pp 5 MHz

Min-bias/Trig. 100ns
Periodic/Trig. 5 s
Periodic/Trig. 10 s
Periodic/Trig. 20 s
Periodic/Cont. 5 s
Periodic/Cont. 10 s
Periodic/Cont. 20 s

(B) 5 MHz

FIGURE 7.7: Pixel hit readout efficiency for ITS in pp simulations [103].
Note: The y-axis has been truncated and the range differs between the

two graphs. The efficiency is approximately 100% in every case.

There have been discussions in the ALICE Collaboration to run the experiment at
interaction rates up to 5 MHz, with a short strobe of 1 µs duration in the ITS to help
disentangle piled-up events. In this case, the experiment would mostly rely on the ITS
for tracking as the TPC can not cope with these rates. Some additional simulations
were performed for this scenario (not listed in table 7.1), and the simulated readout
efficiencies (in terms of pixels) are shown in figure 7.8. It indicates that it should be
well within the capabilities of the ITS to perform such runs. And again, it is worth
noting that the ALPIDE’s triggered mode performs better than the continuous mode.

7.2.2 Pileup

Pileup is a term used to describe the situation where a readout frame contains more
than one interaction event. From an analysis point of view it is preferable to have
a low amount of pileup, since a higher amount would make it harder to distinguish

8Trigger filter window is around 1200 ns.

150 Chapter 7. Simulations and Results

0 1 2 3 4 5 6
Layer

99.80

99.85

99.90

99.95

100.00

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency pp periodic 1 s strobe at high interaction rates

Periodic/Cont. 1 s - 1 MHz
Periodic/Trig. 1 s - 1 MHz
Periodic/Cont. 1 s - 2 MHz
Periodic/Trig. 1 s - 2 MHz
Periodic/Cont. 1 s - 5 MHz
Periodic/Trig. 1 s - 5 MHz

FIGURE 7.8: Pixel hit readout efficiency for ITS in pp simulations at high
interaction rates with a 1 µs periodic strobe. Note: The y-axis has been

truncated.

between the events in a readout frame. Pileup in Pb–Pb is shown in figs. 7.9 and 7.109.
The X-axis indicates the pileup count, i.e. the number of interaction events in a read-
out frame. Empty frames have a pileup of zero10.

When minimum-bias triggers are used, most frames contain just the one event
that they triggered on, and as expected there are no frames with a pileup of zero.
Around 20% of the frames have a pileup of two11 at 50 kHz and 100 kHz, but very
few frames have higher pileup than that. With the periodic triggers, however, there
is a significant amount of empty frames when the strobe is short, but not a lot of
pileup. The situation reverses with the longer strobes; empty frames are less likely in
those cases, but many frames will have higher values of pileup. At 50 kHz, shown in
fig. 7.9B, it is rare to see a pileup of more than three, regardless of triggering mode.
But at the higher interaction rates a higher value becomes more common, as shown
in the remaining figures.

7.2.3 Data Rates

The data produced by the detector is transferred and processed in several steps by
the readout electronics, CRU, and FLPs before being stored for later analysis. When
operating parameters are chosen for the detector, it might be necessary to consider
what data rates to expect to ensure that the experiment can process the data without
loss.

9This is based on data from the simulations, although technically the full simulation would not
have been necessary to estimate this. It is purely based on the time of an interaction, pulse shaping
time, strobe length and the time when the strobe is active.

10It should be noted that even though a readout frame for an individual chip may be empty, the
frame may be associated with an event for the detector as a whole, if the strobe for the frame happened
to coincide with the event.

11It might appear as though a pileup value of two is more common for minimum-bias triggers,
but the figures are a little misleading because of the high number of zero pileup frames for periodic
triggers.

7.2. ITS Simulation Results 151

0 1 2 3 4 5 6 7 8
Pileup

0.0%

20.0%

40.0%

60.0%

80.0%

Event pileup in readout frames - 50 kHz
Min-bias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(A) 50 kHz

0 1 2 3 4 5 6 7 8 9 10 11
Pileup

0.0%

20.0%

40.0%

60.0%

Event pileup in readout frames - 100 kHz
Min-bias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(B) 100 kHz

FIGURE 7.9: Pileup of events in readout frames for ITS in Pb–Pb simula-
tions [103].

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pileup

0.0%

20.0%

40.0%

60.0%

Event pileup in readout frames - 150 kHz
Min-bias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(A) 150 kHz

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pileup

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

Event pileup in readout frames - 200 kHz
Min-bias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(B) 200 kHz

FIGURE 7.10: Pileup of events in readout frames for ITS in Pb–Pb simu-
lations [103].

Average data rates were estimated based on the simulated data, on a per-link and
per stave basis. Data in this context is defined as CHIP HEADER and TRAILER words,
CHIP EMPTY FRAME, REGION HEADER, DATA SHORT, and DATA LONG words.
IDLE, BUSY ON, and BUSY OFF words are not included as they are stripped away
by the RU. The bandwidth of an ALPIDE data link is 960 Mbps or 320 Mbps, for IB or
OB, respectively, and the bandwidth of the links gives the theoretical upper limit of
the data rate. The margin between bandwidth and actual data rate is also interesting
to consider. It is closely tied to the detector’s efficiency, as a smaller margin will lead
to higher utilization of buffers and FIFOs in the ALPIDE chip.

Figure 7.11 shows the average data rate per ALPIDE data link for 100 kHz Pb–
Pb and 400 kHz pp, which is what the ITS is specified for. The horizontal red line
indicate the bandwidth of an IB data link (layers 0, 1, and 2), and the blue line shows
the bandwidth of an OB link (layers 3-6). The shaded area of the bars is the protocol
overhead associated with a frame, i.e. CHIP HEADER, CHIP TRAILER, and CHIP
EMPTY FRAME words, and the solid part is for for actual pixel hit data. For the outer
layers where the hit density is low, the protocol overhead accounts for a significant
portion of the data, in fact for pp there is more overhead than pixel hit data. A stave
covers ±2.5 units of pseudorapidity for the innermost layer, compared to only ±1.3

152 Chapter 7. Simulations and Results

0 1 2 3 4 5 6
Layer

100

101

102

103

D
at

a
ra

te
 [M

bp
s]

Average data rate per link 100 kHz PbPb
IB link capacity
OB link capacity
Minbias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us

Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(A) 100 kHz Pb–Pb

0 1 2 3 4 5 6
Layer

10 1

100

101

102

103

D
at

a
ra

te
 [M

bp
s]

Average data rate per link 400 kHz pp
IB link capacity
OB link capacity
Minbias/Trig. 100ns
Periodic/Trig. 5us
Periodic/Cont. 5us

Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(B) 400 kHz pp

FIGURE 7.11: Average data rate per link for ITS simulations. Note: The
y-axis is logarithmic and the range differs between the charts.

for the outermost layer [13], and the hit density varies with pseudorapidity as shown
in fig. 6.2. Since the data rate has been averaged over all links in a stave, this leads to
the error bars in fig. 7.11, which are most pronounced at the inner layers.

0 1 2 3 4 5 6
Layer

102

103

104

D
at

a
ra

te
 [M

bp
s]

Data rate per stave/RU 100 kHz PbPb
One GBT link
Two GBT links
Three GBT links
Minbias/Trig. 100ns
Periodic/Trig. 5us

Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(A) 100 kHz Pb–Pb

0 1 2 3 4 5 6
Layer

100

101

102

103

104

D
at

a
ra

te
 [M

bp
s]

Data rate per stave/RU 400 kHz pp
One GBT link
Two GBT links
Three GBT links
Minbias/Trig. 100ns
Periodic/Trig. 5us

Periodic/Cont. 5us
Periodic/Trig. 10us
Periodic/Cont. 10us
Periodic/Trig. 20us
Periodic/Cont. 20us

(B) 400 kHz pp

FIGURE 7.12: Total data rate per stave/RU for ITS simulations. Note:
The y-axis is logarithmic and the range differs between the charts.

The total data rate per stave is shown in fig. 7.12, and this is interesting to consider
because there is one RU per stave to process the data. Each RU has three 3.2 Gbps
GBT links that can be used for data transfer, and the plots indicate the horizontal lines
indicates the capacity of one, two, or three GBT links. For Pb–Pb at 100 kHz, periodic
triggering with 5 µs strobe surpasses the capacity of an individual GBT link for the
innermost layer, but in any other case it is sufficient with one. Using minimum-bias
triggers has the benefit of producing the least amount of data in most cases, with the
exception of periodic triggers with 20 µs strobe in the outer layers.

The results for pp are quite different. First, it should be noted that the amount
of data in the inner layers is more than an order of magnitude lower compared to
Pb–Pb, and the data rate is well within the capacity of one GBT link, under all cir-
cumstances. Minimum-bias triggering actually produces more data than the other
triggering modes when running pp. This is because the interaction rate is quite high
in pp, and the pulse-shaping time of the ALPIDE is relatively long, around 5 µs, and

7.3. FoCal Simulations and Results 153

as a consequence many events will be sampled more than once when minimum-bias
triggers are used.

Another key takeaway from all these figures is that the choice of continuous or
triggered mode, when used with periodic triggering, has practically no influence on
the amount of data that is produced by the detector. But the strobe length with peri-
odic triggers plays an important role; a longer strobe is much more efficient in terms
of the amount of data that is produced, since events are often sampled more than once
when short strobes are used.

A comparison of simulated data rates for the Pb–Pb simulations, both average per
link and stave totals, is shown in figs. 7.13 and 7.14, for the innermost layer and the
first of the outer layers.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

681.4 1839.4 1829.7 1371.0 1378.3 1126.6 1126.7

1688.8 3625.9 3613.9 2691.7 2681.9 2196.7 2202.0

2993.9 5311.5 5294.5 3943.3 3968.1 3248.1 3240.9

4494.4 6292.0 6257.4 5233.4 5240.5 4318.1 4317.5
1000

2000

3000

4000

5000

6000

M
ean data rate [M

bps] per stave - Layer 0

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

75.7 204.4 203.3 152.3 153.1 125.2 125.2

187.6 402.9 401.5 299.1 298.0 244.1 244.7

332.7 590.2 588.3 438.1 440.9 360.9 360.1

499.4 699.1 695.3 581.5 582.3 479.8 479.7
100

200

300

400

500

600

M
ean data rate [M

bps] per link - Layer 0

(B) Per link

FIGURE 7.13: Simulated data rates for Pb–Pb in layer 0 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

215.9 378.2 375.7 286.3 289.2 241.0 242.3

492.4 765.6 759.1 579.5 580.7 488.8 490.1

831.4 1149.1 1154.2 871.5 875.1 737.7 737.9

1205.0 1545.5 1550.5 1169.3 1172.2 990.2 991.1 400

600

800

1000

1200

1400

M
ean data rate [M

bps] per stave - Layer 3

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

13.5 23.6 23.5 17.9 18.1 15.1 15.1

30.8 47.8 47.4 36.2 36.3 30.5 30.6

52.0 71.8 72.1 54.5 54.7 46.1 46.1

75.3 96.6 96.9 73.1 73.3 61.9 61.9
20

30

40

50

60

70

80

90

M
ean data rate [M

bps] per link - Layer 3

(B) Per link

FIGURE 7.14: Simulated data rates for Pb–Pb in layer 3 of the ITS.

7.3 FoCal Simulations and Results

The FoCal detector is still in the early design stages. The simulations described here
were used to determine the feasibility of the ALPIDE chip for the two tracking layers,

154 Chapter 7. Simulations and Results

TABLE 7.2: Simulation setup for Pb–Pb and pp simulations of FoCal.

Event
type

Event
rates [kHz]

Number
of events

Trigger
mode

Trigger
period Chip mode Strobe

pp 200, 500, 1000 250 000 MB-trig N/A Triggered 100 ns
pp 200, 500, 1000 250 000 Periodic 10 µs, 20 µs Continuous 10 µs, 20 µs
pp 200, 500, 1000 250 000 Periodic 10 µs, 20 µs Triggered 10 µs, 20 µs

Pb—Pb 50, 100 10 000 MB-trig N/A Triggered 100 ns
Pb—Pb 50, 100 10 000 Periodic 10 µs, 20 µs Continuous 10 µs, 20 µs
Pb—Pb 50, 100 10 000 Periodic 10 µs, 20 µs Triggered 10 µs, 20 µs

from the perspective of readout capabilities. Concerns about event pileup were also
investigated with the simulations, and estimations of data rates should prove valu-
able for the collaboration to determine the number of FoCal staves that can be handled
by the three GBT-links of an RU. Some of these results were briefly summarized in the
Letter Of Intent (LOI) for the FoCal detector [99].

Table 7.2 summarizes the range of simulations that were performed. The proposed
detector layout, which was illustrated in figs. 6.17 and 6.18, consists of 3960 ALPIDE
chips in total, and was simulated in its entirety. As for the ITS simulations, the nom-
inal interaction rates for ALICE were simulated for pp and Pb–Pb, as well as higher
rates. The simulated triggering modes include minimum bias triggering, with the
same trigger filtering parameters as for the ITS, and periodic triggering at different
trigger rates for both chip modes (triggered and continuous). Because of limitations
of the MC events that were used as input to the model (see section 6.3.1), the event
generator of the SystemC model had to generate the actual pixel hits and clusters
based on information from the input events. The pixel clusters were generated for
each hit in the sensors using a 2D-Gaussian distribution, where the size of the cluster
(in terms of pixels) was µ = 2.5 and σ = 1 pixels. This is representative of measured
and simulated cluster sizes12 in the ALPIDE for Minimum Ionizing Particle (MIP)
particles and X-rays [104], [105].

7.3.1 Data Rates and Readout Efficiency

The proposed FoCal layout consists of ALPIDE chips in IB-mode surrounding the
beam pipe, and chips in OB-mode are used further out. The first OB chips are located
180 mm vertically from the gap, at the first patch consisting purely of OB-mode chips,
and horizontally at 240 mm from the gap in the OB-mode portion of the mixed IB/OB-
mode patches around the gap (refer to figs. 6.17 and 6.18).

12It should be noted that the actual cluster size depends on the threshold for the comparator in the
pixel amplifier chain, as well as the back-bias voltage.

7.3. FoCal Simulations and Results 155

Figures 7.15A and 7.15B shows average data rate per chip for a selection of the
simulations, both pp and Pb–Pb13. For all of the simulated pp cases, the data rate
per chip is not higher than 30 Mbit s−1 at 180 mm and beyond (keeping in mind that
one 320 Mbit data link is shared among 7 OB-mode chips in the mixed IB/OB-mode
staves, and shared among 5 chips in the pure OB-mode staves, of the proposed Fo-
Cal layout14). For the 50 kHz Pb–Pb simulations, however, the data rate is around
70 Mbit s−1 at 180 mm, and even higher at 100 kHz. This indicates that the link mar-
gin may be insufficient for the first chips in OB-mode. To achieve a higher margin it
may be desirable to use fewer OB chips per link for the mixed IB/OB stave.

It should be noted that the MC-simulated Pb–Pb input data for the SystemC model
had been generated with a slightly larger gap around the beam pipe, which is also
visible in the occupancy maps of fig. 6.20. This explains the dip in data rate for the
Pb–Pb simulations at 0 mm. But this discontinuity would presumably not be there if
the input data was generated with the correct gap size.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

 D
at

a
ra

te
 [M

bp
s]

200 kHz - Min-bias/Trig. 100 ns
200 kHz - Periodic/Trig. 10 us
500 kHz - Min-bias/Trig. 100 ns
500 kHz - Periodic/Trig. 10 us
 1 MHz - Min-bias/Trig. 100 ns
 1 MHz - Periodic/Trig. 10 us

200 kHz - Min-bias/Trig. 100 ns
200 kHz - Periodic/Trig. 10 us
500 kHz - Min-bias/Trig. 100 ns
500 kHz - Periodic/Trig. 10 us
 1 MHz - Min-bias/Trig. 100 ns
 1 MHz - Periodic/Trig. 10 us

Average data rate layer S1 - pp

(A) pp

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

350

400

 D
at

a
ra

te
 [M

bp
s]

 50 kHz - Min-bias/Trig. 100 ns
 50 kHz - Periodic/Trig. 10 us
 50 kHz - Periodic/Trig. 20 us
100 kHz - Min-bias/Trig. 100 ns
100 kHz - Periodic/Trig. 10 us
100 kHz - Periodic/Trig. 20 us

 50 kHz - Min-bias/Trig. 100 ns
 50 kHz - Periodic/Trig. 10 us
 50 kHz - Periodic/Trig. 20 us
100 kHz - Min-bias/Trig. 100 ns
100 kHz - Periodic/Trig. 10 us
100 kHz - Periodic/Trig. 20 us

Average data rate layer S1 - PbPb

(B) Pb–Pb

FIGURE 7.15: Average data rate (per chip) versus radius simulated for
FoCal. There is 30 mm between each data point (the width of the chip),
and each point indicates the average data rate for the chips between that
point and the next point. Note: The y-axis range differs between the

graphs.

The readout efficiency, in terms of readout frames, is shown for nominal interac-
tion rates in figs. 7.16A and 7.16B. These plots tell a similar story to those of the ITS
simulations. For Pb–Pb events it appears that the minimum-bias triggering scheme
has the best performance, but with pp events it appears to be the most inefficient (for
the innermost chips at least). This is even more evident in fig. 7.17A, which compares
minimum-bias and periodic triggering at different interaction rates for pp. And it is
interesting to note that the combination of periodic triggers and triggered mode in

1320 µs strobe was left out for pp, since those have the lowest data rate.
14On average the available capacity is 46 Mbit s−1 or 64 Mbit s−1 per OB-chip, depending on the

stave type.

156 Chapter 7. Simulations and Results

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.99

0.992

0.994

0.996

0.998

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 200 kHz pp

(A) pp @ 200 kHz

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 50 kHz PbPb

(B) Pb–Pb @ 50 kHz

FIGURE 7.16: Frame readout efficiency versus radius simulated for Fo-
Cal at nominal interaction rates for ALICE. Note: The y-axis has been

truncated and the range differs between the two graphs.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

200 kHz - Min-bias/Trig. 100 ns
200 kHz - Periodic/Trig. 10 us
500 kHz - Min-bias/Trig. 100 ns
500 kHz - Periodic/Trig. 10 us
 1 MHz - Min-bias/Trig. 100 ns
 1 MHz - Periodic/Trig. 10 us

200 kHz - Min-bias/Trig. 100 ns
200 kHz - Periodic/Trig. 10 us
500 kHz - Min-bias/Trig. 100 ns
500 kHz - Periodic/Trig. 10 us
 1 MHz - Min-bias/Trig. 100 ns
 1 MHz - Periodic/Trig. 10 us

Frame efficiency layer S1 - pp

(A) pp

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 E
ffi

ci
en

cy

 50 kHz - Min-bias/Trig. 100 ns
 50 kHz - Periodic/Trig. 10 us
 50 kHz - Periodic/Trig. 20 us
100 kHz - Min-bias/Trig. 100 ns
100 kHz - Periodic/Trig. 10 us
100 kHz - Periodic/Trig. 20 us

 50 kHz - Min-bias/Trig. 100 ns
 50 kHz - Periodic/Trig. 10 us
 50 kHz - Periodic/Trig. 20 us
100 kHz - Min-bias/Trig. 100 ns
100 kHz - Periodic/Trig. 10 us
100 kHz - Periodic/Trig. 20 us

Frame efficiency layer S1 - PbPb

(B) Pb–Pb

FIGURE 7.17: Frame readout efficiency versus radius simulated for Fo-
Cal. Note: The y-axis has been truncated and the range differs between

the two graphs.

the ALPIDE performs better than the combination of periodic triggers and continu-
ous mode. This can be seen for all the simulated cases in figs. 7.16 and 7.17, for both
pp and Pb–Pb. There were hints of this in the simulation results for the ITS, but in the
case of FoCal it is much more evident. In fact, for 200 kHz pp, triggered mode in the
ALPIDE with a 10 µs strobe performs about as well as continuous mode with a 20 µs
strobe (see fig. 7.16A).

The readout efficiency suffered a lot more in the Pb–Pb simulations. The worst effi-
ciency is seen for chips at 30 mm from the gap, but as mentioned before the input data
was generated with a too large gap, and one can assume that the chips at 0 mm have
even worse efficiency. As high as 96% is achieved at 30 mm with minimum-bias trig-
gering (but the efficiency for the innermost chips would likely drop below 90% with
the right gap size). Also worth noting is the decrease in efficiency at 180 mm where
the first chips in OB-mode are located. This is much better illustrated in fig. 7.18,

7.3. FoCal Simulations and Results 157

which clearly shows that the efficiency decreases where the OB-mode chips begin. It
may be necessary to consider if more ALPIDE sensors need to operate in IB-mode
in the proposed FoCal layout. But it should be noted that the efficiency for the first
OB-chips is still better than the worst case among the innermost IB-chips.

X [mm]
400− 300− 200− 100− 0 100 200 300 400

Y
 [m

m
]

400−

300−

200−

100−

0

100

200

300

400

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Frame readout efficiency - Layer S1

(A) 50 kHz

X [mm]
400− 300− 200− 100− 0 100 200 300 400

Y
 [m

m
]

400−

300−

200−

100−

0

100

200

300

400

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame readout efficiency - Layer S1

(B) 100 kHz

FIGURE 7.18: Map of frame readout efficiency for Pb–Pb simulations of
FoCal.

7.3.2 Pileup of Showers

Pileup of events in a readout frame causes challenges for analysis and reconstruction
of the events. For the range of pseudorapidity covered by the ITS, the tracks in the
data are traced back to a primary vertex15. In the case of pileup, the tracking and
vertexing algorithms in the experiment is able to locate secondary vertices for the ad-
ditional events, which makes it possible to distinguish between more than one event
in a readout frame.

The main purpose of the two layers of pixel sensor in the FoCal-E detector is to
provide improved position resolution to the energy measurements performed by the
low-granularity pad layers of FoCal-E and the detection of photon pairs from π0 de-
cays, which are suppressed to improve the measurement of direct photons [99]. The
pixel layers do not provide the same degree of tracking and vertexing as the ITS, so
pileup events can not be separated by looking for secondary vertices. Fortunately,
the pad layers of FoCal-E offer timing information accurate to 25 ns (compared to the
long integration time of the ALPIDE of ≈ 5 µs), which can help distinguish between
events in a pileup [99]. However, the pileup of shower events16 is still a concern. To

15An estimated origin point of the collision.
16An event with a large number of hits.

158 Chapter 7. Simulations and Results

(A) 50 hit threshold (B) 100 hit threshold

(C) 150 hit threshold (D) 200 hit threshold

FIGURE 7.19: Average pileup of shower events per readout frame in Fo-
Cal (for frames that contain at least one shower). Simulated for 500 kHz

pp.

resolve those it may be necessary to improve the timing accuracy of the pixel layers
by the use of a shorter strobe, e.g. 1 µs [99].

To estimate the pileup of showers, a definition of what constitutes a shower is
necessary. Since this information was not available in the input data to the SystemC
model, a best effort approach was to define the shower by a threshold in terms of
the number of hits per chip per event. Figure 7.19 shows the pileup of showers in
the detector, simulated17 for thresholds ranging from 50 to 200 hits with a 10 µs strobe
length, for 500 kHz pp. Note that events that were below the threshold were excluded

17This did not require a full simulation of the readout of the ALPIDE, and a simplified simulation
developed in ROOT was used instead of the SystemC model.

7.4. pCT Simulations and Results 159

from the calculation18, and the calculation was performed for each chip individu-
ally. Corresponding to fig. 7.19, the histograms of fig. 7.20 shows the distribution of
shower pileup of the chips at a distance of 70 mm from the beam pipe [99]. Assuming
the threshold of 50 hits, around 10% of the shower events would pileup in the same
readout frame when a 10 µs strobe is used. This is a relatively high ratio, and further
measures will be necessary to be able to distinguish between these events.

(A) 50 hit threshold (B) 100 hit threshold

FIGURE 7.20: Pileup of showers per readout frame in FoCal for 1 MHz
pp with a 10 µs strobe [99].

7.4 pCT Simulations and Results

The pCT detector will be used with a pencil beam which scans across the detector
plane in a raster pattern. With this continuous beam of particles there are no events
to trigger on and the data must be captured continuously. The triggering scheme
foreseen for the detector is based on periodic triggers distributed simultaneously to
the entire detector.

The simulations runs through a set of data from a MC simulation of a 230 MeV
pencil beam scanning across the detector.

18A clarification may be necessary: A readout frame containing one shower event has a pileup of
one in this calculation. If it contains two shower events, the pileup is two. Readout frames containing
no showers were excluded from the calculation. What is left is the average number of shower events
per readout frame, but only among the readout frames that contain at least one shower.

160 Chapter 7. Simulations and Results

In the simulation, the detector plane consisted of twelve IB-staves19 per layer.
Layers 0, 5, 10, 15, 20, 25, 30, 35, and 40, were simulated. Trigger rates of 200 kHz
(5 µs), 100 kHz (10 µs), 66.7 kHz (15 µs), 50 kHz (20 µs), and 33.3 kHz (30 µs) were sim-
ulated. The strobe length was 100 ns shorter than the trigger period in each case, and
each trigger rate was simulated for both the triggered and continuous modes of the
ALPIDE chip.

0 5 10 15 20 25 30 35 40
Layer

300

400

500

600

700

800

Da
ta

 ra
te

 [M
bp

s]

Peak data rate per link - 1E7 protons/second
5 us strobe
10 us strobe
15 us strobe
20 us strobe
30 us strobe

(A) Peak data rate per link

0 5 10 15 20 25 30 35 40
Layer

400

600

800

1000

1200

1400

1600

Da
ta

 ra
te

 [M
bp

s]

Data rate per layer - 1E7 protons/second
5 us strobe
10 us strobe
15 us strobe

20 us strobe
30 us strobe

(B) Average data rate per layer

FIGURE 7.21: Simulated data rates for the pCT detector in continuous
mode. The peak data rate (A) is the highest rate during a 10 µs interval,
and the average rate (B) is the average for the whole duration of the sim-
ulation. In both cases, the average of all links in a layer is shown, with
the error bar indicating the spread in values among the links. Note: The

y-axis has been truncated. [36]

As with the simulations for the ITS and FoCal, the goal was to determine data
rate and readout efficiency. But the pCT differs from those detectors in that the pRU
handles a much larger number of ALPIDE chips, and has a much lower bandwidth
than that of the ALPIDE data links combined. So, in the case of the pCT, an additional
requirement was to record how the data rate varies over time, not just the average and
total. But the data rate must be estimated over an interval, which was set to 100 µs for
all of these simulations.

Figure 7.21 shows the data rates that were estimated with the simulations, for the
different trigger rates (and strobe lengths) and at each layer20 that was simulated.
Only continuous mode is shown (triggered mode was omitted since the data rates
were almost identical). Interestingly, the average data rate per layer is not signifi-
cantly higher than the peak data rate per link21.

199 ALPIDE chips per IB-stave.
20For each layer of the pCT there will be only one pRU, which connects to all the ALPIDE chips of

its respective layer. But the term RU is used in the simulation and results, since the simulation model
was originally designed for the ITS.

21An average rate was calculated over each 10 µs interval per link, and the interval with the highest
average was chosen as the peak for that link. In the plot, the peak rates have been averaged again over

7.4. pCT Simulations and Results 161

Time [ms]
15.8 16 16.2 16.4 16.6 16.8 17 17.2 17.4

D
a

ta
 r

a
te

 [
M

b
p

s]

0

200

400

600

800

1000

1200

1400

1600
pRU Total
Link 0

Link 1

Link 2

Link 3

Link 4
Link 5

Data rate pRU layer 0

FIGURE 7.22: Data rate shown over time for the first layer of the pCT de-
tector, simulated in continuous mode with 5 µs strobe (only a part of the
full simulation is shown). A selection of ALPIDE data links are shown,
corresponding to the chips that the beam was focused on. The total for
the layer (RU total) is also shown, which is the sum of the individual
ALPIDE data links for the layer (there are more links than shown in the

figure that contribute to the total). [36]

But the result is not surprising. The pencil beam has a diameter of around 25 mm
and is typically focused on one (or a few) ALPIDE chips at a time. While that would
trigger a large number of pixels in that particular sensor chip, the other sensor chips
of the same layer would register few or no hits. Figure 7.22 shows this effect in action
for a select number of data links, as well as the total, for the first layer. In principle,
the beam should become less focused at deeper layers, because of straggling effects
and secondaries, but the simulated results in fig. 7.21 still showed a reduction in data
rate at deeper layers.

And finally, the readout efficiency is shown in fig. 7.23. In the case of the pCT,
this efficiency is reported in terms of actual pixel hits, instead of readout frames. For
each trigger, the vast majority of sensor chips will report an empty frame, with the
exception of the few chips that are in the vicinity of where the beam is focused. The
efficiency in terms of readout frames would be heavily skewed towards a high effi-
ciency, unless the frames were weighted based on the amount of data they contain.
Instead, this measure in terms of pixel hits gives an exact representation of how much
of the data is successfully read out.

all available links in the layer, and the error bars illustrate the variation in peak data rate between the
links of that layer.

162 Chapter 7. Simulations and Results

0 5 10 15 20 25 30 35 40
Layer

99.8250000

99.8500000

99.8750000

99.9000000

99.9250000

99.9500000

99.9750000

100.0000000

E
ffi

ci
en

cy
 [%

]

Pixel Hit Readout Efficiency 1E7 protons/second

Triggered 5 us strobe
Continuous 5 us strobe
Triggered 10 us strobe
Continuous 10 us strobe
Triggered 15 us strobe
Continuous 15 us strobe
Triggered 20 us strobe
Continuous 20 us strobe
Triggered 30 us strobe
Continuous 30 us strobe

FIGURE 7.23: Readout efficiency for the pCT in terms of pixel hits. Note:
The y-axis has been truncated and the range differs between the two

graphs. The efficiency is approximately 100% in every case.

To briefly summarize the results, it appears that the pCT should be able to op-
erate with a high efficiency when scanned with a pencil beam with an intensity
of 1× 107 particles per second and a scanning speed of around 100 m s−1 in the X-
direction. And while there is an observable difference in efficiency between the sim-
ulated parameters, the overall efficiency is quite good in either case; the worst case is
99.8%, for 5 µs trigger period and strobe, with the chip in continuous mode. The peak
data rate per layer is constrained by the capabilities of an individual ALPIDE chip,
and the pRUs should easily be able to cope with the incoming data. The bottleneck
for this detector will be the ALPIDE sensor itself, and not the external readout system.

As final remark for the pCT, it should be noted that the scanning direction in the
MC data (see figs. 6.23 and 6.25) runs perpendicular to the columns of the ALPIDE
chips in the SystemC-based simulation. An alternative would have been to run the
beam in parallel with the columns of the chip. This is more favorable for the Priority
Encoders and readout of pixel clusters in the chip (see appendix B.2), which operate
on a pairs of columns, and could lead to a reduction in the amount of data to read out.
However, it would not be a good utilization of the parallel architecture of the readout
circuit in the ALPIDE (see fig. B.8), and would likely lead to a reduction in the overall
readout speed and increase the chance of data loss (e.g. due to busy violations). The
parallel scanning direction has not been simulated.

163

Chapter 8

Conclusions

ALICE is an experiment at the LHC which main objective is to study QGP and other
open questions in QCD, primarily through collisions of lead nuclei (Pb–Pb). The per-
formance and capabilities of the experiment will be vastly expanded for Run 3 of the
LHC by the detector upgrades that are under installation in LS2. One of these up-
grades is of the ITS, which will be replaced in its entirety by a new system. The new
ITS, formally referred to as the ITS upgrade, is the topic of this thesis, and the main
focus is on the readout electronics for this new detector.

The new ITS is fully based on pixel sensors and is currently the largest detector of
its kind, with its ≈ 13× 109 pixels spread over an active area of 10 m2 [106]. Com-
pared to its predecessor it has improved tracking resolution and reduced material
budget. And it can handle a vast increase in interaction rates, making it ready for
the planned increase in luminosity of runs 3 and 4, which leads to a great increase in
data collection and improved statistics for the experiment. The core component of the
ITS, which makes this all possible, is the ALPIDE pixel sensor chip; a custom MAPS
chip implemented in the 180 nm TowerJazz CMOS imaging process, and developed
at CERN for the ALICE collaboration.

The combined bandwidth of the data links from the detector amounts to
1 497,6 Gbps1. The readout electronics for the ITS consists of 192 RUs, featuring high-
speed FPGAs, with the power and bandwidth to process and transmit the detector
data over optical links to a server farm. But the role of the RUs is not limited to read-
out; they are responsible for all communication with the detector, which includes
control and trigger distribution. The RUs are located a few meters from the IP in the
experiment and will be exposed to radiation. Consequently, radiation tolerance has
been an important concern during the design of the RU circuit board, and in the FPGA
designs for the RU.

Full-scale testing of the ITS detector upgrade started with the commissioning pe-
riod in May 2019. At that point the detector was being gradually assembled in a clean

1This is also the peak throughput of the detector, but the average throughput is significantly lower.

164 Chapter 8. Conclusions

room at CERN’s Meyrin site. In December 2020, it was disassembled and moved for
installation in the ALICE experiment at LHC point 2, which was completed on May
12, 2021.

8.1 Readout Electronics and FPGA Designs

The detector and readout electronics, along with the associated systems for power,
triggering, control and data readout, have been in continuous operation with data
taking2 throughout the commissioning period3. At this point the readout electronics
and FPGA designs allow for full operation of the detector, and meet the specifica-
tions for data readout, trigger rates, and other requirements. The FPGA designs have
been under active development during the commissioning, and these activities will
continue even after Run 3 of the LHC begins4.

Several irradiation campaigns of the readout electronics were performed to test
and characterize the radiation tolerance of the electronics, as well as to test and de-
velop mitigation strategies for the FPGA designs. These strategies are based primarily
on: TMR, with correction of important registers such as FSM state or WB configura-
tion registers; the use of ECC for memories and FIFOs; and the implementation of
configuration and blind scrubbing of the SRAM-based main FPGA, by the use of a
flash-based auxiliary FPGA and an external flash memory. Remote updates of the
configuration of the FPGAs is possible, with two redundant paths for the main FPGA:
a slow “fail-safe” path, and a fast path via the main FPGA itself5.

Control of the main FPGA, and indirectly the detector’s sensor chips and the sys-
tems that power them, is performed using the optical links of the RUs. But redun-
dancy is also offered here: a CAN interface allows for full control of the RU, and this
interface is actively used by the DCS system to monitor certain temperatures and volt-
ages. Also discussed in this thesis is a custom CAN controller and high-level protocol,
which were developed specifically for the main FPGA design of the RU.

The DCS system can also monitor internal temperatures and voltages in the sensor
chips. This is performed indirectly using the RUs’ GBT or CAN interfaces, in order to
access the control links to the sensor chips. But there is a critical limitation; the control
links are also used for triggering, which the control transactions for monitoring must
not interfere with. A solution to the problem is presented in this thesis; the Alpide

2Cosmic and test patterns as there are no beams available before LHC resumes operation.
3Partial operation of the detector started before it was fully assembled.
4Scheduled for March 2022.
5Requires the main FPGA to be configured and running already.

8.2. Simulations 165

Monitor6 module in the main FPGA design allows for autonomous monitoring of the
sensor chips, and synchronizes the control transactions with abort gaps in the LHC
fill pattern to guarantee that triggers are not blocked by its operation.

Radiation-tolerant CAN Controller

The CAN controller of the main FPGA design was designed to be fully CAN 2.0B
compliant. An extensive simulation test suite verifies the compliance, and also in-
cludes steps to test it against an existing CAN 2.0B compliant controller. And nat-
urally, hardware implementations of the controller in FPGAs have been tested with
commercial CAN hardware. It should be mentioned, however, that it has not yet been
verified against the Bosch VHDL Reference CAN framework, and the radiation tolerant
design has not been proven with a beam-test. But hopefully, these two issues will be
addressed in the future.

The project has been made publicly available, and is relatively well documented
and easy to use. The controller has several configurable options; for instance, not
all applications require radiation tolerance, and the TMR can be disabled to save re-
sources. The controller can be controlled via a simple direct interface, but an AXI-lite
bus interface is also available. Support for other bus-interfaces can easily be imple-
mented. Anyone who seeks to implement a CAN controller in the fabric of an FPGA
may find this project useful, and it should be especially suited for applications in ra-
diation environments, such as other physics experiments or space applications.

8.2 Simulations

The commissioning period has given valuable experience operating the detector with
test patterns and cosmic runs, but it has been without the beams of the LHC. Data tak-
ing of collisions in the experiment will subject the detector to a much higher load and
occupancy. But we are not left entirely in the blind. Extensive simulations have been
performed for the ITS, such as those described in this thesis. Several combinations of
running modes and parameters were simulated to predict readout efficiencies, data
rates, and expected pileup per frame. Our results predict that the detector should be
able to operate with a high efficiency at the LHC. This is especially true for pp-runs,
where the detector can run at much higher interaction rates than it was designed for.
Rates beyond the specifications should also be possible for Pb–Pb runs, although it
depends on some parameters such as the strobe length in this case.

6A proof of concept implementation is available for this module, but it has not been put into use in
the FPGA design yet.

166 Chapter 8. Conclusions

Furthermore, a dedicated busy system was deemed unnecessary for the detector,
based on the simulations and results described in this thesis. A clear benefit is a
reduction in the overall complexity of the system, as well as a lower cost of design
and manufacturing. Nevertheless, a concept for a possible implementation of a busy
system is introduced in appendix F. The BU in this system is based on the RU design,
and can be implemented with relative ease if the need should arise in the future.

Although the simulation model described in this thesis was intended for the ITS
originally, it has been successfully adapted and used for simulations of two other
ALPIDE-based detectors: the FoCal detector at ALICE and the pCT at UiB.

While FoCal was in the early conceptual stages, the simulation model was used
to provide early insights into the possibility of using the ALPIDE sensors for the sil-
icon tracking planes of the detector, and some of the layout and specification of the
tracking planes has been based on this work. The FoCal project was subsequently
approved by the LHC Experiments Committee (LHCC), and its development is in
progress. Additional adaptations and developments of the simulation model is un-
derway at UiB, to be able to facilitate the FoCal project with further simulations.

Similarly, for the pCT, the simulations demonstrated that the focused pencil beam
would primarily trigger pixels in one ALPIDE chip at a time. This effectively lim-
its the amount of the data the readout electronics has to cope with, and the simula-
tions also predict what beam intensities are suitable for the detector. In summary,
the SystemC-based simulation model of the ALPIDE has provided simulated perfor-
mance that has aided the design and development of three different detectors.

8.3 Outlook

The second long shutdown of the LHC has finally come to a conclusion after delays
due to the Covid-19 pandemic. Run 3 is scheduled for the spring of 2022, and the
experiments are now gearing up for data taking when operation of the LHC resumes.
At the end of October 2021, when the first stable beams of protons were circulating in
the LHC since the shutdown, data of the pp collisions in ALICE was captured by the
ITS and the events were successfully reconstructed.

Development of the next upgrades of the experiment are already in progress. A
planned replacement for the IB of the ITS is in the works. It is referred to as the
ITS3, and will have the individual pixel chips replaced with a large pixel sensor die of
unprecedented size, which has been thinned down to the point that it is flexible. The
sensor will be folded into a cylindrical shape around the beam pipe, allowing for an
even shorter distance to the collision point.

8.3. Outlook 167

The FoCal detector, which has been discussed in this thesis, is planned for Run 4.
Some of the development activities are taking place at UiB, such as design of the
sensor staves and readout electronics. This also includes further simulations based
on the work presented in this thesis.

169

Appendix A

List of Publications

A.1 Papers Published as First Author

1. “System simulations for the ALICE ITS detector upgrade”

Voigt Nesbo, Simon, Alme, Johan, Bonora, Matthias, et al.

EPJ Web Conf. vol. 245, 2020

DOI: 10.1051/epjconf/202024502011

2. “Implementation of a CANbus interface for the Detector Control System in the
ALICE ITS Upgrade”

Nesbo, Alme, Bonora, et al.

PoS, vol. TWEPP2019, 2020

DOI: 10.22323/1.370.0083

3. “Simulations of busy probabilities in the ALPIDE chip and the upgraded ALICE
ITS detector”

Nesbo, Alme, Bonora, et al.

PoS, vol. TWEPP-17, 2017

DOI: 10.22323/1.313.0147

A.2 Papers Published as Co-Author

1. “A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT”

Alme, Barnafoldi, Barthel, et al.

Frontiers in Physics, vol. 8, 2020

DOI: 10.3389/fphy.2020.568243

170 Appendix A. List of Publications

2. “External scrubber implementation for the ALICE ITS Readout Unit”

Ersdal1

PoS, vol. TWEPP2019, 2020

DOI: 10.22323/1.370.0136

3. “Development of Readout Electronics for a Digital Tracking Calorimeter”

Groettvik, Alme, Barthel, et al.

PoS, vol. TWEPP2019, 2020

DOI: 10.22323/1.370.0090

4. “A Radiation-Tolerant Readout System for the ALICE Inner Tracking System
Upgrade”

Schambach, Alme, Bonora, et al.

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings
(NSS/MIC), 2018

DOI: 10.1109/NSSMIC.2018.8824419

A.3 ALICE Collaboration Papers

196 ALICE collaboration publications with co-authorship as a collaboration member2.

1Because of a registration error only the first author is listed in the publication’s entry on the web-
site of the proceedings, although the co-authors were included in the header of the paper.

2Source: https://inspirehep.net/

https://inspirehep.net/

171

Appendix B

Internal Readout Logic of the ALPIDE

B.1 Pixel Front-End and Multi Event Buffer

The block diagram in fig. B.1 shows the content of a pixel cell in the ALPIDE. It con-
sists of the pixel diode, the analog front-end, and the digital Multi Event Buffer (MEB).
The STROBE signal is used to latch a hit into the current Hit Storage Latch. It is actually
a 3-line signal, STROBE[2:0], which acts as a one-hot write select signal for the three
pixel latches when the strobe is active. Likewise there is a 3-line MEMSEL[2:0] signal
which is used as to read from the latches. The STROBE[2:0] and MEMSEL[2:0] are
global signals which are distributed to all pixels in the ALPIDE, so the MEB of the
pixels operate in concert across the chip, essentially combining the 3-bit MEB of each
pixel into a large 3-event deep MEB for the entire pixel matrix of 1024× 512 pixels.

FIGURE B.1: Block diagram of ALPIDE pixel cell [26].

B.2 Priority Encoder

The priority encoder is a large asynchronous circuit of combinational logic. The cur-
rent pixel latch of each pixel in a double-column connects to the inputs of the encoder.

172 Appendix B. Internal Readout Logic of the ALPIDE

The output of the encoder is the first pixel address within the double column that has
a hit, or in other words, the first pixel that has a high or logical one stored in its regis-
ter. The addressing of pixels in the priority encoder is illustrated in fig. B.2A. Readout
and clustering of these pixels, as shown in fig. B.2B, is explained later in B.5.3. As an
address is read out from the priority encoder by the digital readout logic, the pixel
register that was read is cleared, and the priority encoder moves on to the next pixel
with a hit. The digital readout logic that reads addresses from the priority encoder
runs at 40 MHz, and hence has a clock period of 25 ns. Large combinational circuits
have long path delays, and 25 ns may not be sufficient time for the priority encoder
to update its output. Therefore the digital readout logic allows a minimum of two
clock periods, 50 ns, before reading out the priority encoder. The readout speed of
the priority encoder is configurable, with a fast setting of 50 ns, and a slow setting of
100 ns.

0

PR
IO

R
IT

Y
EN

C
O

D
ER

1

1023

23

4 5

67

1022

1021 1020

Pixel address out

(A) Addressing of double
columns. Pixels with hits
are read out by the priority
encoder in the specified order.

0

PR
IO

R
IT

Y
EN

C
O

D
ER

1

10

23

4 5

67

11

8 9

Pri. Enc. Output: [2, 4, 6, 7, 8, 9, 10]
First data word: [2, 4, 6, 7, 8, 9]
Second data word: [10]

0 0

10

1

1

1

0

1

1

10

"Base address"
of DATA LONG

Pixmap
bit 0

Pixmap
bit 1

Pixmap
bit 2

Pixmap
bit 3

Pixmap
bit 4

Pixmap
bit 5

Pixmap
bit 6

"Base address"
of next

DATA LONG

(B) Readout and clustering. Red pixels indicate hits. Pixel 2 is the
first hit, and forms the base address of a (DATA LONG) data word
(in yellow). A bitmap of the next seven pixels (i.e. pixels 3 to 9)
is included in the data word, and indicates which of those pixels
had hits. A new data word (in green) is started for pixel 10 since it

comes after the bitmap.

FIGURE B.2: Priority encoder and double column readout.

B.3. Data Link 173

B.3 Data Link

Data is transported off the chip with an LVDS interface provided by the HSDATA
pins1. The interface is referred to as pseudo-LVDS in the ALPIDE manual, because
the common mode voltage is 0.9 V 2 as opposed to 1.2 V which is the LVDS standard.
However the LVDS interface on the HSDATA pins is still compatible with commercial
LVDS receivers. The data is 10b8 encoded and transmitted with the LSB, and three
different bit rates3 are supported: 1200 Mbps, 600 Mbps, and 400 Mbps.

CHIP_
HEADER0

CHIP_
HEADER1

IDLE IDLE IDLEBUSY_ON
DATA_
LONG0

DATA_
LONG1

DATA_
LONG2

REGION_
HEADER0

REGION_
HEADER1

IDLE
REGION_
HEADER0

REGION_
HEADER1

IDLE
DATA_

SHORT0
DATA_

SHORT1
BUSY_OFF

CHIP_
TRAILER

IDLE IDLE

24 bits 24 bits 24 bits 24 bits 24 bits 24 bits 24 bits

FIGURE B.3: Alpide data stream example (IB), with IDLE padding illus-
trated.

The data format is listed in fig. B.5. IDLE words are transmitted when the chip is
idle or the next data word is not ready to transmit. After the chip has received a trigger
and is ready to transmit data, it will start with the CHIP HEADER data word. It will
then follow with a REGION HEADER word for the first region that has data, followed
by DATA SHORT and DATA LONG words until all the hits in that region has been
transmitted. This process is then repeated for every region that has data, and finally a
CHIP TRAILER word marks the end of the data frame. If no pixel hits were registered
for the event, the chip will transmit a CHIP EMPTY FRAME data word. The CHIP
EMPTY FRAME word replaces the CHIP HEADER and CHIP TRAILER combination.

CHIP_
HEADER0

CHIP_
HEADER1

BUSY_ON
DATA_
LONG0

DATA_
LONG1

DATA_
LONG2

REGION_
HEADER0

REGION_
HEADER1

REGION_
HEADER0

REGION_
HEADER1

DATA_
SHORT0

DATA_
SHORT1

BUSY_OFF
CHIP_

TRAILER

FIGURE B.4: Alpide data stream example (OB).

The IDLE words can be inserted anywhere during a data frame, with the limitation
that 16-bit and 24-bit data have to be transmitted in full and can not be broken up by
an IDLE word. IDLE words are inserted when the chip does not have another data
word ready, and is also used as “padding” 4, as shown in fig. B.3. In the same fashion
the chip may transmit BUSY ON and BUSY OFF data words during the data frame to
communicate changes in busy status as fast as possible.

1See the ALPIDE operations manual for a complete pin diagram [26].
2According to the manual the 0.9 V common mode voltage was chosen to lower power consump-

tion, and it simplified the design since it is half the supply voltage of 1.8 V.
3The bit rates listed here are with 8b10 encoding. Corresponding bit rates without encoding: 960

Mbps, 480 Mbps, 320 Mbps.
4When operating at 1200 Mbps and 600 Mbps, the chip will process 24 bits at a time. Data words

smaller than 24 bits will be padded with the necessary number of IDLE words to add up to 24 bits.

174 Appendix B. Internal Readout Logic of the ALPIDE

0 7

1 1 1 1 1 1 1 1IDLE

0 7

1 1 1 1 0 0 0 1BUSY ON

0 7

1 1 1 1 0 0 0 0BUSY OFF

0 3 4 7 8 15

1 1 1 0 Chip ID [3:0] Bunch counter [10:3]CHIP EMPTY FRAME

0 3 4 7 8 15

1 0 1 0 Chip ID [3:0] Bunch counter [10:3]CHIP HEADER

0 3 4 7

1 0 1 1 RO Flags [3:0]CHIP TRAILER

0 2 3 7

1 1 0 Region ID [4:0]REGION HEADER

0 1 2 5 6 15

0 1
Encoder ID

[3:0] Address [9:0]DATA SHORT

0 1 2 5 6 15 16 17 23

0 0
Encoder ID

[3:0] Address [9:0] 0 Hit map [6:0]DATA LONG

FIGURE B.5: ALPIDE data words. The data word type identifier field is
shaded.

0 1 2 3

Busy violation Flushed incomplete Strobe extended Busy transitionRO Flags [3:0]

1 0 0 0Busy violation

0 X X XReadout frame

1 1 0 0Data overrrun

1 1 1 0Fatal

FIGURE B.6: ALPIDE CHIP TRAILER readout flag definitions, and spe-
cial combinations of flags.

B.4. Control Link and Trigger Input 175

B.4 Control Link and Trigger Input

The ALPIDE chips are controlled using the differential DCTRL port5. The control
interface is a half-duplex, bidirectional multi-drop bus which operates at 40 MHz,
synchronous to the chips’ clock input. The chips use Manchester encoding by default
in order to maintain DC balance, and also support Manchester encoded input from
the RU.

The idle state of the bus is logic 1, and a low start bit initiates a transaction. Trans-
actions are composed of sequences of 10-bit characters, where each character consists
of the low start bit, followed by eight data bits, and ending with a high stop bit. Se-
quences of characters can be transmitted with no gap between the characters, but a
gap of up to 42 cycles is possible before the chip interprets the transaction as aborted.

B.4.1 Control Protocol

At the protocol level, transactions are initiated by transmission of one of the possi-
ble opcodes listed in table B.1. The opcodes are one character long, and may take
additional arguments.

A read command takes four characters to initiate: RDOP, Chip ID, and two char-
acters for the 16-bit address of the register to read. After a bus turnaround phase, the
chip responds with three characters: the Chip ID, followed by two characters for the
16-bit data.

A write command takes six characters to initiate; WROP; Chip ID; two characters
for the 16-bit register address; and finally two characters for the 16-bit data to write.
The chip does respond to write commands. The write commands can be unicast or
multicast. The same WROP opcode is used in either case, but a special MULTICAST
Chip ID is used for multicast. Two multicast Chip IDs are defined; GLOBAL BROAD-
CAST, binary 00001111, which is received by all chips; OB MULTICAST, where the 3
LSBs of the ID is 111, and the remaining bits address a specific module in an OB stave,
allowing the write command to be broadcast to all the chips in that module only 6.

5The RU controls the IB and OB-master chips using the differential DCTRL port, and the OB-master
forwards control transactions to the OB-slave chips on a single-ended CTRL port/pin.

6In the late development stages of the ITS, after production of the ALPIDE chips and staves had
begun, it was discovered that the chips would erroneously interpret IB chip ID 7 as a broadcast mes-
sage. Any write to chip number seven in an IB stave would effectively be broadcasted to the whole
stave. This is rather unforunate, since any chip-specific settings (such as the pixel mask) will then have
to be written to chip ID 7 first, and then these “broadcast” writes have to be undone individually for
the remaining eight chips in the IB stave.

176 Appendix B. Internal Readout Logic of the ALPIDE

TABLE B.1: ALPIDE control bus opcodes. Reproduced from Alpide Op-
erations Manual [26].

Opcode Hex value Purpose
TRIGGER B1 Trigger command
TRIGGER 55 Trigger command
TRIGGER C9 Trigger command
TRIGGER 2D Trigger command
GRST D2 Chip global reset
PRST E4 Pixel matrix reset
PULSE 78 Pixel matrix pulse
BCRST 36 Bunch Counter reset
DEBUG AA Sample state in shadow registers
RORST 63 Readout (RRU/TRU/DMU) reset
WROP 9C Start Unicast or Multicast Write
RDOP 4E Start Unicast Read

The remaining opcodes are all broadcasted. The function performed by the op-
codes GRST, PRST, PULSE, BCRST, DEBUG, and RORST, can be performed individ-
ually for a chip as well by a unicast write to the chip’s command register.

The control signal from the RU connects to every chip in the ITS IB. But as we
shall see later, the OB consists of a number of half-modules of seven chips, where
one chip acts as a master, and the remaining six are slaves. The control signal from
the RU only connects to DCTRL on the master chips in the OB. The master chip then
forwards communication to and from the RU to the slave chips via the single-ended
CTRL port.

B.4.2 Trigger Input

The ALPIDE chip does not have a dedicated IO pin for trigger input; it is communi-
cated serially over the DCTRL input. At a first glance this may appear like a very slow
way of distributing the trigger, since a standard six character multicast write takes 50
clock cycles (1250 ns) to execute. Which, of course, would beat the purpose of the new
low-latency LM trigger signal used for ITS. Fortunately this is not the case. There are
dedicated OPCODEs for triggers, and the chip features a fast trigger decoding logic
in the Control Management Unit (CMU). The trigger word is detected after the first
two LSBs of the OPCODE. This adds up to three clock cycles, or 75 ns, to decode the
trigger OPCODE; one cycle for the start bit, and then the two LSBs.

B.5. Digital Readout Circuitry 177

B.5 Digital Readout Circuitry

Framing and readout of events is performed by several submodules in the ALPIDE
chip, as illustrated in fig. B.7.

FIGURE B.7: Overview of readout architecture in the ALPIDE chip [98].

B.5.1 Frame and ReadOut Management Unit (FROMU)

The FROMU is the main module that controls the framing and readout in the chip,
and keeps track of which buffers of the MEB are in use. When it receives a trigger
input it initiates a strobe interval, and controls which MEB the hits are latched into.
The chip has a 12-bit Bunch Crossing (BC) which wraps around at the value 3563,
which corresponds to the number of bunches in one LHC orbit. Information about
each trigger, such as the eight MSBs of the aforementioned BC counter, and flags to
indicate busy status during the strobe interval, are stored in the two frame FIFOs7.
These FIFOs are later used by the TRU to create frames of pixel hit data. It is also the
responsibility of the FROMU to initiate readout of the MEB.

7One FIFO stores the BC counter when the strobe window opens, and the other FIFO stores the
busy flags when the strobe window closes.

178 Appendix B. Internal Readout Logic of the ALPIDE

B.5.2 Busy Management Unit (BMU)

The chip will be in a busy state depending on MEB occupancy, or if the frame FIFO
reaches a high level. The Busy Management Unit (BMU) receives input from the
FROMU on changes in busy status, and communicates changes in busy status via
the chip’s serial data output. The BUSY ON and BUSY OFF data words are used for
this, and these data words are placed by the BMU in a special busy FIFO which has
priority over the data FIFO. For a chip in IB mode the busy input comes solely from
the FROMU, but this is not the case for chips in OB mode. It was mentioned earlier
that the OB slave chips share one local data bus to the OB master chip. Busy status
should be communicated quickly, so the slave chips should not have to wait for their
turn on the local data bus. Instead there is a shared busy signal with pull-up in the OB
half-module, which the OB slave chips can pull low to indicate when they are busy.
The BMU of the OB master chip monitor this line and determine a busy status for the
entire OB half-module, and transmits the changes in busy status.

B.5.3 Region Readout Unit (RRU)

The RRU is responsible for readout of pixels from its region in the pixel matrix into a
region FIFO, clustering of pixel hits into DATA LONG words, and control of readout
from its own region FIFO. These tasks are performed by three FSMs:

• Region readout and clustering FSM

• Region valid FSM

• Region header FSM

Readout and Clustering

The readout and clustering FSM receives a signal from the FROMU when an event
buffer is ready to be read out. It then reads out pixel hits from the priority encoders
in its region in a round robin fashion, and creates clusters for neighboring hits. The
pixel hit data that is read out is placed in a region FIFO which is 128 entries deep, and
has a width of 24 bits. As pixel hits are read out they are stored as 24-bit DATA LONG
words in the region FIFO. The first pixel hit sets the base pixel address in the data
word, and if the following pixel hits are among the next seven addresses of the first
hit, they are included in the same DATA LONG word with corresponding bits in the
hitmap. This is a simple clustering algorithm that allows the region FIFO to be used
more efficiently, and also reduces the amount of data to transmit off the chip. DATA
LONG words that only contain one hit are translated into 16-bit DATA SHORT words

B.5. Digital Readout Circuitry 179

when they are read from the FIFO. For OB chips this will further reduce the data to
transmit on the local bus between the chips, and on the differential data output of the
master chip. For IB chips it does not make a difference because the chip processes 24
bits to transmit as a time, and does not break up data words. 8-bit IDLE words are
transmitted for the remaining bits.

When there is no more data to be read out from the priority encoders, the FSM
places a REGION TRAILER 8 data word in the FIFO. This is a special data word that
serves to delimit events in the region FIFO, and its presence at the FIFO’s output is
also used to indicate when an event is empty or has been fully read out from a region.
The REGION TRAILER word is only 8 bits, but the whole data word is triplicated
in the FIFO to fill the entire 24 bits. This particular data word is then triple-voted to
protect it from SEU effects. It may seem counterintuitive to only have SEU protection
for this delimiter word and not the data words. However it should be possible to
recover from corrupted data with protocol checkers in the RU and further upstream.
But it is extra important to avoid corruption of the REGION TRAILER word since it
is used as a delimiter. Errors in this data word could cause the chip to lose track of
which trigger the data in the region FIFO belongs to.

1

2

. . .

.
.

.

Region 1

Region 2

Region 32

.
.

.

BUSY

BUSY
(RO ABORT)

BUSY
(FATAL)

Frame info in
(one entry per trigger)

Frame info out

BUSY when:

Frame FIFO

Region FIFO

Data out

. . .1 2 3 128RRU

MUX TRU 1 2 3

2 MEB full (continuous mode)
3 MEB full (triggered mode)

64616059585756555453525150494847 62 631

. . .1 2 3 128RRU

. . .1 2 3 128RRU

3

3 bit MEB
per pixel

1
3

2

Frame FIFO:

Keeps track of event ID and busy status for
each event
One entry per trigger

FATAL mode:

Frame FIFO overflowed
All future events marked fatal until reset.

RO ABORT mode:

Frame FIFO overflow prevention
All event data flushed until Frame FIFO goes
below BUSY watermark
Empty data frames transmitted

Pi
xe

l m
at

rix
 w

ith
 3

 (M
EB

) s
lic

es

4

FIGURE B.8: Simplified illustration of the readout from the MEB and
region FIFOs in the ALPIDE chip [97].

8Note that this data word is only used internally in the RRU, and will never appear on the output
data stream from the chip.

180 Appendix B. Internal Readout Logic of the ALPIDE

Region Valid

A region valid signal indicates that the region has more data to be read out for the
current event. The status of this signal is controlled by a dedicated FSM which mon-
itors the output of the region FIFO, and outputs the valid signal as long as the next
word is not a REGION TRAILER. Eventually as an event has been fully read out, the
REGION TRAILER word should be the next word in the FIFO in all the regions. At
this point all the RRUs will be instructed to pop the REGION TRAILER word, and
prepare for the next event.

Region Header

A simple two-state FSM controls whether the RRU should output data from its FIFO,
or a REGION HEADER word. In principle the REGION HEADER word could have
been placed as entries in the region FIFO. But since the REGION HEADER word is
essentially constant for a given region, ie. it does not differ between events, precious
storage space in the region FIFO is saved by outputting it this way. One could also
argue that this approach protects the REGION HEADER word from corruption due
to SEEs.

B.5.4 Top Readout Unit (TRU)

Readout from the FIFOs of the RRUs and framing of the data is performed by the
TRU. The frame FIFOs are part of the TRU. As mentioned earlier, the FROMU places
an entry with the eight MSBs of the internal BC counter into the frame start FIFO9,
at the beginning of a strobe interval. When the strobe interval comes to an end, a
corresponding entry with some status bits for the strobe is placed in the frame end
FIFO. The TRU waits for the end FIFO to contain an entry, which indicates that there
is an event to read out. Then it proceeds to pop a word from the start FIFO, and
outputs the BC ID with either a CHIP HEADER or CHIP EMPTY FRAME data word,
depending on whether the event is empty or not. If there is data to read out, the TRU
will start reading from the RRUs, one at a time, and finally end with a CHIP TRAILER
data word. At the end of the frame, the end FIFO is popped, and the status bits from
this FIFO is included in the CHIP TRAILER or CHIP EMPTY FRAME words.

9There is a frame start FIFO and a frame end FIFO, collectively referred to as the frame FIFO in this
text.

B.5. Digital Readout Circuitry 181

B.5.5 Data Management Unit (DMU)

The primary responsibility of the Data Management Unit (DMU) is to multiplex be-
tween different sources of data. The connections to and from the DMU are indicated
in fig. B.7.

For the OB master and IB chips the data is forwarded to the DTU for transmission
off the stave. The different sources of data include: the busy FIFO from the BMU;
data coming from the TRU in the case of OB master and IB chips; data received by OB
master chips on the local parallel bus.

Slave chips in the OB output their data on the local parallel bus using the DMU,
and do not use the DTU and serial link. The OB master chip receives the data from
the slaves via the DMU, and forwards this data to the DTU. The chips have internal
pullup resistors on the DATA[7:0] pins for the local bus, and access to the bus is co-
ordinated by a “virtual token”. The order in which the chips access the bus has to be
configured in the chips, and the chips monitor the bus to know when it is their turn,
by inspecting the Chip ID which is included in CHIP HEADER and CHIP EMPTY
FRAME words (fig. B.5). In this way the token order can be set up to skip a chip if
necessary. This may be useful in the event that one chip has died and became unre-
sponsive on the local bus, because in this scenario the next chip would wait forever
for the previous chip to finish its access.

B.5.6 Data Transmission Unit (DTU)

The DTU is responsible for serialization of data and transmission off the chip on the
HSDATA pins for the high-speed differential serial interface. The DTU is a custom de-
sign for the ALPIDE chip, and consists of a Double Data Rate (DDR) serializer, a Phase
Locked Loop (PLL), and differential output driver. The PLL generates a 600 MHz
clock from the 40 MHz reference clock, which is used to drive the shift registers for
the serializer and the output stage. 30 bits of 8b10-encoded data are received by the
DTU every 40 MHz clock cycle. Even and odd bits from the sequence are run through
two shift registers at 600 MHz, and bits from the two shift registers are multiplexed
on rising and falling clock edges to achieve the DDR output. This adds up to the bit
rate of 2 bits× 600 MHz = 30 bits× 40 MHz = 1200 Mbps.

Data output at 600 Mbps and 400 Mbps is achieved by simply repeating each bit
two times, or three times, respectively. The DTU clock still runs at 600 MHz in any
case.

There is a separate module for control of the DTU, the Data Transmission Unit
Logic (DTUL), which is not clearly indicated in fig. B.7. The DTUL works as a layer
between the DTU and DMU, as illustrated in fig. B.10 from the ALPIDE manual. The

182 Appendix B. Internal Readout Logic of the ALPIDE

FIGURE B.9: Simplified schematics of the DTU in the ALPIDE [108].

DTUL implements the 8b10 encoding, and feeds the DTU with the 30 bits of 8b10
encoded data every 40 MHz clock cycle.

FIGURE B.10: Block diagram of the DTU and DTUL in the ALPIDE [26].

183

Appendix C

Protocols for Trigger, Readout, and
Control over GBT

This appendix outlines the different protocols used by the RUs on the GBT links. This
includes the protocols that allow for communication between the RUs and CRUs, and
also the trigger protocol between the CTP/LTUs and the RUs. This includes protocol
words that are used for control, as well as the protocol words and data formats to
implement transmission of sensor data from the FEEs to the FLPs via the CRUs.

C.1 GBT Frames

The base GBT frame (table C.1) consists of 120 bits, of which 80 bits are for payload
data. A 32-bit Focused Error Correction (FEC) accounts for most of the other 40 bits.
Of the remaining bits there are four bits dedicated for slow control, of which two are for
communication with the GBT-SCA chip, and a four bit header field. The header bits
are used for synchronization and for identification of a frame as either an idle frame
or a data frame. The latter is indicated with a DATA_VALID bit which is supplied with
the 80 bits of payload data [44].

TABLE C.1: GBT frame format [44].

B range Field Name Field Width Description
119:116 H 4 Header
115:114 IC 2 Internal Control
113:112 EC 2 External Control (for GBT-SCA
111:32 D 80 Payload data

31:0 FEC 32 Focused Error Correction (FEC)

184 Appendix C. Protocols for Trigger, Readout, and Control over GBT

C.2 Heartbeat Triggers and Frames

The LS2 upgrades of the ALICE trigger system introduces the concept of HB triggers
and frames. The time of a heartbeat corresponds to the orbit time in the LHC, which
is 88.924 µs [28]. The HBs are sent periodically from the CTP, either “directly” to
the detector front-ends via the LTU, or more indirectly via the FLPs and CRUs. The
heartbeats serve a dual purpose:

• Framing of data into HeartBeat Frames (HBFs) by the CRUs. The HBF consists
of data from triggers delimited by two HB.

• The periodic triggers in continuous mode are derived from the HBs. For the ITS
the triggers to the ALPIDE chips are generated by the readout electronics based
on the HBs, as shown in fig. C.1. The HB period should be a multiple of the
trigger period.

HBF1 HBF2 HBF3 HBF4 HBF5

HBF1 HBF2 HBF3 HBF4 HBF5

1 LHC orbit
88.924 µs

Hearbeat triggers

ALPIDE triggers

Hearbeat frame transfer

Heartbeat acknowledge

ALPIDE strobes

Rejected
heartbeat

FIGURE C.1: Heartbeat triggers and frames, and continuous triggers for
ITS.

The HBs are sent in both continuous and triggered mode, and HBFs are used to
delimit data regardless of mode. In triggered mode, however, the CTP issues physics
triggers to the RUs, which forward the triggers to the sensor chips with a minimal
delay (only HB triggers are shown in fig. C.1). These triggers are independent of HBs,
but as mentioned they are still associated with a HBF based on which two HBs they
fall in-between.

For each HBF, the CRUs sends a HB acknowledge to the CTP to indicate if the
HBF was successfully read out. The CTP pieces together this information in a HB map

C.3. CTP/LTU Protocols 185

for the entire detector. There is a basic throttling mechanism in place to reduce the
trigger rate in the case where the overall data quality suffers from too many missing
HBFs. Based on the quality of the HB map, the CTP makes a decision of whether the
detector should capture data for the next HB or not. A HB trigger is always sent from
the CTP on each orbit, but a HB accept/reject flag in the HB trigger message indicates
if the front-end electronics should accept the HB and capture data [28]. This is also
illustrated in fig. C.1.

C.3 CTP/LTU Protocols

Table C.2 shows the format of the trigger messages that the LTU or CTP transmits
over GBT. The additional DATA_VALID bit of a GBT message is referred to as TTValid
in this context, and indicates if the TType (trigger type) field is valid [109]. The orbit
and BC fields are always valid, and the trigger level field is used by detectors which
employ a two-level trigger scheme (the ITS uses a one-level trigger scheme, i.e. the
LM trigger) [110].

The trigger type field (TType) is 32 bits wide, and the meaning of the different
TType bits is explained in table C.3. Note that the different trigger bits are not mutu-
ally exclusive; combinations of bits are possible.

TABLE C.2: Trigger message over GBT. [110]

GBT Payload bit range Field Name Field Width
79:48 ORBIT 32
47:44 Trigger level / spare 4
43:32 BCID 12
31:0 TType (Trigger type) 32

186 Appendix C. Protocols for Trigger, Readout, and Control over GBT

TABLE C.3: Trigger Type (TType) bits. [110]

Bit Name Comment
0 ORBIT ORBIT
1 HB Heart Beat flag
2 HBr Heart Beat reject flag
3 HC Health Check
4 PhT Physics Trigger
5 PP Pre-Pulse for calibration
6 Cal Calibration trigger
7 SOT Start of Triggered data
8 EOT End of Triggered data
9 SOC Start of Continuous data

10 EOC End of Continuous data
... ... Spare
29 TPCsync TPC synchronization
30 TPCrst TPC reset
31 TOF TOF special trigger

C.4 CRU Control Words

The CRU protocol uses the DATA_VALID field of the GBT frame to distinguish be-
tween “control word” frames (DATA_VALID=0) and data frames (DATA_VALID=1).
The four MSBs of the payload data are used to denote the type of control word when
DATA_VALID is zero [109]. The control words that have been implemented are listed
in tables tables C.4 to C.7.

Idle words are transmitted over GBT when there are no other control words or
data words to send. The SWT transactions are used by the ITS RU for control. And
finally, the SOP and EOP are used to delimit data frames that are transmitted from
the RU to the CRU. Sensor data is transmitted with DATA_VALID=1 in GBT frames
between the SOP and EOP control words using the RDH format [109].

Additionally, the protocol allows control words to be transmitted between the SOP
and EOP words, since their DATA_VALID bit is zero they can easily be distinguished
from the sensor data.

C.5. CRU Data Words 187

C.4.1 Idle Control Word

TABLE C.4: CRU Idle Control Word. [109]

Bit range Field name Description
79:76 Control code “0000” for IDLE

75:0 Reserved Not used

C.4.2 Start Of Packet (SOP) Control Word

TABLE C.5: CRU SOP Control Word. [109]

Bit range Field name Description
79:76 Control code “0001” for SOP
75:60 Length Length of packet
59:44 TTS busy Busy information bits

43:0 Reserved Not used

C.4.3 End Of Packet (EOP) Control Word

TABLE C.6: CRU EOP Control Word. [109]

Bit range Field name Description
79:76 Control code “0010” for EOP
75:60 Length Length of packet
59:28 Checksum Checksum of packet
27:27 End flag End of packet flag (’1’ = yes, ’0’ = no)

43:0 Reserved Not used

C.4.4 Single Word Transaction (SWT) Control Word

TABLE C.7: CRU SWT Control Word. [109]

Bit range Field name Description
79:76 Control code “0011” for SWT

75:0 Parameters Detector/implementation specific parameters

C.5 CRU Data Words

Blocks of data from the FEEs are transmitted using the RDH format defined for ALICE
in Run 3. The format consists of RDH itself followed by a block of data. The RDH
contains information such as: FEE ID; trigger, orbit and bunch crossing IDs; and size

188 Appendix C. Protocols for Trigger, Readout, and Control over GBT

of the data block. The data size can be zero, in which case there is no data block
following the RDH.

RDHv6 Format over GBT from FEE to CRU

For FEEs that communicate to the CRU via GBT, such as the ITS RU, the RDH is
transmitted as a sequence of four 80-bit GBT words.

08163340486479

OFFSET NEW PACKET [79:64] RESERVED [63:48] SYSTEM ID
[47:40]

PRIORITY BIT
[39:32] FEE ID [31:16] HEADER SIZE

[15:8]
HEADER

VERSION [7:0]GBT word #1
{

11316379

RESERVED [79:64] ORBIT [63:32] RESERVED [31:12] BC [11:0]GBT word #2

{

31475579

RESERVED [79:56] STOP BIT [55:48] PAGES COUNTER [47:32] TRIG TYPE [31:0]GBT word #3

{

314779

RESERVED [79:48] PAR BIT [47:32] DETECTOR FIELD [31:0]GBT word #4

{

FIGURE C.2: RDH version 6 for GBT, sent from FEE to CRU. [111]

Each 80-bit GBT word maps to a 64-bit RDH word in the FLP. The upper sixteen
bits of the GBT words are reserved and should always be zero, as they are not used.

C.5. CRU Data Words 189

RDH Format from CRU to FLP

648096104112124127

DW1

[127:124]
CRU ID [123:112] PKT CNT2 [111:104] LINK ID [103:96] MEMORY SIZE [95:80] OFFSET NEW PACKET [79:64]

081632404863

RESERVED [63:48] SYSTEM ID [47:40] PRIORITY BIT
[39:32] FEE ID [31:16] HEADER SIZE [15:8] HEADER VERSION

[7:0]

Word #0

64127

RESERVED [127:64]

0123263

ORBIT [63:32] RESERVED [31:12] BC [11:0]

Word #1

64127

RESERVED [127:64]

032485663

RESERVED [63:56] STOP BIT [55:48] PAGES COUNTER [47:32] TRG TYPE [31:0]

Word #2

64127

RESERVED [127:64]

0324863

RESERVED [63:48] PAR BIT [47:32] DETECTOR FIELD [31:0]

Word #3

FIGURE C.3: RDH version 6 in the CRU, padded and converted to fit
128-bit words. [111]

190 Appendix C. Protocols for Trigger, Readout, and Control over GBT

RDH Format in FLP Memory

078151631

FEE ID [31:16] HEADER SIZE [15:8] HEADER VERSION [7:0]Word #0

{

078151631

RESERVED [31:16] SYSTEM ID [15:8] PRIORITY BIT [7:0]Word #1

{

0151631

MEMORY SIZE [31:16] OFFSET NEW PACKET [15:0]Word #2

{

0781516272831

DW3 [31:28] CRU ID [27:16] PACKET COUNTER [15:8] LINK ID [7:0]Word #3

{

0111231

RESERVED [31:12] BC [11:0]Word #4

{

031

ORBIT [31:0]Word #5

{

031

RESERVED [31:0]Word #6

{

031

RESERVED [31:0]Word #7

{

031

TRG TYPE [31:0]Word #8

{

01516232431

RESERVED [31:24] STOP BIT [23:16] PAGES COUNTER [15:0]Word #9

{

031

RESERVED [31:0]Word #10

{

031

RESERVED [31:0]Word #11

{

031

DETECTOR FIELD [31:0]Word #12

{

0151631

RESERVED [31:16] PAR BIT [15:0]Word #13

{

031

RESERVED [31:0]Word #14

{

031

RESERVED [31:0]Word #15

{

FIGURE C.4: RDH version 6 in the FLP memory, stored as 32-bit words.
[111]

191

Appendix D

SystemC-based Simulation Model for
ALPIDE and ITS

The source for the simulation is available in this git repository:
https://github.com/svnesbo/alpide_its_sim.git

The readme file has instructions on how to build project and how it is used. The
compiled binary can be run directly from the top-level directory of the project:

$ bin/alpide_its_sim --help

Running the program with the –help or -h parameter will list available command-
line parameters. If no parameters are supplied the simulation will start automatically
using settings from config/settings.txt (if the file does not exists it is created with default
settings), and will create a run_X directory under sim_output/ (where X is increased
for each simulation run). A copy of the settings that were used for a simulation run is
stored in its directory.

A custom settings file can be specified with the –config or –cfg parameter, and the
output directory can be changed with the –output_dir_prefix or -o parameter:

$ bin/alpide_its_sim -c my_settings.txt -o my_sim_output_dir/

Many of the available settings (listed in the next section) can be overridden on the
command-line. Refer to the help options for more details.

D.1 Configurable Settings

Simulation settings for the SystemC simulation model are configured in a settings file.
The file uses the standard .ini file format. An excerpt of a example settings file for the
simulation is shown in listing D.1. The tables at the end of this appendix contains a
full list of available settings.

https://github.com/svnesbo/alpide_its_sim.git

192 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

LISTING D.1: Excerpt of example settings file for the simulation.

[alpide]

chip_continuous_mode=false

data_long_enable=true

dtu_delay=10

matrix_readout_speed_fast=true

minimum_busy_cycles=8

pixel_shaping_active_time_ns=5000

pixel_shaping_dead_time_ns=200

strobe_extension_enable=false

[data_output]

data_rate_interval_ns=100000

write_event_csv=true

write_vcd=false

write_vcd_clock=false

TABLE D.1: ALPIDE simulation settings.

Group Setting Default
value

Comment

alpide chip_continuous_mode false Enable continuous mode in ALPIDE (true), or use
triggered mode (false)

alpide data_long_enable true Enable clustering of adjacent pixel hits (and use of
DATA LONG words)

alpide dmu_fifo_size 64 Size of Data Management Unit (DMU) FIFO (the
output “bottleneck” FIFO)

alpide dtu_delay 10 Simulate delay (in clock cycles) introduced by se-
rializing and encoding in DTU.

alpide matrix_readout_speed_fast true Matrix priority encoder readout clock speed. True
= 20MHz, false = 10MHz.

alpide minimum_busy_cycles 8 Minimum number of clock cycles the chip must
be busy before reporting BUSY ON

alpide pixel_shaping_active_time_ns 6000 Equivalent to Time over Threshold (ToT)
alpide pixel_shaping_dead_time_ns 200 Equivalent to rise time before ToT
alpide strobe_extension_enable false Not implemented

TABLE D.2: Data output simulation settings.

Group Setting Default
value

Comment

data_output write_event_csv true Enable writing of event data (delta_t and multi-
plicity) to CSV file

data_output write_vcd false Enable writing SystemC signals to Value Change
Dump(VCD) file (requires lots of disk space for
many events)

data_output write_vcd_clock false Enable writing clock to VCD file (requires even
more disk space)

data_output data_rate_interval_ns 10000 Time intervals that data rate should be calculated
over

D.1. Configurable Settings 193

TABLE D.3: General simulation settings. Settings in yellow are for ITS
and FoCal only. The remaining settings are applicable to all simulations.

Group Setting Default
value

Comment

simulation n_events 10000 Number of interaction events to simulate
simulation random_seed 0 Random seed. Setting to 0 will initialize random

generators with a high entropy random seed.
simulation single_chip true Simulate a single chip (true) or detector (false)
simulation system_continuous_mode false Use continuous mode at system level, i.e. periodic

triggers. Must be true for pCT simulation.
simulation system_continuous_period_ns false Trigger period when system_continuous_mode is

enabled
simulation type “its” Simulation type (its/pct/focal)

TABLE D.4: Event generation simulation settings. Settings in yellow are
for ITS and FoCal only. Red is for ITS and pCT. Green is for ITS. The

remaining settings are applicable to all simulations.

Group Setting Default
value

Comment

event average_event_rate_ns 2500 Average interaction rate in nanoseconds
event bunch_crossing_rate_ns 25 Bunch crossing rate/period in nanoseconds
event monte_carlo_file_type “xml” MC input file type. Possible values: xml (ITS), bi-

nary (ITS), root (Focal/pCT)
event qed_noise_path Path to files with QED or noise events
event qed_noise_input false Enable use of QED/Noise input files
event qed_noise_feed_rate false Scale up/down feed rate of QED/noise input. Al-

lows same QED files to be used at different inter-
action rates

event qed_noise_event_rate false The time duration which the QED/noise in an in-
put file is integrated over

event random_hit_generation true Generate random events (don’t use MC data files)
event random_cluster_generation false Generate a random cluster of pixel hits around

each hit
event random_cluster_size_mean 4 Mean number of pixels in a random cluster
event random_cluster_size_stddev 2 Standard deviation of number of pixels in a ran-

dom cluster
event strobe_active_length_ns 100 Strobe active time in nanoseconds
event strobe_inactive_length_ns 100 Strobe inactive time in nanoseconds
event trigger_delay_ns 1000 Total trigger delay in nanoseconds
event trigger_filter_enable true Trigger filtering enable/disable (triggered mode

only)
event trigger_filter_time_ns 10000 Trigger filter time in nanoseconds. If filtering

is enabled, and twotriggers fall within this filter
time, the last trigger(s) will be filtered(removed).

TABLE D.5: FoCal-specific simulation settings.

Group Setting Default
value

Comment

focal monte_carlo_file_path File with MC event data for Focal simulations
focal staves_per_quadrant 3 Number of staves per quadrant to simulate

194 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

TABLE D.6: ITS-specific simulation settings.

Group Setting Default
value

Comment

its bunch_crossing_rate_ns 25 Bunch crossing rate in nanoseconds
its layer0_num_staves 12 Number of staves to simulate in layer 0 (maximum: 12)
its layer1_num_staves 16 Number of staves to simulate in layer 1 (maximum: 16)
its layer2_num_staves 20 Number of staves to simulate in layer 2 (maximum: 20)
its layer3_num_staves 0 Number of staves to simulate in layer 3 (maximum: 24)
its layer4_num_staves 0 Number of staves to simulate in layer 4 (maximum: 30)
its layer5_num_staves 0 Number of staves to simulate in layer 5 (maximum: 42)
its layer6_num_staves 0 Number of staves to simulate in layer 6 (maximum: 48)
its hit_density_layer0 18.6 Average hit density in layer 0 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer1 12.2 Average hit density in layer 1 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer2 9.1 Average hit density in layer 2 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer3 2.8 Average hit density in layer 3 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer4 2.7 Average hit density in layer 4 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer5 2.6 Average hit density in layer 5 (hits per cm2). Used when

event/random_hit_generation is true
its hit_density_layer6 2.6 Average hit density in layer 6 (hits per cm2). Used when

event/random_hit_generation is true
its hit_multiplicity_distribution_file File with discrete distribution for multiplicity to use

when event/random_hit_generation is true
its monte_carlo_dir_path File with discrete distribution for multiplicity to use

when event/random_hit_generation is true

TABLE D.7: pCT-specific simulation settings. The last nine settings in the
table are for generation of a random beam (not used for the simulations

in the thesis).

Group Setting Default
value

Comment

pct layers Semicolon separated string that configures which layers to be in-
cluded in pCT simulation. E.g. “0;5;10” for layer 0, 5, and 10.

pct num_staves_per_layer 1 Number of staves to simulate per layer (maximum: 12)
pct monte_carlo_file_path Path to file with MC data for pCT simulation
pct time_frame_length_ns 200 Should be set to the integration time used in the MC event file,

e.g. 10 µs. All hits within such a time frame (integration time) has
the same timestamp, and the simulation will spread the hits out in
time randomly over the specified time frame.

pct random_particles_per_s_mean 1E9 Mean particles per second for random beam
pct random_particles_per_s_stddev 0.2E9 Standard deviation for random beam
pct random_beam_stddev_mm 0.1 Beam radius is specified with this parameter
pct random_start_coord_x_mm -0.5 Start coordinate (X) of beam
pct random_start_coord_y_mm -0.5 Start coordinate (Y) of beam
pct random_end_coord_x_mm 27.5 End coordinate (X) of beam
pct random_end_coord_y_mm 2.0 End coordinate (Y) of beam
pct beam_step_mm 3.0 Beam will move in steps of this size
pct beam_time_per_step_us 125 Beam will move a step at these time intervals (in microseconds)

D.2. Output Data and Data Formats 195

D.2 Output Data and Data Formats

A number of statistics and quantities are recorded during the simulation and stored
to file in the output directory for the simulation run. This includes the time of triggers
and size of event data, utilization of the MEB as well as counts of busy events etc. in
the ALPIDEs chips. For each RU the time and duration of busy events (including busy
violations etc.) per ALPIDE data link is stored, and also the data rate (for configurable
time intervals) and statistics for the utilization of the ALPIDE data links with counts
of each type of data word.

D.2.1 Simulation Output Files

An exhaustive list of output files is shown below:

• Alpide_MEB_histograms.csv
• Alpide_stats.csv
• physics_events_data.csv (ITS and FoCal simulation)
• pct_events_data.csv (pCT simulation)
• For each RU in the simulation:

– RU_X_Y_busy_events.dat
– RU_X_Y_busyv_events.dat
– RU_X_Y_flush_events.dat
– RU_X_Y_ro_abort_events.dat
– RU_X_Y_fatal_events.dat
– RU_X_Y_Data_rate.csv
– RU_X_Y_Link_utilization.csv
– RU_X_Y_Trigger_actions.dat
– RU_X_Y_Trigger_summary.csv
– Where X is the layer number, and Y is the stave number.

• simulation_info.txt
• timestamp.txt
• triggered_readout_stats.csv
• untriggered_readout_stats.csv

It would have been beneficial to use a standard data format, like the .root files of
CERN’s ROOT framework, but the simulation model was originally designed to not
have a ROOT-dependency.

The comma-separated files should have a self-explanatory format (some details
are still provided below). But some simple custom binary formats were used for the

196 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

.dat files in order to limit the file size. For the trigger actions the format is shown in
table D.8. A value of either 0x00, 0x01, or 0x02, is stored per trigger, to indicate if
the trigger was sent from the RU to the ALPIDE chips (on a specific control link), not
sent, or filtered out. Table D.9 shows the format used for the RU_X_Y_busy_events.dat
files which stores the time (and trigger ID) at the time of BUSY ON and BUSY OFF
for each data link. And finally, table D.10 explains the format used for the busyv, flush,
ro_abort, and fatal event files.

TABLE D.8: Data format for trigger files.

Field size Description Comment
64-bit unsigned Number of triggers

Header
8-bit unsigned Number of control links

8-bit unsigned x N

Trigger action control link 1

Trigger 0
Trigger action control link 2
...
Trigger action control link N

8-bit unsigned x N

Trigger action control link 1

Trigger 1
Trigger action control link 2
...
Trigger action control link N

8-bit unsigned x N

Trigger action control link 1

...
Trigger action control link 2
...
Trigger action control link N

8-bit unsigned x N

Trigger action control link 1

Trigger M
Trigger action control link 2
...
Trigger action control link N

TABLE D.9: Data format for busy event files.

Field size Description Comment
8-bit unsigned Number of data links Header
64-bit unsigned Number of events for data link 1 Header for data link 1
64-bit unsigned Time of BUSY ON

Busy event 1 for data link 1
64-bit unsigned Time of BUSY OFF
64-bit unsigned Trigger ID at time of BUSY ON
64-bit unsigned Trigger ID at time of BUSY OFF

...
64-bit unsigned Time of BUSY ON

Busy event N for data link 1
64-bit unsigned Time of BUSY OFF
64-bit unsigned Trigger ID at time of BUSY ON
64-bit unsigned Trigger ID at time of BUSY OFF

Repeats for each data link

D.2. Output Data and Data Formats 197

TABLE D.10: Data format for files storing busy violations, flush, data
overrun, and fatal events.

Field size Description Comment
8-bit unsigned Number of data links Header

For each data link:
8-bit unsigned Chip ID

Header for chip 1
64-bit unsigned Number of events
64-bit unsigned Trigger ID for event Event 1
64-bit unsigned Trigger ID for event Event 2
64-bit unsigned Trigger ID for event ...
64-bit unsigned Trigger ID for event Event N

Repeats for each chip with data for a data link

D.2.2 Pixel Readout Statistics

The files triggered_readout_stats.csv and untriggered_readout_stats.csv contain pixel
readout statistics.

The meaning of triggered and untriggered in this context indicates whether a pixel
hit was associated with an event one would trigger on, or whether it was associated
with a background event that one would not trigger on. For instance, statistics for
every pixel hit in a collision event in the ITS simulation will go in the triggered_read-
out_stats.csv file. Noise, QED background from ultra-peripheral collisions, etc. will go
in the untriggered_readout_stats.csv. But note that in the case of pCT simulation, all the
pixel hits associated with the pencil beam will actually go in the untriggered_readout_-
stats.csv file.

The two files list counts of how many times a pixel hit was read out, for each
chip ID in the simulation. Table D.11 shows an example of what the readout statistics
could look like in this file. The table shows that there were 131 pixels that were never
read out for chip ID 0, and for chip ID 1 and 2 there were 45 and 12 pixels that were
never read out, respectively. For chip ID one there were 57234 pixels that were read
out exactly one time, 6984 that were read out exactly two times, and so on.

Obviously a high count in column zero for readout count is bad, as it indicates loss
of data. Readout counts of two and up is not ideal, because it indicates that the same
data is read out more than once, which is a waste of bandwidth. Ideally as much data
as possible is read out exactly one time.

For a chip c, we can define the number of pixel hits read out as:

N

∑
n=1

readout_count(c, n) (D.1)

198 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

TABLE D.11: Counts of how many times individual pixel hits were read
out (i.e. oversampled when larger than 1), versus chip ID.

Readout count
0 1 2 3 4 5

Chip ID
0 131 57234 6984 486 32 2
1 45 43256 4896 385 21 0
2 12 31811 3214 125 0 0

Where readout_count(c, n) is the content of the cell for chip c and readout count n,
and N denotes the highest pixel readout count value. The number of pixel hits that
were not readout out for chip c is:

readout_count(c, 0) (D.2)

For all chips, the total number of pixels read out is:

A =
M−1

∑
c=0

N

∑
n=1

readout_count(c, n) (D.3)

Where M is the number of chips. The total number of pixel hits not read out:

B =
M−1

∑
c=0

readout_count(c, 0) (D.4)

Based on these equations, we can define the pixel hit readout efficiency for all
chips in the simulation as:

E =
A

A + B
=

1
1 + B

A
=

1

1 + ∑M−1
c=0 readout_count(c,0)

∑M−1
c=0 ∑N

n=1 readout_count(c,n)

(D.5)

And the pixel hit loss for all chips in the simulation as:

L =
B

A + B
=

1
1 + A

B
=

1

1 + ∑M−1
c=0 ∑N

n=1 readout_count(c,n)
∑M−1

c=0 readout_count(c,0)

(D.6)

Duplicate Pixel Hits

In principle the readout count should in many cases have a maximum theoretical
value. For example, if we are running in continuous mode with a 5 µs strobe, and the
time over threshold for the pixel hits is also set to 5 µs, then it is impossible to read
out a pixel hit more than two times. For a readout count of three to be possible, the

D.3. Monte Carlo Simulated Events for ITS in the SystemC Model 199

time over threshold would have to be longer than the strobe, otherwise the time the
pixel is active can not coincide with three strobe windows.

However, from the pixel readout statistics one may occasionally see higher read-
out counts that should be impossible to each. The reason for this is how the simulation
model handles duplicate pixel hits. When the chip gets a hit in a pixel where a hit was
already registered, and if both of these two pixel hits are active (over threshold) at the
same time, then they are considered a duplicate pixel hit. In principle it would make
the most sense to extend the active time (time over threshold) of the original hit, but
for practical reasons this was tricky to implement in the simulation. Instead the sim-
ulation marks the additional hits as duplicates of the first one, and when the original
hit is read out the readout counters for the duplicate pixel hits are increased as well.
But as a result of this, we may see an increase in readout count that goes beyond what
should theoretically be possible for an individual hit.

For the ITS simulations this does not occur frequently, since the hit coordinates are
completely random in the collisions generated at the LHC. However for pCT simula-
tions one will frequently see these duplicate hits, because the pCT uses a small pencil
beam where the flux of protons is focused to a diameter of around 5 mm, and as a
result one will quite frequently have protons hitting the same pixels.

D.3 Monte Carlo Simulated Events for ITS in the Sys-

temC Model

MC simulations of the ITS were performed to generate discrete events for use with
the SystemC-based simulation model described in chapter 6. The MC simulations
were performed using the “ITSU1 testbench for simulation and reconstruction” [96],
which is part of the AliRoot framework. The testbench uses Pythia for generation of
pp events in ALICE. And the Hijing event generator is used for Pb–Pb, along with
an additional event generator of the AliRoot framework for the so-called QED events
[95] (the background of electron-positron pairs associated with peripheral collisions
in Pb–Pb [20]). In either case, pp or Pb–Pb, Geant is used to simulate the trajectory of
the generated particles in the magnetic field of the experiment and interactions with
matter and decays as they traverse through the detectors.

Configuration of the testbench is done in the Config.C file. This includes which
event generators to use, and also which parts of the experiment to simulate. In prin-
ciple, the entire experiment can be included in the simulation. But since the ITS is

1ITS Upgrade.

200 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

situated directly around the beam pipe, it is sufficient to simulate only the beam pipe
itself and the ITS.

Code snippets of the Config.C files used for Pb–Pb, pp, and QED events, are shown
in listings D.2 to D.4. Only the relevant parts of the Config.C file is included.

LISTING D.2: itsuTestBench setup for Pb–Pb.

1 Int_t generatorFlag = 2;

2
3 /* $Id: Config.C 47147 2011 -02 -07 11:46:44Z amastros $ */

4 enum PprTrigConf_t

5 {

6 kDefaultPPTrig , kDefaultPbPbTrig

7 };

8
9 const char * pprTrigConfName [] = {

10 "p-p","Pb -Pb"

11 };

12
13 static PprTrigConf_t strig = kDefaultPPTrig;// default PP trigger configuration

14
15 void Config ()

16 {

17 // ...

18 AliSimulation :: Instance ()->SetTriggerConfig(pprTrigConfName[strig]);

19 // ...

20 else if (generatorFlag ==2) {

21 // Pure HiJing generator adapted to ~2000 dNdy at highest energy

22 AliGenHijing *generHijing = new AliGenHijing (-1);

23 generHijing ->SetEnergyCMS (5500.); // GeV

24 generHijing ->SetImpactParameterRange (0,15); // MinBias , set to 0,5 for central

25 generHijing ->SetReferenceFrame("CMS");

26 generHijing ->SetProjectile("A", 208, 82);

27 generHijing ->SetTarget ("A", 208, 82);

28 generHijing ->KeepFullEvent ();

29 generHijing ->SetJetQuenching (1);

30 generHijing ->SetShadowing (1);

31 generHijing ->SetSpectators (0);

32 generHijing ->SetSelectAll (0);

33 generHijing ->SetPtHardMin (4.5);

34 Float_t thmin = EtaToTheta(2.5); // theta min. <---> eta max

35 Float_t thmax = EtaToTheta (-2.5); // theta max. <---> eta min

36 generHijing ->SetThetaRange(thmin ,thmax);

37
38 AliGenerator* gener = generHijing;

39 gener ->SetSigma (50e-4, 50e-4, 5.0); //Sigma in (X,Y,Z) (cm) on IP position

40 gener ->SetVertexSmear(kPerEvent);

41 gener ->Init();

42 }

43 TGeoGlobalMagField :: Instance ()->SetField(new AliMagF("Maps","Maps", -1., -1.,

AliMagF ::k5kG));

44 // ...

45 // Only ITS and PIPE simulated

46 Int_t iITS = 1;

47 Int_t iPIPE = 1;

D.3. Monte Carlo Simulated Events for ITS in the SystemC Model 201

48 // ...

49 if (iPIPE) {

50 // =================== PIPE parameters ============================

51 AliPIPE *PIPE = new AliPIPEupgrade("PIPE", "Beam Pipe");

52 }

53 if (iITS) {

54 // =================== ITS parameters ============================

55 gROOT ->ProcessLine(".x CreateITSUv2ALP3.C");

56 }

57 }

LISTING D.3: itsuTestBench setup for pp.

1 Int_t generatorFlag = 4;

2
3 /* $Id: Config.C 47147 2011 -02 -07 11:46:44Z amastros $ */

4 enum PprTrigConf_t

5 {

6 kDefaultPPTrig , kDefaultPbPbTrig

7 };

8
9 const char * pprTrigConfName [] = {

10 "p-p","Pb -Pb"

11 };

12
13
14 static PprTrigConf_t strig = kDefaultPPTrig;// default PP trigger configuration

15
16 void Config ()

17 {

18 // ...

19 AliSimulation :: Instance ()->SetTriggerConfig(pprTrigConfName[strig]);

20 // ...

21 else if (generatorFlag ==4) {

22 gSystem ->Load("libpythia8.so");

23 gSystem ->Load("libAliPythia8.so");

24 gSystem ->Setenv("PYTHIA8DATA", gSystem ->ExpandPathName("$ALICE_ROOT/PYTHIA8/

pythia8/xmldoc"));

25 gSystem ->Setenv("LHAPDF", gSystem ->ExpandPathName("$ALICE_ROOT/LHAPDF"));

26 gSystem ->Setenv("LHAPATH", gSystem ->ExpandPathName("$ALICE_ROOT/LHAPDF/

PDFsets"));

27
28 // pp Pythia Monach -tune generator

29 int tune = 14; // kPythia8Tune_Monash2013

30 AliGenPythiaPlus *pythia = new AliGenPythiaPlus(AliPythia8 :: Instance ());

31 pythia ->SetMomentumRange (0, 999999.);

32 pythia ->SetThetaRange (0., 180.);

33 pythia ->SetYRange (-2.5. ,2.5);

34 pythia ->SetPtRange (0 ,1000.);

35 printf("Setting pythis8 processe to %d, tune %d\n",kPyMbDefault , tune);

36 pythia ->SetProcess(kPyMbDefault);

37 pythia ->SetEnergyCMS (5500);

38 pythia ->SetEventListRange (-1, 2);

39 pythia ->SetTune(tune);

40 pythia ->Init();

202 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

41 }

42 TGeoGlobalMagField :: Instance ()->SetField(new AliMagF("Maps","Maps", -1., -1.,

AliMagF ::k5kG));

43 // ...

44 // Only ITS and PIPE simulated

45 Int_t iITS = 1;

46 Int_t iPIPE = 1;

47 // ...

48 if (iPIPE) {

49 // =================== PIPE parameters ============================

50 AliPIPE *PIPE = new AliPIPEupgrade("PIPE", "Beam Pipe");

51 }

52
53 if (iITS) {

54 // =================== ITS parameters ============================

55 gROOT ->ProcessLine(".x CreateITSUv2ALP3.C");

56 }

57 }

LISTING D.4: itsuTestBench setup for QED.

1 Int_t generatorFlag = 5;

2
3 /* $Id: Config.C 47147 2011 -02 -07 11:46:44Z amastros $ */

4 enum PprTrigConf_t

5 {

6 kDefaultPPTrig , kDefaultPbPbTrig

7 };

8
9 const char * pprTrigConfName [] = {

10 "p-p","Pb -Pb"

11 };

12
13 static PprTrigConf_t strig = kDefaultPPTrig;// default PP trigger configuration

14
15 void Config ()

16 {

17 // ...

18 AliSimulation :: Instance ()->SetTriggerConfig(pprTrigConfName[strig]);

19 // ...

20 else if (generatorFlag ==5) {

21 // QED electrons

22 AliGenCocktail *cocktail = new AliGenCocktail ();

23 cocktail ->SetProjectile("A", 208, 82);

24 cocktail ->SetTarget ("A", 208, 82);

25 cocktail ->SetEnergyCMS (5500.);

26 cocktail ->SetSigma (50e-4, 50e-4, 5.0); //Sigma in (X,Y,Z) (cm) on IP position

27 cocktail ->SetVertexSmear(kPerEvent);

28 Float_t thmin = EtaToTheta(2.5); // theta min. <---> eta max

29 Float_t thmax = EtaToTheta (-2.5); // theta max. <---> eta min

30 cocktail ->SetThetaRange(thmin ,thmax);

31 cocktail ->SetName("QEDelectrons");

32
33 // --------------------- QED (Ruben) --------------------

34 AliGenQEDBg *genBg = new AliGenQEDBg ();

D.3. Monte Carlo Simulated Events for ITS in the SystemC Model 203

35 genBg ->SetEnergyCMS (5500.);

36 genBg ->SetProjectile("A", 208, 82);

37 genBg ->SetTarget ("A", 208, 82);

38 genBg ->SetYRange (-6.,3);

39 genBg ->SetPtRange (1.e-3 ,1.0); // Set pt limits (GeV) for e+-: 1MeV

corresponds to max R=13.3 mm at 5kGaus

40 genBg ->SetLumiIntTime (6.e27 ,250e-9); // luminosity and integration time

41 cocktail ->AddGenerator(genBg ,"QEDep" ,1);

42 genBg ->SetVertexSource(kInternal);

43 cocktail ->Init();

44 }

45 TGeoGlobalMagField :: Instance ()->SetField(new AliMagF("Maps","Maps", -1., -1.,

AliMagF ::k5kG));

46 // ...

47 // Only ITS and PIPE simulated

48 Int_t iITS = 1;

49 Int_t iPIPE = 1;

50 // ...

51 if (iPIPE) {

52 // =================== PIPE parameters ============================

53 AliPIPE *PIPE = new AliPIPEupgrade("PIPE", "Beam Pipe");

54 }

55 if (iITS) {

56 // =================== ITS parameters ============================

57 gROOT ->ProcessLine(".x CreateITSUv2ALP3.C");

58 }

59 }

D.3.1 File Formats for Events in the SystemC Simulations

Output files from the AliRoot simulations are not used directly in the SystemC-based
simulation of the ITS. Instead, pixel hits (or “digits”) were extracted from the events
generated with the AliRoot simulations, and stored in an Extensible Markup Lan-
guage (XML)-based files used by the SystemC-based simulation. One file per event.
The format, which is shown in listing D.5, was largely based on a format used in a
previous simulation model of the ITS [40].

Later versions of the SystemC-based simulation also implemented custom binary
format as an alternative, in order to reduce the file size and which were quicker to
parse. Table D.12 shows the data words used in the file. The data words themselves
are one byte. Some of them are immediately followed by one or more parameters,
in the order listed in the table. The format follows the same general recipe as the
XML file. The file starts and ends with the DETECTOR_START and DETECTOR_-
END words. Layers are delimited by the LAYER_START, along with the layer number,
and LAYER_END ends the layer. The same goes for staves, modules and chips. An
arbitrary number of pixel hits (the DIGIT word) can be located between a CHIP_-
START and CHIP_END.

204 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

LISTING D.5: XML file format for events in ITS simulation.

<its_detector >

<lay id=0>

<sta id=0>

<ssta id=0>

<mod id=0>

<chip id=0>

<dig>123 :64</dig>

<dig>234 :12</dig>

<dig>10:54</dig>

</chip>

</mod>

</ssta>

</sta>

</lay>

<lay id=1>

...

</lay>

</its_detector >

TABLE D.12: Binary file format for events in ITS simulation.

Data word Value Parameters
DETECTOR_START 0x20 N/A
DETECTOR_END 0x40 N/A
LAYER_START 0x01 layer_id (8-bit unsigned integer)
LAYER_END 0x11 N/A
STAVE_START 0x02 stave_id (8-bit unsigned integer)
STAVE_END 0x12 N/A
MODULE_START 0x03 module_id (8-bit unsigned integer)
MODULE_END 0x13 N/A
CHIP_START 0x05 chip_id (8-bit unsigned integer)
CHIP_END 0x15 chip_id (8-bit unsigned integer)
DIGIT 0x06 X-coord (16-bit unsigned integer) Y-coord (16-bit unsigned integer)

D.3.2 Monte Carlo Events

Figures D.1 to D.3 shows the multiplicity, in terms of pixel hits and for the range of
pseudorapidity covered by the respective layers of the ITS, for the MC event pools
generated for Pb–Pb, QED, and pp. It should be noted that the so-called QED events
were generated by integrating the QED background at a luminosity corresponding to
50 kHz Pb–Pb over 250 ns, and each “event” corresponds to 250 ns of this background.
This background is continuously fed into the pixel front-ends of the ALPIDE chips
in the SystemC simulation, but the rate is scaled with the simulated interaction rate
(since interaction rate is proportional to luminosity).

D.3. Monte Carlo Simulated Events for ITS in the SystemC Model 205

Table D.13 summarizes the average number of pixels per event for each layer in
the event pools, along with the pixel hit density2. A similar trend is seen compared
to tables in the TDR of the ITS [13], but the numbers differ as the TDR specified max-
imum hit densities and in terms of particle hits (not pixel hits).

0 10000 20000 30000 40000 50000
Pixel hit multiplicity

1

10

210

310C
ou

nt
s

Layer 0 Layer 1
Layer 2 Layer 3
Layer 4 Layer 5
Layer 6

Pixel hit multiplicity - PbPb

FIGURE D.1: Pixel hit multiplicity of Pb-Pb event pool for ITS simula-
tions.

2Calculated based on the surface area of all sensors chips in a layer.

206 Appendix D. SystemC-based Simulation Model for ALPIDE and ITS

50 100 150 200 250 300
Pixel hit multiplicity

10

210

310

C
ou

nt
s

Layer 0 Layer 1
Layer 2 Layer 3
Layer 4 Layer 5
Layer 6

Pixel hit multiplicity - QED

FIGURE D.2: Pixel hit multiplicity of QED event pool for ITS simulations.

0 100 200 300 400 500
Pixel hit multiplicity

10

210

310

410C
ou

nt
s

Layer 0 Layer 1
Layer 2 Layer 3
Layer 4 Layer 5
Layer 6

Pixel hit multiplicity - pp

FIGURE D.3: Pixel hit multiplicity of pp event pool for ITS simulations.

D.3. Monte Carlo Simulated Events for ITS in the SystemC Model 207

TABLE D.13: Average event size (in terms of pixels) and average pixel
hit density for the MC event pool that was generated for the SystemC

simulations of the ITS.

Layer
Pb–Pb QED pp

Total cm−2 Total cm−2 Total cm−2

0 10 190 2.097× 101 110 2.263× 10−1 88.15 1.814× 10−1

1 9017 1.392× 101 69.67 1.075× 10−1 70.08 1.081× 10−1

2 7966 9.835 46.56 5.748× 10−2 59.37 7.330× 10−2

3 6485 5.849× 10−1 4.819 4.346× 10−4 44.51 4.014× 10−3

4 5684 4.028× 10−1 4.146 2.938× 10−4 38.23 2.709× 10−3

5 7503 2.127× 10−1 7.85 2.225× 10−4 50.84 1.441× 10−3

6 6936 1.710× 10−1 7.37 1.817× 10−4 46.48 1.146× 10−3

209

Appendix E

UART Protocol and Debug Software
for Auxiliary FPGA

The protocol1 for communication with the auxiliary FPGA via UART enables full ac-
cess to the internal WB bus of the FPGA design. The associated GUI software allows
for full control of the FPGA design and its features via the WB bus.

E.1 Connections to the Readout Unit

The RU board does not feature a dedicated connector for the UART on the auxiliary
FPGA. The connection has to be made via pin-header J14 using a 3.3V USB to serial
adapter that supports 1 Mbaud or higher data rates2. Tx connects to pin 1 on J14, Rx
on pin 3, and GND on any of the even numbered pins3.

E.2 Protocol

Commands sent to the FPGA start with the header shown in fig. E.1. A fixed start byte
is sent first, which has the value 0xA5. The following byte specifies the command
to execute: read, write, or no operation, together with two bits to indicate whether
the WB bus address should increase for each byte, and whether the receiver should
acknowledge the message.

The message ends here for a no operation command. However, if the Ack enable
bit was set in the command byte, the receiver should acknowledge the no operation
command. This can be used to verify that there is a connection.

For read and write operations, the command byte is followed by the WB address.
When the Address increment bit is disabled, the bytes in the message are all written to

1Based on the “UART to Bus” IP available on OpenCores [65].
2921 600 bps is the baud rate in the Auxiliary FPGA design.
3Tx/Rx is specified relative to the host computer.

210 Appendix E. UART Protocol and Debug Software for Auxiliary FPGA

01234567

1 0 1 0 0 1 0 1Start command

Not used Command type [1:0] Not used Address
increment Ack enableCommand

FIGURE E.1: Header format in the modified UART to Bus protocol.
01234567

1 0 1 0 0 1 0 1Start command

Not used 0 0 Not used Address
increment Ack enableCommand

FIGURE E.2: NOP command in the modified UART to Bus protocol.

this address. This is useful for writing to registers that are mapped to the input of a
FIFO. When address is enabled, the address in the message denotes the start address4.
The length of the data to read or write is transmitted in the two bytes following the
address byte. The 16-bit data length allows for transfers of up to 65535 bytes5.

E.2.1 No Operation Command

A NOP command performs no operation and the message concludes after message
header. The full NOP message is shown in fig. E.2. The FPGA will send an acknowl-
edgement if the Ack enable bit was set, however.

E.2.2 Read Command

A read command message extends the header with a byte for the WB address to read,
and two bytes for the number of bytes to read. The full message is shown in fig. E.3.
If acknowledgement is enabled, the FPGA will respond with the acknowledgement
byte first. After that it responds with the requested number of bytes read from the
register(s).

E.2.3 Write Command

The write command message is shown in fig. E.4. It has the same format as the read
message, but concludes with the payload data for the bytes to write. When enabled,
the FPGA will respond with the acknowledgement byte after the full message, in-
cluding payload data, has been received. There is no response from the FPGA if
acknowledgement was not enabled.

4This was a useful feature in previous versions of the FPGA design which had a large page buffer
for the flash.

5Messages of zero length are allowed.

E.2. Protocol 211

01234567

1 0 1 0 0 1 0 1Start command

Not used 0 1 Not used Address
increment Ack enableCommand

Not used Wishbone address [6:0]Address

Data length [15:8]Data length MSB

Data length [7:0]Data length LSB

FIGURE E.3: Read command in the modified UART to Bus protocol.

01234567

1 0 1 0 0 1 0 1Start command

Not used 1 0 Not used Address
increment Use ackCommand

Not used Wishbone address [6:0]Address

Data length [15:8]Data length MSB

Data length [7:0]Data length LSB

Data byte #0 [7:0]

Data byte #1 [7:0]

...

Data byte #N [7:0]

Data

FIGURE E.4: Write command in the modified UART to Bus protocol.

212 Appendix E. UART Protocol and Debug Software for Auxiliary FPGA

E.3 Software

The Qt-based GUI software allows for: monitoring of all registers; read and write to
individual registers and register fields; access to SelectMAP registers; debug function-
ality for the Flash interface; and most importantly, firmware upload of the configura-
tion images for the main FPGA to the external flash.

E.3.1 Connecting to Auxiliary FPGA

The default baud rate for the software is the same as for the FPGA design; 921600
bauds. However, it can be changed via the File→ Baud rate menu if necessary.

A connection to the auxiliary FPGA is established by connecting to the serial port
from the File→ Connect menu, as shown in fig. E.5. “Connected to COM-port @ baud
rate” should be displayed on the status bar.

FIGURE E.5: Auxiliary FPGA debug software. File menu and sub-menus.

E.3.2 Direct Access and Monitoring of Wishbone Registers

The default tab in the software, Wishbone Register Interface, displays all WB registers
available in the FPGA design. Selecting a register will display more information on
the right side of the GUI, such as a description and information about each register
field. This is also shown in fig. E.5. Further information about the register fields can

E.3. Software 213

be displayed by selecting them, and the register fields can written individually via the
register field table.

By checking the boxes in the Enable auto refresh column of the register table, the
software will periodically poll and refresh the values of the chosen registers.

E.3.3 Uploading Firmware to External FLASH

Configuration and scrubbing images can be uploaded to the external flash from the
Firmware6 tab. The images are selected with a file system browser popup when the
Start button is clicked.

Options include reading back the images to verify that they were correctly writ-
ten, and the start block in the flash for both images. The software will automatically
update the parameter section of the flash after the new images have been written.

The other tabs of the software, and register polling, is disabled while the upload is
in progress (except for the log tab). It takes around 8 minutes to upload the 24.1 MB
bitstream file for the UltraScale FPGA at the baud rate of 921 600 (without read-back
verification).

FIGURE E.6: Firmware upload.

6The term “firmware” has been common jargon in the project for the configuration image. This
usage is technically incorrect – typically it refers to firmware for an embedded CPU, not an FPGA
design.

214 Appendix E. UART Protocol and Debug Software for Auxiliary FPGA

E.3.4 Flash Interface Testing

The Flash interface tab, shown in fig. E.7, has a variety of features for testing the flash
interface. On the left side, there are functions for reading the Flash ID Code, erasing
the Flash, writing a hex value to all bytes in a selected block range, and read flash
contents and storing them to disk. The latter two functions were used during beam
tests of the RU; parts of the flash were initialized to a known pattern prior to the
radiation test, and after testing the data was read out and the number of bits that had
flipped were counted.

FIGURE E.7: Flash interface tab with a variety of test features.

And finally, the right side has functions to write a disk file to a single page in the
flash, and also to read out a single page and store it to file.

E.3.5 SelectMAP Interface Testing

The SelectMAP interface tab has a table listing the available registers in the SelectMAP
interface. Clicking refresh on a register will refresh/read it, and editing the value and
pressing enter will trigger a write to the register with the new value. This allows for
limited testing and debugging of the SelectMAP interface to the UltraScale FPGA.

E.3. Software 215

FIGURE E.8: SelectMAP tab.

E.3.6 Logging

The program logs many of the most important events, fig. E.9, especially errors. The
newest entries are displayed at the top in the log.

FIGURE E.9: The log interface.

217

Appendix F

Concept for Busy Unit

The ALPIDE signals a change in busy status on the data link using the BUSY ON and
BUSY OFF words, which are prioritized over normal data. Typically the busy status
occurs when all buffers of the MEB are in use (see appendices B.3 and B.5.2 for more
details).

Trigger

BUSY

BUSY_ONDATA DATA

Trigger sent
from RU

ALPIDE
data out

Busy state

Time

Time

Time

Multi
Event
Buffer

#1

#2

#3

Strobe Readout

Strobe Readout

Strobe Readout

Trigger Trigger

BUSY_OFF DATAIDLE IDLEDATA

Minimum
busy
width

Busy status reported
after min. busy width

FIGURE F.1: Illustration of busy signals from ALPIDE.

The waveforms in fig. F.1 illustrates the relationship between triggers, strobes, the
MEB, data readout, and busy signaling. When the third buffer of the MEB is occupied
at the end of the third strobe (assuming triggered mode), the chip is in a busy status.
But it has to be busy for at least the minimum busy width period, a configurable
parameter in the chip, before the chip issues the BUSY ON word on the data link to
indicate the busy status. When readout of the first event from the MEB has concluded,
and a buffer is available for new events, the chip goes out of busy and issues the BUSY
OFF word to indicate the new busy status.

Figure F.2 illustrates that the chip may be busy between triggers, but it does not
affect readout/triggering as long as the busy status ends before the next trigger. How-
ever, a busy violation (assuming triggered mode in the ALPIDE) occurs when a trig-
ger is received while the chip is busy. The effect of a busy violation in an ALPIDE
chip is the complete loss of the event associated with that trigger. Or in the case of

218 Appendix F. Concept for Busy Unit

continuous mode, the equivalent flushing mechanism results in partial loss of data
for the oldest event in the MEB.

BUSY BUSY

Tr
ig

ge
r #

1
Tr

ig
ge

r #
2

Tr
ig

ge
r #

3

Tr
ig

ge
r #

4

Tr
ig

ge
r #

5

Tr
ig

ge
r #

6

Tr
ig

ge
r #

7
Bu

sy
 v

io
la

tio
n

Tr
ig

ge
r #

8

Tr
ig

ge
r #

9

FIGURE F.2: Illustration of busy and busy violations.

F.1 Impact on Readout Data

Ideally the ALPIDE should be operated at a trigger rate and with a pixel hit occupancy
that is well within the readout capabilities of the chip. But since events happen at ran-
dom times and with varying size (in terms of pixel hits), it would not be unexpected
to see a chip report the busy status occasionally, or even the odd busy violation.

But with higher trigger rates the readout capabilities will be exhausted more often,
to the point where busy violations (or flushed events in the case of continuous mode)
happen so frequently that many events have an intolerable amount of “holes” due to
“missing chips”.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

2

3

4

5

6

7

8

9

AL
PI

D
E

nu
m

be
r

Trigger/Event number

25 26 27 28

FIGURE F.3: Illustration of poor quality events due to busy violations
(“swiss cheese events”).

F.2. Busy Handling 219

Figure F.3 shows an illustration to demonstrate this scenario (it is not based on
real or simulated data). Each box represents a readout frame associated with a trig-
ger/event for an individual ALPIDE chip. Both green and yellow boxes are success-
fully read out, but the chip is reporting busy status when the box is yellow. Red boxes
are busy violations where the data is lost, because a trigger was received when the
chip was busy. In this contrived example, there are sixteen events that have “holes”
due to busy violations, i.e. there is at least one red box for a specific trigger/event
number. Only twelve events are complete (no busy violations).

F.2 Busy Handling

When it comes to handling the busy signals from the sensor chips, the options that
are available to the readout electronics are limited. Besides monitoring of the busy
status, the only active option is to interfere in the triggering of the sensor chips by
withholding the next trigger when the chips are busy. But, it is important to note that
the sensor chips are triggered simultaneously by broadcasting the trigger word on the
shared multi-drop control link. Withholding the trigger affects all sensor chips on a
control link; it can not be done for an individual chip. The most reasonable approach
would be to set a threshold for the number of chips that must report a busy status
before the trigger is not issued.

In the previous example there were nine ALPIDE chips, which is equivalent to
an IB-stave. Based on the events of fig. F.3, fig. F.4 tries to illustrate the effect of not
issuing the next trigger when a threshold of four busy chips is reached. The grey
boxes indicate the triggers that were not issued. It is assumed that omitting a trigger
gives the detector some “time to breathe” and has a positive effect on the next two
triggers; flipping some of the busy violations and busy events for those triggers.

In this example, which is also a bit contrived, six events are missing in full since
they are not triggered on. However, compared to the previous example, there are
now only four events that have “holes” due to busy violations, and eighteen events
are complete. In other words, it may be possible to improve the quality of the events
that are read out, at the expense of sacrificing a few events in full (which likely have
holes and are of low quality anyway).

Busy Processing

The 26th and 27th events in fig. F.3 illustrate an interesting case where busy is reported
after several triggers in a row, but without any busy violations occuring. This happens
when a chip goes busy after receiving a trigger, but goes out of busy before the next

220 Appendix F. Concept for Busy Unit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

2

3

4

5

6

7

8

9

AL
PI

D
E

nu
m

be
r

Trigger/Event number

25 26 27 28

FIGURE F.4: Illustration of improved quality events with busy handling.
The next trigger is skipped when a threshold of four busy chips has been

reached, giving the detector some “time to breathe”.

trigger because it finished reading out the oldest event in the time in between. The
chips do signal this change of busy status (with the BUSY OFF data word). But if it
happens right before the next trigger, and the RU did not have enough time to process
this information, it is possible that the RU acts based on an outdated busy status. As a
result, the RU did not issue the 27th trigger in fig. F.4, leading to the unnecessary loss
of an entire event that the sensor chips would have been able to process.

Busy processing in
readout electronics

Trigger

Minimum busy time etc

BUSY ON

Busy processing in
readout electronics Time left

Next trigger possible

Trigger

Minimum busy time etc

BUSY ON

Busy processing in
readout electronics Time left

Next trigger possible

Busy processing in
readout electronics

BUSY OFF

Trigger

Minimum busy time etc

BUSY ON

Busy processing in
readout electronics

Next trigger possibleBUSY OFF

Trigger filter time (~1200 ns)

Time

Time

Time

Busy till next trigger

Goes out of busy
before next trigger

Goes out of busy
before next trigger,
but too late to be

processed

FIGURE F.5: Illustration of busy processing.

The shortest possible distance between two triggers is around 1200 ns, which is
defined by the trigger filtering window (see section 2.6.1).

Figure F.5 shows some examples with two triggers separated by this distance, and
where the chip goes busy after the first trigger. The time from trigger to the BUSY ON
word, and processing of BUSY ON in the readout electronics, is always constant. The
example at the top is the simplest; the chip remains busy until the next trigger, which

F.3. Busy Unit 221

will cause a busy violation. As long as long as the readout electronics are capable of
receiving and processing the BUSY ON word within the 1200 ns, it should be able to
make a timely decision about whether the next trigger should be sent or not.

The next two examples shows the chip going out of busy in time before the next
trigger, by issuing the BUSY OFF word. Hence, the chip is ready for the next trigger,
and the readout electronics is able to account for this if it is able to process the BUSY
OFF word in time. But if the BUSY OFF word is received too late, then the readout
electronics will still think the chip is busy. And this can lead to the situation that was
explained earlier for triggers 26th and 27th in fig. F.3.

(A) (B)

FIGURE F.6: Busy link map (F.6A) and counts (F.6B) versus trigger
number for an RU in the innermost ITS layer at 100 kHz Pb–Pb with
minimum-bias triggers. Simulated with SystemC model of the ALPIDE

and ITS.

Clearly, time to process the BUSY OFF word should be as short as possible, as it
plays an important role on the performance of a busy system in the readout electron-
ics. To further emphasize this, consider figs. F.6 and F.7. Figure F.6 shows how often
the ALPIDEs in an IB stave were busy in a simulation of the ITS for 100 kHz Pb–Pb.
Figure F.7 shows the busy violations from the same simulation. There is a large num-
ber of busy reported, most of which are “false alarms”, since there are only a few busy
violations.

F.3 Busy Unit

The previous examples showed how data quality could be improved by strategically
withholding triggers. But the example was for an individual IB-stave only. The detec-
tor has a total of 48 IB-stave and 144 staves in the OB (middle and outer layers). That
amounts to 48 + 4× 144 = 624 control links (4 control links per stave in the OB), in
other words, 624 sections of the detector that can be triggered independently.

222 Appendix F. Concept for Busy Unit

(A) (B)

FIGURE F.7: Busy violation map (F.7A) and counts (F.7B) versus trigger
number for an RU in the innermost ITS layer at 100 kHz Pb–Pb with
minimum-bias triggers. Simulated with SystemC model of the ALPIDE

and ITS.

Keeping in mind that the objective is to achieve more complete events, by omitting
triggers when a large part of the detector is busy to give the sensor chips “time to
breathe”, it is evident that these trigger decisions must be coordinated for the whole
detector.

The RU has dedicated transceiver connections for busy input and output to report
busy status among the readout electronics. This allows for several possible topologies
to communicate and handle busy status in the readout electronics. The most feasible
option is to have the RUs transmit their busy status to a dedicated Busy Unit (BU).
The BU then determines the busy status for the entire detector, and communicates
this back to the RUs.

Busy Unit
Busy Unit

Busy Unit

Readout Unit
Readout Unit

Readout Unit
Readout Unit

Trigger input
GBT

Trigger
input

Readout Unit

Trigger

Busy
Transition

Board

Busy
In/Out

Busy
Transceiver

Lines
(bidirectional)

Busy Unit (Master)

Busy
Transition

Board

Trigger
GBT

FIGURE F.8: BU and connections to RUs.

F.3. Busy Unit 223

The concept is illustrated in fig. F.8. Presumably, it will be necessary to have more
than one BU, as it is unlikely that a BU could be designed to cater for all 192 RUs. And
with an additional “master” BU, the busy status can be coordinated and synchronized
for all RUs in the detector.

The BU itself can be based almost entirely on the RU design, with a dedicated Busy
Transition Board for the busy links. Since this transition board would require both
transceiver inputs and outputs, the current RU design can not be re-used without
modification as a BU, since the RU design primarily has transceiver inputs routed to
the connectors for the transition board. But the UltraScale FPGA has free transceiver
outputs available, so it is a matter of a small modification (routing transceiver outputs
to the transition board connectors) to realize a BU design. Most of the main FPGA
design for the RU, as well as the auxiliary design for the scrubbing solution, can be
re-used for the BU, and it is probably not necessary to perform beam testing etc. of
the BU when it is almost identical to the RU.

Alternatives to the Busy Unit

Connecting the busy inputs and outputs of the RUs in a daisy-chain, as shown in
fig. F.9, was previously discussed as an alternative to a dedicated BU.

RU #1

BUSY
IN

BUSY
OUT

RU #2

BUSY
IN

BUSY
OUT

RU #2

BUSY
IN

BUSY
OUT

RU #N

BUSY
IN

BUSY
OUT

FIGURE F.9: Daisy-chained busy signals between RUs.

In very simple terms, the implementation of a busy module in the RU FPGA de-
sign would look something like in fig. F.10. An RU transmits its (local) count of busy
ALPIDE links over the busy link daisy-chain, and receives counts for each of the re-
mote RUs. The detector busy status must be determined locally in the busy module
of each RU, since there is no central device that determines this status with the daisy-
chain approach. The simplest way to determine the busy status is when the sum of
busy ALPIDE links reaches a threshold, as shown in the figure. But it would probably
make sense to set a threshold for each layer, and possibly build more complex logic
into this decision.

A challenge with the daisy-chain approach is the synchronization of the detector
busy status, since a change in busy ALPIDE links reported by one RU would have

224 Appendix F. Concept for Busy Unit

BUSY Module

Detector busy
≥ Busy link threshold

BU
SY

 IN

BU
SY

 O
U

T

RU-to-RU BUSY Daisy
Chain Communication

Trigger
Module

Alpide Link Busy #1Alpide Data
Transceiver

Alpide Link Busy #2Alpide Data
Transceiver

Alpide Link Busy #NAlpide Data
Transceiver

∑ R
U

 1

R
U

 2 ... Local Busy
Link CountR

U
 M

-1

∑

R
U

 0

Remote Busy
Link Counts

FIGURE F.10: Busy module for daisy-chained RUs.

to propagate through the daisy-chain, and will not reach the other RUs simultane-
ously. But more critical is the total delay of transmitting busy via a daisy-chain of
192 RUs. Assuming that an RU can receive and forward another RU’s busy count in
one 160 MHz clock cycle, then the total delay to propagate through the daisy chain is
192× 6.25 ns = 1.2 µs. This is roughly the same as the trigger filter window, i.e. the
minimum time between two triggers when the experiment runs in triggered mode.
Referring to the previous discussion of the importance of quickly processing the BUSY
OFF data words from the ALPIDE chips, it should be evident that a delay of this order
is intolerable. The daisy-chain approach has been abandoned for that reason, leaving
the BU as the only feasible option.

As a final remark, it should be mentioned that transmitting busy status from the
RUs to the CTP/LTU is also not an option. There is no direct path from the RUs to
transmit signals to the CTP/LTU, since the optical links for triggers from the LTU
are downlinks only1. The only possible path would be via the CRU, with substantial
latency considering that the latency from LTU to RU is already on the order of 1 µs
on the trigger downlinks. The latency by itself makes this a futile venture, as the CTP
would be making decisions based outdated busy information.

1Passive optical splitters are also used to split the downlink signals from the LTU.

225

Appendix G

Register Maps

This appendix provides register maps for the main and auxiliary FPGA designs. For the main
FPGA the register maps were limited to the modules associated with this work, because of
the large extent of that particular design. Complete register maps and further details for all
modules can be found in the manuals for the main and auxiliary FPGA designs.

G.1 Main FPGA Design

G.1.1 Alpide Monitor - Sequencer

TABLE G.1: Main FPGA Register Map - Alpide Monitor Sequencer Reg-
isters.

Address Width Name Description
0x00 4 CTRL Control register
0x01 4 STATUS Status register
0x02 16 ADDR Address in instruction mem that the DATA[0..3]_WR registers

writes to
0x03 16 DATA0_WR Set up word 0 (bits 15:0) of instruction word to be written
0x04 16 DATA1_WR Set up word 1 (bits 31:16) of instruction word to be written
0x05 16 DATA2_WR Set up word 2 (bits 47:32) of instruction word to be written
0x06 16 DATA3_WR Set up word 3 (bits 63:48) of instruction word to and toggle writ-

ting of entire data (bits 63:0) to instruction memory
0x07 16 INSTR_MEM_SBIT_ERR_ADDR Address in instruction memory where single bit error was de-

tected
0x08 16 INSTR_MEM_DBIT_ERR_ADDR Address in instruction memory where double bit error was de-

tected

TABLE G.2: Sequencer Control Register Fields.

Bit range Field name Description
0 Run single-shot bit Start sequencer, run sequence one time
1 Run continuous bit Start sequencer, run sequence continuously
2 Clear single-bit error Clear single bit error status
3 Clear single-bit error Clear double bit error status

226 Appendix G. Register Maps

TABLE G.3: Sequencer Status Register Fields.

Bit range Field name Description
0 Running bit Sequencer is running
1 Unknown Op Unknown Opcode encountered in instruction memory
2 Single-bit error Single bit error encountered in instruction memory
3 Double-bit error Double bit error encountered in instruction memory

G.1.2 Alpide Monitor - Sniffer

TABLE G.4: Main FPGA Register Map - Alpide Monitor Sniffer Registers.

Address Width Name Description
0x00 3 STATUS Status register
0x01 3 CTRL Control register
0x02 16 RESULT_FIFO_WORD0 Read word 0 (bits 15:0) of result FIFO word (also toggles FIFO read enable)
0x03 16 RESULT_FIFO_WORD1 Read word 1 (bits 31:16) of result FIFO word
0x04 16 RESULT_FIFO_WORD2 Read word 2 (bits 47:32) of result FIFO word
0x05 16 RESULT_FIFO_WORD3 Read word 3 (bits 63:48) of result FIFO word

TABLE G.5: Sniffer Status Register Fields.

Bit range Field name Description
0 Running bit Indicates if sniffer is running
1 FIFO empty bit Indicates if result FIFO is empty
2 FIFO full bit Indicates if result FIFO is full

TABLE G.6: Sniffer Control Register Fields.

Bit range Field name Description
0 Start bit Start sniffer (pulsed bit)
1 Stop bit Stop sniffer (pulsed bit)
2 Reset bit Reset sniffer FSM (pulsed bit)

G.1.3 CAN HLP

TABLE G.7: Main FPGA Register Map - CAN HLP Registers.

Address Width Access Name Description
0x00 3 RW CTRL Control register
0x01 5 R STATUS Status register
0x02 6 RW CAN_PROP_SEG CAN controller propagation segment length
0x03 6 RW CAN_PHASE_SEG1 CAN controller phase segment 1 length
0x04 6 RW CAN_PHASE_SEG2 CAN controller phase segment 2 length
0x05 4 RW CAN_SJW CAN controller Synchronization Jump Width (SJW)
0x06 8 RW CAN_CLK_SCALE CAN controller clock scale
0x07 9 R CAN_TEC CAN Transmit Error Counter (TEC)
0x08 9 R CAN_REC CAN Receive Error Counter (REC)
0x09 16 RW TEST_REG Test/dummy register
0x0A 15 R FSM_STATES Top-level FSM states

G.1. Main FPGA Design 227

TABLE G.8: CAN HLP Control Register Fields.

Bit range Field name Description
0 TRIPLE_SAMPLING_EN Enable triple sampling of CAN bits
1 RETRANSMIT_EN Enable retransmission of CAN frames
2 TEST_MODE_EN Enable HLP test mode

TABLE G.9: CAN HLP Status Register Fields.

Bit range Field name Description
0 ERROR_ACTIVE CAN controller in Error Active mode
1 ERROR_PASSIVE CAN controller in Error Passive mode
2 BUS_OFF CAN controller in Bus Off mode
3 CAN_RX CAN controller Rx input value
4 CAN_TX CAN controller Tx output value

TABLE G.10: CAN HLP FSM State Register Fields.

Bit range Field name Description
3:0 HLP_FSM_STATE CAN HLP FSM state
8:4 CAN_FRAME_RX_FSM_STATE CAN controller Rx Frame FSM state
14:9 CAN_FRAME_TX_FSM_STATE CAN controller Tx Frame FSM state

G.1.4 FIFO Interface to PA3 FPGA for Configuration Data

TABLE G.11: Main FPGA Register Map - PA3 FIFO Interface Registers.

Address Width Access Name Description
0x00 16 W WRITE_FIFO_DATA Data to write to PA3 FIFO
0x09 1 W TEST_REG Test/dummy register

228 Appendix G. Register Maps

G.2 Auxiliary FPGA Design

TABLE G.12: Auxiliary FPGA Register Map – Version Registers. [64]

Address Name Width Access Reset Description
0x00 MINOR_VERSION 8 R 0x03 [7:0]: Minor num
0x01 MAJOR_VERSION 8 R 0xA2 [7:4]: A = alpha, B = Beta, 0 = final release

[3:0]: Major Num

TABLE G.13: Auxiliary FPGA Register Map – Git-hash Registers. [64]

Address Name Width Access Reset Description
0x50 HASH_0 8 R 0x0

Git-hash (short version) of the commit the design was generated from0x51 HASH_1 8 R 0x0
0x52 HASH_2 8 R 0x0
0x53 HASH_3 8 R 0x0

TABLE G.14: Auxiliary FPGA Register Map – Debug Registers. [64]

Address Name Width Access Reset Description
0x40 DIPSWITCH1 8 R 0x– Status of connected dipswitches

[9:0] Value of Dipswitches
0x41 DIPSWITCH2 2 R 0x–
0x42 PUSHBUTTON 4 R 0x0 Pushbutton Values. Always 0 unless pressed down.

Note: Pushbutton[0] is used as master reset so this will always show
up as 0.

0x43 CTRL_LEDs 2 RW 0x0 Value to put out on LEDs of PA3

TABLE G.15: Auxiliary FPGA Register Map – Clock Registers. [64]

Address Name Width Access Reset Description
0x02 CLR_CLK_LOL_CNTS 1 W(T) 0x00 [0]: Clear clock Loss of Lock (LoL) counters
0x03 STATUS_CLOCK 3 R 0x00 [0]: lcl_clk_lol

[1]: lcl_clk_c1b
[2]: lcl_clk_c2b

0x04 CNFG_CLOCK 3 RW 0x00 [0]: lcl_clk_in_sel
[1]: lcl_clk_cs
[2]: lcl_clk_rst

0x05 LOCAL_CLK_LOL_CNT 8 R 0x00 Loss of Lock counter, lol
0x06 LOCAL_CLK_C1B_CNT 8 R 0x00 Loss of Lock counter, c1b
0x07 LOCAL_CLK_C2B_CNT 8 R 0x00 Loss of Lock counter, c2b

G.2. Auxiliary FPGA Design 229

TABLE G.16: Auxiliary FPGA Register Map - Config Controller Regis-
ters. [64]

Address Name Width Access Reset Description
0x08 CC_CMD 8 RW 0x00 [6:0]: Config Controller Command Register

h01: Init_config
h02: continuous scrubbing
h04: single scrubbing cycle
h08: Stop continuous scrubbing
h10: Clear Scrubbing Counter
h20: Init config 2

[7]: EXECUTE command = ’1’ (T)
0x09 CC_STATUS 3 R 0x00 Config Controller Status Register

[0]: busy
[1]: config done
[2]: scrubbing active
[3]: scrubbing done
[4]: config done, golden image
[5]: error

0x0A CC_ACTIVE_STATE 4 R 0x00 Active state of CC state machine
h0: idle
h1: init_sm_wait
h2: init_flash_read
h3: fifo_status
h4: transfer_data
h5: transfer_data_done
h6: startup_wait
h7: pause_scrub
hF: others

0x0B CC_SCRUB_CNT_LSB 8 R 0x00 Number of scrubbing cycles executed0x0C CC_SCRUB_CNT_MSB 8 R 0x00
0x0D CC_CTRL 1 RW 0x00 [0]: Set high to pause continuous scrubbing

TABLE G.17: Auxiliary FPGA Register Map – Read Controller Registers.
[64]

Address Name Width Access Reset Description
0x10 RC_CMD 8 RW 0x00 [6:0]: Read Controller Command register

H01: READ_PARAMETER
h02: READ_CONFIG
h04: READ_SCRUB
h08: START_PAGE
h10: STOP_PAGE
h20: READ_CONFIG2

[7] EXECUTE command = ’1’ (T)
0x11 RC_STATUS 8 RW 0x00 Read Controller Status Register:

[0]: RC_busy
[1]: Waiting_for_flash
[2]: Reading bitfile
[3]: Reading parameters
[4]: Config parameter ok
[5]: BS parameter ok
[6]: Parameter error
[7]: Config 2 parameter ok

0x12 RC_FLASHPAGE1 8 R 0x00
Page address read from flash [18:0]0x13 RC_FLASHPAGE2 8 R 0x00

0x14 RC_FLASHPAGE3 3 R 0x00

230 Appendix G. Register Maps

TABLE G.18: Auxiliary FPGA Register Map – SelectMap Registers. [64]

Address Name Width Access Reset Description
0x18 SMAP_CMD 8 RW 0x00 [5:0]: SelectMAP Command register

h01: Init Xilinx
h02: Startup
h04: write one byte
h08: read one byte
h10: abort
h20: read/write finished

[6]: Clears any error in SelectMap interface. (T)
[7]: EXECUTE command = ’1’ (T)

0x19 SMAP_DATA_TX 8 R 0x00 Byte read from Xilinx SelectMap interface
0x1A SMAP_DATA_RX 8 RW 0x00 Byte to write to Xilinx SelectMap interface
0x1B SMAP_STATUS 6 R 0x00 SelectMap Interface Status register

[0]: init_b does not respond to prog_b = 0
[1]: init_b does not go high after prog_b
[2]: Done never goes high during startup
[3]: Done status from Xilinx (high if device is configured)
[4]: Configuration done successfully
[5]: Interface busy

TABLE G.19: Auxiliary FPGA Register Map – Read FIFO Registers. [64]

Address Name Width Access Reset Description
0x30 FIFO_DATA_RD 8 R 0x00 Return data from ECC FIFO.

Note: Must not be read during init config or scrubbing
0x31 FIFO_DATA_WR 8 (R)W 0x00 Data to write to Flash.

Note: When writing to Flash the number of bytes written to the
Flash must match page size given by
FLASH_TRX_SIZE_LSB/MSB

0x32 FIFO_STATUS 5 R 0x1A Status of both Write FIFO and Read FIFO
[0]: Read FIFO full
[1]: Read FIFO empty
[2]: Write FIFO full
[3]: Write FIFO empty
[4]: Xilinx FIFO Empty (’1’ if Xilinx is configured, ’0’ if not)

TABLE G.20: Auxiliary FPGA Register Map – Write Controller Registers.
[64]

Address Name Width Access Reset Description
0x33 FIFO_WRITER_CMD 8 RW 0x0 FIFO Write controller command register

[6:0]: Command
h01: Write to flash via Xilinx FIFO
h02: Write to Flash via I2C/UART
h04: Stop writing. Executed after all data has

been written
h08: Clear error flags

[7]: Execute (T)
0x34 FIFO_WRITER_STATUS 5 R 0x01 Status register of FIFO write controller

[0]: Ready to accept data
[1]: Active input (’0’ = I2C/UART, ’1’ = Xilinx)
[2]: Ending data transmission active
[3]: Error
[4]: Command not recognized
[5]: TMR Error in FIFO

0x35 FIFO_WRITER_TMR_ERR 8 R 0x00 Number of TMR errors in triplicated Write FIFO

G.2. Auxiliary FPGA Design 231

TABLE G.21: Auxiliary FPGA Register Map – Flash Interface Registers.
[64]

Address Name Width Access Reset Description
0x20 FLASH_CTRL 8 RW 0x00 Flash Interface Command Register

[5:0]: Command
h01: PAGE_WRITE
h02: PAGE_READ
h04: READ_ID
h08: READ_STATUS
h10: RESET_FLASH
h20: BLOCK_ERASE

[6]: Verify Pattern
[7]: Flash Interface Execute (T)

0x21 FLASH_STATUS 7 R 0x00 Flash Interface Status Register
[0]: Done with command (Read/Write/Erase/Read
ID)
[1]: FIFO status (Write FIFO EMPTY or Read FIFO
FULL)
[2]: Status bit from Flash after ended command. ’1’
when an error has occured.
[3]: Write Active
[4]: Read Active
[5]: Command active (ReadID, Erase, Reset)
[6]: Trx_done (sticky bit)

0x22 FLASH_PATTERN 8 RW 0x00 Debug feature
When the ’Verify Pattern’ bit in FLASH_CTRL is set,
each byte in a page that is read back is verified
against this pattern.

0x23 FLASH_MIS_CNT 8 R 0x00 Debug feature
Number of pattern recognition errors when ’Verify
Pattern’ is enabled.

0x24 FLASH_ROW_ADDR1 8 RW 0x00 [5:0]: Page address
[7:6]: Block address[1:0]

0x25 FLASH_ROW_ADDR2 8 RW 0x00 [7:0]: Block address[9:2]
0x26 FLASH_ROW_ADDR3 5 RW 0x00 [3:0] Block address[13:10]

[7:4]: Not used
0x27 FLASH_TRX_SIZE_LSB 8 RW 0x60 Page size on Flash:

4096 (0x1000): Not using spare section (default)
4192 (0x1060): Page size for ECC encoding (32x3
bytes hamming codes)
4224 (0x1080): Page size incl. full spare section

0x28 FLASH_TRX_SIZE_MSB 5 RW 0x10

0x29 FLASH_STATUS_WORD 8 R 0x00 Status word transferred from Flash memory after
erase command – See table 3 on page 55 of data sheet

0x2A FLASH_SELECT_IC 2 RW 0x01 Select which Flash IC to use. Default is chip 1.
b00: Not legal value. Default Flash b01 (IC 1) is
selected
b01: Flash IC 1 (FLASH_CE1/FLASH_R_B1_n)
b10: Flash IC 2 (FLASH_CE2/FLASH_R_B2_n)
b11: Both IC1 and IC2 active (NOT LEGAL FOR
READ PAGE OR READ ID OPERATION - WILL
READ CORRUPT DATA. Writing and Erasing is OK)

0x2B FLASH_TRX_CNT_MSB 5 R 0x00 Number of bytes written or read by Flash Interface0x2C FLASH_TRX_CNT_LSB 8 R 0x00
0x46 FLASH_STATE_0 8 R 0x00 Debug registers showing active states of all FSMs in

Flash Interface.
[3:0]: NAND Flash Controller FSM
[9:4]: Page Write Control FSM
[15:10]: Page Read Control FSM
[21:16]: Block Erase Control FSM
[25:22]: Read ID Control FSM

0x47 FLASH_STATE_1 8 R 0x00

0x48 FLASH_STATE_2 8 R 0x00

0x4D FLASH_STATE_3 2 R 0x00
0x4E FLASH_ST_WRD 8 R 0x00 Status word from Flash after a transaction is finished.

[0]: Error flag (positive polarity)
[7:1]: Don’t care

232 Appendix G. Register Maps

TABLE G.22: Auxiliary FPGA Register Map – ECC Registers. [64]

Address Name Width Access Reset Description
0x38 ECC_COMMAND 2 RW 0x0 ECC Command and Control register

[0]: Enable ECC (positive polarity)
[1]: Clear Status and Counters (T)

0x39 ECC_STATUS 3 R 0x0 ECC Status register
[0]: Double bit error (uncorrectable)
[1]: Single bit error
[2]: ECC error (single bit error in ECC code)
[3]: TMR error in Read FIFO Writing any value to
this register clears it

0x3A ECC_SB_CNT 8 R 0x00 Single Bit Error Counter
0x3B ECC_FIFOTMR_ERR_CNT 8 R 0x00 Number of TMR errors in triplicated Read FIFO

TABLE G.23: Auxiliary FPGA Register Map – CRC Registers. [64]

Address Name Width Access Reset Description
0x49 CRC_0 8 R 0x0

Calculated CRC-32 value from the CRC checker0x4A CRC_1 8 R 0x0
0x4B CRC_2 8 R 0x0
0x4C CRC_3 8 R 0x0

233

Appendix H

Simulation Results

H.1 ITS - pp

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

69.9 70.1 70.2 53.4 53.3 45.4 45.3

258.7 180.3 180.2 137.3 137.5 115.5 115.6

668.9 367.0 367.1 277.1 277.1 230.9 230.5

2082.1 917.3 919.2 685.3 686.3 560.6 561.1 250

500

750

1000

1250

1500

1750

2000

M
ean data rate [M

bps] per stave - Layer 0

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

7.8 7.8 7.8 5.9 5.9 5.0 5.0

28.7 20.0 20.0 15.3 15.3 12.8 12.8

74.3 40.8 40.8 30.8 30.8 25.7 25.6

231.3 101.9 102.1 76.1 76.3 62.3 62.3
50

100

150

200

M
ean data rate [M

bps] per link - Layer 0

(B) Per link

FIGURE H.1: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 0 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

42.6 42.8 42.8 32.6 32.5 27.8 27.8

157.7 110.6 110.5 84.7 84.7 71.9 71.8

410.1 227.1 227.3 172.7 173.0 145.2 145.0

1294.4 576.3 578.2 433.7 434.4 356.6 357.3 200

400

600

800

1000

1200

M
ean data rate [M

bps] per stave - Layer 1

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

4.7 4.8 4.8 3.6 3.6 3.1 3.1

17.5 12.3 12.3 9.4 9.4 8.0 8.0

45.6 25.2 25.3 19.2 19.2 16.1 16.1

143.8 64.0 64.2 48.2 48.3 39.6 39.7 20

40

60

80

100

120

140 M
ean data rate [M

bps] per link - Layer 1

(B) Per link

FIGURE H.2: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 1 of the ITS.

234 Appendix H. Simulation Results

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

29.3 29.4 29.4 22.4 22.4 19.2 19.1

108.5 76.2 76.0 58.5 58.5 49.9 49.9

282.7 157.2 157.4 120.4 120.5 102.0 101.7

898.6 404.4 405.1 305.5 306.4 253.3 253.4 100

200

300

400

500

600

700

800

M
ean data rate [M

bps] per stave - Layer 2

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

3.3 3.3 3.3 2.5 2.5 2.1 2.1

12.1 8.5 8.4 6.5 6.5 5.5 5.5

31.4 17.5 17.5 13.4 13.4 11.3 11.3

99.8 44.9 45.0 33.9 34.0 28.1 28.2
20

40

60

80

M
ean data rate [M

bps] per link - Layer 2

(B) Per link

FIGURE H.3: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 2 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

18.1 17.9 17.8 13.5 13.4 11.3 11.3

65.3 44.8 44.8 34.0 34.0 28.5 28.6

166.0 90.4 90.6 68.7 68.5 58.3 58.1

514.7 230.7 230.9 176.3 176.7 151.4 151.0
100

200

300

400

500

M
ean data rate [M

bps] per stave - Layer 3

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

1.1 1.1 1.1 0.8 0.8 0.7 0.7

4.1 2.8 2.8 2.1 2.1 1.8 1.8

10.4 5.6 5.7 4.3 4.3 3.6 3.6

32.2 14.4 14.4 11.0 11.0 9.5 9.4 5

10

15

20

25

30

M
ean data rate [M

bps] per link - Layer 3

(B) Per link

FIGURE H.4: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 3 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

12.6 12.5 12.5 9.4 9.4 7.9 7.9

45.6 31.3 31.3 23.7 23.8 19.9 19.9

116.0 63.1 63.1 47.8 47.7 40.4 40.3

358.9 160.3 160.4 122.0 122.1 104.7 104.0 50

100

150

200

250

300

350 M
ean data rate [M

bps] per stave - Layer 4

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

0.8 0.8 0.8 0.6 0.6 0.5 0.5

2.9 2.0 2.0 1.5 1.5 1.2 1.2

7.2 3.9 3.9 3.0 3.0 2.5 2.5

22.4 10.0 10.0 7.6 7.6 6.5 6.5 2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ean data rate [M

bps] per link - Layer 4

(B) Per link

FIGURE H.5: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 4 of the ITS.

H.2. ITS - Pb–Pb 235

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

11.8 11.6 11.6 8.7 8.7 7.3 7.3

42.4 28.9 29.0 22.0 21.9 18.3 18.3

107.4 58.4 58.3 43.9 43.8 37.0 36.9

331.5 146.7 146.5 111.1 111.3 94.0 93.9 50

100

150

200

250

300

M
ean data rate [M

bps] per stave - Layer 5

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

0.4 0.4 0.4 0.3 0.3 0.3 0.3

1.5 1.0 1.0 0.8 0.8 0.7 0.7

3.8 2.1 2.1 1.6 1.6 1.3 1.3

11.8 5.2 5.2 4.0 4.0 3.4 3.4 2

4

6

8

10

M
ean data rate [M

bps] per link - Layer 5

(B) Per link

FIGURE H.6: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 5 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

9.4 9.2 9.3 7.0 7.0 5.8 5.8

33.8 23.1 23.1 17.5 17.5 14.6 14.6

85.7 46.5 46.5 34.9 34.8 29.5 29.3

264.6 116.9 116.5 88.2 88.3 74.9 74.6
50

100

150

200

250

M
ean data rate [M

bps] per stave - Layer 6

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

400 kHz

1000 kHz

2000 kHz

5000 kHz

0.3 0.3 0.3 0.2 0.2 0.2 0.2

1.2 0.8 0.8 0.6 0.6 0.5 0.5

3.1 1.7 1.7 1.2 1.2 1.1 1.0

9.5 4.2 4.2 3.1 3.2 2.7 2.7
2

4

6

8

M
ean data rate [M

bps] per link - Layer 6

(B) Per link

FIGURE H.7: Average data rate per stave/RU (A) and per link (B), simu-
lated for pp in layer 6 of the ITS.

H.2 ITS - Pb–Pb

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

681.4 1839.4 1829.7 1371.0 1378.3 1126.6 1126.7

1688.8 3625.9 3613.9 2691.7 2681.9 2196.7 2202.0

2993.9 5311.5 5294.5 3943.3 3968.1 3248.1 3240.9

4494.4 6292.0 6257.4 5233.4 5240.5 4318.1 4317.5
1000

2000

3000

4000

5000

6000

M
ean data rate [M

bps] per stave - Layer 0

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

75.7 204.4 203.3 152.3 153.1 125.2 125.2

187.6 402.9 401.5 299.1 298.0 244.1 244.7

332.7 590.2 588.3 438.1 440.9 360.9 360.1

499.4 699.1 695.3 581.5 582.3 479.8 479.7
100

200

300

400

500

600

M
ean data rate [M

bps] per link - Layer 0

(B) Per link

FIGURE H.8: Average data rate per stave/RU (A) and per link (B), simu-
lated for Pb–Pb in layer 0 of the ITS.

236 Appendix H. Simulation Results

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

451.7 1101.1 1094.8 824.3 829.7 680.1 680.9

1092.9 2186.2 2176.3 1625.1 1621.5 1326.6 1329.5

1910.0 3232.2 3226.3 2382.1 2396.2 1953.6 1949.8

2850.8 4269.5 4274.8 3154.6 3159.8 2587.2 2589.3

500

1000

1500

2000

2500

3000

3500

4000

M
ean data rate [M

bps] per stave - Layer 1

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

50.2 122.3 121.6 91.6 92.2 75.6 75.7

121.4 242.9 241.8 180.6 180.2 147.4 147.7

212.2 359.1 358.5 264.7 266.2 217.1 216.6

316.8 474.4 475.0 350.5 351.1 287.5 287.7 100

150

200

250

300

350

400

450

M
ean data rate [M

bps] per link - Layer 1

(B) Per link

FIGURE H.9: Average data rate per stave/RU (A) and per link (B), simu-
lated for Pb–Pb in layer 1 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

322.8 727.5 723.0 546.8 550.4 453.2 453.9

768.1 1453.4 1445.7 1083.3 1081.3 886.4 887.9

1329.5 2152.3 2152.2 1590.9 1599.5 1303.9 1301.4

1967.6 2848.4 2852.2 2106.2 2108.7 1722.2 1723.6
500

1000

1500

2000

2500

M
ean data rate [M

bps] per stave - Layer 2

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

35.9 80.8 80.3 60.8 61.2 50.4 50.4

85.3 161.5 160.6 120.4 120.1 98.5 98.7

147.7 239.1 239.1 176.8 177.7 144.9 144.6

218.6 316.5 316.9 234.0 234.3 191.4 191.5
50

100

150

200

250

300

M
ean data rate [M

bps] per link - Layer 2

(B) Per link

FIGURE H.10: Average data rate per stave/RU (A) and per link (B), sim-
ulated for Pb–Pb in layer 2 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

215.9 378.2 375.7 286.3 289.2 241.0 242.3

492.4 765.6 759.1 579.5 580.7 488.8 490.1

831.4 1149.1 1154.2 871.5 875.1 737.7 737.9

1205.0 1545.5 1550.5 1169.3 1172.2 990.2 991.1 400

600

800

1000

1200

1400

M
ean data rate [M

bps] per stave - Layer 3

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

13.5 23.6 23.5 17.9 18.1 15.1 15.1

30.8 47.8 47.4 36.2 36.3 30.5 30.6

52.0 71.8 72.1 54.5 54.7 46.1 46.1

75.3 96.6 96.9 73.1 73.3 61.9 61.9
20

30

40

50

60

70

80

90

M
ean data rate [M

bps] per link - Layer 3

(B) Per link

FIGURE H.11: Average data rate per stave/RU (A) and per link (B), sim-
ulated for Pb–Pb in layer 3 of the ITS.

H.2. ITS - Pb–Pb 237

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

150.8 262.4 260.5 198.6 200.8 167.6 168.5

343.7 531.7 527.5 403.1 403.9 340.7 341.7

580.2 799.1 802.9 607.0 610.0 516.2 515.9

841.1 1075.8 1079.9 816.3 818.2 694.3 694.8
200

400

600

800

1000

M
ean data rate [M

bps] per stave - Layer 4

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

9.4 16.4 16.3 12.4 12.6 10.5 10.5

21.5 33.2 33.0 25.2 25.2 21.3 21.4

36.3 49.9 50.2 37.9 38.1 32.3 32.2

52.6 67.2 67.5 51.0 51.1 43.4 43.4

10

20

30

40

50

60

M
ean data rate [M

bps] per link - Layer 4

(B) Per link

FIGURE H.12: Average data rate per stave/RU (A) and per link (B), sim-
ulated for Pb–Pb in layer 4 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

133.8 231.5 230.0 175.3 177.2 147.9 149.0

304.5 469.6 465.4 355.9 356.5 301.5 302.4

513.6 706.1 708.6 536.5 538.9 457.9 457.9

744.5 951.5 954.2 722.9 724.4 618.9 619.3
200

300

400

500

600

700

800

900

M
ean data rate [M

bps] per stave - Layer 5

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

4.8 8.3 8.2 6.3 6.3 5.3 5.3

10.9 16.8 16.6 12.7 12.7 10.8 10.8

18.3 25.2 25.3 19.2 19.2 16.4 16.4

26.6 34.0 34.1 25.8 25.9 22.1 22.1

5

10

15

20

25

30

M
ean data rate [M

bps] per link - Layer 5

(B) Per link

FIGURE H.13: Average data rate per stave/RU (A) and per link (B), sim-
ulated for Pb–Pb in layer 5 of the ITS.

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

107.5 185.6 184.3 140.6 142.1 118.5 119.4

244.4 376.3 372.8 285.1 285.7 241.6 242.2

412.3 565.7 567.8 430.3 431.7 367.3 367.4

597.5 761.9 764.7 579.6 581.0 496.7 496.9 200

300

400

500

600

700

M
ean data rate [M

bps] per stave - Layer 6

(A) Per stave

Min-bias/Trig. 100 ns

Periodic/Trig. 5 us

Periodic/Cont. 5 us

Periodic/Trig. 10 us

Periodic/Cont. 10 us

Periodic/Trig. 20 us

Periodic/Cont. 20 us

50 kHz

100 kHz

150 kHz

200 kHz

3.8 6.6 6.6 5.0 5.1 4.2 4.3

8.7 13.4 13.3 10.2 10.2 8.6 8.7

14.7 20.2 20.3 15.4 15.4 13.1 13.1

21.3 27.2 27.3 20.7 20.7 17.7 17.7
5

10

15

20

25

M
ean data rate [M

bps] per link - Layer 6

(B) Per link

FIGURE H.14: Average data rate per stave/RU (A) and per link (B), sim-
ulated for Pb–Pb in layer 6 of the ITS.

238 Appendix H. Simulation Results

H.3 FoCal - pp

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

5

10

15

20

25

30

35

40

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S1 - 200 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

5

10

15

20

25

30

35

40

45

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S3 - 200 kHz pp

(B) Layer S3

FIGURE H.15: Average data rate versus radius for different trigger and
strobe settings, simulated for 200 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

20

40

60

80

100

120

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S1 - 500 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

20

40

60

80

100

120

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S3 - 500 kHz pp

(B) Layer S3

FIGURE H.16: Average data rate versus radius for different trigger and
strobe settings, simulated for 500 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S1 - 1 MHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S3 - 1 MHz pp

(B) Layer S3

FIGURE H.17: Average data rate versus radius for different trigger and
strobe settings, simulated for 1 MHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

H.3. FoCal - pp 239

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.99

0.992

0.994

0.996

0.998

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 200 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.992

0.994

0.996

0.998

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S3 - 200 kHz pp

(B) Layer S3

FIGURE H.18: Readout efficiency versus radius for different trigger and
strobe settings, simulated for 200 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.95

0.96

0.97

0.98

0.99

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 500 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.95

0.96

0.97

0.98

0.99

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S3 - 500 kHz pp

(B) Layer S3

FIGURE H.19: Readout efficiency versus radius for different trigger and
strobe settings, simulated for 500 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 1 MHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S3 - 1 MHz pp

(B) Layer S3

FIGURE H.20: Readout efficiency versus radius for different trigger and
strobe settings, simulated for 1 MHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

240 Appendix H. Simulation Results

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

10

20

30

40

50

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S1 - 200 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

10

20

30

40

50

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S3 - 200 kHz pp

(B) Layer S3

FIGURE H.21: Pixel hit occupancy versus radius for different trigger and
strobe settings, simulated for 200 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

20

40

60

80

100

120

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S1 - 500 kHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

20

40

60

80

100

120

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S3 - 500 kHz pp

(B) Layer S3

FIGURE H.22: Pixel hit occupancy versus radius for different trigger and
strobe settings, simulated for 500 kHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S1 - 1 MHz pp

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S3 - 1 MHz pp

(B) Layer S3

FIGURE H.23: Pixel hit occupancy versus radius for different trigger and
strobe settings, simulated for 1 MHz pp in layer S1 (A) and layer S3 (B)

of the FoCal detector.

H.4. FoCal - Pb–Pb 241

H.4 FoCal - Pb–Pb

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S1 - 50 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S3 - 50 kHz PbPb

(B) Layer S3

FIGURE H.24: Average data rate versus radius for different trigger and
strobe settings, simulated for 50 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

50

100

150

200

250

300

350

400

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S1 - 100 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

350

400

 D
at

a
ra

te
 [M

bp
s]

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Average data rate layer S3 - 100 kHz PbPb

(B) Layer S3

FIGURE H.25: Average data rate versus radius for different trigger and
strobe settings, simulated for 100 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 50 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S3 - 50 kHz PbPb

(B) Layer S3

FIGURE H.26: Readout efficiency versus radius for different trigger and
strobe settings, simulated for 50 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

242 Appendix H. Simulation Results

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.5

0.6

0.7

0.8

0.9

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S1 - 100 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0.6

0.7

0.8

0.9

1

 E
ffi

ci
en

cy

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Frame efficiency layer S3 - 100 kHz PbPb

(B) Layer S3

FIGURE H.27: Readout efficiency versus radius for different trigger and
strobe settings, simulated for 100 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

350

400

450

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S1 - 50 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

50

100

150

200

250

300

350

400

450

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S3 - 50 kHz PbPb

(B) Layer S3

FIGURE H.28: Pixel hit occupancy versus radius for different trigger and
strobe settings, simulated for 50 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

100

200

300

400

500

600

700

800

900

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S1 - 100 kHz PbPb

(A) Layer S1

0 50 100 150 200 250 300 350 400
 Radius [mm]

0

100

200

300

400

500

600

700

800

900

 P
ix

el
 h

its
 p

er
 fr

am
e

(a
ve

ra
ge

)

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Min-bias/Trig. 100 ns
Periodic/Cont. 10 us
Periodic/Trig. 10 us
Periodic/Cont. 20 us
Periodic/Trig. 20 us

Pixel hit occupancy layer S3 - 100 kHz PbPb

(B) Layer S3

FIGURE H.29: Pixel hit occupancy versus radius for different trigger and
strobe settings, simulated for 100 kHz Pb–Pb in layer S1 (A) and layer S3

(B) of the FoCal detector.

243

Bibliography

[1] Wikipedia contributors, Electron — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Electron&oldid=1068855589,
[Online; accessed 20-February-2022], 2022.

[2] ——, Parton (particle physics) — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=Parton_(particle_

physics)&oldid=1070425688, [Online; accessed 20-February-2022], 2022.

[3] ——, Quark — Wikipedia, the free encyclopedia,
https://en.wikipedia.org/w/index.php?title=Quark&oldid=1071943911,
[Online; accessed 20-February-2022], 2022.

[4] ——, Standard Model — Wikipedia, The Free Encyclopedia, [Online; accessed
4-December-2019], 2019. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Standard_Model&oldid=928956838.

[5] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big
Picture and the Big Questions,” Annual Review of Nuclear and Particle Science,
vol. 68, no. 1, pp. 339–376, 2018. DOI: 10.1146/annurev-nucl-101917-020852.

[6] OpenStax, Chemistry: Atom First. OpenStax CNX, 2013. [Online]. Available:
http://cnx.org/contents/4539ae23-1ccc-421e-9b25-843acbb6c4b0@3.1.

[7] G. Charpak, R. Bouclier, T. Bressani, J. Favier, and C. Zupancic, “The use of
multiwire proportional counters to select and localize charged particles,”
Nucl. Instrum. Methods, vol. 62, pp. 262–268, 1968. DOI:
10.1016/0029-554X(68)90371-6. [Online]. Available:
http://cds.cern.ch/record/347202.

[8] G. Charpak and F. Sauli, “Multiwire proportional chambers and drift
chambers,” Nucl. Instrum. Methods, vol. 162, 405–428. 25 p, 1979. DOI:
10.1016/0029-554X(79)90726-2. [Online]. Available:
http://cds.cern.ch/record/133177.

[9] V. Frigo, “LHC map in 3D. Schéma du LHC en 3D,” AC Collection. Legacy of
AC. Pictures from 1992 to 2002., 1997, [Online]. Available:
https://cds.cern.ch/record/842700.

https://en.wikipedia.org/w/index.php?title=Electron&oldid=1068855589
https://en.wikipedia.org/w/index.php?title=Electron&oldid=1068855589
https://en.wikipedia.org/w/index.php?title=Parton_(particle_physics)&oldid=1070425688
https://en.wikipedia.org/w/index.php?title=Parton_(particle_physics)&oldid=1070425688
https://en.wikipedia.org/w/index.php?title=Quark&oldid=1071943911
https://en.wikipedia.org/w/index.php?title=Standard_Model&oldid=928956838
https://en.wikipedia.org/w/index.php?title=Standard_Model&oldid=928956838
https://doi.org/10.1146/annurev-nucl-101917-020852
http://cnx.org/contents/4539ae23-1ccc-421e-9b25-843acbb6c4b0@3.1
https://doi.org/10.1016/0029-554X(68)90371-6
http://cds.cern.ch/record/347202
https://doi.org/10.1016/0029-554X(79)90726-2
http://cds.cern.ch/record/133177
https://cds.cern.ch/record/842700

244 Bibliography

[10] "CERN", "Powering CERN", [Online; accessed 26-September-2020]. [Online].
Available: https://home.cern/science/engineering/powering-cern.

[11] K Aamodt, A Abrahantes Quintana, R Achenbach, et al., “The ALICE
experiment at the CERN LHC. A Large Ion Collider Experiment,” JINST,
vol. 3, S08002. 259 p, 2008, Also published by CERN Geneva in 2010. DOI:
10.1088/1748-0221/3/08/S08002. [Online]. Available:
https://cds.cern.ch/record/1129812.

[12] The ALICE Collaboration, “ALICE Inner Tracking System (ITS): Technical
Design Report,” Tech. Rep., 1999. [Online]. Available:
https://cds.cern.ch/record/391175.

[13] ——, “Technical Design Report for the Upgrade of the ALICE Inner Tracking
System,” Tech. Rep., 2013. DOI: 10.1088/0954-3899/41/8/087002. [Online].
Available: https://cds.cern.ch/record/1625842.

[14] Arturo Tauro, 3D ALICE Schematic RUN3 - with Description, [Online; accessed
19-June-2019], 2019. [Online]. Available:
https://alice-figure.web.cern.ch/node/11220.

[15] “Performance of the ALICE experiment at the CERN LHC,” International
Journal of Modern Physics A, vol. 29, no. 24, p. 1 430 044, 2014, ISSN: 1793-656X.
DOI: 10.1142/s0217751x14300440. [Online]. Available:
http://dx.doi.org/10.1142/S0217751X14300440.

[16] M. Vito, G. Anelli, F Antinori, A Boccardi, G Bruno, M Burns, I. Cali,
M. Campbell, M. Caselle, P Chochula, M. Cinausero, A Dalessandro, R. Dima,
R. Dinapoli, D Elia, D Fabris, R. Fini, E Fioretto, F. Formenti, and T Virgili,
“The silicon pixel detector (SPD) for the ALICE experiment,” Journal of Physics
G: Nuclear and Particle Physics, vol. 30, S1091, Jul. 2004. DOI:
10.1088/0954-3899/30/8/065.

[17] C. Gemme, “The ATLAS tracker pixel detector for HL-LHC,” in Proceedings of
The 25th International workshop on vertex detectors — PoS(Vertex 2016), vol. 287,
2017, p. 019. DOI: 10.22323/1.287.0019.

[18] The Tracker Group of the CMS Collaboration, The CMS Phase-1 Pixel Detector
Upgrade, 2020. arXiv: 2012.14304 (physics.ins-det).

[19] C. Dean, “The sPHENIX experiment at RHIC,” PoS, vol. ICHEP2020, p. 731,
2021. DOI: 10.22323/1.390.0731.

https://home.cern/science/engineering/powering-cern
https://doi.org/10.1088/1748-0221/3/08/S08002
https://cds.cern.ch/record/1129812
https://cds.cern.ch/record/391175
https://doi.org/10.1088/0954-3899/41/8/087002
https://cds.cern.ch/record/1625842
https://alice-figure.web.cern.ch/node/11220
https://doi.org/10.1142/s0217751x14300440
http://dx.doi.org/10.1142/S0217751X14300440
https://doi.org/10.1088/0954-3899/30/8/065
https://doi.org/10.22323/1.287.0019
2012.14304
https://doi.org/10.22323/1.390.0731

Bibliography 245

[20] A. Alscher, K. Hencken, D. Trautmann, and G. Baur, “Multiple
electromagnetic electron-positron pair production in relativistic heavy-ion
collisions,” Physical Review A, vol. 55, no. 1, 396–401, 1997, ISSN: 1094-1622.
DOI: 10.1103/physreva.55.396. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevA.55.396.

[21] T. A. Collaboration, ITS stand-alone tracking efficiency for current and upgraded
ITS, [This is a replotting of Fig 7.12 of the ITS TDR], 2015. [Online]. Available:
https://alice-figure.web.cern.ch/node/8785.

[22] ——, Impact parameter resolution (rphi and z) for current ITS (PbPb data) and
upgraded ITS, [This is a replotting of Fig 7.6 of the ITS TDR], 2015. [Online].
Available: https://alice-figure.web.cern.ch/node/8784.

[23] T. Kugathasan, C. Cavicchioli, P. L. Chalmet, P. Giubilato, H. Hillemanns,
A. Junique, M. Mager, C. A. Marin Tobon, P. Martinengo, S. Mattiazzo,
H. Mugnier, L. Musa, D. Pantano, J. Rousset, F. Reidt, P. Riedler, W. Snoeys,
J. W. van Hoorne, and P. Yang, “Explorer-0: A Monolithic Pixel Sensor in a 180
nm CMOS process with an 18 µm thick high resistivity epitaxial layer,” in
2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013
NSS/MIC), 2013, pp. 1–5. DOI: 10.1109/NSSMIC.2013.6829476.

[24] P. Giubilato, Readout Electronic - WP10, Internal communication, 2016.

[25] G. Tambave, J. Alme, G. Barnaföldi, R. Barthel, A. van den Brink, S. Brons,
M. Chaar, V. Eikeland, G. Genov, O. Grøttvik, H. Pettersen, Z. Pastuovic,
S. Huiberts, H. Helstrup, K. Hetland, S. Mehendale, I. Meric, Q. Malik,
O. Odland, G. Papp, T. Peitzmann, P. Piersimoni, A. Ur Rehman, F. Reidt,
M. Richter, D. Röhrich, A. Sudar, A. Samnøy, J. Seco, H. Shafiee,
E. Skjæveland, J. Sølie, K. Ullaland, M. Varga-Kofarago, L. Volz, B. Wagner,
and S. Yang, “Characterization of monolithic CMOS pixel sensor chip with
ion beams for application in particle computed tomography,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 958, p. 162 626, 2020,
Proceedings of the Vienna Conference on Instrumentation 2019, ISSN:
0168-9002. DOI: 10.1016/j.nima.2019.162626. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0168900219311258.

[26] ALICE ITS ALPIDE development team, ALPIDE Operations Manual, ALICE
Internal Communication, 2016.

[27] Manzari, Vito, OB HIC Construction and Prototypes, Internal communication:
Presentation at ITS Upgrade - Stave Production Readiness Review, 2017.

https://doi.org/10.1103/physreva.55.396
http://dx.doi.org/10.1103/PhysRevA.55.396
https://alice-figure.web.cern.ch/node/8785
https://alice-figure.web.cern.ch/node/8784
https://doi.org/10.1109/NSSMIC.2013.6829476
https://doi.org/10.1016/j.nima.2019.162626
https://www.sciencedirect.com/science/article/pii/S0168900219311258
https://www.sciencedirect.com/science/article/pii/S0168900219311258

246 Bibliography

[28] F Costa, A Kluge, and P. V. Vyvre, “The detector read-out in ALICE during
Run 3 and 4,” Journal of Physics: Conference Series, vol. 898, 2017. DOI:
10.1088/1742-6596/898/3/032011. [Online]. Available:
https://doi.org/10.1088/1742-6596/898/3/032011.

[29] P Antonioli, A Kluge, and W Riegler, “Upgrade of the ALICE Readout &
Trigger System,” Tech. Rep., 2013. [Online]. Available:
https://cds.cern.ch/record/1603472.

[30] P. Giubilato, System timing and trigger, Internal communication: Presentation
at ITS Upgrade - Readout Electronics Engineering Design Review, 2017.

[31] K. Sielewicz, G. A. Rinella, M. Bonora, J. Ferencei, P. Giubilato, M. J. Rossewij,
J. Schambach, and T. Vanat, “Prototype readout electronics for the upgraded
ALICE Inner Tracking System,” Journal of Instrumentation, vol. 12, 01 2017. DOI:
10.1088/1748-0221/12/01/C01008.

[32] “Radiation Dose and Fluence in ALICE after LS2,” 2018. [Online]. Available:
http://cds.cern.ch/record/2642401.

[33] Microsemi, Neutron-Induced Single Event Upset (SEU) FAQ, [Online; accessed
6-March-2022], 2011. [Online]. Available:
https://www.microsemi.com/document-portal/doc_view/130760-neutron-

seu-faq.

[34] K Roed, J Alme, D Fehlker, C Lippmann, and A Rehman, “First measurement
of single event upsets in the readout control FPGA of the ALICE TPC
detector,” JINST, vol. 6, p. C12022, 2011. DOI:
10.1088/1748-0221/6/12/C12022. [Online]. Available:
http://cds.cern.ch/record/1452942.

[35] S. V. Nesbo, J. Alme, M. Bonora, M Rentsch Ersdal, P. Giubilato, H. Helstrup,
M. Lupi, G Aglieri Rinella, D. Röhrich, J. Schambach, A. Velure, and S. Yuan,
“Implementation of a CANbus interface for the Detector Control System in
the ALICE ITS Upgrade,” PoS, vol. TWEPP2019, p. 083, 2020. DOI:
10.22323/1.370.0083.

[36] O. S. Groettvik, J. Alme, R. Barthel, T. Bodova, V. Borshchov,
A. van den Brink, V. Eikeland, A. Herland, N. Van Der Kolk, S. Voigt Nesbø,
T. Peitzmann, D. Röhrich, G. Tambave, I. Tymchuk, K. Ullaland, and S. Yang,
“Development of Readout Electronics for a Digital Tracking Calorimeter,”
PoS, vol. TWEPP2019, p. 090, 2020. DOI: 10.22323/1.370.0090.

https://doi.org/10.1088/1742-6596/898/3/032011
https://doi.org/10.1088/1742-6596/898/3/032011
https://cds.cern.ch/record/1603472
https://doi.org/10.1088/1748-0221/12/01/C01008
http://cds.cern.ch/record/2642401
https://www.microsemi.com/document-portal/doc_view/130760-neutron-seu-faq
https://www.microsemi.com/document-portal/doc_view/130760-neutron-seu-faq
https://doi.org/10.1088/1748-0221/6/12/C12022
http://cds.cern.ch/record/1452942
https://doi.org/10.22323/1.370.0083
https://doi.org/10.22323/1.370.0090

Bibliography 247

[37] J. Alme, G. G. Barnafoldi, R. Barthel, V. Borshchov, T. Bodova,
A. van den Brink, S. Brons, M. Chaar, V. Eikeland, G. Feofilov, G. Genov,
S. Grimstad, O. Grottvik, H. Helstrup, A. Herland, A. E. Hilde, S. Igolkin,
R. Keidel, C. Kobdaj, N. van der Kolk, O. Listratenko, Q. W. Malik,
S. Mehendale, I. Meric, S. V. Nesbo, O. H. Odland, G. Papp, T. Peitzmann,
H. E. Seime Pettersen, P. Piersimoni, M. Protsenko, A. U. Rehman, M. Richter,
D. Rohrich, A. T. Samnoy, J. Seco, L. Setterdahl, H. Shafiee, O. J. Skjolddal,
E. Solheim, A. Songmoolnak, A. Sudar, J. R. Solie, G. Tambave, I. Tymchuk,
K. Ullaland, H. A. Underdal, M. Varga-Kofarago, L. Volz, B. Wagner,
F. M. Widerøe, R. Xiao, S. Yang, and H. Yokoyama, “A High-Granularity
Digital Tracking Calorimeter Optimized for Proton CT,” Frontiers in Physics,
vol. 8, p. 460, 2020, ISSN: 2296-424X. DOI: 10.3389/fphy.2020.568243.
[Online]. Available:
https://www.frontiersin.org/article/10.3389/fphy.2020.568243.

[38] Xilinx, Kintex UltraScale+ FPGAs Data Sheet: DC and AC Switching
Characteristics,
https://www.xilinx.com/support/documentation/data_sheets/ds922-

kintex-ultrascale-plus.pdf, [Online; accessed 12-June-2020], 2019.

[39] “Technical Design Report for the Muon Forward Tracker,” Tech. Rep.
CERN-LHCC-2015-001. ALICE-TDR-018, 2015. [Online]. Available:
http://cds.cern.ch/record/1981898.

[40] A. Szczepankiewicz, “Readout of the upgraded ALICE-ITS,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 824, pp. 465–469, 2016, ISSN: 01689002. DOI:
10.1016/j.nima.2015.10.056. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0168900215012681.

[41] M. J. Rossewij, P. Giubilato, and J. Schambach, Readout Unit production (RUv2),
Internal communication: Presentation at ITS Upgrade - Readout Electronics
Production Readiness Review, 2018.

[42] B. G. Taylor, “Timing distribution at the LHC,” 2002. DOI:
10.5170/CERN-2002-003.63. [Online]. Available:
https://cds.cern.ch/record/592719.

[43] R. Bailey and P. Collier, Standard Filling Schemes for Various LHC Operation
Modes (Revised),
https://cds.cern.ch/record/691782/files/project-note-323.pdf.

https://doi.org/10.3389/fphy.2020.568243
https://www.frontiersin.org/article/10.3389/fphy.2020.568243
https://www.xilinx.com/support/documentation/data_sheets/ds922-kintex-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds922-kintex-ultrascale-plus.pdf
http://cds.cern.ch/record/1981898
https://doi.org/10.1016/j.nima.2015.10.056
http://linkinghub.elsevier.com/retrieve/pii/S0168900215012681
https://doi.org/10.5170/CERN-2002-003.63
https://cds.cern.ch/record/592719
https://cds.cern.ch/record/691782/files/project-note-323.pdf

248 Bibliography

[44] P. Moreira and J. Christiansen and K. Wyllie, GBTx Manual, V0.18 DRAFT,
2021.

[45] S. Yuan, J. Alme, D. Röhrich, M. Richter, M. R. Ersdal, P. Giubilato,
G. A. Rinella, A. Velure, M. Lupi, and J. J. Schambach, Remote Configuration of
the ProASIC3 on the ALICE Inner Tracking System Readout Unit, 2020. arXiv:
2011.03815 [physics.ins-det].

[46] P Moreira, R Ballabriga, S Baron, S Bonacini, O Cobanoglu, F Faccio,
T Fedorov, R Francisco, P Gui, P Hartin, K Kloukinas, X Llopart,
A Marchioro, C Paillard, N Pinilla, K Wyllie, and B Yu, “The GBT Project,”
2009. DOI: 10.5170/CERN-2009-006.342. [Online]. Available:
https://cds.cern.ch/record/1235836.

[47] Collu, Alberto, ALICE ITS Production Power System - Operation Manual V1.5,
ALICE Internal Communication, 2020.

[48] L. Greiner, Power Distribution, Internal communication: Presentation at ITS
Upgrade - Stave Production Readiness Review, 2017.

[49] The ALICE Collaboration, “Technical Design Report for the Upgrade of the
Online-Offline Computing System,” Tech. Rep. CERN-LHCC-2015-006.
ALICE-TDR-019, 2015. [Online]. Available:
https://cds.cern.ch/record/2011297.

[50] Schambach, Joachim, ITS Upgrade Data Format v6.07, Internal communication,
2019.

[51] G. A. Rinella and J. Schambach and M. Lupi and A. Velure, ITS Readout FW
Specifications, ALICE Internal Communication, 2021.

[52] Xilinx, UG974 UltraScale Architecture Libraries Guide, [Online; accessed
13-December-2019], 2016. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2016_3/ug974-vivado-ultrascale-libraries.pdf.

[53] P. Chochula, A. Augustinus, P. Bond, A. Kurepin, M. Lechman, J. Lang, and
O. Pinazza, “Challenges of the ALICE Detector Control System for the LHC
RUN3,” TUMPL09. 5 p, 2018. DOI: 10.18429/JACoW-ICALEPCS2017-TUMPL09.
[Online]. Available: https://cds.cern.ch/record/2306220.

[54] A. Kurepin, A. Augustinus, P. Bond, P. Chochula, J. Lang, M. Lechman,
O. Pinazza, and K. Salas, “ALICE DCS preparation for run 3,” in Selected
Papers of the 8th International Conference "Distributed Computing and
Grid-technologies in Science and Education", ser. CEUR Workshop Proceedings,

https://arxiv.org/abs/2011.03815
https://doi.org/10.5170/CERN-2009-006.342
https://cds.cern.ch/record/1235836
https://cds.cern.ch/record/2011297
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug974-vivado-ultrascale-libraries.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug974-vivado-ultrascale-libraries.pdf
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUMPL09
https://cds.cern.ch/record/2306220

Bibliography 249

Germany: Rheinisch-Westfaelische Technische Hochschule Aachen, 2018,
pp. 65–69. [Online]. Available:
http://www.jinr.ru/posts/8th-international-conference-distributed-

computing-and-grid-technologies-in-science-and-education/.

[55] J Schambach, L Bridges, W Burton, G Eppley, K Kajimoto, and T Nussbaum,
“CANbus protocol and applications for STAR TOF control,” Journal of Physics:
Conference Series, vol. 331, no. 2, p. 022 038, 2011. DOI:
10.1088/1742-6596/331/2/022038. [Online]. Available:
https://doi.org/10.1088%2F1742-6596%2F331%2F2%2F022038.

[56] I. Mohor, CAN Protocol Controller, https://opencores.org/projects/can,
[Online; accessed 9-September-2019], 2003.

[57] M. D. Berg, H. S. Kim, M. Friendlich, C. E. Perez, C. M. Seidlick, and
K. A. Label, “Incorporating Probability Models of Complex Test Structures to
Perform Technology Independent FPGA Single Event Upset Analysis,” 2011.

[58] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in FPGA devices
2014-2015,” in NASA Electronic Parts and Packaging Program, Electronics
Technology Workshop (NEPP-ETW), 2015.

[59] M. Lupi, P. Giubilato, M. Bonora, and K. Sielewicz, “Design of Finite State
Machines for SRAM-based FPGAs operated in radiation field,” PoS,
vol. TWEPP-19, 2019. [Online]. Available: https://pos.sissa.it/370/129/.

[60] R. B. GmbH, CAN specification 2.0, 1991.

[61] S. V. Nesbo, Canola - a CAN controller for FPGAs written in VHDL,
https://github.com/svnesbo/canola, 2019.

[62] Wikipedia contributors, CAN bus — Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=CAN_bus&oldid=933159513,
[Online; accessed 31-December-2019], 2019.

[63] Wikimedia Commons, File:CAN-Bus-frame in base format without stuffbits.svg —
Wikimedia Commons, the free media repository, [Online; accessed 3-August-2020],
2017. [Online]. Available:
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-

frame_in_base_format_without_stuffbits.svg&oldid=232916576.

[64] Alme, Johan, ITS RU Aux FPGA Manual, Internal communication, 2019.

[65] M. Litochevski, UART to Bus, https://opencores.org/projects/uart2bus,
[Online; accessed 9-March-2020], 2010.

http://www.jinr.ru/posts/8th-international-conference-distributed-computing-and-grid-technologies-in-science-and-education/
http://www.jinr.ru/posts/8th-international-conference-distributed-computing-and-grid-technologies-in-science-and-education/
https://doi.org/10.1088/1742-6596/331/2/022038
https://doi.org/10.1088%2F1742-6596%2F331%2F2%2F022038
https://opencores.org/projects/can
https://pos.sissa.it/370/129/
https://github.com/svnesbo/canola
https://en.wikipedia.org/w/index.php?title=CAN_bus&oldid=933159513
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-frame_in_base_format_without_stuffbits.svg&oldid=232916576
https://commons.wikimedia.org/w/index.php?title=File:CAN-Bus-frame_in_base_format_without_stuffbits.svg&oldid=232916576
https://opencores.org/projects/uart2bus

250 Bibliography

[66] Xilinx, UG570 UltraScale Architecture Configuration, [Online; accessed
27-September-2020], 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/user_guides/ug570-

ultrascale-configuration.pdf.

[67] Samsung, 2G x 8 Bit / 4G x 8 Bit / 8G x 8 Bit NAND Flash Memory,
(K9XXG08XXM Flash Memory Datasheet), 2007.

[68] M. R. Ersdal, “External scrubber implementation for the ALICE ITS Readout
Unit,” PoS, vol. TWEPP2019, p. 136, 2020. DOI: 10.22323/1.370.0136.

[69] Wikipedia contributors, Hamming code — Wikipedia, the free encyclopedia,
https:

//en.wikipedia.org/w/index.php?title=Hamming_code&oldid=1026877298,
[Online; accessed 19-July-2021], 2021.

[70] Micron Technology, Inc., TN-29-08: Hamming Codes for NAND Flash Memory
Devices, [Online; accessed 18-October-2020], 2005. [Online]. Available:
https://www.micron.com/-

/media/client/global/documents/products/technical-note/nand-

flash/tn2908_nand_hamming_ecc_code.pdf.

[71] ——, TN-29-63: Error Correction Code (ECC) in SLC NAND, [Online; accessed
18-October-2020], 2011. [Online]. Available: https://www.micron.com/-
/media/client/global/documents/products/technical-note/nand-

flash/tn2963_ecc_in_slc_nand.pdf.

[72] A. McGuffey, M. D. Berg, and J. A. Pellish, “Localized Triple Modular
Redundancy vs. Distributed Triple Modular Redundancy on a ProASIC3E
Reprogrammable FPGA,” 2010.

[73] Microsemi, Application Note AC139: Using Synplify to Design in Microsemi
Radiation-Hardened FPGAs, [Online; accessed 28-October-2020], 2012. [Online].
Available: https://www.microsemi.com/document-
portal/doc_download/130053-ac139-using-synplify-to-design-in-

microsemi-radiation-hardened-fpgas-app-note.

[74] A. Velure, “Design, Verification and Testing of a Digital Signal Processor for
Particle Detectors,” Presented 14 Sep 2019, 2019. [Online]. Available:
http://cds.cern.ch/record/2688945.

[75] Digilent, Zybo [Digilent Documentation], [Online; accessed 27-November-2020],
2020. [Online]. Available:
https://reference.digilentinc.com/reference/programmable-

logic/zybo/start.

https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://doi.org/10.22323/1.370.0136
https://en.wikipedia.org/w/index.php?title=Hamming_code&oldid=1026877298
https://en.wikipedia.org/w/index.php?title=Hamming_code&oldid=1026877298
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2908_nand_hamming_ecc_code.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2908_nand_hamming_ecc_code.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2908_nand_hamming_ecc_code.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf
https://www.microsemi.com/document-portal/doc_download/130053-ac139-using-synplify-to-design-in-microsemi-radiation-hardened-fpgas-app-note
https://www.microsemi.com/document-portal/doc_download/130053-ac139-using-synplify-to-design-in-microsemi-radiation-hardened-fpgas-app-note
https://www.microsemi.com/document-portal/doc_download/130053-ac139-using-synplify-to-design-in-microsemi-radiation-hardened-fpgas-app-note
http://cds.cern.ch/record/2688945
https://reference.digilentinc.com/reference/programmable-logic/zybo/start
https://reference.digilentinc.com/reference/programmable-logic/zybo/start

Bibliography 251

[76] ——, Pmod CAN [Digilent Documentation], [Online; accessed
27-November-2020], 2020. [Online]. Available:
https://reference.digilentinc.com/reference/pmod/pmodcan/start.

[77] PEAK System, PCAN-USB: PEAK-System, [Online; accessed
27-November-2020], 2020. [Online]. Available:
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1.

[78] O. Grottvik, Bust bus tool, https://github.com/olagrottvik/bust, 2020.

[79] AnaGate, AnaGate CAN Quattro, [Online; accessed 28-November-2020], 2020.
[Online]. Available:
http://www.anagate.de/en/products/AnaGateCANquattro.htm.

[80] K. M. Sielewicz, G. A. Rinella, M. Bonora, P. Giubilato, M. Lupi,
M. J. Rossewij, J. Schambach, and T. Vanat, “Experimental Methods and
Results for the Evaluation of Triple Modular Redundancy SEU Mitigation
Techniques with the Xilinx Kintex-7 FPGA,” in 2017 IEEE Radiation Effects
Data Workshop (REDW), 2017, pp. 1–7. DOI: 10.1109/NSREC.2017.8115451.

[81] M. Ersland, “Radiation mitigation design and test for the ALICE ITS Readout
Unit,” 2018.

[82] CERN, About CHARM, [Online; accessed 10-December-2020], 2017. [Online].
Available: https://charm.web.cern.ch/about-charm.

[83] G. Mikkelsen, “Integration and design for the ALICE ITS readout chain,”
2018. [Online]. Available:
https://bora.uib.no/bora-xmlui/handle/1956/18459.

[84] M. Lupi, FPGA Design and Scrubbing Testing, Internal communication:
Presentation at ITS Upgrade - Readout Electronics Production Readiness
Review, 2018.

[85] ——, XCKU060 Radiation Testing, Internal communication: Presentation at ITS
Upgrade - Readout Electronics Production Readiness Review, 2018.

[86] D. Colella, “ALICE ITS Upgrade for LHC Run 3: Commissioning in the
Laboratory,” Tech. Rep. arXiv:2012.01564, 2020, 8 pages, 5 figures,
proceedings at The 29th International Workshop on Vertex Detectors
(VERTEX) held virtually on October 5th-8th 2020. [Online]. Available:
http://cds.cern.ch/record/2746554.

[87] ——, ALICE Inner Tracking System Upgrade: construction and commissioning,
2019. arXiv: 1912.12188 (physics.ins-det).

https://reference.digilentinc.com/reference/pmod/pmodcan/start
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://github.com/olagrottvik/bust
http://www.anagate.de/en/products/AnaGateCANquattro.htm
https://doi.org/10.1109/NSREC.2017.8115451
https://charm.web.cern.ch/about-charm
https://bora.uib.no/bora-xmlui/handle/1956/18459
http://cds.cern.ch/record/2746554
1912.12188

252 Bibliography

[88] A. Velure, “Integration, Commissioning and First Experience of ALICE ITS
Control and Readout Electronics,” PoS, vol. TWEPP2019, p. 113, 2020. DOI:
10.22323/1.370.0113.

[89] K. T. Mcdonald, “Deadtime When Using a FIFO Buffer,” 1996,
Princeton/BaBar/TNDC-96-44. [Online]. Available:
https://www.hep.princeton.edu//~mcdonald/tndc/fifo.pdf.

[90] Snyder, Wilson, Intro - Verilator - Veripool, [Online; accessed 3-January-2021],
2021. [Online]. Available: https://www.veripool.org/wiki/verilator.

[91] M. Hostettler, K. Fuchsberger, G. Papotti, Y. Papaphilippou, and T. Pieloni,
“Luminosity scans for beam diagnostics,” Physical Review Accelerators and
Beams, vol. 21, no. 10, 2018, ISSN: 2469-9888. DOI:
10.1103/physrevaccelbeams.21.102801. [Online]. Available:
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.102801.

[92] The ALICE Collaboration, “Elliptic Flow of Charged Particles in Pb-Pb Collisions
at
√

sNN = 2.76 TeV,” Physical Review Letters, 2010. DOI:
10.1103/PhysRevLett.105.252302.

[93] J. Adam, D. Adamová, M. Aggarwal, G. Aglieri Rinella, M. Agnello,
N. Agrawal, Z. Ahammed, S. Ahmad, S. Ahn, S. Aiola, and et al., “Centrality
dependence of the pseudorapidity density distribution for charged particles
in Pb–Pb collisions atsNN=5.02 TeV,” Physics Letters B, vol. 772, 567–577, 2017,
ISSN: 0370-2693. DOI: 10.1016/j.physletb.2017.07.017. [Online]. Available:
http://dx.doi.org/10.1016/j.physletb.2017.07.017.

[94] S. Kushpil, F. Krizek, and A. Isakov, “Recent Results From Beam Tests of the
ALPIDE Pixel Chip for the Upgrade of the ALICE Inner Tracker,” IEEE
Transactions on Nuclear Science, vol. 66, no. 11, pp. 2319–2323, 2019, ISSN:
1558-1578. DOI: 10.1109/TNS.2019.2945234.

[95] Shahoyan, Ruben, AliRoot GitHub repository - AliGenQEDBg.cxx, [Online;
accessed August 31, 2021], 2018. [Online]. Available: https:
//github.com/alisw/AliRoot/blob/master/TEPEMGEN/AliGenQEDBg.cxx.

[96] The ALICE Collaboration, AliRoot GitHub repository - itsuTestBench, [Online;
accessed October 28, 2019], 2019. [Online]. Available: https:
//github.com/alisw/AliRoot/tree/master/ITSMFT/ITS/itsuTestBench.

https://doi.org/10.22323/1.370.0113
https://www.hep.princeton.edu//~mcdonald/tndc/fifo.pdf
https://www.veripool.org/wiki/verilator
https://doi.org/10.1103/physrevaccelbeams.21.102801
http://dx.doi.org/10.1103/PhysRevAccelBeams.21.102801
https://doi.org/10.1103/PhysRevLett.105.252302
https://doi.org/10.1016/j.physletb.2017.07.017
http://dx.doi.org/10.1016/j.physletb.2017.07.017
https://doi.org/10.1109/TNS.2019.2945234
https://github.com/alisw/AliRoot/blob/master/TEPEMGEN/AliGenQEDBg.cxx
https://github.com/alisw/AliRoot/blob/master/TEPEMGEN/AliGenQEDBg.cxx
https://github.com/alisw/AliRoot/tree/master/ITSMFT/ITS/itsuTestBench
https://github.com/alisw/AliRoot/tree/master/ITSMFT/ITS/itsuTestBench

Bibliography 253

[97] S. V. Nesbo, J. Alme, M. Bonora, P. Giubilato, H. Helstrup, S. Hristozkov,
G. Aglieri Rinella, D. Röhrich, J. Schambach, R. Shahoyan, and K. Ullaland,
“Simulations of busy probabilities in the ALPIDE chip and the upgraded
ALICE ITS detector,” PoS, vol. TWEPP-17, 147. 5 p, 2017. DOI:
10.22323/1.313.0147. [Online]. Available:
https://cds.cern.ch/record/2312057.

[98] D. Marras, G. R. Aglieri, and C. Flouzat, ALPIDE Periphery & Readout, Internal
communication: Presentation at ITS Upgrade - ALPIDE Chip Engineering
Design Review, 2015.

[99] The ALICE Collaboration, “Letter of Intent: A Forward Calorimeter (FoCal)
in the ALICE experiment,” CERN, Geneva, Tech. Rep.
CERN-LHCC-2020-009. LHCC-I-036, 2020. [Online]. Available:
https://cds.cern.ch/record/2719928.

[100] Wikimedia Commons contributors, File:Comparison of dose profiles for proton v.
x-ray radiotherapy.png, [Online; accessed 5-February-2021], 2021. [Online].
Available: https://commons.wikimedia.org/wiki/File:
Comparison_of_dose_profiles_for_proton_v._x-ray_radiotherapy.png.

[101] H. Pettersen, J. Alme, A. Biegun, A. van den Brink, M. Chaar, D. Fehlker,
I. Meric, O. Odland, T. Peitzmann, E. Rocco, and et al., “Proton tracking in a
high-granularity Digital Tracking Calorimeter for proton CT purposes,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 860, 51–61, 2017, ISSN:
0168-9002. DOI: 10.1016/j.nima.2017.02.007. [Online]. Available:
http://dx.doi.org/10.1016/j.nima.2017.02.007.

[102] H. E. S. Pettersen, “A Digital Tracking Calorimeter for Proton Computed
Tomography,” 2018. [Online]. Available:
https://bora.uib.no/bora-xmlui/handle/1956/17757.

[103] Voigt Nesbo, Simon, Alme, Johan, Bonora, Matthias, Giubilato, Piero,
Helstrup, Håvard, Lupi, Matteo, Aglieri Rinella, Gianluca, Röhrich, Dieter,
Schambach, Joachim, Shahoyan, Ruben, and Velure, Arild, “System
simulations for the ALICE ITS detector upgrade,” EPJ Web Conf., vol. 245,
p. 02 011, 2020. DOI: 10.1051/epjconf/202024502011. [Online]. Available:
https://doi.org/10.1051/epjconf/202024502011.

[104] M. Suljic, “Study of Monolithic Active Pixel Sensors for the Upgrade of the
ALICE Inner Tracking System,” Presented 02 Feb 2018, 2017. [Online].
Available: http://cds.cern.ch/record/2303618.

https://doi.org/10.22323/1.313.0147
https://cds.cern.ch/record/2312057
https://cds.cern.ch/record/2719928
https://commons.wikimedia.org/wiki/File:Comparison_of_dose_profiles_for_proton_v._x-ray_radiotherapy.png
https://commons.wikimedia.org/wiki/File:Comparison_of_dose_profiles_for_proton_v._x-ray_radiotherapy.png
https://doi.org/10.1016/j.nima.2017.02.007
http://dx.doi.org/10.1016/j.nima.2017.02.007
https://bora.uib.no/bora-xmlui/handle/1956/17757
https://doi.org/10.1051/epjconf/202024502011
https://doi.org/10.1051/epjconf/202024502011
http://cds.cern.ch/record/2303618

254 Bibliography

[105] S. Afroz, “Noise and Cluster Size Studies of ALPIDE-CMOS Pixel Sensor for
pCT,” 2018. [Online]. Available:
https://bora.uib.no/bora-xmlui/handle/1956/18057.

[106] CERN, LS2 Report: An upgraded Inner Tracking System joins the ALICE detector,
[Online; accessed 16-June-2021], 2021. [Online]. Available:
https://home.cern/news/news/experiments/ls2-report-upgraded-inner-

tracking-system-joins-alice-detector.

[107] J. Schambach, J. Alme, M. Bonora, P. Giubilato, R. Hannigan, H. Hillemanns,
M. Lupi, S. V. Nesbø, A. Rehman, G. A. Rinella, M. J. Rossewij,
K. M. Sielewicz, and A. Velure, “A Radiation-Tolerant Readout System for the
ALICE Inner Tracking System Upgrade,” in 2018 IEEE Nuclear Science
Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 2018,
pp. 1–6. DOI: 10.1109/NSSMIC.2018.8824419.

[108] G Mazza, G. A. Rinella, F Benotto, Y. C. Morales, T Kugathasan, A Lattuca,
M Lupi, and I Ravasenga, “A 1.2 Gb/s Data Transmission Unit in CMOS
0.18 µm technology for the ALICE Inner Tracking System front-end ASIC,”
JINST, vol. 12, no. 02, C02009. 9 p, 2017. DOI:
10.1088/1748-0221/12/02/C02009. [Online]. Available:
https://cds.cern.ch/record/2275297.

[109] J. Schambach, ITS Upgrade Data Format, ALICE Internal Communication,
2020.

[110] O. Bourrion, D. Evans, J. Imrek, A. Jusko, A. Kluge, M. Krivda, J. Kvapil,
R. Lietava, L. A. P. Moreno, O. Villalobos-Baillie, and E. Willsher, Interface
between CTS-CRU and CTS-Detector Front Ends, ALICE Internal
Communication, 2019.

[111] F. Costa, ALICE RUN 3 Raw Data Header, ALICE Internal Communication,
2020.

https://bora.uib.no/bora-xmlui/handle/1956/18057
https://home.cern/news/news/experiments/ls2-report-upgraded-inner-tracking-system-joins-alice-detector
https://home.cern/news/news/experiments/ls2-report-upgraded-inner-tracking-system-joins-alice-detector
https://doi.org/10.1109/NSSMIC.2018.8824419
https://doi.org/10.1088/1748-0221/12/02/C02009
https://cds.cern.ch/record/2275297

255

Abbreviations and Index

ACF Acceptance Filter. 67
ADC Analog to Digital Converter. 19, 56, 59, 121
ALICE A Large Ion Collider Experiment. iii–viii, 5, 8–11,

13, 15–17, 22, 23, 25, 32–34, 39, 48, 114, 116, 118,
119, 132, 133, 137, 143, 145, 149, 154, 156, 163, 164,
166, 170, 184, 187, 199

ALPIDE ALice PIxel DEtector. iii, iv, 12, 13, 15, 18–28, 31,
34–36, 38, 44–49, 55–59, 61, 62, 96–98, 110–113, 116–
122, 124–129, 132–135, 137–140, 143–145, 147, 149,
151–154, 156–158, 160–163, 166, 171, 173–177, 179,
181, 182, 184, 192, 195, 196, 204, 217–219, 221–224

ASIC Application Specific Integrated Circuits. 7, 18, 35,
37, 99

ATLAS A Toroidal LHC ApparatuS. 8, 16
AXI Advanced eXtensible Interface. 102, 104, 165

BB Bias Bus. 24, 26
BC Bunch Crossing. 177, 180, 185
BCID Bunch Crossing ID. 47
BFM Bus Functional Model. 96–100
BG Baud Generator. 68
BMU Busy Management Unit. xiv, 178, 181
BNL Brookhaven National Laboratory. 5
BRAM Block RAM. 50, 58–61
BSP Bit Stream Processor. 70–73, 75, 76, 98
BSP Board Support Package. 93–96
BTL Bit Timing Logic. 67–73, 98
BU Busy Unit. 31, 38, 111, 166, 222–224
BUST Bus Tool. 104

CAN Controller Area Network. iii, iv, 12, 35, 38, 39, 41–
43, 49–55, 66–78, 93–96, 98–100, 102–106, 164, 165,
226, 227

CDC Clock Domain Crossing. 50, 57
CERN European Organization for Nuclear Research. iii–

vii, 5, 7, 9, 11, 12, 35, 37, 41, 104, 105, 109, 110, 137,
163, 164, 195

CHARM CERN High energy AcceleRator Mixed field facil-
ity. 107, 108

256 Abbreviations and Index

CI Continuous Integration. 41, 97, 98, 101
CMOS Complementary Metal Oxide Semiconductor. 18,

163
CMS Compact Muon Solenoid. 8, 16
CMU Control Management Unit. 176
COTS Commercial off-the-shelf. 37
CPU Central Processing Unit. 42, 102, 213
CRAM Configuration RAM. 107
CRC Cyclic Redundancy Check. 50, 70, 76, 77, 82, 84, 99,

108, 109, 232
CRU Common Readout Unit. 26, 29, 30, 43, 46, 102, 150,

183, 184, 186–189, 224
CT Computed Tomography. 137, 138
CTP Central Trigger Processor. 22, 25–30, 46, 47, 49, 116,

144, 183–185, 224

DAC Digital to Analog Converter. 19, 20, 110, 121
DC Direct Current. 175
DC/DC DC-to-DC. 38
DCal Di-Jet Calorimeter. 10
DCS Detector Control System. 35, 39, 51–56, 61, 104, 105,

110, 164
DCTRL Differential Control bus. 21, 55, 175, 176
DDR Double Data Rate. 181
DIP Dual In-line Package. 43, 52, 91
DMU Data Management Unit. xiv, 181
DTC Digital Tracking Calorimeter. iv, 138–140
DTMR Distributed TMR. 91
DTU Data Transmission Unit. xiv, 121, 181, 182
DTUL Data Transmission Unit Logic. 181, 182

ECC Error Correction Code. 50, 56, 59–61, 63, 77, 79, 85,
87, 89–91, 101, 164, 232

EDR Engineering Design Review. 125
EMCal Electromagnetic Calorimeter. 10
EML Error Management Logic. 76, 77, 98, 99
EOP End Of Packet. 47, 186, 187
ESA European Space Agency. 54

FEC Focused Expression Coverage. 100, 101
FEC Focused Error Correction. 183
FEE Front End Electronics. 7, 31, 43, 44, 46, 52, 183, 187,

188
FF Flip-Flop. 50, 91, 96
FIFO First In First Out. 12, 20, 23, 29, 38, 41, 43–46, 49–51,

53, 56, 61–63, 67, 81, 89, 90, 96, 98, 101, 113, 121, 125,
127, 151, 164, 177–181, 210, 227, 230

Abbreviations and Index 257

FIT Fast Interaction Trigger. 10, 28, 116
FLP First Level Processor. 30, 35, 39, 40, 81, 93, 150, 183,

184, 188, 190
FoCal Forward Calorimeter. iv, 13, 133–136, 143, 153–160,

166, 167, 193, 195, 238–242
FPC Flexible PCB. 23, 24, 26
FPGA Field-Programmable Gate Array. iii, iv, 7, 11, 12,

27, 31, 33–39, 41–45, 47–55, 62–67, 77–85, 87, 89–93,
96–102, 104, 107–113, 129, 138, 163–165, 209, 210,
212–214, 223, 225–232

FROMU Frame and ReadOut Management Unit. xiv, 121,
125, 127, 177, 178, 180

FSM Finite State Machine. 53, 54, 57, 58, 61, 64–66, 69–
76, 91, 99, 101, 120, 125, 127–129, 131, 164, 178–180,
227

FWFT First Word Fall Through. 61

GATE Geant4 Application for Tomographic Emission. 139
GBT GigaBit Transceiver. 26, 27, 31, 35–39, 41, 42, 44–51,

81, 82, 90, 93, 96, 113, 152, 154, 164, 183, 185, 186,
188

GBT-SCA GBT Slow Control Adapter. 35, 37, 79, 81, 82, 100,
183

GBTX GigaBit Transceiver ASIC. 31, 35–37, 47, 51
GEM Gas Electron Multiplier. 6, 10
GPIO General Purpose IO. 34, 36, 45
GUI Graphical User Interface. 82, 209, 212

HB HeartBeat. 27, 29, 47, 49, 184, 185
HBF HeartBeat Frame. 184, 185
HDL Hardware Description Language. 42, 54, 63, 91, 94,

96–98, 100, 104, 113, 117
HIC Hybrid Integrated Circuit. 24, 110
HLP High Level Protocol. 51–55, 67, 94–96, 98, 102, 104–

106, 226, 227
HVL Høgskulen på Vestlandet. v–ix

I2C Inter-Integrated Circuit. 35, 37, 39, 79, 81, 89, 92,
100, 101

IB Inner Barrel. 17, 20–22, 24, 25, 34, 44–46, 55, 102,
110, 113, 121, 124, 125, 133–135, 138, 151, 154, 155,
157, 160, 166, 173, 175, 176, 178, 179, 181, 219, 221

IC Integrated Circuit. 79, 86
IFS Inter-Frame Spacing. 72, 76
IL Inner Layer. 17, 38, 39, 109
IO Input/Output. 31, 50, 85, 89, 90, 101, 139, 176
IP Intellectual Property. 54, 55, 82, 209

258 Abbreviations and Index

IP Interaction Point. 8, 15–17, 31, 48, 114, 163
IP2 Interaction Point 2. 9
ITS Inner Tracking System. iii, iv, vi, vii, 9–13, 15–18,

21, 22, 25–27, 29–36, 38, 39, 48, 51, 55, 67, 80, 93, 107,
109–114, 116–120, 130, 132, 133, 138, 143–157, 160,
163, 165, 166, 175, 176, 184–186, 188, 193–195, 197,
199, 200, 203–207, 221, 222, 233–237

JCM JTAG Configuration Manager. 107
JTAG Joint Test Action Group. 33, 35, 37, 84

LED Light Emitting Diode. 35
LEP Large Electron-Positron Collider. 8
LHC Large Hadron Collider. iii, v, 7–10, 16, 35, 36, 48, 50,

51, 63, 107, 114, 119, 163–166, 177, 184, 199
LHCb Large Hadron Collider beauty. 8, 114
LHCC LHC Experiments Committee. iv, 166
LM Level Minus. 27–29, 46, 144, 176
LOI Letter Of Intent. 154
LS Long Shutdown. iii, 9–11, 27, 30, 163, 184
LSB Least Significant Bit. 27, 43, 52, 53, 173, 175, 176
LTMR Local TMR. 54, 91, 92
LTU Local Trigger Unit. 25–28, 30, 47, 183–185, 224
LUT Look-Up Table. 63, 78
LVDS Low-Voltage Differential Signaling. 34, 173

MAPS Monolithic Active Pixel Sensor. 15, 18, 19, 163
MC Monte Carlo. 117–119, 132, 133, 135, 136, 139, 140,

143, 154, 155, 159, 162, 199, 204, 207
MEB Multi Event Buffer. 20, 22, 23, 113, 121, 125, 144,

171, 177–179, 195, 217, 218
MFT Muon Forward Tracker. 10, 34
MGT Multi Gigabit Transceiver. 34
MIP Minimum Ionizing Particle. 154
ML Middle Layer. 17, 24, 26, 39, 47, 120, 147
MSB Most Significant Bit. 25, 27, 44, 52, 177, 180, 186
MTTF Mean Time To Failure. 65, 109
MVTX MAPS-based Vertex Detector. 16
MWPC Multi-Wire Proportional Chamber. 6, 7, 10

NEF Neutron Equivalent Fluence. 31

O2 Online-Offline. 40, 93
OB Outer Barrel. 17, 20–22, 24–27, 34, 39, 44–47, 55, 110,

113, 121, 124, 125, 133, 134, 151, 154–157, 173, 175,
176, 178, 179, 181, 221

OL Outer Layer. 17, 24, 26, 39, 47, 109, 120, 147

Abbreviations and Index 259

PA3 ProASIC3. 12, 33, 37, 38, 41, 79, 91, 227
PB Power Board. 39
PB Power Bus. 24, 26
PCB Printed Circuit Board. 11, 33, 34, 38, 39, 103
pCT Proton CT. iv, 13, 34, 133, 138–140, 143, 159–162,

166, 193–195, 197, 199
PHOS Photon Spectrometer. 10
PID Particle Identification. 15
PLL Phase Locked Loop. 181
PON Passive Optical Network. 26
pRU pCT Readout Unit. 34, 138, 139, 160, 162
PS Proton Synchrotron. 108
PSA Pulse Shaping Amplifier. 20, 28
PU Power Unit. 30, 35, 39, 41, 107, 108

QCD Quantum chromodynamics. 4, 9, 163
QED Quantum electrodynamics. 4, 17, 118, 119, 143, 197,

199, 200, 202, 204, 206
QGP Quark Gluon Plasma. 4, 5, 9, 163

RAM Random Access Memory. 59, 63
RCU Readout Control Unit. 33, 84
RDH Raw Data Header. 46, 47, 186–190
REC Receive Error Count. 77, 99
RHIC Relativistic Heavy Ion Collider. 5
RPC Remote Procedure Call. 98
RRU Region Readout Unit. xiv, 121, 125, 127, 178–180
RSP Relative Stopping Power. 138
RTL Register Transfer Level. 42, 54, 96, 97, 112, 113
RU Readout Unit. iii, iv, 11–13, 27, 29–39, 42, 43, 46, 49,

51, 52, 55, 57, 67, 79, 80, 84, 86, 87, 91, 93, 96, 100,
101, 104, 105, 107–113, 117, 129, 130, 133, 151, 152,
154, 160, 161, 163, 164, 166, 175, 176, 179, 183, 184,
186, 188, 195, 196, 209, 214, 220–224, 233–237

SAMPA Serialized Analogue-digital Multi Purpose ASIC.
79

SCADA Supervisory Control And Data Acquisition. 39
SDC Synopsys Design Constraint. 97
SDD Silicon Drift Detector. 15
SEE Single Event Effect. 38, 54, 180
SEMIP Soft Error Mitigation IP. 79, 80, 107
SEU Single Event Upset. 31, 33, 52, 62, 79, 80, 87, 91,

107–109, 179
SJW Synchronization Jump Width. 69
SM Standard Model. 2–4

260 Abbreviations and Index

SOBP Spread Out Bragg Peak. 137
SOF Start Of Frame. 68
SOP Start Of Packet. 47, 186, 187
SPD Silicon Pixel Detector. 15
SPI Serial Peripheral Interface. 84, 102
SRAM Static Random Access Memory. 31, 54, 62, 79, 164
SSD Silicon Strip Detector. 15
STAR Solenoidal Tracker at RHIC. 51
SWT Single Word Transaction. 51, 93, 186, 187

TDR Technical Design Report. 16, 116, 119, 205
TEC Transmit Error Count. 77, 99
TID Total Ionizing Dose. 31, 32, 108
TMR Triple Modular Redundancy. iv, 42, 43, 50, 54, 55,

63–65, 70, 77, 78, 91, 92, 99, 100, 104, 107–109, 164,
165

TOF Time Of Flight. 51
ToT Time over Threshold. 28, 121
TPC Time Projection Chamber. 6, 9, 10, 31, 33, 79, 84,

114, 115, 149
TQG Time Quanta Generator. 68, 77
TRU Top Readout Unit. xiv, 121, 125, 127, 131, 177, 180,

181
TTC Timing, Trigger and Control. 26
TTS Trigger and Timing System. 25, 27, 47, 187

UART Universal Asynchronous Receiver Transceiver. 12,
79, 81–83, 89, 107, 209–211

UiB University of Bergen. iv–viii, 11, 13, 34, 79, 102, 133,
137, 138, 166, 167

UML Unified Modeling Language. 120, 123, 132
USB Universal Serial Bus. 42, 49, 50, 93, 103
UVM Universal Verification Methodology. 41, 97, 98
UVVM Universal VHDL Verification Methodology. 97, 98,

100

VHDL VHSIC Hardware Description Language. 65, 66, 68,
71, 77, 92, 97–99, 124

VME Versa Module Eurocard. 35
VTRx Versatile TransReceiver. 35, 37
VTTx Versatile Twin-Transmitter. 35, 37

WB Wishbone. 43, 49–57, 60–64, 67, 79–82, 89–91, 93, 94,
96, 100, 164, 209, 210, 212

XML Extensible Markup Language. 203, 204
XPM Xilinx Parameterized Macros. 50

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230856819 (print)
9788230865521 (PDF)

	Abstract
	Acknowledgements
	Introduction
	Subatomic Physics
	Particle Detectors
	The Large Hadron Collider
	The ALICE Experiment
	ALICE Long Shutdown 2 Upgrades
	Outline of Thesis and Main Contributions

	The ITS Upgrade
	ITS Detector in Run 1 and Run 2
	Long Shutdown 2 Upgrade of ITS
	ITS Upgrade Detector Layout
	The ALPIDE MAPS for the ITS Upgrade
	ITS Detector Staves
	Trigger Distribution
	Triggered Operation
	Continuous Operation
	Busy Signaling

	ITS Upgrade Readout Electronics
	Radiation Environment
	Readout Unit
	Optional Busy Unit for the ITS
	ITS Power Board

	Detector Control System and Online-Offline (O2)

	Main FPGA Design for the ITS Readout Unit
	General Structure
	Wishbone Bus
	FEE ID

	Detector Datapath
	Datapath and Data Lanes
	GBT Data Packer

	Trigger System
	FIFO Interface to the Auxiliary FPGA for Configuration Data
	Board Control Interfaces and DCS
	GBT
	CAN Bus

	Alpide Control
	Alpide Monitor
	Sequencer
	Sniffer

	Mitigation of Radiation Effects
	Radiation Tolerant CAN Controller
	Bit Timing Logic
	Bit Stream Processor
	Transmit FSM for CAN Frames
	Receive FSM for CAN Frames
	Error Management Logic
	Radiation Tolerance
	Resource Utilization

	Auxiliary FPGA Design for the ITS Readout Unit
	General Structure of Design
	Communication Interfaces
	I2C Interface
	UART Interface

	Blind Scrubber Solution
	Configuration of Xilinx UltraScale FPGAs
	SelectMAP Interface
	External Flash
	Read and Write Controllers, and ECC
	Configuration Controller

	Mitigation of Radiation Effects

	FPGA Design Verification and Testing
	Test Software for the FPGA Designs
	Board Support Package for the RU and Main FPGA
	Testbench Software
	Regression Test Suite for the Main FPGA

	Verification of Main FPGA Design
	Python Co-simulation
	Module Testbenches

	Verification of Auxiliary FPGA Design
	Hardware Testing of FPGA Designs
	Canola CAN Controller
	CAN HLP

	Beam Testing
	Commissioning

	Simulation Model of the ITS Upgrade and ALPIDE
	Simulation Challenges
	Requirements for the Simulation Model
	Input Stimuli

	Implementation of the Simulations
	Event Generation
	Stimuli and Trigger Distribution
	ALPIDE Model
	Readout Unit Model
	Top-level Detector Model
	Simulation Settings and Output Data

	Adaptation of the Simulation Model for FoCal and pCT
	FoCal
	Proton CT

	Simulations and Results
	ITS Simulations
	ITS Simulation Results
	Readout Efficiency
	Pileup
	Data Rates

	FoCal Simulations and Results
	Data Rates and Readout Efficiency
	Pileup of Showers

	pCT Simulations and Results

	Conclusions
	Readout Electronics and FPGA Designs
	Simulations
	Outlook

	List of Publications
	Papers Published as First Author
	Papers Published as Co-Author
	ALICE Collaboration Papers

	Internal Readout Logic of the ALPIDE
	Pixel Front-End and Multi Event Buffer
	Priority Encoder
	Data Link
	Control Link and Trigger Input
	Control Protocol
	Trigger Input

	Digital Readout Circuitry
	fromu
	bmu
	rru
	tru
	dmu
	dtu

	Protocols for Trigger, Readout, and Control over GBT
	GBT Frames
	Heartbeat Triggers and Frames
	CTP/LTU Protocols
	CRU Control Words
	Idle Control Word
	Start Of Packet (SOP) Control Word
	End Of Packet (EOP) Control Word
	Single Word Transaction (SWT) Control Word

	CRU Data Words

	SystemC-based Simulation Model for ALPIDE and ITS
	Configurable Settings
	Output Data and Data Formats
	Simulation Output Files
	Pixel Readout Statistics

	Monte Carlo Simulated Events for ITS in the SystemC Model
	File Formats for Events in the SystemC Simulations
	Monte Carlo Events

	UART Protocol and Debug Software for Auxiliary FPGA
	Connections to the Readout Unit
	Protocol
	No Operation Command
	Read Command
	Write Command

	Software
	Connecting to Auxiliary FPGA
	Direct Access and Monitoring of Wishbone Registers
	Uploading Firmware to External FLASH
	Flash Interface Testing
	SelectMAP Interface Testing
	Logging

	Concept for Busy Unit
	Impact on Readout Data
	Busy Handling
	Busy Unit

	Register Maps
	Main FPGA Design
	Alpide Monitor - Sequencer
	Alpide Monitor - Sniffer
	CAN HLP
	FIFO Interface to PA3 FPGA for Configuration Data

	Auxiliary FPGA Design

	Simulation Results
	ITS - pp
	ITS - Pb–Pb
	FoCal - pp
	FoCal - Pb–Pb

	Bibliography
	Abbreviations and Index

