52 research outputs found

    SharpRazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images

    Get PDF
    Background: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. Purpose: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. Method: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional gradients, and multiple filters for hair of varying widths. We develop an alternate entropy-based processing adaptive thresholding method. White or light-colored hair, and ruler marks are detected separately and added to the final hair mask. A classifier removes noise objects. Finally, a new technique of inpainting is presented, and this is utilized to remove the detected object from the lesion image. Results: The proposed algorithm is tested on two datasets, and compares with seven existing methods measuring accuracy, precision, recall, dice, and Jaccard scores. SharpRazor is shown to outperform existing methods. Conclusion: The Shaprazor techniques show the promise to reach the purpose of removing and inpaint both dark and white hair in a wide variety of lesions

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Skin Cancer Detection in Dermoscopy Images Using Sub-Region Features

    Get PDF
    Abstract. In the medical field, the identification of skin cancer (Malignant Melanoma) in dermoscopy images is still a challenging task for radiologists and researchers. Due to its rapid increase, the need for decision support systems to assist the radiologists to detect it in early stages becomes essential and necessary. Computer Aided Diagnosis (CAD) systems have significant potential to increase the accuracy of its early detection. Typically, CAD systems use various types of features to characterize skin lesions. The features are often concatenated into one vector (early fusion) to represent the image. In this paper, we present a novel method for melanoma detection from images. First the lesions are segmented by combining Particle Swarm Optimization and Markov Random Field methods. Then the K-means is applied on the segmented lesions to separate them into homogeneous clusters, from which important features are extracted. Finally, an Artificial Neural Network with Radial Basis Function is applied for the detection of melanoma. The method was tested on 200 dermoscopy images. The experimental results show that the proposed method achieved higher accuracy in terms of melanoma detection, compared to alternative methods

    Contributions to the segmentation of dermoscopic images

    Get PDF
    Tese de mestrado. Mestrado em Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201

    Color detection in dermoscopic images of pigmented skin lesions through computer vision techniques

    Get PDF
    This thesis offers an insight into skin cancer detection, focusing on the extraction of distinct features (color, namely) from potential melanoma lesions. The following document provides an outlook of melanoma analysis, as well as experimental results based on Matlab implementations. The relevance of the work carried out throughout this project resides in the specificity of the study: color is a key characteristic in melanoma inspection. It is usually linked to pattern analysis but seldom the sole object of research. Most lines of work in the field of skin cancer diagnosis associate color with other features such as texture, shape, asymmetry or pattern of the lesion. Studies cement this belief regarding the vital significance of color, as the number of colors in a lesion happens to be the most significant biomarker for determining malignancy. Different image processing techniques will be applied to build statistical models that shape the outcome of the prospective diagnosis. The purpose of the project is the development of an assisting tool able to detect the most prevalent colors in skin pigmented lesions, in order to give a probabilistic result. The strength of this idea lies in the resemblance to actual medical procedures; dermatologists examine color to diagnose melanoma. Simulating medical proceedings is a burgeoning trend in CAD systems because it renders the advancements in this field more likely to be accepted by the medical community. An additional motivation comes from real-life statistics: skin cancer is, by far, the most frequent type of cancer. Moreover, although melanoma is the least common form of skin cancer at only around 1% of all cases, the majority of deaths related to skin cancer are due to melanoma. Furthermore, the rate of melanoma occurrence is particularly high in Spain and has significantly increased in the last decade, hence the importance of reliable diagnosis that is not exclusively contingent on the specialist’s subjective judgment.Ingeniería de Sistemas Audiovisuale
    • …
    corecore