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Abstract

Melanoma is the most dangerous and deadly type of skin cancer. However, if it is diagnosed in an

early stage there is a high probability of being cured. In this regard, several imaging techniques

have been explored to improve the diagnosis accuracy of skin lesions. Dermoscopy is one of the

most relevant of such diagnosis techniques, since it allows the in vivo observation and inspection

of skin lesions, and hence a better visualization of their morphological structures.

Since the diagnosis accuracy of dermoscopy significantly depends on the experience of the

dermatologists, and the visual interpretation and examination of this kind of images is time

consuming, several computer-aided diagnosis systems have been introduced to assist the clinical

diagnosis of dermatologists. Image segmentation is one of the most relevant tasks in these

systems, since the accuracy of segmentation may determine their success or failure.

The availability and generation of manually segmented images performed by expert derma-

tologists, to be used as ground truth, is an essential aspect in the evaluation and validation

of automatic segmentation methods. Herein, a novel annotation tool for manual segmentation

of dermoscopic images is proposed. This tool, called DerMAT, allows building up a ground

truth database with the manual segmentations both of pigmented skin lesions and of other re-

gions of interest. The developed tool was set up based on the requirements and suggestions of

dermatologists, and has been used and tested in clinical environment. Compared with other

existing annotation tools, DerMAT presents some advantages with respect to others, namely

better freehand drawing and reshaping functionalities.

Furthermore, different kinds of algorithms for the automatic segmentation of the skin lesion

in dermoscopic images are implemented and evaluated. Some performance metrics are computed

for the quantitative assessment of the segmentation results, using as ground truth a database of

images manually segmented by an expert dermatologist. Among the implemented segmentation

approaches, the GVF snake method achieves the best segmentation performance.

Keywords: Dermoscopy, image segmentation, ground truth
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Resumo

O melanoma é a forma de cancro cutâneo mais agressiva e letal. No entanto, quando é diagnos-

ticado numa fase ainda precoce e não invasiva, tem grande probabilidade de cura. Neste sentido,

diversas técnicas de imagiologia têm sido exploradas para melhorar a precisão no diagnóstico de

lesões cutâneas. A dermoscopia é uma das técnicas de diagnóstico mais importantes, uma vez

que permite a observação e inspeção in vivo de lesões cutâneas, e assim uma melhor visualização

das suas estruturas morfológicas.

Como a precisão do diagnóstico em dermoscopia depende significativamente da experiência

dos dermatologistas e a interpretação deste tipo de imagens é uma tarefa demorada, vários

sistemas de diagnóstico assistido por computador têm sido introduzidos para auxiliarem os der-

matologistas. A segmentação de imagem é uma das tarefas mais importantes destes sistemas,

uma vez que a precisão da segmentação determina o seu eventual sucesso ou insucesso.

A existência e criação de imagens segmentadas manualmente por dermatologistas, para serem

utilizadas como referência, é um aspecto essencial na avaliação e validação dos métodos de

segmentação automática. Deste modo, uma ferramenta de anotação para a segmentação manual

de imagens dermatoscópicas é proposta neste trabalho. Esta ferramenta, denominada DerMAT,

permite a construção de uma base de imagens de referência com as segmentações manuais tanto

das lesões cutâneas como de outras regiões de interesse. A ferramenta desenvolvida foi criada

com base nas sugestões e requesitos dos dermatologistas, tendo vindo a ser utilizada e testada por

eles em ambiente cĺınico. Comparado com outras ferramentas de anotação existentes, o DerMAT

apresenta algumas vantagens, nomeadamente melhores funcionalidades de segmentação manual

e edição das segmentações.

Além disso, foram implementados e avaliados diferentes tipos de algoritmos para a seg-

mentação automática da lesão cutânea em imagens dermatoscópicas. Para a avaliação quantita-

tiva dos resultados da segmentação são determinadas algumas medidas de desempenho, usando

como referência uma base de imagens segmentadas manualmente por um dermatologista expe-

riente. Entre os métodos de segmentação implementados, o método “GVF snake” apresenta os

melhores resultados.
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Chapter 1

Introduction

1.1 Motivation

Skin cancer is one of the most frequent cancers among human beings. Malignant melanoma is

the most aggressive and deadly type of skin cancer, and its incidence has been quickly increasing

over the last years. In Portugal there are 10 000 new cases of skin cancer diagnosed each year,

of which 1000 are malignant melanomas [1, 2].

The success of melanoma treatment depends directly on early diagnosis because, when de-

tected in an early and non-invasive stage, the malignant melanoma can easily be excised with an

excellent prognosis for the patient [3, 4].

In order to improve the accuracy of melanoma diagnosis various imaging techniques have

been explored, including photography, dermoscopy, spectral imaging, LASER Doppler perfusion

imaging, magnetic resonance imaging, and infrared thermal imaging [4]. Among these, der-

moscopy is currently the most relevant imaging technique for melanoma diagnosis. Dermoscopy

is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions in a

greater magnification, allowing a better visualization of their surface and subsurface structures.

This is a very useful technique for the analysis of skin lesions and, when performed by experi-

enced physicians, it has been shown to increase the diagnosis accuracy, specially of the melanoma

[2, 5, 6].

Nevertheless, the visual interpretation and inspection of dermoscopic images is time consum-

ing, subjective, and prone to bias even for trained dermatologists. Moreover, it was shown by

Kittler et al. [7] that the diagnosis accuracy of dermoscopy significantly depends on the expe-

rience of the dermatologists, and when performed by untrained or less experienced physicians,

dermoscopy was no better than clinical inspection with the unaided eye [7, 8].

Therefore, in the last few years, several computer-aided diagnosis systems of digital der-

moscopic images have been introduced. An automatic dermoscopic image analysis system has
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usually three stages, namely: image segmentation, feature extraction and selection, and lesion

classification. The segmentation step is one of the most important ones, since a good segmen-

tation is fundamental for subsequent classification, and also because some clinical features, such

as asymmetry and border irregularity, can be directly obtained from the boundary of the le-

sion [9, 10]. Thus, the further investigation of automatic segmentation methods for dermoscopic

images is of crucial importance.

The evaluation and validation of automatic segmentation methods requires a reliable ground

truth database of manually segmented images. To our knowledge there is no available standard

ground truth database of dermoscopic images that can be used by all the research community. As

the ground truth databases have to be created manually by expert dermatologists, which is a quite

cumbersome task, there is also a need for the development of graphical user interfaces/annotation

tools that can support the manual segmentation of dermoscopic images, and this way make this

task easier and practicable for dermatologists.

1.2 Aims

The purpose of this dissertation is twofold.

The first aim is the development of an annotation tool that supports the manual segmentation

of dermoscopic images. This tool should allow building up a ground truth database with the

manual segmentations both of pigmented skin lesions and of other regions of interest.

The second aim is the implementation and evaluation of different kinds of algorithms for the

automatic segmentation of the pigmented skin lesion in dermoscopic images.

1.3 Contributions

In this dissertation, our efforts were targeted towards the manual segmentation/ground truth

creation issue as well as to the implementation of fully automated algorithms for the segmentation

of dermoscopic images. In this regard, the main contributions of this work can be summarized

as follows:

• A completely new annotation tool for manual segmentation of dermoscopic images is pre-

sented. Besides the manual segmentation itself, this tool has other interesting functionali-

ties, such as: boundary reshaping, region labeling, multi-user ground truth annotation and

segmentation comparison;

• Several algorithms for the automatic segmentation of the pigmented skin lesion are ap-

plied and evaluated, including automatic thresholding, region growing, watershed, k -means,

mean-shift, and gradient vector flow (GVF). For some of these algorithms adaptations were

2



made in order to improve their performance and/or make the segmentation process com-

pletely automatic;

• In the automatic thresholding, an algorithm for automatic detection of the number of sig-

nificant histogram peaks is developed in order to classify the image histogram as unimodal

or bimodal. Thus, according to each situation one of two distinct algorithms, either the

triangle method or Otsu’s method, is used;

• An algorithm for automatic seed region creation in order to make the region growing

method fully automatic is developed and implemented. For a given image, the seed region

creation and definition is based on the horizontal and vertical projections of the image;

• In the gradient vector flow method, an approach for automatic initialization is proposed

and applied. The initial contour is automatically defined for each image, mainly based on

the information obtained from the canny edge detector.

Part of the work presented in this dissertation was published in the papers [11, 12, 13].

1.4 State of the art

1.4.1 Annotation tools for manual segmentation and ground truth cre-

ation

A reliable ground truth image database is necessary for the evaluation of the automatic segmen-

tation algorithms performance. The creation and construction of a ground truth image database

is of crucial importance, specially in the dermoscopy field, due to the non-existence of a public

ground truth database of dermoscopic images. This task must be performed by expert derma-

tologists who have to manually segment and annotate each dermoscopic image, which can be a

quite cumbersome and time-consuming task. There are some available annotation tools or image

processing software systems that can be used for manual ground truth annotation. However,

there is no available customized tool for dermoscopy, and moreover most of the existing tools are

not uniquely directed for the manual segmentation and annotation tasks, since they also include

many other functionalities (automatic segmentation methods, image filters, image enhancement

algorithms, etc). Therefore, we focused our research into the annotation tools or image software

systems that support the manual segmentation, and hence can be used for ground truth creation

(typically drawing the boundary of the desired objects in an image and labeling each segmented

object). Some of such tools are: ImageJ [14], Labelme [15], and Annotor [16]. The main features

and functionalities of these tools are described below.
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ImageJ is a public domain image processing and analysis tool. Overall, ImageJ can be used

to display, edit, process, analyze, save, and print images. It supports a wide number of standard

image formats, including TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw” images. More-

over, this tool incorporates many image processing methods, such as histogram and contrast

manipulation, edge detection, some standard image filters (mean, median, etc.), and a wide

range of automated image segmentation algorithms. With ImageJ it is possible to create/draw

user-defined regions of interest within an image in order to perform the manual segmentation.

The selection of the region of interest can be performed using rectangular, elliptical, polygonal,

and freehand drawing tools. The created region of interest can be filtered, filled in, and several

measurements can be obtained directly from each segmented region (for instance area, circular-

ity, etc.). The regions of interest can be resized and reshaped, but only when obtained using

rectangular or elliptical drawing tools [14, 17].

Labelme is a database and a web-based tool for image annotation and instant sharing of such

annotations. The purpose of the Labelme project is to provide and build up a large image dataset

with ground truth labels to be used by computer vision researchers. The online annotation tool

allows users to draw the boundary of the objects in an image through a polygonal drawing tool.

The segmentation is completed when the user closes the polygon along the object’s boundary.

Once the polygon is closed, it is possible to define a label for the segmented object. Afterwards,

the annotation is added to the database and becomes available for immediate download [18, 19].

Annotor is a manual image annotation tool that can be used to create ground truth data

(labeled images). Overall, this tool allows drawing polygons along the object boundaries in an

image, and associating a class/label to each segmented polygon. Then, the annotations can be

exported into different files (XML, PNG, and TXT) to be used as input for machine learning

algorithms. The main output is a XML file, which contains a list of the segmented polygons

defined by a color, a class, and the corresponding control points positions. Moreover, it is possible

to generate cropped images (PNG images with transparent background) sorted by class, where

each cropped image corresponds to a segmented polygon [16].

There are many other image processing and image analysis tools that could be used to

manually segment and to trace a region of interest in an image, such as Endrov [20], Mango

[21], and FreeSurfer [22]. However, as these tools are more directed towards the application

of image processing algorithms, or to handle a specific type of medical imaging (for instance

FreeSurfer is a brain imaging software), they are not considered or described in this work.

1.4.2 Segmentation methods for dermoscopic images

Dermoscopic images are a great challenge for segmentation algorithms, because there are a great

diversity of lesion shapes, boundaries, and colors along with several skin types and textures.
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In some images there is a low contrast and/or a smooth transition between the lesion and the

surrounding skin. Moreover, dermoscopic images usually contain some intrinsic skin features

such as hairs, black frames, skin lines, blood vessels, and air bubbles [9, 10]. Therefore, several

segmentation algorithms have been suggested to overcome these difficulties. These segmentation

algorithms can be roughly divided into four main groups, namely thresholding, region-based,

edge/contour-based, and clustering-based methods.

A comprehensive survey of the methods applied to the segmentation of skin lesions in dermo-

scopic images is provided in [10], in which the pre-processing, segmentation, and post-processing

steps involved in each method are described. The authors also give a particular attention to the

evaluation of the segmentation results according to the most widely used performance metrics.

A thresholding segmentation method is described in [23], where the segmented skin lesion is

obtained by a fully automated histogram-based thresholding technique in which the thresholding

is performed in each of the three color planes. Another example of thresholding is presented in

[24]. In this paper, an automated threshold fusion method for the segmentation of the skin lesion

is proposed, since a single thresholding algorithm is hardly robust enough to work well in a wide

variety of dermoscopic images. This method involves the fusion of four popular thresholding

algorithms, namely Huang’s algorithm [25], Kapur’s algorithm [26], Kittler’s algorithm [27], and

Otsu’s algorithm [28]. The results demonstrate that the fusion method has a better performance

when compared to each individual method. Most recently, Humayun et al. [29] propose a

multilevel thresholding algorithm which iteratively divides the image histogram into multiple

classes with an optimized selection of the threshold values using Otsu’s method.

Thresholding techniques have the advantages of being computationally simple and fast, and

produce good results on images where there is good contrast between the lesion and the sur-

rounding skin. However, in the dermoscopic images these methods generally produce inconsistent

results, since in some images there is a low contrast and a smooth transition between the lesion

and the skin, which leads the algorithm to fail [9, 30].

Several region-based methods have been used in the segmentation of dermoscopic images.

Celebi et al. [31] suggest a modified version of the JSEG algorithm for the skin lesion segmen-

tation. In this algorithm the segmentation process is divided into two independent phases: (i)

a color quantization, and (ii) a multiscale region growing segmentation. Moreover, Celebi et al.

[32] propose a color image segmentation technique based on region growing and merging, called

statistical region merging algorithm (SRM). In this paper, SRM is compared with four state

of the art automatic segmentation methods (orientation-sensitive fuzzy c-means, dermatologist-

like tumor extraction algorithm, mean shift clustering, and the modified JSEG method), and

it is shown that this algorithm achieves the best segmentation results. Another region-based

segmentation method can be found in [33], where the flooding variant of the watershed algo-
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rithm is implemented for the segmentation of dermoscopic images. The watershed algorithm

uses an intensity-based topographical representation, in which the holes are punched at each

regional minimum in the image, and then the topography is slowly flooded from the holes at

each regional minimum to define different regions in the image [34].

Generally, region-based methods have difficulties when the pigmented skin lesions present a

great variety of colors or textures along with different skin types and textures, which leads to

oversegmentation [9, 31].

An example of an edge-based method can be found in [35], where the skin lesion is segmented

either by the geodesic active contours model or the geodesic edge tracing approach. The de-

formable active contours or snakes are one of the most commonly used approaches to segment

objects, particularly in medical images. This technique is based on deforming a curve towards

the minimization of a given energy function [35]. In [36], the gradient vector flow (GVF) snakes

method is used to find the border of skin lesions in dermoscopic images. Here, an automatic

snake initialization method is introduced to make the skin lesion segmentation automatically.

The GVF snake has some advantages over a traditional snake, such as its insensitivity to initial-

ization and its ability to move into boundary concavities. In [37] the pigmented skin lesion is

segmented using an improved snake model. The authors propose a new type of dynamic energy

force for snakes which incorporates a mean shift field term within the standard GVF objective

function. The experimental results show that their mean shift based GVF algorithm has a better

segmentation performance than the classical GVF algorithm.

One of the main problems of the edge-based approaches applied to dermoscopic images is the

existence of weak edges in some images, resulting from a smooth transition between the lesion

and the skin. In these cases, the contour can pass over the weak edges. Another drawback of

edge-based methods is the presence of noise points in the images, which can be derived from some

image artifacts, such as hairs, air bubbles, and skin lines. The result can be the convergence

of the contour to noise points and an incorrectly segmented skin lesion. Moreover, in these

techniques a great number of parameters, which affect the contour’s behavior and performance,

must be validated [9, 36].

Clustering approaches are used in [38], [39], [40], [41] and [42] for the segmentation of der-

moscopic images. Generally, these methods involve the partitioning of a feature space into

homogeneous regions. In [38] the skin lesion is segmented using a modified version of the fuzzy

c-means clustering technique that takes into account the cluster orientation. Gómez et al. [39]

propose a contrast enhancement method based on independent histogram pursuit (IHP). The

algorithm estimates a linear multispectral color space transformation that enhances the contrast

between the lesion and the surrounding skin. Then, the skin lesion segmentation is performed

using the k -means clustering technique. Melli et al. [40] compare the most spread color clus-
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tering algorithms, namely median cut, k -means, fuzzy c-means and mean shift. According to

the authors the best segmentation results are achieved by mean shift algorithm. The algorithm

proposed in Zhou et al. [41] proceeds in a coarse-to-fine approach. First, the normalized cut

algorithm is applied to a down-sampled version of the original image. Then, this segmentation

result is adapted to the original image by using a histogram-based Bayesian classifier. Most

recently, Devi et al. [42] suggest and compare several fuzzy based clustering techniques for skin

lesion segmentation, including the fuzzy c-means algorithm, the possibilistic c-means algorithm,

and the hierarchical c-means algorithm. According to their experimental results, the hierarchical

c-means algorithm provides better performance when compared with the other two clustering

algorithms.

The segmentation methods applied to dermoscopic images can also be divided into supervised

and unsupervised methods. The supervised segmentation methods require user intervention, for

instance in their initialization whereas unsupervised methods generally perform the segmentation

without user interaction, or any kind of initialization. Moreover, unsupervised methods are

preferred to ensure a reproducible result. However, user interaction is still required to correct an

inadequate segmentation result [43].

Silveira et al. [9] propose and evaluate six different methods for dermoscopic image segmen-

tation, including supervised and unsupervised segmentation methods, namely adaptive thresh-

olding, gradient vector flow, adaptive snake, level set method of Chan et al. [44], expectation-

maximization level set, and the fuzzy-based split-and-merge algorithm. They conclude that the

best segmentation results are obtained by two supervised segmentation methods, more concretely

by the adaptive snake and by the expectation-maximization level set methods. Fully automatic

methods achieve slightly worse results.

It is important to note that the segmentation results in dermoscopic images are tightly cou-

pled to the pre-processing step. Generally, the pre-processing step can include a color space

transformation, contrast enhancement, and artifact removal. Celebi et al. [10] provide a useful

review, in which the most widely used methods as pre-processing are presented. Recently, Abbas

et al. [45] propose an effective pre-processing stage, where some image artifacts such as specu-

lar reflection, dermoscopic gel, and intrinsic cutaneous features (hair, blood vessels, skin lines,

and ruler markings) are removed by homomorphic filtering, weighted median filtering, and an

exemplar-based inpainting scheme.

1.5 Outline of the dissertation

In Chapter 2 the dermoscopy technique is introduced. Furthermore, the most widely used di-

agnosis algorithms for the evaluation of the pigmented skin lesions are presented, such as: the
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pattern analysis, the ABCD rule, the 7-point checklist, and the Menzies method.

Chapter 3 presents the developed annotation tool, DerMAT, for manual segmentation and

ground truth creation of dermoscopic images. Herein, the main functionalities of this tool are

described in detail. Moreover, a functional evaluation of DerMAT is presented based on a

comparison with other state of the art tools that can be also used for ground truth generation.

A detailed presentation of the implemented segmentation methods for the automatic detection

of the pigmented skin lesions is given in Chapter 4. Here, the pre-processing step that is applied

to the images is first presented, followed by a description of the theoretical aspects as well as

the implementation methodology of each segmentation method. Afterwards, three performance

metrics are given for the quantitative assessment of the segmentation performance, using as

ground truth a set of manually segmented images performed by an expert dermatologist.

Finally, conclusions and some topics for future work are presented in Chapter 5.
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Chapter 2

Dermoscopy

2.1 Dermoscopy: the technique

Dermoscopy, also known as dermatoscopy or skin surface microscopy, is a non-invasive diagnosis

technique for the in vivo observation of pigmented skin lesions, providing a better visualization

of their morphological structures, which would otherwise not be visible by the unaided eye [2].

This technique involves the use of an optical instrument with a magnification ranging from

6x to 40x and even up to 100x. One of the most widely used instruments is the dermatoscope

(Figure 2.1), in which a spherical and achromatic lens is paired with a bright halogen beam

that falls on the cutaneous surface, providing intra- and sub-epidermal illumination. Generally,

around 4 − 7% of the light is reflected from the dry skin surface, limiting the visualization of

deeper structures. In order to reduce the reflected light, an immersion fluid (oil, gel, water,

etc) is placed at the interface between the epidermis and the dermatoscope, or as an alternative

polarized light dermatoscopes are used. The optically magnified image of the skin surface and

subsurface is then either visually inspected or captured by a computer for subsequent digital

image analysis and examination at the computer screen [4, 5, 46].

Figure 2.1: Manual dermatoscope (Adapted from [2]).

Digital dermoscopy uses digital or digitized dermoscopic images. It allows the storage, re-

trieval, and follow-up of pigmented skin lesions. Moreover, some systems can support teleder-

moscopy, and may offer the possibility of computer-aided diagnosis in order to assist the clinical
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evaluation by dermatologists [8].

2.2 Differential diagnosis of pigmented skin lesions

The differential diagnosis of pigmented skin lesions can be a challenging task even for trained

dermatologists. Thence, the Board of the Consensus Net Meeting on Dermoscopy (CNMD)

agreed on a two-step procedure for the classification of pigmented skin lesions (Figure 2.2) [4, 47].

Figure 2.2: Two-step procedure for the differencial diagnosis of pigmented skin lesions (Adapted
from [48]).

The purpose of the first step is to classify the lesion either as melanocytic or non-melanocytic.

This decision is performed based on the presence of certain dermoscopic features, such as pigment

network, globules, streaks, homogeneous blue pigmentation, and parallel pattern (Table 2.1).

Overall, a pigmented skin lesion is considered as melanocytic when at least one of these criteria

is present. Otherwise, the lesion should be one of the four main types of non-melanocytic lesions:

seborrheic keratosis, basal cell carcinoma, vascular lesions, or dermatofibroma (this distinction

is made based on another dermoscopic criteria) [48, 49].

Once the skin lesion is classified as melanocytic, the second step is to evaluate whether it is

benign, suspicious, or malignant. Melanocytic lesions appear as a dark spot on the skin, resulting

from an aggregation of the skin color pigment, called melanin, that is produced by a special type

of cells, the melanocytes. The common melanocytic lesions are benign in nature (harmless), and

usually called moles or melanocytic nevi. On the other hand, melanoma is a malignant type

of melanocytic lesions, originating from an uncontrolled proliferation of melanocytes, that has

the potential to metastasize [2, 4]. However, when melanoma is detected in a non-invasive, and

early stage it can easily be treated and removed through a simple excision. Therefore, the early

and correct diagnosis of melanocytic lesions is of crucial importance. In this regard, several

diagnosis algorithms have been introduced in order to help differentiating between benign nevi

and melanoma. The most widely used diagnosis algorithms are the pattern analysis, the ABCD
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rule, the 7-point checklist, and the Menzies method. The ABCD rule and the 7-point checklist are

semiquantitative models whereas Menzies method and pattern analysis are qualitative diagnosis

models (these diagnosis methods are described in the following subsections) [2, 48, 49].

However, the diagnosis of melanocytic lesions is still a challenging task even using these

diagnosis methods. Figure 2.3 shows some examples of melanocytic lesions, containing benign

melanocytic nevi as well as melanomas. It demonstrates that sometimes melanomas and benign

melanocytic lesions appear very similar. This could lead to one of the major problems in the

diagnosis of melanocytic lesions, which is the underdiagnosis of a melanoma as being a benign

lesion [2].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Examples of melanocytic lesions: (a-d) Benign melanocytic lesions; (e-h) Melanomas
(Adapted from [2]).

2.2.1 Pattern analysis

Pattern analysis is the classical approach for diagnosing the pigmented skin lesions. This di-

agnosis procedure is based on a qualitative and simultaneous evaluation of several dermoscopic

criteria. Therefore, the pigmented skin lesions are analyzed, in a first stage, with regard to their

global pattern, and afterwards to their local pattern. Some of the most common global features

that must be assessed are:

• Reticular pattern: these melanocytic lesions are composed almost entirely of a predom-

inant pigment network.

• Globular pattern: characterized by the presence of numerous round to oval globules.

• Cobblestone pattern: it is a variant of globular pattern, which is characterized by the

prevalence of closely, aggregated, large, angulated globules.

• Starburst pattern: characterized by the presence of radial streaks or globules regularly

distributed around the periphery of the lesion.
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• Parallel pattern: the parallel pattern is characterized by the presence of parallel pig-

mented lines.

Besides the global patterns, several local features have to be analyzed, such as: streaks,

dots/globules, blue-whitish veil, regression structures, blotches, hypopigmented areas, and vas-

cular patterns. These local dermoscopic structures are described in Table 2.1. Generally, the

dermoscopic structures and colors are symmetrically distributed in benign lesions, whereas in

melanomas these features are asymmetrically distributed and/or have an atypical shape [48, 49].

However, because of problems inherent to the reliability and reproducibility of the dermo-

scopic criteria used in pattern analysis, other diagnosis algorithms have been introduced in order

to increase the accuracy, such as the ABCD rule, the 7-point checklist, and the Menzies method

[2].

Table 2.1: Definition of some dermoscopic structures that are used in the diagnosis of melanocytic
lesions (Adapted from [2, 50]).

Dermoscopic
structure

Definition

Pigment network Grid-like network consisting of pigmented lines (brown or black)
and hypopigmented holes.

Dots/Globules Spherical or oval, variously sized, black, brown or gray structures
(dots are smaller than globules).

Streaks or Pseudopods Brown-black, finger-like projections of the pigment network from
the periphery of the lesion.

Blue-whitish veil Confluent, opaque, irregular blue pigmentation with an overlying,
white, ground-glass haze.

Regression structures White scar-like depigmentation often combined with pepperlike ar-
eas (speckled blue-gray granules).

Blotches Dark brown to black, usually homogeneous, areas of pigment ob-
scuring underlying structures.

Hypopigmented areas Localized or diffuse areas of decreased pigmentation within an oth-
erwise ordinary pigmented lesion.

Vascular patterns Vascular structures may include “comma vessels”, “point vessels”,
“tree-like vessels”, “wreath-like vessels”, and “hairpin-like vessels”.

2.2.2 ABCD Rule

The ABCD rule of dermatoscopy was introduced after pattern analysis in an attempt to simply

the diagnosis process. This algorithm consists in a semiquantitative analysis of four different

criteria of a given melanocytic lesion, including asymmetry (A), border (B), color (C), and

differential structures (D) (Table 2.2). Each of these criteria is individually scored, based on how

atypical they are identified in a lesion, and then multiplied by a given weight factor in order to
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calculate the total dermatoscopy score (TDS) [2, 50]:

TDS = [(Ascore × 1.3) + (Bscore × 0.1) + (Cscore × 0.5) + (Dscore × 0.5)] (2.1)

The TDS ranges from 1 to 8.9. A lesion with a TDS value less than 4.75 can be considered

as a benign melanocytic lesion. A lesion with a TDS value between 4.75 and 5.45 should be

considered suspicious, and should either be excised or followed. Finally, a TDS value greater

than 5.45 indicates that the lesion is highly suspicious of being a melanoma [2, 5, 50].

Table 2.2: ABCD rule of dermoscopy (Adapted from [2, 50]).

Criterion Description Score Weight factor

Asymmetry The lesion is divided by two orthogonal axes, and the
asymmetry is assessed with regard to contour, colors,
and structures (full symmetry - 0 points; asymmetry
in one axis - 1 point; full asymmetry - 2 points).

0-2 1.3

Border The lesion is divided into eight parts. Each eighth
with an abrupt ending of pigment pattern at the pe-
riphery has a score of 1.

0-8 0.1

Color 1 point for the presence of each color (white, red,
light-brown, dark-brown, blue-gray, black).

1-6 0.5

Differential
structures

1 point for the presence of each structure (pigment
network, structureless or homogeneous areas, streaks,
dots, and globules).

1-5 0.5

In Figure 2.4 two examples of the application of the ABCD rule for diagnosing the melanocytic

lesions are presented. The skin lesion in Figure 2.4(a) has a TDS value of 2.8, corresponding to

a benign melanocytic lesion. Figure 2.4(b) contains a melanoma, which has a TDS value of 6.9.

(a) (b)

Figure 2.4: Differential diagnosis using the ABCD rule: (a) Benign skin lesion with a TDS value
of 2.8 → Asymmetry: 0 × 1.3=0; Border: 8 × 0.1=0.8; Color: 2 (light-brown, dark-brown)
× 0.5=1; Differential structures: 2 (network, globules) × 0.5=1; and (b) Melanoma with a
TDS value of 6.9 → Asymmetry: 2 × 1.3=2.6; Border: 3* × 0.1=0.3; Color: 4 (light-brown,
dark-brown, blue-gray, black) × 0.5=2; Differential structures: 4 (network, homogeneous areas,
streaks, globules) × 0.5=2 (Adapted from [2]).
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2.2.3 7-point checklist

The 7-point checklist is another semiquantitave approach that can be used for the diagnosis of

melanocytic lesions. There are fewer dermoscopic features to analyze than in pattern analysis,

and its scoring system is simpler than the one used in the ABCD rule of dermatoscopy.

In this algorithm, only seven dermoscopic features have to be assessed, which are divided

into major and minor criteria (Table 2.3). Each major criterion identified in a given lesion

receives 2 points, whereas each minor criterion receives only 1 point. Afterwards, the total score

is computed by a simple addition of each individual score. If the total score is less than 3,

the lesion is considered to be benign, but a lesion with a total score of 3 or greater has a high

probability of being a melanoma [5, 47, 50].

Table 2.3: 7-Point Checklist (Adapted from [2]).

Criteria 7-Point score

Major criteria:

1. Atypical pigment network 2

2. Blue-whitish veil 2

3. Atypical vascular pattern 2

Minor criteria:

4. Irregular streaks 1

5. Irregular pigmentation 1

6. Irregular dots/globules 1

7. Regression structures 1

Figure 2.5 shows two examples of diagnosis using the 7-point point checklist. The pigmented

skin lesion in Figure 2.5(a) corresponds to a melanoma, in which five dermoscopic characteristics

can be identified, corresponding to a total score of 7. Figure 2.5(b) contains a Clark nevus, where

only one dermoscopic characteristic is identified which corresponds to a score of 1.

(a) (b)

Figure 2.5: Differential diagnosis using the 7-point checklist: (a) Melanoma with a total score of
7; (b) Clark nevus with a total score of 1 (Adapted from [2]).
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2.2.4 Menzies method

Menzies method is a qualitative diagnosis model like pattern analysis, and it is another attempt

to simplify the assessment and analysis of the features present in dermoscopic images. According

to this method, eleven dermoscopic features have to be assessed, which are divided in two main

groups: negative and positive features. All of these dermoscopic features are scored as categori-

cally present or absent, in order to reduce the observer errors that occur when criteria are graded

[5, 50].

The negative features are the symmetry of pattern and the presence of a single color. Both of

these criteria define a melanocytic lesion as benign. The symmetry of pattern can be defined as

the symmetry of colors and/or structures observed in a lesion across all axes through the center of

the lesion (it does not require symmetry of shape). The set of colors that are scored includes the

black, gray, blue, red, dark brown, and tan. On the other hand, there are nine positive features,

including the blue-whitish veil, multiple brown dots, pseudopods, radial streaming, scar-like

depigmentation, peripheral black dots/globules, multiple colors (5-6), multiple blue/gray dots,

and broad pigment network.

Therefore, a melanocytic lesion in which at least one of the nine positive features is present,

added to the absence of both negative features is classified as a melanoma [2, 5].

Figure 2.6 illustrates two examples of the application of the Menzies method for diagnosing

the melanocytic lesions. The skin lesion in Figure 2.6(a) is classified as a benign lesion, since it

demonstrates symmetry of pattern across all axes drawn through the center of the lesion. Figure

2.6(b) contains a melanoma, since this lesion lacks symmetry of pattern, presents more than one

color, and has two positive features (white scar-like areas and peripheral brown dots).

(a) (b)

Figure 2.6: Differential diagnosis using the Menzies method: (a) Example of a benign melanocytic
nevus; (b) Example of a melanoma (Adapted from [2]).
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Chapter 3

DerMAT

The generation and collection of manually segmented images performed by expert dermatologists,

to be used as ground truth, is an essential issue in the evaluation and validation of automatic

segmentation methods.

In this chapter an annotation tool for manual segmentation of dermoscopic images, called

DerMAT (Dermoscopic images Manual Annotation Tool), is presented. DerMAT allows build-

ing up a ground truth database with the manual segmentations both of pigmented skin lesions

and of other regions of interest to be used in the assessment and validation of automatic segmen-

tation and classification methods. This is a customized tool for dermoscopy, but it can easily be

adapted to other medical imaging applications.

Therefore, in this chapter the main functionalities and features of DerMAT are first presented,

followed by a functional comparison between DerMAT and other existing annotation tools.

3.1 DerMAT description

Overall, the developed tool allows drawing the boundary of the desired regions in an image,

labeling each segmented region, and storing the result of segmentation. For this purpose, the user

has a set of tools to be used sequentially to achieve the desired result. The main functionalities

of DerMAT are as following:

(i) Image upload and display;

(ii) Manual segmentation (of the lesion or other regions of interest);

(iii) Region labeling;

(iv) Boundary reshaping;

(v) A posteriori boundary edition;

(vi) Multi-user ground truth annotation and segmentation comparison;

(vii) Storage of segmented images.
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Figure 3.1: Initial aspect of the graphical user interface. Toolbar Buttons: 1-“Load Images”;
2-“Save as”; 3-“Zoom in”; 4-“Zoom out”; 5-“Manual segmentation”; 6-“Pointwise boundary
reshaping”; 7-“Local boundary reshaping”; 8-“Region labeling”.

The graphical user interface (GUI) of DerMAT was set up based on the requirements and

suggestions of dermatologists and was implemented in a MATLAB environment (7.9.0 R2009b)

taking into account its image processing toolbox and graphical facilities. Figure 3.1 shows the

initial aspect of the GUI.

The developed tool has already been used by dermatologists at the Hospital Pedro Hispano

for ground truth creation. More concretely, it was used in the scope of a task1 within the project

ADDI [51] for the manual segmentation of the color classes present in a set of 28 dermoscopic

images. Furthermore, DerMAT has been used by non-clinical members of the project to perform

the manual segmentation of the skin lesion in a dataset of 400 images, that are currently being

validated by the expert dermatologists using this tool.

3.1.1 Image upload and display

With this application it is possible to load one image or several images at once. For this purpose,

it is necessary to select the option “Load images” in the “File” menu, or simply press the button

1 on the toolbar (Figure 3.1).

Then a dialog box appears that enables the user to browse and select the image to be seg-

mented. To load multiple images, simply press CTRL key and select the desired images (Figure

3.2). The loaded image is displayed on the left side of the interface. If several images have been

loaded, the user can easily change the image that is being displayed through the slider button

(Figure 3.1).

1C. S. P. Silva, A. R. S. Marcal, M. Pereira, T. Mendonça, and J. Rozeira, “Separability analysis of color
classes on dermoscopic images,” ICIAR, 2012.
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Figure 3.2: Dialog box that enables the user to browse and select the images to be segmented.

3.1.2 Manual segmentation

In order to perform the manual segmentation, this application allows to draw either single or

multiple freehand regions of interest on the loaded image (using a pen tablet or a mouse). The

user can choose between performing the manual segmentation of the lesion or other regions of

interest through the radio buttons on the panel “Segmentation”.

To achieve the manual segmentation it is necessary to select in the “Tools” menu the option

“Manual Segmentation”, or simply press the button 5 on the toolbar (Figure 3.1). Afterwards,

the user must click and drag the pen tablet to draw the contour of the desired region.

When the user confirms the segmentation, the image with the final contour is displayed on

the right side of the interface (Figure 3.3).

Figure 3.3: Manual segmentation: (Image on the left) Initial contour drawn by the user, with
some undesirable extra lines (marked with circles); (Image on the right) Final contour after
morphological filtering. Note that the final contour is smoother than the initial one and without
undesirable extra lines.

It is important to note that the user can only confirm and complete the segmentation when a

closed contour is drawn. When the user lifts the pen from the tablet before closing the contour,
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(a) (b)

(c) (d)

Figure 3.4: Morphological filtering: (a) Initial contour drawn by the user; (b) Binary mask of
initial contour; (c) Binary image after morphological filtering; and (d) Final contour obtained
from image “c”.

the contour remains open. However, while the contour is open there is the possibility of resuming

drawing until the user completes and closes the contour.

To our knowledge other available manual segmentation tools, such as ImageJ, do not have

this possibility, since when the drawing is interrupted the contour is automatically closed with

a straight line between the beginning and the end point. A functional comparison between

DerMAT and other three state of the art softwares is presented in subsection 3.2.

To obtain the final contour from the initial one (drawn by user), a binary mask of the initial

contour is first created, in which pixels with intensity value of 1 correspond to the segmented

object, while pixels with value 0 correspond to the background. Then a morphological filtering

is applied to this binary mask in order to smooth and remove extra lines that not belong to

the contour. These lines may arise when the contour is drawn by means of multiple segments,

specially at the points of intersection of these segments (Figures 3.3 and 3.4).

Basically, morphological filtering is divided into three stages (i) morphological erosion, (ii)

selection of the biggest binary object from the image, and (iii) morphological dilation. The user

has also the possibility to select the degree of smoothing of the morphological filter between

low, medium and high. In each of these morphological operations a flat disk-shaped structuring

element is used, with a specific radius for each smoothing level (low: radius 1; medium: radius

3; high: radius 7).

The manual segmentation of other regions of interest can be done in a very similar procedure

to the manual segmentation of the lesion. For this purpose, the user must select the “Other
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Figure 3.5: Segmentation example of other regions of interest with the respective labels.

regions of interest” radio button in the panel “Segmentation”, and perform the segmentation

of the desired regions in the same way as for the whole lesion. The contours of all segmented

regions are shown simultaneously in the right window (Figure 3.5).

3.1.3 Region labeling

Another available functionality of this annotation tool is “Region labeling”, which allows labeling

the segmented regions. The user must select the option “Region labeling” in the “Tools” menu,

or simply press the button 8 on the toolbar (Figure 3.1).

Figure 3.6: “Region labeling” window, in which there are several default labels that the user can
select.

Afterwards, the user should move the pointer over the desired segmented region and click on
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it. This produces another window where a number of default labels are available for selection.

These labels include the main dermoscopic features and also the six typical colors that can be

present in a dermoscopic lesion (Figure 3.6). The possibility of making a different annotation

is also available. After selecting the desired label for each segmented region, the corresponding

text annotation is placed inside the respective region (Figure 3.5).

3.1.4 Boundary reshaping

Even after finishing the manual segmentation it is possible to make some adjustments in the

contour, if necessary. Two distinct methods were implemented to reshape the contour previously

done, namely “Pointwise boundary reshaping” and “Local boundary reshaping”.

3.1.4.1 Pointwise boundary reshaping

This method should be used to make small adjustments in the contour, because the reshaping is

done point-by-point. For this, the user must select the option “Pointwise Boundary Reshaping”

in the “Tools” menu, or simply press the button 6 on the toolbar (Figure 3.1). Forthwith the

boundary turns red with some control points. From these points it is possible to change the

shape of the contour. To accomplish this purpose, the user must click and drag the control

points to their new positions (Figure 3.7).

Figure 3.7: Pointwise boundary reshaping: (Image on the left) Initial contour (solid line) and
the reshaped contour (red line with control points); (Image on the right) Final contour.

The interactive behaviors supported by this tool are described below:

• Boundary reshaping: Move the pointer over a control point. The pointer changes to a

circle. Then, click and drag the control point to its new position.

• Adding a new control point: Move the pointer over the boundary and press the A key.

Click the left mouse button to create a new control point at that position on the boundary.
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• Deleting a control point: Move the pointer over a control point. The pointer changes

to a circle. Then, click the right mouse button and select the option “Delete Vertex” from

the context menu.

3.1.4.2 Local boundary reshaping

This method should be used when it is necessary to make great adjustments in the initial contour.

For this purpose, the user must select the option “Local Boundary Reshaping” in the “Tools”

menu, or simply press the button 7 on the toolbar (Figure 3.1).

Basically, this method allows the user to draw a line to define the new shape of the contour.

The line must intersect the initial contour at least in two points to form a closed contour. This

can be used to increase or reduce the size of the initial contour. Note that it is possible to

increase and reduce the size of the contour with a single line (Figure 3.8).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Local boundary reshaping: (a) Initial contour; (b) Initial contour and a new line to
reshape the contour; (c)-(g) Intermediate steps; and (h) Final contour.

The final contour (Figure 3.8(h)) is obtained through a set of logical, arithmetical, and

morphological operations:

(i) First, a binary image from the initial contour and another binary image from the new line

are created (Figures 3.8(c) and 3.8(d) respectively);

(ii) Image subtraction between image (c) and (d) (Figure 3.8(e));

(iii) Selection of the biggest binary object from the image, and application of a logical OR

operator between image (e) and (d) (Figure 3.8(f));

(iv) Application of a morphological filling in order to fill the image holes, and then a morpho-

logical open is used to remove the extra lines (Figure 3.8(g)).
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3.1.5 A posteriori boundary edition

This functionality was implemented to be used as a way of speeding-up the ground truth creation

task. It allows the visualization and the edition of a previously existing segmentation. In this

way, segmentation may be performed in a first stage by less experienced (or even non medical)

staff and then corrected by specialists. This can be used for medical training as well as for

reducing the workload of the experts when building a ground truth database of large dimension.

Therefore, before starting the manual segmentation, the tool automatically searches in the

current ground truth dataset if there exists a previously stored segmentation. In this case, the

user can choose to visualize the previously existing contour and edit the border making use

of the two existing boundary reshaping functionalities (“Pointwise boundary reshaping” and

“Local boundary reshaping”). Otherwise, the user can discard the previous contour and perform

a completely new manual segmentation.

3.1.6 Multi-user ground truth annotation and segmentation compari-

son

The manual segmentation of dermoscopic images is quite subjective and therefore it is desirable

to collect segmentations performed by more than one dermatologist in order to create a reliable

ground truth dataset [52]. In this regard, each user can set up and build his own manually

segmented images dataset. Therefore, with this tool it is possible to collect annotations and

segmentations of the same image by different users.

During the initialization of the tool the user can select an existing ground truth dataset

(previously created by another user) or create his own new ground truth dataset (Figure 3.9).

Figure 3.9: Image dataset selection.
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As each user is associated to one ground truth dataset, this tool is capable of making the

comparison between segmentations of different users for the same image. To accomplish this

purpose visual and quantitative comparisons are both presented. When this functionality is used

for a given image another window is opened containing a list box with all datasets that have a

segmentation of the current image for user selection. The user can compare his segmentation

with the segmentations of one or more datasets (Figure 3.10).

For visual comparison the tool shows two or more segmentations superimposed on the same

image. In addition, when only two segmentations are considered for comparison three per-

formance metrics are given for the quantitative assessment of the segmentation discrepancies,

namely the Hammoude distance, the false negative rate, and the false positive rate. These

performance metrics are described in more detail in section 4.4.

Figure 3.10: Segmentation comparison.

3.1.7 Storage of segmented images

Finally, this tool also allows storing the result of each manual segmentation. The ground truth

dataset is created and organized automatically as the manual segmentations are stored. For each

segmented image, a main folder with the same name of the image is created. In addition, two

dedicated folders are created inside the main folder, one of them is for the storage of the manual

segmentation of the lesion, and the other is for the storage of the manual segmentations of other

regions of interest.

The segmentation result is saved as a binary image, where pixels with intensity value of 1

correspond to the segmented object, while pixels with value 0 correspond to the background.

If different regions of interest were segmented, an individually binary image is created for each

segmented region. Besides the binary image, a print of the original image with the contours of
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all segmented regions and the respective labels is stored. This image is created and stored since

it provides a suitable global information of the manual segmentation.

3.2 Functional evaluation of DerMAT

In this subsection a functional evaluation of DerMAT is presented based on a comparison with

other available software systems that can be also used for manual image segmentation and

ground truth generation, namely ImageJ, Labelme, and Annotor. The functional analysis and

comparison was made using four different criteria. These criteria were defined based on the

fundamental functionalities that an annotation tool for ground truth creation of dermoscopic

images must support, including:

1. Manual segmentation/drawing mode: the manual segmentation of dermoscopic im-

ages has to be performed by a freehand drawing tool. The segmentation using polygonal

selections is not precise enough in case of dermoscopic images, since skin lesions usually

have complex shapes with quite irregular boundaries.

2. Multiple ROI segmentation and labeling: the annotation tool should support the

segmentation and labeling of multiple ROIs in a given image, since besides the manual

segmentation of the skin lesion it is also necessary to collect the manual segmentations of

other regions of interest.

3. Boundary reshaping: after finishing the manual segmentation of a ROI it is sometimes

necessary make some corrections in its boundary. Therefore, the annotation tool should

allow reshaping the boundary of a segmented region without the necessity of redrawing it

once again from the beginning.

4. Output data generation: the annotation tool should generate output data (with the

boundary location and label of each segmented region) that can be easily used as an input

in computer vision algorithms.

Table 3.1 summarizes the functional analysis of DerMAT according to the four different

criteria. DerMAT and ImageJ are the only tools that comply with the first criterion (manual

segmentation/drawing mode), since the other two applications only allow performing the manual

segmentation through a polygonal selection tool. Although both DerMAT and ImageJ support

a freehand manual segmentation, the freehand drawing tool supported by DerMAT has some

advantages compared with that supported by ImageJ. When the user interrupts the contour

drawing using DerMAT, the contour remains open, but there is the possibility of resuming

drawing until the user completes and closes the contour. In ImageJ when drawing is interrupted,
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Table 3.1: Functional evaluation of DerMAT.

Criterion # DerMAT ImageJ Labelme Annotor

1 Freehand
Freehand and
polygonal

Polygonal Polygonal

2 Yes Yes Yes Yes

3
Point-by-point

and local
reshaping

Point-by-point
reshapinga

Point-by-point
reshaping

Point-by-point
reshaping

4 Binary mask
“.roi” file format
and binary mask

XML file format XML file format

a The point-by-point reshaping mode available in ImageJ only works for polygonal segmentations.

the contour is automatically closed with a straight line between the beginning and the end point,

and hence, if this line is not accurate enough, it is necessary to redraw the contour from the

beginning. This issue is very important specially when the manual segmentation is performed

using a pen tablet, since dermatologists often lift the pen from the tablet during the contour

drawing (either to evaluate the correctness of the current segmentation status or simply to rest

their hands).

The four tools under analysis allow segmenting and labeling multiple ROIs in an image, and

hence all of them satisfy the second criterion.

The developed tool has better boundary reshaping functionalities than the other three tools

under analysis. First of all, only DerMAT allows reshaping a contour performed by a freehand

segmentation. Using the other three applications only polygonal segmentations can be reshaped.

In addition, DerMAT has two different methods for boundary reshaping, namely pointwise and

local boundary reshaping (see subsection 3.1.4), whereas the other tools only support the point-

by-point boundary edition. The local boundary reshaping available in DerMAT can be very

useful, since it provides a faster way to make great adjustments in the initial contour than the

point-by-point reshaping method.

All the tools under evaluation are capable to save the manual segmentations and generate

output data to be used as input in computer vision algorithms. By using our developed tool,

DerMAT, each segmented region is stored as a binary image and associated to the respective label.

This binary mask can be easily used to extract the boundary coordinates of every segmented

region. Labelme and Annotor can produce a XML file containing information about the boundary

positions and labels of each segmented object. In case of ImageJ, the segmented ROIs are stored

as an “.roi” file. There is also the possibility to create and save a binary mask of each segmented

region.

Besides these four fundamental criteria, DerMAT can offer other interesting functionalities

such as: a posteriori boundary edition, and multi-user ground truth annotation and segmentation

comparison (both described in subsections 3.1.5 and 3.1.6, respectively).
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Summarizing, taking the four criteria into account DerMAT has some advantages with respect

to other three existing annotation tools, namely better freehand drawing and boundary reshaping

functionalities.
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Chapter 4

Dermoscopic image segmentation

Image segmentation is one of the most important tasks in image processing, since its accuracy

determines the eventual success or failure of computerized analysis procedures. The main pur-

pose of the segmentation process is the partition of a given image into disjoint regions that are

homogeneous with respect to one or more characteristics or features [53, 54].

In this work, segmentation is used in order to automatically extract the pigmented skin lesion

from the surrounding skin in dermoscopic images. Before segmentation itself, a pre-processing

procedure is applied to dermoscopic images with the principal aim of artifact removal and image

smoothing.

In this chapter the pre-processing steps used in this work are first presented, followed by the

description of all segmentation methods that were implemented. Then some experimental results

are obtained in order to evaluate the performance of the segmentation methods.

4.1 Pre-processing

The pre-processing procedure used in this work can be divided into three main steps: (i) conver-

sion of the image from the RGB (red-green-blue) color space to grayscale; (ii) image filtering; and

(iii) detection of the dark regions in the four corners of the image. These three pre-processing

steps are described in detail in the next subsections.

4.1.1 Conversion of the image from RGB to grayscale

The dermoscopic images used in this work are 8-bit RGB color images. Due to the computa-

tional simplicity of single channel (scalar) processing, the first step of the pre-processing is the

conversion of the image from the RGB color space into a grayscale image. Therefore, three of

the most common methods for grayscale conversion of dermoscopic images were considered and

tested [9, 10], namely:
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(a) Original image (b) Blue channel (c) Luminance transfor-
mation

(d) Highest entropy
channel (⇒blue)

(e) Original image (f) Blue channel (g) Luminance transfor-
mation

(h) Highest entropy
channel (⇒red)

Figure 4.1: Conversion of the image from the RGB color space to grayscale.

1. The selection of the blue color plane from the RGB color space: it was experimen-

tally established that the blue color plane is the one that provides the best discrimination

between the lesion and the surrounding skin in most dermoscopic images.

2. The application of the luminance transformation: where the red (R), green (G),

and blue (B) channels are linearly combined into a single channel (L) using the following

equation:

L = 0.2989 · R+ 0.5870 ·G+ 0.1140 · B (4.1)

3. The selection of the RGB color component with the highest entropy: entropy

provides a measure of an image’s smoothness in terms of gray level values. The higher the

entropy, the more gray levels are present in the image [34]. In this approach, the entropy

of each color component i is first computed:

S(i) = −
L−1
∑

g=0

P (g) · log2[P (g)] (4.2)

where P (g) is the histogram of the color component i, and L = 256 corresponding to

the number of gray levels. Then, the RGB color component with the highest entropy is

selected:

i∗ = argmax
i

S(i) (4.3)

After testing the three approaches for grayscale conversion in our dermoscopic image dataset,

the blue color component was chosen for use since it demonstrated to be the RGB color channel

where there is the best discrimination between the lesion and the skin (Figure 4.1). Moreover,

among the tested approaches it is the one that provides the best performance for the segmentation

methods.
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4.1.2 Image filtering

In this work, the aim of filtering is image smoothing and also the elimination of some image

artifacts, such as skin texture, air bubbles, and specially the features from dark hairs whose

presence can reduce the accuracy of the segmentation methods. To accomplish this purpose,

dermoscopic images are filtered with a hair removal filter followed by a median filter (both

described in subsections 4.1.2.1 and 4.1.2.2, respectively).

4.1.2.1 Hair removal

Dermoscopic images sometimes contain some intrinsic skin features such as hairs, skin lines, and

blood vessels. The presence of hairs in an image may occlude the skin lesion which leads the

segmentation algorithms to fail. Therefore, the hair removal prior to segmentation is required.

There is a wide diversity of hair removal methods proposed in the literature [55]. Two

different methods for hair removal were considered and tested: morphological close filtering,

and a hair detection approach based on directional filters proposed in [56]. In a grayscale level,

morphological closing removes dark details from an image and hence can be used for hair removal

in dermoscopic images. However, as it is applied to the whole image there is a trade-off between

hair removal and edge blurring, depending on the size of the structuring element. Besides hair

removal, the second method provides a better edge preservation than morphological close filtering,

since it is locally applied in the hair pixels. As result, the hair removal method used in this work

is based on the methodology proposed in [56], due to its hair removal capability and better edge

preservation.

The hair removal method can be divided into three main steps: (i) hair enhancement; (ii)

hair segmentation; and (iii) hair disocclusion.

(i) Hair enhancement

Hairs appear as long and thin segments in dermoscopic images, that are usually darker than the

skin. Therefore, the image is processed with a set of line detection filters in order to enhance

hairs. As dermoscopic hairs may occur in any direction, it is necessary to apply a set of directional

filters that can cover the entire range of possible orientations, φi ∈ [0, π[, i = 1, ..., N . The line

detection procedure is based on a difference of gaussians (DoG), which is defined as the difference

between two Gaussians filters, G1(x, y) and G2(x, y), with the same mean and distinct variance:

g(x, y) = G1(x, y)−G2(x, y)

= k1e
[−( x2

2σ2
x1

+ y2

2σ2
y1

)]
− k2e

[−( x2

2σ2
x2

+ y2

2σ2
y2

)]
(4.4)
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where k1 and k2 are normalization constants. The rotation of g(x, y) with angle φ is then

implemented by using gφi
(x′, y′) = g(x, y), where x′ = x cosφ+ y sinφ and y′ = y cosφ− x sinφ.

The variances of the Gaussians filters, σ2
x1
, σ2

y1
, σ2

x2
, and σ2

y2
were defined so that the filter impulse

response have a linear and highly directional shape.

Therefore, the response of each filter gφi
(x, y) to an input image I(x, y) can be expressed as:

Ri(x, y) = gφi
(x, y)⊗ I(x, y) (4.5)

where ⊗ denotes the spatial convolution between gφi
(x, y) and I(x, y). For each pixel, the highest

filter response is kept in order to produce the final image output (Figure 4.2(b)).

(a) (b)

(c) (d)

Figure 4.2: Hair detection: (a) Original grayscale image; (b) DoG filters response; (c) Binary
hair mask; and (d) Hair mask superimposed on the original grayscale image.

(ii) Hair segmentation

The purpose of this step is to create a binary mask of the hairs (Figure 4.2(c)). Therefore, a

global threshold Thairs is applied to the filters response image O(x, y):

B(x, y) =















1, if O(x, y) > Thairs

0, if O(x, y) ≤ Thairs

(4.6)

where B(x, y) is the binary hair mask, in which pixels with intensity value of 1 correspond to

hairs, while pixels with value 0 correspond to the background. Thairs was empirically defined

based on the dermoscopic image dataset used in this work.
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(iii) Hair disocclusion

Hair disocclusion is the process of restoring all the pixels that are originally occluded by hair.

Therefore, a PDE-based inpainting algorithm is used to repaint the hair pixels based on the

information gathered from surrounding areas (non-hair pixels).

In general, this inpainting technique fills in the area to be inpainted, Ω, by propagating

information from its boundary, ∂Ω, along level lines (called isophotes). The different regions

inside Ω, as defined by the contour lines, are filled with color, matching those of ∂Ω. The

algorithm works iteratively, in which the region Ω is progressively shrunk in a smooth way [57].

Figure 4.3 shows the final output of the hair removal method. The original grayscale image

image is shown in Figure 4.3(a), and the recovered image after using the inpainting algorithm

can be shown in Figure 4.3(b).

(a) (b)

Figure 4.3: Hair disocclusion: (a) Original grayscale image; (b) Hair removal after image in-
painting.

4.1.2.2 Image smoothing

After the hair removal step, dermoscopic images are filtered with a median filter in order to

smooth the image as well as to remove some spurious points (or small dark dots). These spurious

points may arise when the dark hairs are not completely eliminated in the hair removal step.

The median filter is a non-linear smoothing method that replaces the original gray level of a

pixel by the median of the gray levels of the pixels in a specified neighborhood:

y(i, j) = median {x(m,n), (m,n) ∈ w(i, j)} (4.7)

where y is the input image, x is the output image, and w represents the neighborhood centered

at image coordinates (i, j) [34, 58].

These filters are useful because of their noise-reduction capability, with considerably less

blurring than linear smoothing filters of similar size. In addition, median filters are particularly

effective in the elimination of impulse noise, in our case the dark spurious points, because the

median of the gray levels in the neighborhood is not affected by individual noise spikes. This

kind of noise cannot be otherwise eliminated by linear smoothing filters [34, 59, 60].
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4.1.3 Detection of the dark regions in the four corners of the image

As result of using the dermatoscope to capture the skin lesion images, most of the images used

in this work present four dark regions in their corners. In a grayscale level these regions have

similar intensities to the lesion intensity, which can reduce the performance of some segmentation

methods. Therefore, a binary mask of the dark corners is created to eliminate their influence

on the segmentation results. To accomplish this purpose, Otsu’s method is first applied to the

image, and then the binary components that are connected with the four corners of the image

are selected (Figure 4.4). Otsu’s method is described in detail in the subsection 4.2.1.1.

The binary mask of the dark corners is used in most of segmentation methods that were

implemented in this work. For instance, in histogram-based thresholding techniques, the pixels

of the dark corners are not used in the computation of the image histogram. Furthermore, this

binary mask is used to determine if the image has or not the dark regions in the four corners.

This information is essential in the clustering segmentation methods, in which the number of

clusters have to be defined as an input parameter of the algorithm.

(a) (b)

Figure 4.4: Corner mask creation: (a) Original grayscale image; (b) Binary mask of the dark
regions in the four corners of the image.

4.2 Segmentation methods

Image segmentation is a process of partitioning an image into a set of disjoint regions that are

homogeneous with respect to certain attributes (i.e. intensity, rate of change in intensity, color,

or texture). The union of all regions must correspond to the whole image [59].

Image segmentation methods can be roughly divided into two main groups, namely feature

domain and image domain methods. Feature domain methods are based on finding compact clus-

ters in some feature space. Basically, several features (intensity, color, texture, etc) are measured

at each pixel or region, and then organized into a feature vector. Then clustering or thresholding

methods are used to segment the data. Image domain methods consider the spatial information

of the image, and hence try to satisfy both feature-space homogeneity and spatial compactness

simultaneously. Essentially, in these methods the connection among image pixels is considered

in order to assign them to regions. These algorithms can be further classified into region-based
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Figure 4.5: Classification of image segmentation methods (Adapted from [61]).

and boundary-based methods [61]. An overall classification of the image segmentation methods

is illustrated in Figure 4.5.

Since there is a wide variety of image segmentation methods described in the literature, our

efforts were focused into the most widely used algorithms. Therefore, several segmentation meth-

ods were implemented and tested, including: automatic thresholding, region growing, watershed,

k -means, mean-shift, and gradient vector flow (GVF) snakes.

4.2.1 Automatic thresholding

Thresholding is a common image segmentation technique that is particularly useful for images

containing solid objects resting on a contrasting background. In this technique, typically, a single

threshold value is used to create a binary partition of the image intensities. Therefore, the image

is divided into a group of pixels having values less than the threshold and a group of pixels with

values greater or equal to the threshold. In general, a gray-level thresholding operation can be

described as:

G(x, y) =















1, if I(x, y) ≥ T

0, if I(x, y) < T

(4.8)

where I(x, y) is the original image, T is the threshold value, and G(x, y) is the thresholded image.

The result of thresholding is a binary image, where pixels with intensity value of 1 (or any other

convenient gray level) correspond to objects, while pixels with value 0 (or any other gray level

not assigned to objects) correspond to the background [34, 54].

Thresholding has the advantages of being computationally simple and fast, and produces good
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results on images that contain objects with uniform intensity values on a contrasting background.

One of the major drawbacks of this technique is that the segmentation result significantly depends

on the threshold used. Even a small change in the threshold value can produce a different

segmented region. Moreover, as thresholding does not consider the spatial information of an

image, it is very sensitive to noise and intensity inhomogeneities [30, 62].

The thresholds are usually generated interactively by using visual feedback. Several algo-

rithms have been proposed in order to automate the process of finding correct thresholds [62].

A survey on automatic thresholding techniques is provided in [63].

The histogram of the dermoscopic images can essentially be either bimodal or unimodal.

According to each situation different algorithms are employed for automatic thresholding. If

the image histogram has two major peaks (bimodal image) then the threshold value is obtained

through Otsu’s method, while if the image histogram has a single peak (unimodal image) the

threshold value is obtained by the triangle method. The implementation details are described in

subsection 4.2.1.3.

These two automatic thresholding techniques were chosen because Otsu’s method is one of

the most popular techniques that produces good results in bimodal images, and because the

triangle algorithm is known to be particularly effective when the image histogram has a single

large peak and a long tail [34]. In the following subsections, Otsu’s and Triangle methods are

described in more detail.

4.2.1.1 Otsu’s method

Otsu’s algorithm [28] is one of the most popular techniques of optimal thresholding that produces

good results in bimodal images. This method maximizes the likelihood that the threshold is

chosen so as to split the image between an object and its background. This is achieved by

selecting a threshold that gives the best separation of classes, such that the between-class variance

is maximized and the intra-class variance is minimized [64].

This technique is based on a discriminant analysis which divides the image into two classes

C0 and C1 by threshold k, such that C0 = {0, 1, 2, ..., k} and C1 = {k + 1, k + 2, ..., L− 1}, where

L is the total number of the gray levels of the image (Figure 4.6).

The grey-level histogram is normalized and considered as a probability distribution. The

probability of occurrence of level i is given by pi = ni/N , where ni denotes the number of pixels

at the ith gray level and N denotes the total number of pixels in a given image [65, 66].

This can be used to compute then zero- and first-order cumulative moments of the normalized

histogram up to the kth level as: ω0(k) =
∑k

i=1 p(i), µ0(k) =
∑k

i=1 i · p(i)/ω0. The total mean

level of the image is given by: µT =
∑L

i=1 i · p(i) [64, 65].
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Figure 4.6: Optimal thresholding, kopt, achieved by Otsu’s algorithm (Adapted from [64]).

Otsu’s algorithm looks for the intensity threshold k that maximizes one of the following

criterion measures (or measures of class separability):

η = σ2
B/σ

2
T or λ = σ2

B/σ
2
W or κ = σ2

T /σ
2
W (4.9)

where σ2
T , σ

2
B , and σ2

W represent the total variance of the image, the between-class variance, and

the within-class variance, respectively:

σ2
W = ω0σ

2
0 + ω1σ

2
1 (4.10)

σ2
B = ω0ω1(µ1 − µ0)

2 (4.11)

σ2
T = σ2

W + σ2
B (4.12)

where ω1 = 1−ω0, and µ1 =
∑L

i=k+1 i ·p(i)/ω1. The measure η is the simplest one to maximize,

because σ2
T does not depend on k. The optimal threshold kopt that maximizes η, or equivalently

maximizes σ2
B is given by [28, 65, 67]:

kopt = argmax {η(k)}

= argmax
{

σ2
B(k)

}

(4.13)

4.2.1.2 Triangle method

The triangle algorithm [68] is known to be particularly effective when the object pixels produce

a weak peak in the histogram. This technique is illustrated in Figure 4.7, where low gray-level

objects reside on a high gray-level background.

This algorithm starts by finding the maximum peak of the histogram. This is followed by

determining the line passing through the maximum peak point [Imax, H(Imax)] and the lowest

point [Ilowest, H(Ilowest)] in the histogram. The distance, D, from this line to the histogram is

computed for each intensity H(I), with I ranging from Ilowest to Imax. The optimal threshold,

T , is selected as the intensity that maximizes the distance D [34, 67].
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Figure 4.7: Illustration of the triangle algorithm. The triangle algorithm selects the intensity
threshold (T ) that maximizes the distance, D, between the line and the histogram (Adapted
from [34]).

4.2.1.3 Implementation

After analyzing the histogram of dermoscopic images it was verified that most of the images

have a bimodal histogram, in which one of these modes corresponds to the lesion and the other

to the skin (Figures 4.8(a) and 4.8(b)). However, there are a few exceptions. Some images have

a unimodal histogram, either when the lesion is very small compared to the skin, or when the

lesion is very large and covers almost the entire image. In these cases the lesion pixels produce

a weak peak in histogram, as shown in Figures 4.8(c) and 4.8(d).

(a) (b)

(c) (d)

Figure 4.8: Examples of histograms of dermoscopic images: (a) Dermoscopic image; (b) His-
togram of (a); (c) Another example of dermoscopic image; and (d) Histogram of (c).

Therefore, an algorithm for automatic detection of the number of significant histogram peaks

(local maxima) was developed. Based on this algorithm an appropriate automatic thresholding

method is used to segment the images. If the image histogram has two major peaks then the

threshold is obtained through Otsu’s method, else if the image histogram has a single peak the

threshold value is obtained by triangle method.
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Algorithm for significant histogram peaks detection

The main objective of this algorithm is to automatically define which of the thresholding tech-

niques will be used in each image. For this purpose, the local maxima of the image histogram

are computed in order to evaluate if the image histogram is bimodal or unimodal. The steps of

the algorithm are as follows:

Histogram smoothing: a median filter is used to remove noise and smooth the image his-

togram. Besides the histogram smoothing, this filter also eliminates some outliers that could

make the determination of local maxima more difficult.

Determination of local maxima: an intensity level is considered a local maximum if the

corresponding number of pixels is greater or equal than the average of number of pixels of the

intensity levels in a predefined neighborhood (in this case a 1× 13 neighborhood is used).

In this phase a large number of local maxima are computed. In order to keep at most two

significant ones (one corresponding to the lesion and another to the skin), these local maxima

must satisfy the following three conditions.

1. The local maxima must have a corresponding number of pixels greater than a certain

threshold T1. This value was empirically defined as 150, because the modes corresponding

to the lesion and to the skin have always a number of pixels greater than T1.

2. The intensity difference between two consecutive local maxima must be greater than a

threshold T2. The purpose of this parameter is to ignore smaller peaks that may occur in

close proximity to a large local peak. The threshold value was empirically defined based

on the image dataset as T2 = 35.

3. In case there are more than one local maximum, the one with lowest intensity must have

an intensity value lower than a threshold T3. This threshold is used to ensure that at least

one of the local maxima corresponds to the lesion, because usually the lesions have low

intensities. The threshold value was also empirically defined as T3 = 140.

After this procedure, the algorithm defines which of the thresholding methods is used, based

on the number of detected local maxima. Therefore, if the image histogram has a single maximum

the triangle method is applied. When the image histogram has two dominant maxima then the

threshold is obtained through Otsu’s method. However, if one of these maxima is a weak peak

the triangle method is also used. A weak peak is a local maximum with a number of pixels lower

than 900 (empirically defined value). For example, as shown in Figure 4.9, where two dominant

peaks are detected, the Otsu’s method is used for segmentation.
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(a) (b)

Figure 4.9: Algorithm for significant histogram peaks detection: (a) Original image histogram;
(b) Histogram peaks detection (note that two local maxima/peaks are detected, and this his-
togram is smoother than (a) and without the outlier).

4.2.2 k-means

The k -means algorithm is an unsupervised clustering algorithm that classifies the input data

points into multiple classes based on their inherent distance from each other. Thus, a set of data

points are grouped into k disjoint subsets (clusters) Si, i = 1, 2, ..., k, each one represented by a

centroid, so as to minimize the sum-of-squared error function:

V =

k
∑

i=1

∑

xn∈Si

|xn − µi|
2

(4.14)

where xn is the value of the nth data point, and µi is the geometric centroid of the data points

within the cluster Si.

The algorithm proceeds by iterating two steps. In the first step each data point (feature) is

assigned to its closest centroid. In the second step each centroid µi is updated by computing the

mean of the features that were assigned to cluster i. This iterative process drives the objective

function towards a minimum. The resultant grouping of the data points is geometrically as

compact as possible around the centroids in each cluster [69, 70]. The k -means algorithm can be

summarized as follows:

1. Choose k initial centroids.

2. Assign each pixel in the image to its closest cluster by calculating distances among the

pixel and all cluster centroids.

3. Re-compute the value of each centroid by averaging all of the pixels in the cluster.

4. Repeat steps 2 and 3 until the values of the centroids do not change [70, 71].

4.2.2.1 Implementation

The implementation of the k -means algorithm for image segmentation requires, essentially, the

definition of four input parameters, including the input data, the number of classes, the initial
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cluster centroid positions, and a distance measure.

Most of the dermoscopic images of our dataset have three distinct regions, such as the lesion,

the skin, and also the dark regions in the four corners of the image. However, some images

have not the dark regions in the four corners, so in these cases the dermoscopic images are

composed only by two distinct objects, including the lesion and the surrounding skin. Therefore,

the number of classes used in the k -means algorithm can be either three, or two depending on

the presence or not of the regions in the four corners, respectively. The definition of the number

of classes is automatically done based on the corner mask that is obtained in the pre-processing

step (see section 4.1.3).

In an initial phase, the initial cluster centroid positions were randomly assigned. However,

it was observed that, in this way, the algorithm could have a poor performance, specially in the

images where there is a low contrast between the lesion and the surrounding skin. In order to

overcome this drawback, the initial cluster centroid positions are defined based on the corner

mask as well as on the initial snake curve that is used in the automatic initialization of the GVF

snake method. The determination of this curve is further described in detail in section 4.2.5.1.

The initial snake curve and the corner mask are used to create a binary mask of each cluster

(lesion, skin, and dark regions in the four corners) and the initial cluster centroid positions are

defined as the mean intensity of these masks.

In this method, the blue color component from the RGB color space is used as the input data.

Other characteristics, such as the spatial information of the image (position vectors in x and y),

and the image gradient, were combined with the image intensity in an attempt to improve the

segmentation performance. However, the best segmentation results were obtained using only the

blue color component from the RGB color space.

(a) (b)

Figure 4.10: k -means clustering segmentation: (a) Original grayscale image; and (b) Result of
k -means segmentation, for k = 3.

Figure 4.10 shows the result of k -means clustering segmentation. In this case the original

image is partitioned into three classes, corresponding to the lesion (black region), to the skin

(gray region), and to the regions in the four corners of the image (white region). After image

clustering, a set of post-processing operations are applied to the class that contains the lesion

in order to keep the largest binary object from the image, to join small adjacent regions, and to
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smooth the contours. The post-processing step is described in subsection 4.3.

4.2.3 Mean shift

The mean shift algorithm is a non-parametric mode finding/clustering procedure. The concept

underlying mean shift is to cluster an image by associating each pixel with a mode (local max-

imum) of the probability density of the image. The local maxima are identified in an iterative

process using a density kernel estimator. The outcome of mean shift is only controlled by the

kernel size (or bandwith) of the density kernel estimator. Therefore, this algorithm does not

require prior knowledge of the number of clusters and does not constrain their shape [72, 73].

Given n data points xi, i = 1, ..., n, in a d -dimensional space Rd, the multivariate kernel

density estimator, obtained with kernel K(x) and computed at point x, is given by:

f(x) =
1

nhd

n
∑

i=1

K

(

x− xi

h

)

(4.15)

where h denotes the kernel size. For practical purposes, radially symmetric kernels K(x) are

commonly used satisfying:

K(x) = ck,dk(‖x‖
2
) (4.16)

where ck,d is a normalization constant that makes K(x) integrate to 1. The modes of the density

function are located at the zeros of the gradient of the density estimator, ∇f(x) = 0. The

gradient of the density estimator, after some further algebraic manipulation, is given by:

∇f(x) =
2ck,d
nhd+2

[

n
∑

i=1

g

(

∥

∥

∥

∥

x− xi

h

∥

∥

∥

∥

2
)]





∑n
i=1 xig

(

∥

∥

x−xi

h

∥

∥

2
)

∑n
i=1 g

(

∥

∥

x−xi

h

∥

∥

2
) − x



 (4.17)

where g(x) = −k′(x) denotes the kernel’s profile derivative. The first term of Eq. 4.17 is

proportional to the density estimator at x, computed with the kernel G(x) = cg,d(‖x‖
2
). The

second term of Eq. 4.17 represents the mean shift vector, mh(x), that provides the direction

of the gradient of the density estimator at x, and always points towards the direction of the

maximum increase in the density.

The mean shift procedure is obtained by successive computation of the mean shift vector and

translation of the kernel K(x) by mh(x). Hence, it converges along a path leading to a mode

of the density. The set of all locations that converge to the same mode defines the basin of

attraction associated with this mode. The points which are in the same basin of attraction are

associated with the same cluster [60, 72, 73].
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(a) (b) (c)

Figure 4.11: Mean shift clustering applied to obtain 3 clusters: (a) Original RGB image; (b)
Result of mean shift clustering; and (c) Bad segmentation result.

4.2.3.1 Implementation

The only free parameter in the mean shift algorithm is the size of the density kernel estimator.

As dermoscopy images can present two or three objects (depending on the absence or not of the

dark corners), the initial idea consisted of iteratively varying the size of the kernel until two or

three clusters are obtained. However, it was observed that in images with a very low contrast

between the lesion and the surrounding skin the algorithm could produce bad results (Figure

4.11) or even not converge into two/three clusters, independently of the radius of the kernel.

To overcome this problem, the mean shift algorithm is applied to obtain at least five clusters.

If less than five clusters are obtained, the radius of the used kernel is iteratively decreased and

then the mean shift procedure is repeated. This number of clusters has proved to be sufficient

to obtain good results after subsequent merging.

After clustering, the adjacent clusters are merged based on the mean intensity of each cluster.

Given two adjacent clusters, Ci and Cj , the merging procedure is given by:

Cm = Ci ∪ Cj , if
∣

∣ICi
− ICj

∣

∣ ≤ Tm (4.18)

where Cm is the merged region, ICi
and ICj

are the mean intensities of Ci and Cj . Therefore,

adjacent clusters are only merged if the difference between the mean intensity of the clusters

is less than a threshold Tm. Tm was experimentally defined based on the dermoscopic image

dataset used in this work.

Figure 4.12 shows two successful segmentation examples using the mean shift algorithm to

obtain at least five clusters. The image in the first row (Figure 4.12(a)) was partitioned into

thirteen clusters whereas the image in the second row (Figure 4.12(d)) was partitioned into six

clusters. Then the merging procedure guarantees, in both cases, a successful final segmentation

result.

By analyzing the figures 4.12 and 4.11, it is possible to observe that this procedure (applying

the mean shift algorithm to obtain at least five clusters and then merge the adjacent clusters)

provides better segmentation results than the results obtained when the mean shift algorithm is
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Mean shift clustering applied to obtain at least 5 clusters: (First column) Original
RGB images; (Second column) Result of mean shift clustering; (Third column) Final segmenta-
tion result after merging procedure.

applied to obtain only three clusters.

4.2.4 Region growing

Region growing is a region-based segmentation method that exploits spatial context by grouping

adjacent pixels or subregions into larger regions based on homogeneity criteria. The parameters

that distinguish different objects may include average gray level, texture, color, etc [34, 53].

This technique starts with a pixel or a group of pixels, known as the seeds, which belong

to the object of interest. These seeds can be either manually defined by the user or provided

by an automatic seed finding procedure. In the next step, the neighboring pixels are examined

one at a time and added to the growing region, if those pixels have properties similar to the

seed (based on a homogeneity criterion). This process is applied iteratively until no more pixels

satisfy the homogeneity criterion for inclusion in the growing region. The segmented object is

then represented by all pixels that have been merged during the growing procedure [53, 54].

Region growing has the advantage of correctly segmenting regions that have the same prop-

erties and are spatially separated. Moreover, it generates connected regions. One of the main

issues in region growing is the selection of a homogeneity criterion. When the homogeneity crite-

rion is not properly chosen, the regions may leak out into adjoining areas or merge with regions

that do not belong to the object of interest [54].

44

images/Segmentation/meanshiftAA.eps
images/Segmentation/meanshiftB.eps
images/Segmentation/meanshiftC.eps
images/Segmentation/meanshiftEE.eps
images/Segmentation/meanshiftF.eps
images/Segmentation/meanshiftH.eps


(a) (b)

(c) (d)

Figure 4.13: Automatic seed finding procedure: (a) Original RGB image; (b) Vertical projection
Py; (c) Horizontal projection Px; and (d) Seed region (marked as a green rectangle) superimposed
on the original image.

4.2.4.1 Implementation

The application of the region growing algorithm for dermoscopic image segmentation requires

the definition of the initial seed position, the homogeneity criterion, and the stopping criterion.

• Initial seed definition: an algorithm for automatic seed finding was implemented in order

to make the region growing method fully automatic. Therefore no kind of user intervention

is required in the initialization procedure. This algorithm is further described at the end

of this section.

• Homogeneity criterion: the difference between the intensity of a neighboring pixel and

the mean intensity value of the growing region is used as homogeneity criterion. If the

difference is less than a predefined threshold, the pixel is allocated to the growing region.

Otherwise, it is defined as a background pixel.

• Stopping criterion: the growing process stops when no more neighboring pixels satisfy

the homogeneity criterion.
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(a) (b)

(c) (d)

Figure 4.14: Segmentation examples obtained using region growing: (First column) Seed regions
superimposed on the original images; (Second column) Final segmentation results.

The automatic seed finding procedure is based on the vertical and horizontal projections of

the image. The vertical projection of an image, I(x, y), is a function of the horizontal index y:

Py =

∑n
x=1 I(x, y)

(n− Cy)
(4.19)

where n is the total number of lines of I(x, y), and x is the vertical index. Cy corresponds

to the number of pixels, in column y, belonging to the dark regions in the four corners of the

image. The normalization by (n−Cy) is used to reduce the influence of the dark corners in the

image projection. Cy is computed using the corner mask obtained in the pre-processing step (see

subsection 4.1.3). A similar procedure is used to compute the horizontal projection Px.

The next step consists in the determination of the global minima of both vertical and hori-

zontal projections. Since skin lesions are darker than the surrounding skin, the global minimizers

of the image projections are used to provide the coordinates of a pixel C(xc, yc) within the lesion,

such as: Pxc
= min(Px) and Pyc

= min(Py).

The pixel C(xc, yc) could be used as seed in region growing. However, due to skin lesion vari-

ability, such as small dots or regions with high intensity difference with respect to the remainder

lesion, a single pixel used as seed may not grow properly until the lesion boundaries if the seed

location happens to match such regions.

Therefore, a seed region (group of pixels) is used instead of a single pixel. First, a predefined

offset is added to the global minima of the image projections, and then an horizontal line passing

through this point is defined. The two points of intersection between the horizontal line and the

image projection are computed and used to define the limits of the seed region. The resulting
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seed region has a rectangular shape centered at C(xc, yc). The horizontal limits of the seed region

are obtained by the vertical projection whereas the vertical limits are obtained by the horizontal

projection. The automatic seed region procedure is illustrated in Figure 4.13.

Figure 4.14 shows two segmentation examples using the region growing algorithm as well as

the seed regions superimposed on the original images.

4.2.5 GVF snakes

The gradient vector flow (GVF) snakes method is an extension of the traditional snakes or

active contours method. For better understanding, the background of traditional snakes is first

presented followed by the description of the GVF concept.

Snakes are deformable curves defined within an image domain that can move towards the

desired features, typically edges, under the influence of internal and external forces computed

from the curve itself and the image data, respectively [74].

The evolution of the snake from an initial position to the object boundaries is expressed as

an energy minimization process. The snake is defined by a parametric curve v(s) = (x(s), y(s)),

where x and y are the coordinates along the contour, and s ∈ [0, 1] is the parametric domain.

The energy functional to be minimized is a sum of internal and image forces, and can be written

as:

Esnake =

∫ 1

0

Eint(v(s)) + Eimage(v(s))ds (4.20)

where Eint denotes the internal energy that controls the arrangement of the snake points, and

hence the way the contour can stretch and curve. Eimage is the image energy that attracts the

snake towards the boundaries of the target object [36, 64, 74].

The internal energy is modeled using two terms, namely the first- and second-order derivatives

around the contour:

Eint = α(s)

∣

∣

∣

∣

dv(s)

ds

∣

∣

∣

∣

2

+ β(s)

∣

∣

∣

∣

d2v(s)

ds2

∣

∣

∣

∣

2

(4.21)

The first-order term of Eq. 4.21 corresponds to the elastic energy that measures the energy due

to stretching. Thus, a high elastic energy value implies a high rate of change in that region of the

contour. The second-order term of Eq. 4.21 is the curvature energy, which measures the energy

due to bending. The weighting parameters, α(s) and β(s), represent the relative influence of the

corresponding energy terms. The parameter α(s) controls the contribution of the elastic energy

due to point spacing, whereas β(s) controls the contribution of the curvature energy due to point

variation [64, 75].

The image energy, Eimage, is derived from the image data so that it takes on its smaller

values at the features of interest, such as edges. Typically, the image energy designed to lead a
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snake toward image edges is given as:

Eimage = − |∇I(x, y)|
2

(4.22)

where I(x, y) is a gray-level image, and ∇ is the gradient operator. Therefore the snake is

attracted to the edges with large image gradients [74, 75].

There are two main limitations with traditional snake algorithms applied to boundary seg-

mentation. First, the initial contour must be close to the true object boundaries because of the

small capture range of the image gradient, and also because of the presence of image artifacts.

The second weakness of these approaches is the difficulty with expanding into boundary concav-

ities. To overcome both of these problems, the gradient vector flow (GVF) can be used, in the

snake equation (4.20), as external energy rather than the image gradient [36, 74].

The GVF field is computed as a diffusion of the gradient vectors of a gray-level or binary

edge map derived from the image. The GVF field g(x, y) = [u(x, y), v(x, y)] is defined as the

equilibrium solution that minimizes the following energy functional:

ε =

∫ ∫

µ(u2
x + u2

y + v2x + v2y) + |∇f |
2
|g−∇f |

2
dxdy (4.23)

where f is the edge map of a given image, and µ is a regularization parameter that controls the

degree of smoothness of the GVF field, and hence should be defined according to the amount

of noise present in the image. The edge map f should take high values at the edges; it can be

taken, for instance, as f(x, y) = −Eimage [60, 74].

The first term within the integrand is referred to as the smoothing term since this term alone

will produce a slowly varying vector field. This happens when |∇f | is small, and hence the energy

is dominated by sum of the squares of the partial derivatives of the vector field. On the other

hand, when |∇f | is large, the second term dominates the integrand. Therefore, the GVF field

points towards the boundaries when in their proximity and varies smoothly over homogeneous

regions all the way to image boundaries. Consequently, it provides a large capture range and the

capability to segment object concavities [54, 60, 74].

4.2.5.1 Implementation

The application of the GVF snakes method for the segmentation of a skin lesion is illustrated

in Figure 4.15. In this particular example the evolution of the snake from the initial position

(Figure 4.15(a)) to the skin lesion boundaries is achieved after 70 iterations (Figure 4.15(b)).

An automatic snake initialization method was implemented in order to make the segmentation

process fully automated. This method is mainly based on the information obtained from the

Canny edge detector [76], and can be described into three main steps, namely (i) edge detection;
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(ii) edge validation; and (iii) initial curve determination.

(a) (b)

Figure 4.15: GVF snake segmentation: (a) Initial snake contour; (b) Final segmentation seg-
mentation result (green contour) after 70 iterations.

(i) Edge detection

The aim of this step is to create a binary edge map from the gray-level image. To accomplish

this purpose, the Canny edge detector algorithm is used.

The Canny operator is a multistage edge-detection algorithm. The input image f(x, y) is

first smoothed using a Gaussian filter G(x, y, σ) with a certain standard deviation σ, in order to

obtain:

fs(x, y) = G(x, y, σ)⊗ f(x, y) (4.24)

where fs(x, y) denotes the smoothed image. The Gaussian is defined as:

G(x, y, σ) = ke−(x2+y2

2σ2 ) (4.25)

where k is a normalization constant [34, 77].

Afterwards, a first-derivative operator (in this case the Sobel operator, [78], is used) is applied

to the smoothed image to calculate the magnitude and the direction of the gradient at each pixel.

Therefore, the gradient of the smoothed image fs(x, y) is obtained by convolving the image with

the pair of horizontal and vertical derivative kernels of the Sobel operator, gx and gy, yielding:

Gx = fs(x, y)⊗ gx, Gy = fs(x, y)⊗ gy (4.26)

where Gx and Gy denote the image gradients in the x and y directions, and the orthogonal

kernels, gx and gy, are given by:

gx =




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
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(4.27)
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The magnitude of the gradient at each pixel m(x, y) is given by:

m(x, y) =
√

G2
x +G2

y (4.28)

and the direction of the gradient θ(x, y) can be computed from the ratio of Gy and Gx by:

θ(x, y) = arctan

(

Gy

Gx

)

(4.29)

The next step of the Canny edge detector is the non-maximum suppression process. This

process thins the edges of the gradient magnitude image m(x, y) by suppressing those pixels

for which their gradient magnitude is not a local maximum along the direction of the gradient

[34, 77].

After non-maximum suppression, the edge map is obtained using a dual-threshold mechanism,

known as thresholding with hysteresis. This process uses two thresholds Tlow and Thigh. Then,

all pixels with a gradient magnitude larger than Thigh are considered as edge points. For pixels

with values between Tlow and Thigh, a pixel is classified as an edge point only if it is adjacent to

a pixel with a gradient magnitude greater than Thigh. This recursive threshold, extends and fills

in the edges determined by Thigh [34, 77].

The binary edge map obtained through the Canny edge detector is visible in Figure 4.16(b),

in which each pixel is labeled as either an edge point (value 1) or a nonedge point (value 0).

(ii) Edge validation

At this stage the edge map includes a large number of false positives edge segments. These false

positives are usually resulting from the presence of the dark regions in the four corners of the

image, and also from pigment network segments, skin lines, and even hairs when these artifacts

have not been completely removed in the pre-processing step. Therefore, the edge segments

corresponding to the dark corners are first eliminated, making use of the corner mask created

in the pre-processing step (see subsection 4.1). Then, since edges of the skin lesions are larger

than most of noisy edges, the length is used as a criterion in order to eliminate the edges whose

length is less than a predefined threshold. The effect of this step is illustrated in Figure 4.16(c).

The next step aims to quantify the relative importance of each edge. To accomplish this

purpose, the peripheral regions of each edge are identified (Figure 4.16(d)). These two regions

in both sides of the edges are obtained with the application of a morphological dilation to each

edge individually. It is important to note that the pixels immediately adjacent to the edges are

not considered in the peripheral regions in order to reduce the relative importance of the edges

created by small transitions (i.e. skin lines, hairs, etc).

The difference between the mean intensity of the peripheral regions is computed as a measure
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Automatic snake initialization method: (a) Original RGB image; (b) Edge map
obtained through the Canny edge detector; (c) Edge map after removing some false positives edge
segments; (d) Determination of the normalized mean intensity difference between the peripheral
regions; (e) Initial snake points finding process; and (f) Initial snake curve.

of the relative importance of each edge. The underlying assumption is that this difference is

larger in the edges of the skin lesion. Given n edge segments Ei, i = 1, ..., n, the measure of the

importance of each edge is given by:

IEi
=
∣

∣PEi1
− PEi2

∣

∣ (4.30)

where PEi1
and PEi2

are the mean intensities of the peripheral regions. The maximal mean

intensity difference is used to normalize IEi
, thus yielding:

IEi
=

IEi

maxi IEi

(4.31)
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Then, every pixel of a given edge Ei is assigned with the value of the respective normalized

mean intensity difference between the peripheral regions IEi
. IEi

values range from 0 to 1 and,

as expected, the edges of the skin lesion have the highest IEi
values (Figure 4.16(d)).

(iii) Initial curve determination

In this step the initial curve to be used in the initialization of the GVF method is automatically

defined, by first determining a set of initial points which are then connected to form a closed

curve. To accomplish this purpose, a number of radial lines Rθj are drawn from a point within

the lesion to the exterior, each of them with a particular orientation θj ∈ [0, ..., 2π[, j = 1, ..., 16.

The inner point, C(xc, yc), is automatically computed through the same procedure used in the

region growing method (see subsection 4.2.4.1).

Then, an initial snake point is defined in each radial line Rθj as follows. First, take the

intersection of this line with the edges Ei, i = 1, ..., n. Let PRθj
be the set of all edge points

detected along the radial line Rθj , i.e., PRθj
=
{

p1j , ..., p
Nj

j

}

and let QRθj
=
{

q1j , ..., q
Nj

j

}

be the

set of values of the mean intensity difference between peripheral regions, IE , associated to each

edge point pkj , k = 1, ..., Nj. Then a subset SRθj
of PRθj

containing the edge points with highest

QRθj
values, is defined as:

SRθj
=
{

pkj | q∗j − qkj ≤ TE

}

(4.32)

where

q∗j = max
k=1,...,Nj

qkj (4.33)

and TE is a predefined threshold value. If SRθj
only has one element, then this point is defined

as the initial snake point, sj , along the radial line Rθj . In case there are more than one point

in the subset SRθj
, the initial snake point is the point s∗j whose distance to the inner point C is

larger, provided that the distance between s∗j and the point p∗j , corresponding to the maximum

value q∗j , is not larger than a certain threshold Td. Figure 4.16(e) illustrates the detection process

of the initial snake points positions.

It is important to note that when a given radial line Rθj does not intersect any edge (PRθj
=

Ø), no initial snake point is defined in that line.

After detecting the initial snake points sj , a curve is obtained using a linear interpolation of

these points. Finally, in order to obtain the initial snake curve, this curve is uniformly expanded

in all outward directions by 20 pixels to ensure that it contains the skin lesion (Figure 4.16(f)).

Figure 4.17 illustrates the robustness of the automatic snake initialization method, since it

works well even in dermoscopic images with a large amount of hairs, in images with fragmented

skin lesions, and also in images with skin lesions with different colors and textures. Furthermore,

the final segmentation result is achieved after few iterations, since the initial snake curves are in
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general placed very close to the skin lesion boundaries.

(a) (b) (c)

Figure 4.17: GVF snake segmentation in difficult dermoscopic images: (a) Presence of hairs; (b)
Fragmented skin lesion; and (c) Skin lesion with multiple colors. In these images the dotted red
contour represents the initial snake curve, whereas the green contour corresponds to the final
segmentation.

4.2.6 Watershed

Watershed segmentation is a region-based technique that utilizes image morphology. The most

intuitive formulation of the watershed transform is based on a flooding simulation. The input

grayscale image is considered as an intensity-based topographic surface, in which the bright pixels

represent mountaintops and the dark pixels valleys. The aim is to produce the watershed lines

on this surface. To accomplish this purpose, holes are punched at each regional minimum in the

image, and then the entire topography is flooded from below by allowing water to rise through

the holes at a uniform rate. When the rising water coming from two distinct minima is about to

merge, a dam is built to prevent the merging. The flooding will eventually reach a stage when

only the tops of the dams are visible above the water surface. These dams correspond to the

watershed lines, and also to the boundaries of image objects. The final segmented regions arising

from the various regional minima are called catchment basins [34, 53, 54]. The flooding process

is illustrated in Figure 4.18 for a unidimensional signal.

(a) (b) (c) (d)

Figure 4.18: Flooding simulation of the watershed transform: (a) Input signal; (b) Punched
holes; (c) Dam creation; and (d) Final flooding (Adapted from [34]).

In practice, watershed segmentation is often applied to the gradient of an image, rather than

to the image itself. In this formulation, the regional minima of catchment basins correlate nicely

with the small value of the gradient corresponding to the objects of interest. Since real digitized

images present many regional minima in their gradients, this typically results in an excessive
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number of catchment basins (regions), also called oversegmentation. Therefore, pre-processing

and/or post-processing phases are usually used to overcome this problem. The pre-processing

step is used to filter the image in order to reduce the number of regional minima, creating fewer

catchment basins. The post-processing step is applied after the watershed transform for merging

the less significant regions in order to obtain larger regions with better correspondence to the

objects of interest [34, 53, 61].

4.2.6.1 Implementation

For dermoscopic image segmentation, the watershed transform is applied to the magnitude of

the image gradient. However, as gradients of dermoscopic images usually present many regional

minima, the result is an oversegmentation of the skin lesion (Figure 4.19). Therefore, a merging

procedure is required to overcome this problem.

(a) (b) (c)

Figure 4.19: Watershed segmentation: (a) Original RGB image; (b) Magnitude of the image
gradient; and (c) Watershed segmentation result - oversegmentation.

After applying the watershed transform, the watershed objects are merged based on the his-

togram of their mean intensities (Figure 4.20). The initial snake curve used in the automatic

initialization of the GVF snake method (previously described in subsection 4.2.5.1) is also em-

ployed in the merging procedure. The mean intensity level of the initial snake curve mask,

Lbegin, is used to start the merging procedure, and its area is used to obtain an estimation of

the skin lesion area, Aestimated. This area is used in the definition of the stopping criterion for

the merging process described next.

Therefore, the merging procedure starts at the gray-level Lbegin of the watershed object

histogram. Then, the watershed objects are iteratively merged until a stopping condition is

achieved. The stopping condition depends both on the estimated lesion area, Aestimated, and on

the mean intensity of the watershed objects, more concretely:

0.8 · Aestimated < Amerged < 1.2 · Aestimated ∧ |Imerged − Iobjects| > Ts (4.34)

where Amerged and Imerged are the area and the mean intensity of the current merged region

respectively, Iobjects is the mean intensity of the watershed objects that are about to be merged,
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and Ts is a predefined threshold value. The merging procedure stops if the area of the current

merged region, Amerged, is within ±20% of Aestimated (this interval was empirically defined based

on the available data to compensate the area estimation errors), and if the difference between

the mean intensity of the merged region and the next watershed objects is larger than Ts. Figure

4.20 shows the watershed object merging procedure as well as the final segmentation result after

object merging for a given image.

(a) (b)

Figure 4.20: Merging procedure: (a) Watershed object histogram; (b) Watershed segmentation
result after object merging.

4.3 Post-processing

Most of the implemented segmentation methods require the usage of a set of post-processing

operations in order to obtain the final skin lesion segmentation. In general, the post-processing

operations are applied to keep the largest binary object from the image, to join small adjacent

regions, to fill interior holes, and to smooth the contours (Figure 4.21). These post-processing

operations are described below.

Some skin lesions have a great variety of intensities and, sometimes, the segmentation algo-

rithms do not consider some inside regions as belonging to the lesion, which creates some holes

within the binary regions. Therefore, a morphological algorithm for region filling is used to fill

the interior holes of the binary objects, as shown in Figure 4.21(b).

Besides the skin lesion, the binary image produced by the segmentation methods may also

contain other binary regions that have intensities similar to the lesion intensities, such as small

isolated islands that belong to the skin, and the regions in the four corners of the image. There-

fore, the binary regions corresponding to the dark corners of the image are first eliminated,

making use of the corner mask created in the pre-processing step (see subsection 4.1.3). Then,

to remove the small isolated islands the largest binary component of the image is selected and

assumed to be the lesion (Figure 4.21(b)).

Usually, the segmentation methods produce regions with ragged boundaries. This can be
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(a) (b)

(c)

Figure 4.21: Post-processing: (a) Initial segmented image; (b) Segmented image after holes
filling, removing of the regions in the four corners, and elimination of the small isolated regions;
and (c) Final segmentation result after boundary smoothing.

overcome by smoothing the boundary using either a convolution filter or a curve fitting procedure.

A simple yet effective smoothing operation is the convolution of the input boundary with a moving

average filter, also known as a box filter [34]:

Boutput(i) =
1

W

(W−1)/2
∑

j=−(W−1)/2

Binput(i − j) (4.35)

where Binput is the input boundary coordinates, Boutput is output boundary coordinates, and W

is the filtering degree. This smoothing operation turns the boundary of the lesion more similar

to the result of manual segmentation by a dermatologist, and produces a visually satisfactory

final segmentation result (Figure 4.21(c)).

4.4 Experimental results

The implemented segmentation algorithms were evaluated on a set of 46 images obtained from

the Hospital Pedro Hispano database, including different kinds of dermoscopic images, such as

benign melanocytic nevi and melanomas. These are 8-bit RGB color images with dimensions

768× 560 pixels.

The manual segmentation of the dermoscopic images to be used as ground truth in the eval-

uation of the segmentation methods was performed by an expert dermatologist. Three perfor-

mance metrics are used for the quantitative assessment of the segmentation differences between

the manual segmentation (GT ) and the output of the automatic segmentation methods (AS).
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These metrics are the Hammoude distance (HM), the false negative rate (FNR), and the false

positive rate (FPR).

The Hammoude distance is based on a comparison of the differences between two boundaries,

and is defined as:

HM =
#(AS ∪GT )−#(AS ∩GT )

#(AS ∪GT )
(4.36)

This metric takes into account two different types of error, corresponding to the false negatives

and the false positives, giving the same importance to both of them. Therefore, besides the

Hammoude distance, two separate metrics are used to take into account the two types of error

individually [9].

FNR metric measures the rate of pixels classified as lesion by the medical expert that were

not classified as lesion by the automatic segmentation:

FNR =
#(AS ∩GT )

#GT
(4.37)

FPR metric measures the rate of pixels classified as lesion by the automatic segmentation

algorithm that were not classified as lesion by the medical expert, and can be defined as [9]:

FPR =
#(AS ∩GT )

#GT
(4.38)

Table 4.1 shows the median of the performance metrics for the six implemented segmenta-

tion methods as well as the percentage of gross errors. The percentage of gross errors is the

rate of segmented images with a Hammoude distance greater than 30%, which corresponds to

unacceptable segmentation results. This way, the percentage of gross errors can be considered

as a measure of the segmentation methods robustness. The GVF snake method is more robust

than the other segmentation methods, since it has the smallest percentage of gross errors (2%).

Table 4.1: Results of the segmentation methods.

Segmentation method HM(%) FPR(%) FNR(%)
Gross

errors(%)

Automatic thresholding 12.58 6.16 2.05 11

K -means 11.20 5.38 2.19 11

Mean shift 10.65 4.21 3.82 7

Region growing 10.35 4.43 3.68 4

GVF snakes 10.14 3.79 2.85 2

Watershed 12.36 2.70 5.77 7

The best segmentation results according to the Hammoude distance are achieved by the GVF

snake method (10.14%). The best false positive rate is obtained by the watershed method with

a rate of 2.70%. Automatic thresholding and k -means have the best false negative rate with
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a score of 2.05% and 2.19%, respectively. However, both of them have the worst false positive

rate among the implemented segmentation methods. This means that automatic thresholding

and k -means have a greater tendency to classify some pixels as lesion that were not classified as

lesion in the manual segmentation, and thus the automatic segmented boundary lies commonly

outside the manual boundary. The GVF snake method provides the best trade-off between false

positives (3.79%) and false negatives (2.85%).

Therefore, analyzing the three performance metrics together the GVF snake method can be

considered as the best segmentation method, since it has the best Hammoude distance rate, the

lowest percentage of gross segmentation errors, and also the best compromise between the false

positive rate and the false negative rate.

In general, all implemented segmentation methods provide acceptable results for the majority

of the tested images. Figure 4.22 illustrates three examples for which the implemented segmenta-

tion methods provide successful skin lesion segmentations. In these dermoscopic images there is a

good contrast between the lesion and the surrounding skin, and hence the segmentations results

are close to the ground truth segmentation. Furthermore, as the pre-processing step performs

a significant hair removal, all the methods often provide good segmentation results even in the

images with a large amount of hairs (see dermoscopic image in the third column of Figure 4.22).

Figure 4.23 shows more difficult segmentation cases. There are three main groups of images

in which most of the segmentation methods demonstrate limitations and often the skin lesion is

not correctly segmented.

One group corresponds to the images in which the lesion is fragmented. The fragmented skin

lesion in the first column of Figure 4.23 is only correctly segmented by the GVF snake method.

In this case, automatic thresholding as well as the clustering-based methods (k -means and mean

shift) first segment the lesion into multiple regions, but as they are spatially separated only the

largest region is assumed as lesion. The region-based methods (i.e. region growing) produce a

similar final result, since the seed is defined inside the largest fragmented region.

The second group corresponds to the lesions with a great variety of colors and textures. The

dermoscopic image in the second column of Figure 4.23 is an example of this kind of lesion,

which contains several regions with different colors and properties. In addition, the bottom

region of this lesion has a similar intensity to the skin intensity, and because of that most of the

implemented segmentation methods produce an unsuccessful segmentation result. This image is

only acceptably segmented by the GVF snake and region growing methods.

The third group corresponds to the dermoscopic images where there is a very low contrast, and

a smooth transition between the lesion and the skin. An example of this kind of lesion is shown in

the third column of Figure 4.23. In this particular image, only the GVF snake method provides
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(a) Ground truth (b) Ground truth (c) Ground truth

(d) Thresholding (e) Thresholding (f) Thresholding

(g) k -means (h) k -means (i) k -means

(j) Mean shift (k) Mean shift (l) Mean shift

(m) GVF (n) GVF (o) GVF

(p) Region growing (q) Region growing (r) Region growing

(s) Watershed (t) Watershed (u) Watershed

Figure 4.22: Three examples of successful segmentations. In these cases the segmentations results
are close to the ground truth segmentation.
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(a) Ground truth (b) Ground truth (c) Ground truth

(d) Thresholding (e) Thresholding (f) Thresholding

(g) k -means (h) k -means (i) k -means

(j) Mean shift (k) Mean shift (l) Mean shift

(m) GVF (n) GVF (o) GVF

(p) Region growing (q) Region growing (r) Region growing

(s) Watershed (t) Watershed (u) Watershed

Figure 4.23: Three examples of more difficult segmentation cases.
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a successful segmentation result. However, the segmentations provided by other methods (such

as region growing and watershed) can be considered acceptable, but with a segmentation error

greater than the one obtained by GVF snake method.

In this work, an individually quantitative evaluation for different types of skin lesions is not

presented, since the histological classification of the skin lesions is not available for the majority

of the images of our dataset. However, based on the available histological classifications it was

possible to observe that, in general, the performance of the segmentation methods is better in

benign melanocytic lesions than in melanomas. This happens because the dermoscopic structures

have an atypical and asymmetrical distribution in melanomas, and hence this kind of lesions often

have different colors and textures inside. Furthermore, the boundaries of melanomas are more

irregular compared to benign melanocytic lesions, which may vary from very sharp to very fuzzy.

It is important to note that the six implemented segmentation methods are unsupervised,

and thus all algorithms perform the lesion segmentation without user intervention, or any kind

of initialization.

The segmentation methods were implemented in MATLAB, using a 2.20 GHz and 6 GB

RAM computer. Table 4.2 shows the average execution times per image of all implemented

segmentation methods. Automatic thresholding is the fastest algorithm (it takes in average 4 s

per image) whereas watershed is the slowest algorithm (it takes in average 51 s per image).

Table 4.2: Execution times of the segmentation methods.

Segmentation method Execution time (s)

Automatic thresholding 4

K -means 8

Mean shift 26

Region growing 9

GVF snakes 44

Watershed 51
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Chapter 5

Conclusions and future work

5.1 Conclusions

This dissertation is focused on the manual segmentation/ground truth creation issue as well as on

the implementation of fully automated algorithms for the segmentation of dermoscopic images.

Therefore, an annotation tool for manual segmentation and ground truth creation of dermo-

scopic images is proposed. The annotation tool, called DerMAT, was developed based on the

suggestions and requirements of dermatologists, and have already been used by them for ground

truth generation. Based on the feedback of the dermatologists, DerMAT has a user friendly

graphical interface, and can be considered as an useful and valuable tool since it makes the task

of ground truth generation easier and practicable for dermatologists. Furthermore, a functional

evaluation of the developed tool was made, based on a comparison with other existing tools that

can be also used for ground truth generation. According to this analysis, DerMAT proved to

have some advantages with respect to other tools, namely better freehand drawing and reshaping

capabilities.

Moreover, a wide spread of algorithms for the automatic segmentation of dermoscopic im-

ages were implemented and evaluated, including the automatic thresholding, region growing,

watershed, k -means, mean-shift, and GVF snakes. For some of these methods adaptations were

made in order to improve their performance and/or make the segmentation process completely

automatic. For instance, an automated initialization procedure for the GVF snake method and

another for the region growing method are proposed.

A set of different metrics were used in the quantitative assessment of the segmentation per-

formance, namely the Hammoude distance, the false negative rate, and the false positive rate. In

general, the results obtained for the 46 dermoscopic images can be considered satisfactory, since

for the majority of the tested images the segmentations results are close to the ground truth

segmentation. Among the implemented segmentation methods, the GVF snake method achieved
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the best segmentation performance, since it had the best Hammoude distance rate (10.14%),the

lowest percentage of gross segmentation errors (2%), and also the best trade-off between the

false positive rate (3.79%) and the false negative rate (2.85%). These reults show that the GVF

snake method is useful and robust enough to be used for the skin lesion segmentation in a

computer-aided diagnosis system.

5.2 Future work

As future work, a larger and improved ground truth dataset will be created using DerMAT, con-

taining the histological classification of the skin lesions along with the most relevant dermoscopic

structures identification as well as the manual segmentations performed by different dermatol-

ogists. The implemented segmentation methods were tested in a ground truth dataset of 46

dermoscopic images, and hence a larger dataset should be used to analyze the reproducibility

of the obtained results. The histological classification of the skin lesions is required, in order

to evaluate the performance of the segmentation algorithms for different types of skin lesions

individually. As the manual segmentation of the skin lesions can be quite subjective, the collec-

tion of manual segmentations performed by more than one dermatologist is an important issue,

specially to evaluate the inter-rater variability.

Furthermore, automatic segmentation and classification methods will be integrated in Der-

MAT, since this tool will be an integral part of a final computer-aided diagnosis system of digital

dermoscopic images.
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