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1. INTRODUCTION. PROJECT MOTIVATION AND 

OBJECTIVES 
 

This thesis offers an insight into skin cancer detection, focusing on the 

extraction of distinct features (color, namely) from potential melanoma 

lesions. The following document provides an outlook of melanoma analysis, 

as well as experimental results based on Matlab implementations. 

 

The relevance of the work carried out throughout this project resides in the 

specificity of the study: color is a key characteristic in melanoma inspection. 

It is usually linked to pattern analysis but seldom the sole object of 

research. Most lines of work in the field of skin cancer diagnosis associate 

color with other features such as texture, shape, asymmetry or pattern of 

the lesion. 

Studies cement this belief regarding the vital significance of color, as the 

number of colors in a lesion happens to be the most significant biomarker 

for determining malignancy [1].  

Different image processing techniques will be applied to build statistical 

models that shape the outcome of the prospective diagnosis.  

The purpose of the project is the development of an assisting tool able to 

detect the most prevalent colors in skin pigmented lesions, in order to give a 

probabilistic result. The strength of this idea lies in the resemblance to 

actual medical procedures; dermatologists examine color to diagnose 

melanoma. Simulating medical proceedings is a burgeoning trend in CAD 

systems [2] because it renders the advancements in this field more likely to 

be accepted by the medical community. 

 

An additional motivation comes from real-life statistics: skin cancer is, by 

far, the most frequent type of cancer. Moreover, although melanoma is the 

least common form of skin cancer at only around 1% of all cases, the 

majority of deaths related to skin cancer are due to melanoma [3]. 

Furthermore, the rate of melanoma occurrence is particularly high in Spain 

and has significantly increased in the last decade [4], hence the importance 

of reliable diagnosis that is not exclusively contingent on the specialist’s 

subjective judgment.  
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2. REGULATORY FRAMEWORK 

The legislative context relevant to the work carried out for this project 

concerns data protection laws. In Spain, such a regulation law is typified in 

the Organic Law on Personal Data (Ley Orgánica 15/1999 de Protección de 

Datos de Carácter Personal, LOPD). This Organic Law ensures and protects 

the liberties and fundamental rights in the matter of personal data 

processing [5].   

Within the aforementioned text, cession of data is defined in article 3.i as 

any disclosure of data to a person other than the data subject. The terms for 

the communication or assignment of personal information are established in 

article 11, according to which personal data can only be used by third 

parties for objectives directly connected to the conceded functions.  

The fulfillment of data protection legislations is guaranteed, nationally, by a 

public institution known as AEGP (Agencia Española de Protección de 

Datos). 

 

On an European level, common EU rules have been established to secure 

personal data anywhere in the European Union. The European Commission 

presented a reform in this area, mostly to promote the Digital Single 

Market, a key goal for the Commission that aims to merge European 

markets into one. The Regulation and Directive that constitute the reform 

shall be effectively implemented in all pertinent countries in 2018, by mid-

year at the latest [6]. 

 

For the set of data used in this project, the PH2 database, consent is 

mandatory: every individual whose lesion is featured in the collection of 

dermoscopic images had to sign an agreement with those responsible for the 

creation of the dataset. 

 

As disclosed on the official website for the PH² database, the available data 

can be used for research and educational reasons, but not for commercial or 

redistribution operations [7].  
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3. PROJECT SCHEDULING 

The project began in June of 2016 and concluded on February of 2017.  

 

During the initialization of the project, after introduction of its general   

idea, the very beginning involved reading documentation provided by the 

tutor about the subject, to learn the related concepts and current state-of-

the-art. This was followed by a meeting to establish the scope of the project. 

Next, familiarization with the database was necessary, which entailed the 

first part of Matlab code development, as to create a workspace of accessible 

information.  

Once experiments started, the organization of tasks was greatly influenced 

by the progress in functionality implementations using Matlab. 

 

Then, the segmentation phase ensued. K-means was the first implemented 

algorithm, starting with a fixed K parameter and elemental settings, 

progressively increasing the complexity of the exercise. After that, focus was 

shifted to investigate the pre-processing step. 

Next, two other segmentation procedures (N-cuts and mean shift) became 

the task at hand, continuing with feature extraction afterwards.  

At that point, the data was ready to be classified. The classification 

endeavor was divided into training and testing. First, a multivariate 

Gaussian model was used. Once it was working, the classifier evolved and a 

Gaussian Mixture model was utilized instead. A toy or sample data set with 

well-known results was used to test the correct performance of the classifier. 

Last but not least, performance evaluation was studied. It consisted of 

reviewing the different measures such as balanced accuracy, confusion 

matrix, F-score and receiver operating curves. 

Having collected a great deal of data, the project reached experimental 

conclusion; it was time to undertake the writing of the present thesis.  

All of these stages were closely monitored by the tutor, who was always 

available to solve doubts and propose new lines of progress. Regular 

meetings were scheduled according to what was required. 
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Topic  Start date End date Duration (days) 

1 Introduction 10/06/2016 10/06/2016 1 

2 Documentation 11/06/2016 15/06/2016 5 

3 Scope meeting 16/06/2016 16/06/2016 1 

4 Database import 17/06/2016 23/06/2016 7 

5 Basic K-means 

segmentation 

17/06/2016 20/06/2016 4 

6 Improved K-means 

segmentation 

21/06/2016 14/07/2016 24 

7 Source normalization 15/07/2016 21/07/2016 7 

8 N-cuts segmentation 22/07/2016 04/08/2016 14 

9 Feature extraction 05/08/2016 25/08/2016 11 

10 Multivariate Gaussian 

model training 

26/08/2016 29/08/2016 4 

11 Multivariate Gaussian 

model testing 

30/08/2016 31/08/2016 2 

12 Debugging 01/09/2016 10/09/2016 10 

13 Gaussian Mixture model 

training 

11/09/2016 27/09/2016 17 

14 Gaussian Mixture model 

testing 

28/09/2016 2/10/2016 5 

15 Feature extraction 

corrections 

3/10/2016 11/10/2016 9 

16 Performance assessment 

I 

12/10/2016 17/10/2016 6 

17 Sample dataset tests 18/10/2016 1/11/2016 15 

18 Performance assessment 

II 

2/11/2016 20/11/2016 19 

19 Mean-shift segmentation 21/11/2016 10/12/2016 20 

20 Performance assessment 

III 

11/12/2016 18/12/2016 8 

21 Final debugging, plots 

and tests 

18/12/2016 9/01/2017 23 

22 Bachelor's thesis 19/01/2017 22/02/2017 37 

Table 1. Project task breakdown. 

 

  

Table 2. Gantt chart. 
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4. ECONOMIC ENVIRONMENT 

The current economic background tends to favor the growth of research and 

practice in Computer-Aided Systems for medical applications.  

 

As presented in 5.3 COMMERCIAL CAD SYSTEMS, there is a direct 

translation of CAD developments to clinical use. Many commercial CAD 

systems, such as Molemax, Melafind and DB-Mips are commonly employed 

as aides in medical examinations. 
 

Nowadays, there is a growing tendency towards user oriented appliances 

that bring CAD systems closer to patients, rather than being specialist 

exclusive. These conditions have led to the development of different tools 

that aim to offer a tentative lesion evaluation to refer individuals to experts, 

such as smartphone apps and attachments. MoleScope [8] falls within the 

second category: it is a magnifying lens attachment that scans lesions to 

supply the user with high-quality pictures in order to keep track of moles. 

Another product that is illustrative of the current environment is 

SkinVision. This is a smartphone app that processes lesion images taken on 

the phone itself to estimate risk of cancerous growth. It is the only instance 

of software so far to be able to detect different kinds of skin cancer besides 

melanoma: its algorithm was recently upgraded and now identifies Basal 

Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC) [9]. 

 

4.1. FINANCES 

 

This section details the total budget of 33.500€, derived from the cost of 

resources, both human and material.  

Two people have been involved in the making of this project: a junior 

engineer and a senior engineer. Based on a set of phases devised from the 

Project Management Institute's PMBOK, an approximate estimation of the 

hours spent working on the different stages is shown below: 

Phase Time 

Initiation 70 hours 

Planning 80 hours 

Execution 300 hours 

Control 300 hours 

Close 150 hours 

Total 900 hours 

Table 3. Project time breakdown. 
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Name Position Working time Fee  Fee  

Javier López Labraca Senior engineer 100 hours 60 €/hour 6.000 € 

Irene Hernández Serrano Junior engineer 900 hours 20 €/hour 18.000 € 

Total 24.000 € 

Table 4. Human resources costs. 

 

Resource Price 

Individual Matlab license 2.000 € 

Personal computer 500 € 

University computer 7.000 €  

Total  9.500 € 

Table 5. Material resources costs. 
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5. SOME NOTIONS OF  MELANOMA DIAGNOSIS 

AND COMPUTER AIDED DIAGNOSIS 
  

Melanoma is a type of skin cancer caused by cancerous growths due to 

damaged skin cells whose multiplication creates malignant tumors. 

The aforementioned cells come from melanocytes. Melanocytes are found in 

the epidermis, which is the top layer of the skin, and are responsible for the 

production of melanin, a pigment meant to protect the skin from the 

negative impact of sun radiation. 

 

5.1 DERMOSCOPY AND METHODS OF MELANOMA 

DIAGNOSIS 

 

The most common procedure for melanoma diagnosis begins with a physical 

examination by a doctor, followed by a non-invasive diagnostic technique 

known as dermoscopy. 

Dermoscopy entails the magnified visualization of the pigmented lesion with 

a device that allows digital imaging, such as a camera or a dermatoscope. 

Prior to inspection, the lesion is coated with fluid to make it translucent and 

avoid reflections. This enables the visualization of reflections from deeper 

layers of the epidermis and top dermis layers. The depth of melanin in the 

lesion can be determined through color: different hues are related to skin 

layers at different levels. Black is associated with the topmost layer of the 

epidermis. Brown shades correspond to layers below the external epidermis. 

Grey is linked to the dermoepidermal junction and blue-gray to the dermis. 

Therefore, the higher the number of colors found in a dermoscopic lesion, 

the more chaotic the growth is, suggesting a higher risk of melanoma.  

 

The diagnosis commonly follows, among others, one of these algorithms: 

 The ABCD rule [10] streamlines the pattern criterion, thus 

simplifying the classification phase for the physicians. It takes into 

consideration more parameters present in the lesion: asymmetrical 

shape, irregular border, diameter and the amount and unevenness of 

its color, which is the central scope of this project. This rule has been 

further completed with the inclusion of the evolution factor (ABCDE 

rule). 

 The 7-point checklist [11] assigns quantitative scores to a small set of 

identifiable features. 

 The Menzies scale [12] offers a binary classification based on negative 

(axial asymmetry, color symmetry, presence of one color) and positive 
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features (discoloration, many colors, blue-white veil, certain 

patterns). The absence of negative features paired with any positive 

feature implies the presence of melanoma. 

5.2 COMPUTER AIDED DIAGNOSIS (CAD) SYSTEMS FOR 

MELANOMA DETECTION 

 

Computer-aided diagnosis systems can be used as support tools in the 

medical field. CAD systems are founded on data sets, usually derived from 

real cases. They help build statistical models through image processing, 

feature extraction and classification.  

Provided the image data set, the first step is normalizing the source, to 

remove or at least reduce artifacts, which might include hairs, dermoscopic 

gel, air bubbles, irregular illumination, skin imperfections, etc. These flaws 

make the forthcoming courses of action more complex, hence the need for 

pre-processing. 

A conventional approach to pre-processing is to apply smoothing filters; for 

instance, mean, median or Gaussian filters. 

In order to diminish the appearance of lines and hairs, mathematical 

morphology may be used.  

Other strategies are color quantification (fewer colors allow for easier 

management), contrast enhancement (borders become more noticeable) and 

conversion from RGB to gray (less noise and fewer artifacts), which is useful 

when the target feature is texture and color is then irrelevant and can be 

disregarded. 

Source lightning normalization will be explored in greater detail in future 

sections. 

The next logical step is to locate the lesion and single it out. This part of the 

process can be done manually, tracing the borders, or implementing 

segmentation algorithms, based on color, discontinuity, regions, soft 

computing or thresholding. 

Next, feature extraction is performed. The concept of feature extraction 

refers to the characterization of the lesion by a series of measures on the 

pixels that belong to the segmented object.  

Said features can be decided upon according to the previously explained 

diagnosis methodologies, or according to the attributes of the chosen feature 

extraction system (filtering or statistical). 

Feature selection is a way to optimize the amount of parameters that have 

been extracted. The number of selected features, known as k, is essential to 

the fruition of the classifier and could lead to either overfitting or lack of 

discrimination between classes. 
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Subsequently, the classification of stage delivers a diagnostic which can be 

binary, melanoma or benign lesion, or, alternatively, the probability of 

belonging to each class.  

In this document, the output of the classifier is a series of probabilities, 

indicating the most likely color for each region in the lesion. 

Finally, it is crucial for a CAD system to assess its efficiency. There are 

many possible mechanisms to do so, some of which will be developed later 

on. For this thesis, test to train ratio was applied, adopting several different 

tools for performance evaluation: balanced accuracy, F-measure, confusion 

matrix and receiver operating curve. 
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5.3 COMMERCIAL CAD SYSTEMS 

The only commercially available clinical decision support systems for skin 

cancer, also known as CCDSs, pertain exclusively to melanoma and no other 

type of skin cancer [13]. There are several programs that examine the 

lesion’s statististics to provide a comparison with a database made up of 

catalogued cancerous and benign lesions. 

 SIAscope [14]: This device carries out a spectrophotometric analysis, 

making use of infrared and visible light emissions, which prompt 

different responses from the skin’s chromophobes. The reflected light 

is interpreted by the software in terms of melanin, collagen and blood 

distribution, according to the quantity of light absorbed at each 

wavelength. 

 MoleTrac [15]: Also known as SolarScan, it produces a decision tree 

based on a comparison against lesion features of a given database. It 

employs image analysis software to pre-process the image prior to 

comparison. 

 MelaFind: This non-invasive tool assists dermatologists using 

spectral imaging technology. The outcome is a recommendation for or 

against a biopsy (i.e., a medical test involving a sample of tissue to 

examine the cells more precisely). Just like the SIAscope, it is 

multiespectral, although it works with ten different wavelengths, as 

opposed to the twelve operated by the SIAscope. After determining 

the edge of the lesion, it generates a sequence of digital images and 

then evaluates several parameters, such as wavelet maxima, 

asymmetry, color variation, perimeter alteration and texture changes 

[16]. 

 MoleMax [17]: This appliance gives a score conforming to the 

obtained dermoscopy. MoleMax creates full-body risk maps to track 

changes, making it ideal for follow-up examinations. It is a polarized-

light dermoscope that utilizes epiluminescence microscopy (ELM) 

without the need for any oil or fluid between skin and apparatus, 

which provides the means for standardized comparison with previous 

data. 

 DB-Mips [18]: This diagnostic aid is a module that analyzes the 

patient's lesions in real-time, as it does not need to store the images 

prior to analysis.  
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6. STATE OF THE ART OF COMPUTER-AIDED 

MELANOMA DIAGNOSIS BASED ON COLOR  

This section will dive into the current advancements in the field of color 

analysis for melanoma detection. Within this framework, several authors 

discuss the pre-processing stage and many works about CAD systems touch 

upon color in terms of feature extraction.  

The approach to color detection in CAD for melanoma detection is diverse. 

Usually, statistical parameters, like mean color and color variance, are used 

to describe color. E.g., the feature descriptor for color variation can be 

obtained via four different channels: the red, the green, the blue and the 

intensity channel, which is obtained as a fusion of the RGB channels [19]. 

Then, the color variation for each channel is computed as the logarithmic 

ratio of the mean to the standard deviation.  

A different solution for the characterization of the lesion is employing color 

histograms as descriptors, where each bin represents the amount of pixels 

in that color channel. In [20], for example, the lesion is split into cells, 

associating three descriptors with each cell of the grid: mean color vector, 

uni-dimensional color histogram and generalized color moments.  

As for pre-processing, source standardization deals with artifacts present in 

the lesion, such as body hair. These algorithms perform image segmentation 

to characterize the image as an assortment of a fixed number of regions. 

Consequently, mostly isolated, small details become less relevant. The 

techniques that cause this are studied in ensuing sections. 

A prevalent design for hair detection and eradication applies directional 

filters, exploiting the highly directional nature of the shape of hairs [21]. 

Commonly, a bank of Gabor filters is used. These filters’ impulse response is 

a linear combination of Gaussian filters. They have a linear shape, like the 

artifacts of interest. They are combined, forming a bank, to evaluate every 

possible direction, since the orientation of the hair is not known. 

Pre-processing researchers also engage in other aspects of source 

normalization. There are proposed alternatives that seek to improve the 

conventional color constancy algorithm. The image is initially transformed 

to achieve chromatic adaptation. This means that colors are modified to 

mimic the human visual system, so that a variation in the illumination does 

not change the perception of a color, which is independent of light 

conditions. Traditionally, this involves a single transformation matrix, like 

the von Kris diagonal model, for every color in the image. A new method [22] 

proposes dividing the source color gamut into regions and applying a unique 
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transformation matrix to each of those regions. It utilizes Delaunay 

triangulation (no point in the plane is inside the circumcircle of any of the 

triangles) and Macbeth color checker (calibrating color palette whose 

patches are designed to resemble the spectral reflectances of natural objects 

and be very stable over time and under varying lightning situations). 

Studies focused on the role of color are notably scarce. 

 A research supported by NIH-SBIR (Small Business Innovation Research) 

[23] concluded that the most useful color discrimination information for 

lesion screening is found in the region closest to the skin lesion boundary. 

The color histogram is applied to evaluate two color features: percent 

melanoma color and color clustering ratio. Percent melanoma color refers to 

the proportion of pixels that are melanoma colors, whereas the color 

clustering ratio is the fraction of melanoma-colored eight-connected 

neighbors of melanoma-colored pixels to the number of eight-connected 

neighbors for all melanoma-colored pixels. 

The same authors [24] pointed out the relevance of structured color 

information, given the superior results of color clustering ration versus 

percent melanoma color. Another conclusion was reached: color feature 

information is located at the center of the lesion, for the most part. 

In [25], color detection in melanoma dermoscopy images was studied 

focusing exclusively on three shades of blue that were analyzed using fuzzy 

set techniques. Stoecker et al. [26] researched areas of granularity in skin 

pigmented lesions extracting texture and color features. 
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7. SYSTEM DESCRIPTION 

For more clarity, an schematic figure with blocks for each essential phase 

can be found below. It shows an overview of the chain of tasks that define 

the project's scope. The blocks in the graph, which are the components that 

illustrate the extent of this Bachelor's Thesis, are going to be studied further 

along.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 SOURCE NORMALIZATION 

In preceding sections, source normalization was deemed an essential step in 

CAD systems. Given the diverse circumstances under which each sample is 

taken, variations in the system’s behavior are to be expected. In other 

words, fluctuating conditions when collecting data can alter the degree of 

efficiency: different cameras, hospitals, lightning situations and the like, 

may result in unpredictable feedback when subject to a system adjusted for 

other settings. There are other factors to be accounted for, such as hairs or 

oil bubbles. For the specific database used in this project, this kind of 

artifacts were not a problem, due to the effect of the algorithms applied later 

on. 

Lesion pre-processing 

Image segmentation 

Image alignment  

Database import 

Model training 

Classifier testing 

Performance  

evaluation 
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The focus of the pre-processing phase, however, is on the normalization of 

colors. This task will be achieved applying the concept of color constancy or 

chromatic adaptation. The fundamental idea of color constancy is that every 

picture is perceived as though all of them were captured under the same 

light. The human visual system possesses this feature: the eye can generally 

adapt to changes in illumination, maintaining the appearance of the 

visualized colors. The human eye perceives color through a type of 

photoreceptor cells found in the retina, called cones. There are three types of 

cone cells (S,M,L) depending on their sensibility at short, medium and long 

wavelengths.  The spectral response of the cones models the LMS color 

space, as seen in Figure 1. 

In order to mimic this adaptability, the initial illumination given by an 

unknown source illumination of the image is altered. Thus, the apparent 

illumination is modified to fit the LMS cone space. This way, the LMS 

response in the eye is equal to that of the desired illuminant (a perfect white 

light). 

Chromatic adaptation starts with the estimation of the illuminant, which is 

then used to transform the image. Given the complexity of color perception 

in human vision, there is not just one transformation matrix that objectively 

describes the LMS response.  

The approach assumed in this study follows techniques proposed in [27], 

which at the time of publication had not yet been applied to dermoscopic 

images.  

First, a generalization of the Shades of Grey method, introduced by 

Finlayson and Trezzi [28], is utilized. It argues that better color constancy is 

achieved when assuming that the average of any scene is a shade of grey. 

The Shades of Grey algorithm merges the Max-RGB and Grey World color 

constancy methods. 

  

Figure 1. Normalized frequency response of 

S, M and L cones [35]. 
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Mathematically, the color is estimated as a vector or RGB coordinates (1), 

computing the normalized Minkowski p-norm (2). 
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(2) 

 

where c is the color component (c ∈ {R,G,B}), k is a constant such that v has unit 

length, and I is the value of the pixel in (x,y) for component c. 

Optimum performance happens when p=6, according to Finlayson and 

Trezzi's experiments [28]. The Minkowski p-norm performs a weighted 

average over the intensity of the pixels, where the weights are directly 

proportional to the pixel value. 

 

The second step involves a chromatic adaptation transform (CAT) of the 

colors. The chosen method is the von Kris diagonal model. The von Kris 

transformation matrix (3) applies a gain to each of the cone spectral 

responses in order to have a constant reference. 

 

 
  
 

  
 

  
 

   

 

  

 
 

 
 

  

 

 
 
 

  

  
  
 

  
 

  
 

  

 

(3) 

 

where   
  is the normalized pixel value for a perfect white light and   

  is the pixel 

value under unknown lightning conditions. 

Some examples of the color constancy implementation on a few dermoscopic 

samples can be found below. 

Figure 2. IMD002 before (L) and after (R) color constancy. 
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Figure 3. IMD168 before (L) and after (R) color constancy. 

 

Figure 4. IMD103 before (L) and after (R) color constancy. 
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7.2 SEGMENTATION 

Once the lesion has been normalized with respect to the light source, it must 

be partitioned in order to handle its meaningful information efficiently. 

Every lesion will be segmented into a number of regions. The concept of 

region can be summed up as follows: a region is an area homogeneous in 

color, such that one label applies to every pixel of it. 

The segmentation is performed with the available data: an image is made 

up of pixels, each of which is a point in a 3-dimensional space, comprising 

the intensities of the red, blue, and green channels for the RGB color space. 

The segmentation algorithms will treat each pixel in the image as a 

separate data point. 

Given the crucial nature of segmentation, three algorithms were put into 

action: K-Means clustering, N-Cuts and Mean Shift. 

K-Means 

K-means is an unsupervised method that clusters data iteratively. 

Clustering data means creating groups of data objects that are similar in 

some respect. K-means color segmentation will assign a color membership to 

each color value. Hence, for any lesion, each pixel belongs to one of its k 

colors or clusters. 

The principle of the K-means algorithm is that each observation is assigned 

to the cluster with the nearest mean. Therefore, the aim of each assignment 

is to minimize the expression (4). 

                 

 

(4) 

 

where D is the Euclidean distance (straight-line metric) between the point xi and 

the cluster center cj , as per (5). 

                      
 

   

 

 

(5) 

 

The means (centers) of the clusters are known as centroids. Centroids are 

randomly placed at the start, and then re-computed on every repetition 

according to the new mean of the cluster, until convergence. Convergence 

happens when cluster assignments stay constant. 
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The simplicity and low computational cost are its main advantages. Its 

drawbacks include the dependency on the random initial placement of 

centroids and on the aptness of the number of clusters. 

The first analysis carried out involves is the data chosen as input to the K-

means function. Initially, only color information is used, meaning that the 

input is a set of 3-dimensional points: the clustering is based on the color 

values for each pixel. With the intention of improving the algorithm results, 

more information was added to each sample. Specifically, given that usually 

colors appear in areas, not isolated, taking into account the location in the 

image of each pixel seems logical. Therefore, the second implementation 

describes each point using the color information as well as its x and y 

coordinates.  

Basically, the clusters will be conditioned by an extra criterion: being 

assigned to a certain cluster implies similarity in color and proximity, since 

membership now depends on both features.     

To better comprehend this matter, the dermoscopic image named IMD058 

(Figure 5) will serve as an example, by being clustered using K-means with 

different settings. For reference, according to the true values provided in the 

database information, the chosen lesion displays four colors: white, red, 

blue-grey and dark brown. These four labels are seen as RGB values in the 

known manual segmentation (Figure 6).  

Additional information about the true colors found in lesion is given in the 

form of color masks obtained by a dermatologist. The segmented color 

regions are shown below (Figure 7). The color red was not identified with a 

color mask. This is a common obstacle within this particular dataset, which 

will be explained when discussing database issues. 

Figure 6. Ground truth image for IMD058. Figure 5. Original lesion (IMD058). 
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Figure 10. K-means (K=5) segmented lesion (IMD058) 

using color and position information. 

 

   

Figure 7. Segmentations for white, dark brown and blue-grey labels, respectively. 

 

Now that the exemplifying image has been explained, K-means is 

performed, getting the results depicted next.   

 

 

 

 

 

 

 

The graphs shown in Figure 9 and (11Figure 11 display the grouping of 

pixels distributed along the axis that represent the color components: red, 

blue and green, given that the current color space is RGB. 

Figure 9. K-means (K=6) clusters in RGB space using 

color information from lesion IMD058.   
Figure 8. K-means (K=6) segmented lesion (IMD058) 

using color information.  

  

Figure 11. K-means (K=5) clusters in RGB space using 

color and position information from lesion IMD058. 
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There is a clear improvement on the method when including the position of 

the pixels. The visualization of the clusters in three dimensions is more 

uniform in Figure 9, which makes sense, because color resemblance is all 

that matters in the first K-means implementation. Connected regions are 

produced in the second case (Figure 10) when spatial information is 

introduced, which is a desirable, given the nature of color distribution in 

dermoscopic lesions. What's more, parameter k (number of clusters; i.e., 

number of colors) for image IMD058 is correctly estimated as being equal to 

five (including background color as another cluster).  

From now on, position information, along with color data, shall be used for 

every experimental output. 

Another key aspect that is part of this evaluation is the spatial organization 

of color: the color space. Two color spaces are considered: RGB and CIE 1976 

L*a*b*. The RGB (red-green-blue) color space is based on the RGB color 

model. A color model is a mathematical structure that represents colors as a 

small set of numbers. The RGB color produces an array of hues from three 

additive primaries: red, green and blue. The CIE 1976 L*a*b*, or simply 

Lab, color space describes each color in three dimensions: lightness (L) and 

two color channels (a and b), were a characterizes red/green opponent colors 

and b describes the yellow/blue opponent colors. Compared to RGB, Lab 

comprises a larger subset of colors: its gamut or range is bigger because it 

contains all perceivable colors (Figure 13). 

  

Figure 13. Chromacity diagram for Lab color 

space [37]. 
Figure 12. Chromacity diagram for RGB color 

space [36]. 
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For comparison purposes, the lesion picture was converted to Lab color 

space. The outcome for the K-means segmentation is shown in Figure 14 

and Figure 15. 

 

 

 

 

 

 

 

The clusters for the Lab color space are displayed in two dimensions because 

only the a and b components are used in the clustering process. One of the 

advantages to working in Lab space is that it decorrelates luminance (L) 

and chrominance (a, b), so any color is completely defined in two 

dimensions. This implies less computational cost. While this could be a 

great asset, the clustering of the color brown (light and dark) models would 

be hindered, given their dependence on luminance to be differentiated. All 

three components are relevant under these circumstances. The main benefit 

of this color space is its precision: the distance between colors correspond to 

the perceived color differences; the Euclidean distance allows accurate 

distinction of hues. Consequently, Lab is the most recommended color space 

in literature for colorimetric tasks.  

Finally, the K parameter becomes the research matter. As previously stated, 

K stands for the number of clusters or colors into which pixels are 

categorized. So far, K has been assumed to be automatically computed. This 

is tackled next. 

K could be an input parameter, but considering the purpose of this project, a 

certain number of colors cannot be assumed beforehand; the system should 

provide the user with the amount of colors found, which is an important 

trait in melanoma diagnosis.   

To achieve the optimum number of clusters for each lesion, the Calinski-

Harabasz index [29] was found to be the most effective option. Said 

Figure 14. K-means (K=4) segmented lesion 

(IMD058) in Lab color space. 

Figure 15. K-means (K=4) clusters in Lab color 

space from lesion (IMD058). 
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clustering validation method decides on the best number of clusters 

depending on the average between-cluster sum of squares (6) and within-

cluster sum of squares (7).  

               
 

 

 

 

(6) 

 
 

                 
 

  

 

 

(7) 

 

The sum of squares is a metric that describes the dispersion of data points. 

From the perspective of "between" clusters, it measures the variation among 

group means (centroids). "Within" clusters refers to variation of individual 

points with respect to each centroid. It is an ANOVA-based criterion: it 

performs an analysis of the variance, understood as the difference between 

groups. 

The graph for the Calinski-

Harabasz index (Figure 16) 

offers a visual insight into the 

result: it has a maximum at the 

optimum value for K. For the 

one shown in Figure 16, there 

would be 3 colors. 

 

  

Figure 16. Calinski-Harabasz graph example. 
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N-Cuts 

The algorithm for Normalized Cuts, as presented in [30], offers a clustering 

method based on global perception, rather than on local properties. 

The theoretical ground of it starts with graph theory: the method is 

developed on the basis of structures that model object to object 

relationships; i.e., graphs. To be more specific, weighted graphs. A weighted 

graph is one whose edges have weights associated to them.  

Given the purpose of this section, it is relevant to study the division of such 

a graph. A preliminary study proposed the minimization of the degree of 

dissimilarity when cutting a graph into two disjoint parts. This 

measurement, known as cut (8), is computed as the sum of the weights 

(costs) of the edges that were removed to split the graph. 

                

       

 

 

(8) 

 

However, the computation of a minimum cut tends to create small regions of 

isolated nodes. This happens because outlying nodes have fewer edges and, 

as a consequence, fewer weights to sum over, giving a smaller result for cut. 

Therefore, this minimization mechanism is not always correct. 

N-cuts improves the partitions by normalizing the cut criteria: 

          
        

              
 

        

              
 

 

(9) 

 

The denominators of expression (9) stand for the sum of the costs from each 

point (A or B) to all the nodes in the graph. This is known as association 

(10).  

                   

       

 

 

(10) 

The concept of association refers to how well connected that point is to the 

rest of the nodes.  

This way, Ncut is not small for sets of isolated nodes anymore, because their 

association measure will be smaller, so the previous issue is solved. The 

objective of the algorithm is to maximize association within groups, which is 

the same as minimizing the disassociation between groups. 

The minimization of Ncut is computationally prohibitive, which is why the 

solution takes an approximate form through the generalized eigenvalue 
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system. This allows the N-Cuts algorithm to be summed up in a few steps. 

From the image, a weighted graph is created, using the similarity between 

two nodes as the weight of the edge connecting them. Then, the generalized 

eigenvalue system (          ) is solved for eigenvectors with the 

smallest eigenvalues. The eigenvector with the second smallest eigenvalue 

is used to divide the graph in two. These actions are repeated recursively if 

needed. 

Although this algorithm is well extended in low level segmentation tasks, 

the available implementation only considers grey scale. This limits its 

ability to outline proper regions, and the other two methods give better 

results.  

   

Figure 17. Lesion IMD016 with binary mask. Figure 18. N-Cuts segmentation (visualized with 

borders) for masked lesion IMD016. 



25 

Mean shift 

Mean shift is a data mining algorithm with many applications, from finding 

local maxima to data clustering in computer vision. 

This analysis method does not assume the probability distribution of the 

variables of interest. The number of parameters is not constant, but 

proportional to the amount of training data. Hence, mean shift is a non-

parametric algorithm. 

Besides, this technique is feature-space based. This means that it works 

with a vector space composed of feature vectors, which are representations 

of objects in numerical features. 

When mean shift is used, the feature space is seen as an empirical 

probability density function (PDF). The input (set of data points) are 

samples from that PDF. The mode or local maxima of the probability density 

function constitute clusters (dense areas). 

The mean shift algorithm associates a point to the closest maximum in the 

feature space; a window is placed around it and the mean shift vector is 

computed  (12). This vector is the difference between the weighted mean and 

the center of the window (kernel). 

The window is then shifted according to     . Local maxima are found 

through gradient ascent; regions of high-density value are therefore of 

interest. The mean shift vector always points towards the maximum 

increase of density, because at point x, it is proportional to the density 

gradient estimate       , obtained for kernel K (multivariate normal), which 

is normalized by the  density estimator         computed for kernel G (  

           
 
 ) (11). 
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where c is a normalization constant, h is the bandwidth and n is the number of 

data points. 

The computation of the mean shift vector and the relocation of the kernel 

are iterative processes. Consequently,      creates a path that leads to a 

stationary point of the estimated density      . These steps are performed 
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until convergence, which happens when the gradient estimate obtained for 

the multivariate normal kernel is zero. 

A key aspect that makes this method preferable to N-Cuts is the fact that 

color is taken into account for the segmentation, whereas the normalized 

cuts implementation does not. 

Some advantages of mean shift compared to K-Means are the lower 

sensitivity to initializations and outliers, plus the lack of assumptions 

regarding the number of clusters, which depends on the number of modes. 

Mean shift offers more flexibility because it does not take for granted the 

shape of the clusters (they are elliptical for K-Means clustering); they can be 

arbitrarily shaped. 

    

Figure 19. Lesion IMD009 with binary mask. Figure 20. Mean shift segmentation (visualized with 

borders) for masked lesion IMD009. 
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7.3. FEATURE EXTRACTION 

Through feature extraction, relevant characteristics are plucked from the 

original data.  

The concept of ground truth should be made clear beforehand. In machine 

learning, ground truth stands for the true representation of the data. It is 

the standard the results will be compared to. As far as this project is 

concerned, the ground truth images are labeled lesions, divided into areas 

that correspond to a color class, as observed in the following visualizations 

of ground truth data. 

 

 

 

With the purpose of displaying the pictures shown above, labels were 

converted to RGB values. 

 

Once the meaning of ground truth has been established, feature extraction 

can be explained as the need to summarize the information contained in a 

region into a single feature vector. 

Figure 21. Ground truth (for IMD208) with 2 

colors (dark brown and light brown). 
Figure 22. Ground truth (for IMD372) with 1 

color (light brown). 

Figure 23. Ground truth (for IMD435) with 3 

colors (dark brown, light brown, blue gray and 

black). 

Figure 24. Ground truth (for IMD435) with 4 

colors (white, red, dark brown and blue gray). 
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The information in this study, at this stage, is presented in the form of 

images segmented into regions. Every region has a value assigned to it.  

However, this region label does not match the values found in the ground 

truth images, which range from 1 to 6. Those values depict each of the 

possible colors commonly present in a skin lesion: 

 1: White. 

 2: Red. 

 3: Light brown. 

 4: Dark brown. 

 5: Blue gray. 

 6: Black. 

 

Image alignment enables the mapping of the reference data (segmented 

lesions) to the target data (manually segmented ground truth images). That 

is, the values of the regions in the lesions, which were segmented via N-

Cuts, Mean Shift or K-Means algorithm, will be transformed to fit the range 

(1-6) of the ground truth segmentations. 

To do so, the reference or source image is overlapped with the target or 

subject image. Each region of the segmented lesion acquires a single 

representative label: the most repeated value in the ground truth for that 

same region. 

 
Figure 25. Labeled lesion IMD003:  after segmentation and alignment (L) and ground truth (R).  

Figure 26. Labeled lesion IMD042:  after segmentation and alignment (L) and ground truth (R). 
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Figure 27. Labeled lesion IMD150:  after segmentation and alignment (L) and ground truth (R). 

 

At the end of the execution of this algorithm, several data structures are 

returned: 

 A label vector containing the color label (as a number between 1 and 

6) for each region. This is the outcome of the alignment procedure. 

 A data matrix with the color information (i.e., one value per color 

component) for each region. A region is represented by a single color 

whose components are obtained from all the region pixels, taking the 

mean of each color channel.  

 A vector that links the regions to its lesion. The point of this vector is 

to keep track of the lesions for each region descriptor, since they have 

been broken up into regions. This is useful for future tasks. 
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To sum up, the extracted features are characterized as follows: 
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7.4. CLASSIFICATION  

Overview 

Classification in CAD systems refers to accomplishing a diagnosis by 

inference for the input lesion, based on information that was previously 

gathered. 

In machine learning tasks, there are two general approaches: unsupervised 

and supervised learning. Unsupervised learning clusters or associates data 

based exclusively on a set of unlabeled inputs. Supervised learning trains a 

set of data whose correct labels are known and used to infer a mapping 

function, such that any new input can be predicted according to it. This 

work focuses on supervised learning, because the training process aims to 

develop a model from a feature matrix that is representative of labeled 

training data. Given that the targets are classes (colors), the problem 

becomes a classification task. 

From the perspective of the result, there are mainly two means of tackling 

classification: hard and soft. Hard classification assigns to each region the 

most likely class. In melanoma diagnosis, this can be a binary decision: label 

0 or 1 depending on whether it is melanoma or benign.  

Instead, soft classification consists in recognizing that each region can 

belong to more than one class and giving membership grades (probabilities) 

to each. The chosen option is a soft classifier, meaning a region can be each 

of the six colors with a certain probability. Within the context of medical 

diagnosis, which deals with delicate matters, it makes sense to pick a soft or 

fuzzy classifier that measures the confidence of the prediction. 

 

The classification stage was divided into two phases. First, the training data 

is selected, constituting 70% of the available database. The color features 

from the training data, collected in the structures explained before (7.3. 

FEATURE EXTRACTION), are used to estimate several statistical 

parameters. These will define the function that shapes the distribution of 

each color.  

Then, using the remaining 30% (test data), the obtained models are used to 

predict which colors each region might belong to.  

Hence, the approach taken is model-oriented. Specifically, training of the 

data was done for two different statistical models to base decisions on: 

multivariate Gaussian model and Gaussian mixture model. 
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Multivariate Gaussian Model 

In the first case, each color was modeled as a Multivariate Gaussian: a 

generalization of the univariate Gaussian distribution to k dimensions. 

 

Its probability density function is, by definition: 

 

          
 

           
  

 

 
              

 

 

(13) 

 

where |·| denotes the determinant, ∑ is the covariance matrix (symmetric, positive 

and semi-definite) and µ is the mean. 

 

Any Gaussian distribution is fully characterized by its mean and covariance 

matrix. This fact allows the depiction of each color as a three variable 

Gaussian model. Therefore, each model is defined by the mean value of each 

color channel in the color space, as well as the covariance matrix that 

contains the variance of each component and the variances between each 

pair of variables.  

 
Figure 28. Probability density distributions of Multivariate Gaussian Models in RGB color space. 
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When it comes to classifying test samples, for each new sample or region, 

the decision criterion relies on the value for the probability density function 

(PDF). The PDF is obtained for each of the six color models. For completion, 

in order to provide a tangible decision, the highest probability is selected. 

The color associated to that PDF is assigned as the inferred value for the 

region. The classifier maximizes the posterior probability of  the class; it is 

governed by the maximum a posteriori decision rule (14). 

 

                   (14) 

 

where c is the color class and x is the observation. 

 

The decisions made for a randomly selected subset (30%) of the database, 

after training the remaining lesions to build multivariate Gaussian models, 

can be observed in Figure 29. Each point appears in the color of the color 

class it was assigned to. 

 
Figure 29. Plot of the class membership obtained for a test dataset, based on the Multivariate 

Gaussian classification. 
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Gaussian Mixture Model 

A mixture of Gaussians is a probability distribution whose probability 

density function is a combination of a finite number of multivariate 

Gaussian probability density functions with specific probabilities or mixing 

coefficients. It can be expressed as the sum of weighted Gaussian 

components (15). 

                        

 

   

  

 

(15) 

 

where C is the number of components, wc is the weight for component c, and         

are the mean vector and covariance matrix for component c. 

 

Particularizing for this project, the meaning of using GMM is that each color 

will be defined by a mixture of Gaussians, each of which can be seen as a 

shade or subcolor.  

GMM provide more complex classes of density models, which render them 

more capable of modeling realistic problems when compared to regular 

Gaussian distributions. 

Since the parameters that describe the Gaussian components are unknown, 

the Maximum Likelihood estimation is employed to fit the data. The ML 

criterion attempts to estimate the model's parameters by maximizing the 

log-likelihood (16). 

 

                                           

 

     

 

 

   

   

 

(16) 

 

where X is a data matrix with N mixtures of Gaussians of C components. 

 

However, when solving for Maximum Likelihood, Gaussian mixture models 

do not offer a closed solution. This lack of solution is explained due to 

singularities and the summation over C. The first problem occurs when the 

mean of a Gaussian component is equal to a data point (the Gaussian would 

collapse into a point and if the likelihood function goes to infinity, so does 

the log likelihood function). The second issue is only relevant when trying to 

interpret the obtained parameters.   

 

The EM algorithm is an iterative technique that obtains the ML estimate in 

the presence of latent variables (they are not directly observed and must be 

inferred from the available data) so it is often applied to problems with 

missing or hidden data.  
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The first point in the process, given observed variables X, latent variables Z 

and parameters θ, is to choose initial values for the parameters θ.  

Then, in the E (expectation) step, the parameters are evaluated for the 

posterior distribution of the latent variables (17). 

 

         (17) 

 

This posterior is used to compute the expectation (18). 

 

                          

 

 

 

(18) 

 

Next, the M (maximization) step maximizes the expectation. 

 

                     (19) 

  

The E phase evaluates the log-likelihood with the estimated parameters and 

the M phase maximizes the log-likelihood to estimate new parameters.  

Starting with the E step, the EM algorithm is performed iteratively until a 

stop condition is met. Given that each step increases the log-likelihood of the 

model, such a condition is usually established to be a log-likehood increment 

that is smaller than an input threshold.   

  

In the context of GMM, the parameters θ stand for the means     , 

covariances   , and mixing coefficients   . The posterior evaluated in step E 

is the responsibility γc that a certain component C has over observation x, 

which is simply the normalized weighted likelihood for observation xn (20). 

 

     
                

                 
 
   

 

 

(20) 

The responsibilities are used to update the parameters in the M step. 
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The EM algorithm is highly sensitive to initialization. In this instance, it is 

initialized applying K-means++. First, it assumes a number k of clusters, an 

initial mean or centroid selected uniformly from all data points, and 

diagonal covariance matrices whose elements are the variances of each data 

component. The subsequent centroids are found through a recurrent 

process. It computes the Mahalanobis distances from data points to each 

centroid and then chooses one with a probability proportional to the 

distance to the current centroid. This step is repeated until k centroids are 

selected.  

The method that was just described provides models such as the following. 

 

Once training is done, the class-

conditional probability density 

function is computed for each color 

model, choosing the highest 

posterior as class label for each data 

input. This GMM classifier abides 

by the MAP decision rule whose 

principle was previously 

documented (14).    

Figure 30. Gaussian Mixture Models for each color. 
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7.5. SUGGESTION OF COLORS PRESENT ON THE LESION  

Color inspection in pigmented lesions implies examining the number of 

colors and how they are distributed. The presence of two or more colors as 

well as an irregular chromatic distribution are tell-tale signs of potentially 

cancerous lesions. 

The work illustrated in this document aims to provide a suggestion 

regarding which colors are found in a lesion. It is based on the six most 

relevant colors in dermoscopy (white, red, light brown, dark brown, blue 

gray and black). The result for each dermoscopic image is a number of 

vectors equal to its number of regions. Each of those vectors has six values 

that correspond to the probability of existence of each color.  

 

P(white|i) P(red|i) P(light-brown|i) P(dark-brown|i) P(blue-grey|i) P(black|i) 

 

Furthermore, hard decisions were included as an additional result based on 

the highest class posterior probability for each region. Thus, a region is 

assumed to be the most likely color. Applying this concept, lesions can be 

reconstructed according to the predicted color labels. 

 
Figure 31. Labeled lesion IMD374: ground truth (L) and classifier result (R). 

 
Figure 32. Labeled lesion IMD035: ground truth (L) and classifier result (R). 

Region i → 
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Figure 33. Labeled lesion IMD146: ground truth (L) and classifier result (R). 

 
Figure 34. Labeled lesion IMD383: ground truth (L) and classifier result (R).  

 

Figure 35. Labeled lesion IMD407: ground truth (L) and classifier result (R). 
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8. EXPERIMENTAL SETUP 
 

The experiments were the means through which the algorithms would be 

put to the test in order to appraise the performance of the color analysis 

executed by the system. 

The state of the art of medically-oriented image processing software has 

shaped the software-related decisions made for this thesis. Matlab was the 

obvious choice for the experiments. First of all, there is a large community of 

users and researchers, which is testament for its capacity and establishes a 

broad map of shared knowledge. Moreover, one of Matlab's best assets is its 

clear and extensive documentation and its capability to read a wide variety 

of image formats (over fifteen types). Additionally, the work environment 

streamlines data management, which is easy to store and keep track of, 

making the debugging process more straightforward, because testing 

changes is uncomplicated. Also, Matlab possesses a vast library of bi-

annually updated algorithms. Another advantage is the numerical accuracy 

for uttermost precision that allows images to have double precision pixels 

throughout the whole process. 

The experimental arrangement incorporates three different segmentation 

algorithms: 

 K-Means 

 N-Cuts 

 Mean Shift 

 

For every segmented dataset, two different statistical models will be 

constructed: 

 

 Multivariate Gaussian Model 

 Gaussian Mixture Model 

 

Each of these combinations will be analyzed using four different evaluation 

measurements: 

 

 Balanced accuracy 

 F-Measure 

 Confusion matrix 

 Receiver Operating Curve 
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 8.1. DATABASE DESCRIPTION AND PREPARATION 

 

The image dataset used for this study came from the ADDI (Automatic 

computer-based Diagnosis system for Dermoscopy Images) project [7] [31]. 

This program gathers experts from the medical and academic field (Pedro 

Hispano Hospital, University of Porto, University of Aveiro and Instituto 

Superior Técnico) who seek to develop an automatic dermoscopic image 

analysis system. 

The PH2 database intends to facilitate comparative studies regarding the 

topic of dermoscopic images. It contains 200 (8-bit RGB, with 768x560 px 

resolution) pictures of melanocytic lesions taken at the Dermatology Service 

of Hospital Pedro Hispano in Matosinhos, Portugal. The tool employed for 

the task was the Tuebinger Mole Analyzer with a 20x magnification. 

The database includes benign (melanocytic nevi) and malignant (melanoma) 

lesions: 80 common nevi, 80 atypical nevi and 40 melanomas.  

Besides, the dataset contains the binary mask of the segmented lesions and 

the binary masks of the color classes found in them. 

All images are medically documented by an expert dermatologist, according 

to well-known parameters: colors, pigment network, presence of dots, 

globules and streaks, regression areas and blue-whitish veil. This 

information is collected in an attached file, later used for system evaluation. 

The preparation of the data entailed creating an structure array whose 

fields mirrored the given information, as text or as paths to files. As for the 

training set retrieval, 70% of the images were selected at random, using the 

remaining 30% for test purposes. This random partition is preserved for all 

the experiments, so as to guarantee legitimate comparisons. Even though 

classification is performed on the basis of regions, each percentage was 

ensured to contain every region of an image.  

8.2 SMALL DATASETS PROBLEM INSIGHTS  

The main issue that stemmed from the dataset's small size was the lack of 

color representation. Specifically, the color red was found in only 5% of the 

total set of lesions. Its limited presence made the characterization of its 

corresponding model highly inaccurate, and consequently gave an unreliable 

training result. As expected, performance assessment after testing showed 

poor efficiency for that class. This led to the decision of neglecting said color. 

A similar circumstance was found for the white model, present in only 10% 

of the lesions, although parametric modeling was possible.  
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8.3. EVALUATION MEASURES FOR THE PERFORMANCE OF 

THE SYSTEM 

In order to assess the functionality of the classifier,  several performance 

measures are employed.  

Balanced Accuracy 

 

Accuracy refers to the closeness of the estimated result to the true value. 

For this specific task, accuracy provides information about the proximity of 

the predictions, which are the color decisions inferred for each region, to the 

known colors, found in the ground truth images. This concept can be 

expressed as follows: 

          
                                      

                      
  
   

  
 

 

(24) 

 

where TP  is the number of true positives (predictions match ground truth) and 

N  stands for the total number of test regions. 

 

Due to the multi-label nature of the classifier, the accuracy metric is not 

good enough. Balanced accuracy is an alternative measure that intends to 

solve the issues that arise from accuracy evaluation for multi-class and 

unbalanced cases [32]. Balanced accuracy is defined as follows: 

 

                    
 

 
 

   
  

 

 (25) 
 

  

where n is the number of classes, TPi is the number of correct predictions for class i 

and Ni is the number of test samples that belong to class i. 

 

Due to the disparity in the number of class members for each color, the 

accuracy value might be affected, giving an unrealistic result. Balanced 

accuracy accounts for this possibility by dealing with each class 

independently.  

F-Measure 

 

The F-measure gives further information on the classifier's accuracy by 

combining two scores related to both type I (false positive) and type II (false 

negative) errors. False positive errors for a given class i refer to incorrect 

assignments of label i. False negative errors for class i indicate a wrong 

decision that does not classify a point as a member of i. 
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(26) 

 

 

          
   

       
 

(27) 

 

 

        
   

       
 

(28) 

 

 

where TPi  is defined like in (25); FPi  and FNi are, respectively, the number of false 

positives (wrong color is predicted) and false negatives (color is wrongly not 

predicted) for class i. 

Confusion Matrix 

A confusion or error matrix is a set of measures that relate the predictions 

for each class to the actual class memberships.   

This evaluation measure has the advantage of establishing relationships 

between each class and the rest, which can be of help to expose if the system 

is mixing up certain categories that might be similar. 

The rows are attributed to the actual classes, whilst the columns are 

designated for the predictions. In consequence, the matrix diagonal contains 

the True Positives for each color.  

 

 

 Color 1 Color 2 Color 3 Color 4 Color 5 Color 6 

Color 1 TP1 FP2,1 FP3,1 FP4,1 FP5,1 FP6,1 

Color 2 FP2,1 TP2 FP3,2 FP4,2 FP5,2 FP6,2 

Color 3 FP3,1 FP2,3 TP3 FP4,3 FP5,3 FP6,3 

Color 4 FP4,1 FP2,4 FP3,4 TP4 FP5,4 FP6,4 

Color 5 FP5,1 FP2,5 FP3,5 FP4,5 TP5 FP6,5 

Color 6 FP6,1 FP2,6 FP3,6 FP4,6 FP5,6 TP6 

Table 6. Confusion matrix. 

 

where TPi  was defined in (25); FPi,j  represents an erroneous prediction of color 

class i instead true label j. 

 

Receiver Operating Curve 

The Receiver Operating Curve (ROC) graphically conveys the ratio of 

correctly classified test samples versus data erroneously assigned to that 

same class; i.e., it plots true positive rate or recall (28) against false positive 

rate or inverse recall (29). 

Predicted 

Actual 
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(29) 

 

where FPi was defined in (27) and TNi stands for the number of true negatives 

(color is appropriately not predicted) for class i. 

ROC curves, unlike previous measures, acknowledge the class probability 

estimates. At optimum performance, the results are maximized on both axis.  
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9. EXPERIMENTAL RESULTS AND DISCUSSION 
 

In order to evaluate the classifier, several configurations of the system were 

executed. All three segmentation algorithms along with both parametric 

models are assessed according to the metrics previously explained. 

The k-means algorithm produced the results seen below.  

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 6517         1697          312           89 

Dark brown 1895         4392          696         1834 

Blue-grey 94                 298         1287 1342 

Black 1              27 64 536 

F-Measure 0.76     0.58     0.48     0.24 

Balanced Accuracy 0.63 

Table 7. Performance evaluation measures for K-means segmentation with Gaussian Mixture Model 

classification. 

 

 

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 6561         1709          279           66 

Dark brown 2323         4135          1173         1186 

Blue-grey 77                329         1449 1166 

Black 1             65 141 421 

F-Measure   0.75    0.55     0.48     0.24 

Balanced Accuracy 0.60 

Table 8. Performance evaluation measures for K-means segmentation with Multivariate Gaussian 

Model classification. 
  

Figure 36. ROC for K-means segmentation with 

Gaussian Mixture Model classification. 
Figure 37. ROC for K-means segmentation with 

Multivariate Gaussian Model classification. 
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Next, the n-cuts algorithm was the segmentation method employed. 

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 284         73         14           6 

Dark brown 81         178          29         57 

Blue-grey 2                35        133 27 

Black 0            3 2 10 

F-Measure 0.76     0.56     0.71     0.17 

Balanced Accuracy 0.65 

Table 9. Performance evaluation measures for N-cuts segmentation with Gaussian Mixture Model 

classification. 

 

 

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 303         52          18           4 

Dark brown 109         115          43         78 

Blue-grey 1                 10         144 45 

Black 0            0 3 12 

F-Measure 0.77    0.44     0.70     0.16 

Balanced Accuracy 0.54 

Table 10. Performance evaluation measures for N-cuts segmentation with Multivariate Gaussian 

Model classification. 
 

 

  

Figure 38. ROC for N-cuts segmentation with 

Gaussian Mixture Model classification. 
Figure 39. ROC for N-cuts segmentation with 

Multivariate Gaussian Model classification. 
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Finally, the mean shift algorithm was applied to the lesions, which were 

then classified. 

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 9397         1370          701           30 

Dark brown 4600         6712          1533         4418 

Blue-grey 366                 725         11267 5588 

Black 8            188 567 1820 

F-Measure 0.73   0.51    0.70    0.25 

Balanced Accuracy 0.65 

Table 11. Performance evaluation measures for Mean Shift segmentation with Gaussian Mixture 

Model classification. 

 

Confusion Matrix     

 Light brown Dark brown Blue-grey Black 

Light brown 9210         1232          1021           35 

Dark brown 4215         6185          1215         5648 

Blue-grey 266                 649         9939 7092 

Black 5            78 508 1992 

F-Measure   0.73     0.49    0.65    0.23 

Balanced Accuracy 0.60 

Table 12. Performance evaluation measures for Mean Shift segmentation with Multivariate Gaussian 

Model classification. 

 

 

Figure 40. ROC for Mean Shift segmentation with 

Gaussian Mixture Model classification. 
Figure 41. ROC for Mean Shift segmentation with 

Multivariate Gaussian Model classification. 
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Multiple conclusions can be drawn from the classifier outputs. The first 

thing that should be addressed is the drawback imposed by the lack of 

samples for color white. While color red (also deficient in the available 

images) was excluded from the classification process, white regions did 

allow for model training with fair test results (Figure 42), yielding a 

balanced accuracy equal to 0.62 at a 0.2 baseline. 

 

Nevertheless, it is more reasonable to provide representative results to 

extract unbiased conclusions. 

Overall, in relation to color segmentation, the mean shift algorithm grants 

superior performance levels related to a couple of factors: it benefits from 

low-dimensional data, such as pixel intensity, and it clusters points 

attending to both location and color but, unlike K-means, it is not sensitive 

to outliers. Predictably, the normalized cuts method underperforms due to 

its inherent nature, as it only uses spatial data.  

The various results attained for each implementation hint at the strength of 

Gaussian mixture models to describe complex features. A mixture of 

Gaussians offers flexibility to model any distribution shape. This is relevant 

to this system because it prevents erroneous class assignations attributed to 

color similarity. As manifested by the confusion matrices, this is very likely 

to happen for the brown shades. GMM are favorable because every class 

defined as such is more intricate, as a combination of latent subcolors. 

Figure 42. ROC for Mean Shift segmentation with Gaussian 

Mixture Model (includes white class). 
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10. CONCLUSIONS AND FUTURE WORK 

The presented solution offers a solid base for color-based feature 

classification in dermoscopic lesions. The optimum setup requires a 

segmentation technique that focuses on color and gathers plenty of 

information to build a complex enough parametric color model. This renders 

K-means (with spatial information) and mean shift algorithms, as well as 

Gaussian mixture models, perfectly suited for the task. By virtue of the 

fulfillment of the segmentation objectives, diagnostic features based on color 

can be generated from it.  

The system  provided satisfying balanced accuracy results for a multiclass 

classifier, being able to visibly disclose the color of regions.  

With regards to future lines of work, the system introduced by means of the 

present document could be upgraded to interpret at a larger scale the 

results obtained for each dermoscopic image, regarding its malignancy. 

Higher levels of performance could be achieved with a larger, more balanced 

database, as the lack thereof could be considered one of the main hindrances 

encountered throughout the development of the project. 

Of course this tool could be paired with feature classifiers that explore other 

melanoma characteristics, such as texture, to provide a more wholesome 

diagnosis.   

The work accomplished in this project offers a powerful, stand-alone 

assisting tool for color analysis. Color inspection is regarded as a key 

marker for malignant lesions in early melanoma detection, which is 

clinically crucial [33]. In fact, a more direct application is found in clinical 

principles like "ugly duckling", a sign that indicates risk of melanoma when 

a patient displays a particular lesion that looks different to the rest. E.g., a 

blue-grey lesion among predominantly brown ones. This indicator is 

remarkably sensitive for detecting melanoma [34]. 

Skin cancer is a pressing matter and there is still a lot of progress to be done 

in this area, especially considering the intersection of the vast world of 

computer vision with the interest and efforts of researchers. Experts in the 

field of melanoma detection can use all the help they can get, and this 

project constitutes one step towards a collaboration that ensures 

trustworthy diagnosis, as early as possible. 
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