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Abstract

Malignant melanoma is one of the most fatal forms of skin cancer. It has also become

increasingly common, especially among white-skinned people exposed to the sun. Early de-

tection of melanoma is essential to raise survival rates, since its detection at an early stage

can be helpful and curable. Working out the dermoscopic clinical features (pigment network

and lesion borders) of melanoma is a vital step for dermatologists, who require an accurate

method of reaching the correct clinical diagnosis, and ensure the right area receives the correct

treatment. These structures are considered one of the main keys that refer to melanoma or

non-melanoma disease. However, determining these clinical features can be a time-consuming,

subjective (even for trained clinicians) and challenging task for several reasons: lesions vary

considerably in size and colour, low contrast between an affected area and the surrounding

healthy skin, especially in early stages, and the presence of several elements such as hair,

reflections, oils and air bubbles on almost all images.

This thesis aims to provide an accurate, robust and reliable automated dermoscopy image

analysis technique, to facilitate the early detection of malignant melanoma disease. In particu-

lar, four innovative methods are proposed for region segmentation and classification, including

two for pigmented region segmentation, one for pigment network detection, and one for lesion

classification. In terms of boundary delineation, four pre-processing operations, including Ga-

bor filter, image sharpening, Sobel filter and image inpainting methods are integrated in the

segmentation approach to delete unwanted objects (noise), and enhance the appearance of the

lesion boundaries in the image. The lesion border segmentation is performed using two alter-

native approaches. The Fuzzy C-means and the Markov Random Field approaches detect the

lesion boundary by repeating the labeling of pixels in all clusters, as a first method. Whereas,

the Particle Swarm Optimization with the Markov Random Field method achieves greater

accuracy for the same aim by combining them in the second method to perform a local search

and reassign all image pixels to its cluster properly. With respect to the pigment network

detection, the aforementioned pre-processing method is applied, in order to remove most of

the hair while keeping the image information and increase the visibility of the pigment network

structures. Therefore, a Gabor filter with connected component analysis are used to detect the
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pigment network lines, before several features are extracted and fed to the Artificial Neural

Network as a classifier algorithm. In the lesion classification approach, the K-means is applied

to the segmented lesion to separate it into homogeneous clusters, where important features

are extracted; then, an Artificial Neural Network with Radial Basis Functions is trained by

representative features to classify the given lesion as melanoma or not. The strong experimen-

tal results of the lesion border segmentation methods including Fuzzy C-means with Markov

Random Field and the combination between the Particle Swarm Optimization and Markov

Random Field, achieved an average accuracy of 94.00% , 94.74% respectively. Whereas, the

lesion classification stage by using extracted features form pigment network structures and

segmented lesions achieved an average accuracy of 90.1% , 95.97% respectively. The results

for the entire experiment were obtained using a public database PH2 comprising 200 images.

The results were then compared with existing methods in the literature, which have demon-

strated that our proposed approach is accurate, robust, and efficient in the segmentation of

the lesion boundary, in addition to its classification.
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Chapter 1

Introduction

1.1 Introduction

Skin cancer can be classified into melanoma and non-melanoma. Melanoma is a malignancy of

the cells that give the skin its colour (melanocytes) and can invade nearby tissues. Moreover,

it can spread throughout the human body and may cause death. Conversely, non-melanoma

seldom spreads to other parts of the body. Malignant melanoma is considered one of the most

fatal forms of human skin cancers, which led to a raised mortality rate. In the last few decades,

the incidence of melanoma has increased significantly, especially among white-skinned people

who are exposed to the sun. For instance, in North America, melanoma became the fifth

common cancer among males and the sixth common cancer among females, while the fourth

most common in Australia [41] [151] [137] [19] [143]. Moreover, according to reports from the

western world, melanoma is considered the seventh most common malignancy in women and

the sixth most common in men [148]. Nevertheless, it is also the most treatable type of skin

cancer if detected or diagnosed at an early stage [126]. With an early diagnosis, melanoma

can often be cured with a simple excision; thereby reducing the mortality rate.

Dermoscopy is one of the major tools used in the diagnosis of melanoma. It is widely used

by dermatologists due to its value in detecting melanoma in its early stages. It provides better

visualisation of several pigmented structures, such as streaks, dots, pigment networks and

blue-white areas, which are invisible to the naked eye [159] [142] [44] [5]. One or two features

1



Introduction: Chapter 1 Introduction

alone are not sufficient to identify the given lesion as melanoma. Thus, by using dermoscopy

images, dermatologists become more confident in distinguishing the types of lesions.

In melanoma detection, dermatologists adopt the ABCD rule to analyse four parameters

(Asymmetry, Border, Colors and Diameter), to diagnose melanoma at an early stage. In

addition, 7-point checklist criteria also used for the same purpose [41] [77] [125] [15].

In addition to the presence of hair and reflection in images, many melanoma borders

are often invisible or fuzzy, which makes visual identification very difficult for skin cancer

experts. Moreover, the interpretation of the images is time consuming and subjective, even

for trained dermatologists. Computer Aided Diagnosis (CAD) became essential to eliminate

all these issues and assist the specialists and physicians to interpret images clearly, and reach

the correct decision for their diagnosis. In addition, such systems reduce the time required for

diagnosis and increase the accuracy of the final results. CAD systems have been proposed by

many research groups to identify various structures in medical images. Depending on medical

knowledge, CAD systems try to mimic the performance of the dermatologists for determining

the given lesion as normal or abnormal skin [24] [19] [105] [134]. Integrating dermoscopy

techniques with CAD systems has become a crucial research field in recent years, since it

assists the physicians in obtaining meaningful information from images. Subsequently, these

can be used to identify melanoma correctly.

Although the use of several methods in melanoma disease diagnosis has been seen to

evolve swiftly in recent years, the evaluation of the region structures, such as region borders,

pigment network, dots/globules, and streaks, can be complicated and require more time and

attention. It has been considered that an accurate and efficient detection of these structures

can aid in early melanoma detection. Several segmentation approaches, based on the early

detection of melanoma fail to extract the whole and complete structures, due to the quality of

the images (noise, low contrast or intensity inhomogeneity). In addition, many methods are

source-dependent; in other words, they cannot perform well on images from different sources.

The pigment network and the region border are considered among the key dermoscopic

structures that refer to melanoma or non-melanoma disease. For instance, the presence of

pigment network structures on the pigmented regions is an unmistakable sign of the lesion’s
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origin, because its appearance is a reference to the existence of melanin in deep skin layers,

which is regarded as a hallmark of melanocytic nevi. In addition to the pigment network,

the asymmetry, border irregularity, colour and diameter structures can be obtained from the

region shape, which play a key role in melanoma diagnosis. Therefore, effective segmentation

of these significant structures can improve the productivity of dermatologists by reducing the

time required in the diagnosis process.

This study compiles different fields, such as image pre-processing, segmentation, feature

extraction, and classification, all of which make important contributions to the extraction of

the skin region structures and its classification. The focus of this thesis is to address issues in

the segmentation of the pigment network structures and skin border regions, and distinguish

skin lesion types, which include:

• Removal of reflection artifacts and hairs from images with no impact on pigment network

lines.

• Detection and segmentation of pigment network structures from dermoscopy images with

no restrictions on the sizes and shapes of it.

• Accurate segmentation of skin region boundaries over dermoscopy images without af-

fecting the region border.

• classification of skin lesion based on several extracted features.

The proposed approach could be used to support a non-invasive diagnosis technique in

modern dermatology for early detection of melanoma diseases and treatment evaluation.

1.2 Dermoscopy Image Analysis and Early Detection of Melanoma

Disease

It is important to highlight the main purpose of this research and gain some knowledge about

dermoscopy image analysis. Increasing the number of images to be examined and assisting

the expert dermatologists to obtain a more accurate diagnosis of melanoma, in addition to
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reducing examination time are the key motivation for the necessity of developing automated

image analysis tools. Doctors are compelled to perform the image analysis manually (visual

interpretation), which is extremely time consuming and tedious. Frequently, the outcomes of

dermoscopy image analysis are subjective and vulnerable to human error, which means the

accuracy of diagnosis depends on the experience of the dermatologists [85]. Therefore, the

need for reliable, robust and accurate computerised techniques is fundamental and necessary.

This can decrease the taken time for image examination and increase the accuracy of the final

diagnosis.

Early detection of melanoma disease has been shown to increase the probability of pa-

tients survival. Meanwhile, its mortality rate has also risen significantly, in cases where it

is not detected early. Malignant melanoma is always curable if identified and treated early.

Conversely, late diagnosis makes the disease difficult to cure and may lead to death, since it

is capable of advancing and spreading to other parts of the body. Melanoma is considered

the deadliest form of skin cancer. According to the report produced by the American Cancer

Society (ACS), about 10,130 fatalities and 76,380 new cases of melanomas are estimated to

be diagnosed in 2016, with incidences rising every year [107].

The principal challenge facing modern dermatology presently is to provide an effective

automated analysis tool, capable of performing early diagnosis of melanoma disease and re-

ducing the required time for the diagnostic process while maintaining a high standard of

accurate diagnosis.

1.3 Dermoscopic Image Structures Extraction

As explained previously, the morphology of the dermoscopic structures such as pigment net-

works and region borders are the key indicator of malignant melanoma diseases. Skin cancer

experts spend a great deal of time and energy for the purpose of evaluating these significant

structures. However, the image processing techniques, such as segmentation and classification,

can allow an automated analysis of dermoscopy images; consequently, only complicated images

are reviewed by dermatologists. Several segmentation and classification methods have been
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developed, including:

• Location and segmentation of pigment network structures.

• Location and segmentation of region boundary structures.

• Segmentation of other structure such as streaks and dots/globules.

• Classification of expected lesions as melanoma or not.

This work focuses on the segmentation of the pigment network structures with the delin-

eation of the region borders, and the classification of the given lesions. In recent years, many

algorithms have been published for the segmentation and the classification of these structures.

These algorithms segment the region of interest based on the pixel intensity, colour and tex-

ture, whereas classify the lesions depends on the shape and size. It is important to highlight

that most of these methods fail to provide full segmentation of the dermoscopic structures due

to the presence of imaging artifacts, such as hair, lightening reflection, low contrast between

the region of interest and the image background (healthy skin) and intensity inhomogeneity.

Furthermore, no accurate classification method works well for any image sources.

1.3.1 Challenges in Dermoscopic Image Structures Detection and Skin Le-

sion Classification

Various segmentation methods of pigment network and region border structures have been

implemented for the purpose of helping the expert dermatologists for obtaining an accu-

rate diagnosis of melanoma. These two structures are vital features in identifying melanoma

disease. For instance, the lesion border structure provides crucial information for accurate

diagnosis of melanoma. Many clinical features, such as asymmetry, border irregularity and

shape size, are calculated from the lesion border. In addition, the extraction of other signifi-

cant features such as globules, pigment networks and blue-white areas, critically depends on

the accuracy of border detection. However, an accurate segmentation of these dermoscopic

structures is a complex task for many reasons including the low contrast between the region

of interest and the background (smooth transition between the lesion and the surrounding
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healthy skin), the existence of noise in the image such as reflection artifacts, skin lines and

air bubbles, and the intensity inhomogeneity. In addition, the variation of skin lesion shapes,

sizes and colors. Moreover, the presence of hair causes a significant degradation in the perfor-

mance of the automated pigment network segmentation techniques, as well as lesion border

structures detection. In addition, extracting the desired features from images to provide an

accurate diagnosis of melanoma can be difficult due to the same issues described earlier, since

these artifacts often cause to occlude the targeted feature. Figure 1.1 shows many different

challenges of the pigment network and lesion border segmentation. The challenges mentioned

are summarised below:

• Poor contrast between the lesion and the surrounding healthy skin.

• Invisible or fuzzy lesion borders.

• Presence of several noises artifacts such as air bubbles, gel, skin lines, and lightening

reflection in images.

• The high degree of visual similarity between melanoma and non-melanoma lesions.

• Variegated coloring inside the lesion area.

• The overlapping between the hair and the pigment network lines.

• variation of lesion color, shapes, and sizes.

• Obtain images from multiple sources.

1.4 Thesis Aims

This work aims to provide accurate, robust, reliable and automated dermoscopic image analysis

technique, to allow for early detection of malignant melanoma disease
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Figure 1.1: Illustration of different challenges of lesion segmentation with pigment network detection: low
contrast and invisible lesion boundary (top left), variegated coloring (top right), presence of skin lines

(bottom left) and existence of hair with air bubbles (bottom right). (Source: [101]).
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1.5 Thesis Objectives

In particular, the specific objectives of the work described in this thesis are as follows:

• Develop a new method to reduce the noise from dermoscopic images without corrupting

image information, and produce images more suitable for further processing.

• Implement a new algorithm to extract the actual lesion boundaries in dermoscopic im-

ages.

• Develop an automatic algorithm for the detection of pigment network structures.

• Identify skin lesion types based on the presence or absence of the pigment network

structures.

• Develop a fully automatic approach for melanoma detection in dermoscopy images based

on a suitable number of features with an ideal process of extracting them.

1.6 Thesis Motivations

The specific motivations can be illustrated as follows:

• Melanoma is one of the most rapidly increasing cancers globally.

• It is the most dangerous form of human skin cancer.

• The mortality rate caused by melanoma has been increased significantly in the last

decades.

1.7 Contributions

Dermoscopic image analysis has been a research topic that influences a large number of medical

image analysis research groups worldwide. With the deployment of more sophisticated non-

invasive imaging tools (dermoscopy), many segmentation and classification algorithms have

been implemented to extract the structures of the pigmented regions, in order to obtain
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the amount of key information for the lesion, to assist in the classification process. These

techniques are used frequently to help dermatologists perform efficient and reliable skin cancer

disease assessment.

Dermoscopic structures segmentation techniques were applied on dermoscopic images to

extract several clinical features such as lesion boundaries, pigment networks, dots/globules,

and streaks. In attempting to apply these methods to real life, dermoscopic images, noise,

intensity inhomogeneity, algorithmic complexity, and many other imaging artifacts all became

key obstacles to be overcome in automated dermoscopy structures segmentation.

To address the above issues, the existing techniques require more robust image processing

operations, as well as the incorporation of some prior knowledge about different dermoscopy

structures. The focus was placed on noise estimation operations that were used to improve

the appearance of significant features in the image. A careful selection and combination of

processing techniques were conducted to allow complete extraction of the different dermoscopy

structures. This research incorporates some of the previous work in image segmentation

and classification, to guide the development of novel segmentation and classification methods

designed to provide and accurately extract the features from images, to identify the lesion

types correctly.

The work presented in this thesis provides the fundamental knowledge for segmenting the

significant structures of images, such as pigment network structures and regions borders, in

addition determining the lesions type, in order to allow complete use of the dermoscopy image

analysis tools to day-to-day work in modern dermatology.

The main contributions of this thesis are outlined below:

• Segmentation of lesions using FCM and MRF: The skin lesion boundary plays a vital

role in early detection of melanoma disease, since the ABCD-E rule is dependent on its

accurate segmentation. However, the primary drawback of the low and/or medium level

methods, such as threshold, edge-based, region-based, K-means and Fuzzy C-means, is

that they deal with pixels individually and only by their intensity values. Therefore,

they lack the capacity to model the overall appearance of a local neighbourhood region.

Also, the overlapping between the hair and the lesion boundaries could cause an in-
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correct detection of the lesion. In order to address this issue, the Gabor filter, image

sharpening, Sobel filter and image inpainting methods were implemented respectively

for the purpose of removing imaging noise. The Fuzzy C-means (FCM) was applied to

images to estimate the initial parameters for the Markov Random Field (MRF) method.

The primary objective of image segmentation using the MRF method is to minimise

the energy function or maximise the probability of pixel allocation to a cluster by using

Maximum a Posteriori (MAP). The pre-processed images gave the algorithm an ability

to delineate the lesion boundary properly.

• Segmentation of lesions using PSO and MRF: As aforementioned, the lesion borders

are considered one of the main key dermoscopic structures used in identifying malig-

nant melanoma disease at its early stage. Consequently, the actual lesions have to be

determined and extracted accurately. However, accurate segmentation of lesions is a

challenge as mentioned earlier (low contrast edges and intensity inhomogeneity). There-

fore, to handle this issue and segment the real lesion, we propose a combined method

using the Particle Swarm Optimization (PSO) and the MRF. The PSO algorithm is able

to generate a solution, and share it with the MRF approach to perform a local search

in each iteration. This gives the algorithm robustness since it provides the best solution

in each iteration and used the neighbors of every pixel to assign it again. Finding the

appropriate class of each pixel in the image was performed by integrating the PSO with

the MRF method.

• Pigment network detection: The main aim of detecting the pigment network structure in

dermoscopy images is to identify skin lesions type (melanoma or non-melanoma), since

it plays a vital role for early melanoma detection. However, imaging noise such as reflec-

tion artifacts and hairs cause significant degradation to the performance of automated

segmentation of it. Therefore, careful pre-processing experiments were conducted, to

define unique processing operation capable of decreasing the noise without corrupting

image information, as seen with many mathematical image processing operators. Conse-

quently, the directional Gabor filter, image sharpening, Sobel filter and image inpainting
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methods were carried out respectively, in order to detect and remove the hair from im-

ages. Applying Sobel filter on sharpened images was a new method, and it was able

to detect most of the hair correctly. Thus, enhancing the appearance of the pigment

network structure. Removing the majority of the hair from images and keeping the

image information allows a complete segmentation of the target structures. In terms of

pigment network detection, the directional Gabor filter was also applied with different

parameters from those used to detect the hairs. Finally, a connected component analysis

with adaptive threshold method was used to extract the large mesh of pigment network

lines.

• Sub-region feature extraction for lesion classification: To improve the quality of the ex-

isting diagnostic systems, a comprehensive approach was developed, including the whole

process of image enhancing, segmentation of lesions, feature extraction and lesion classi-

fication. Feature extraction seeks to train the classifier algorithm to classify the lesions

as melanoma or benign, as features are typically responsible for pattern recognition.

Too many irrelevant features complicate the classifier and require more computational

time, which simultaneously reduces the classification accuracy. To address this issue,

a robust technique for extracting several numbers of features is performed by applying

the K-means method to the segmented image (lesion), in order to separate each ho-

mogeneous set of pixels in one group (cluster). Therefore, the required features were

extracted at the sub-region (cluster) level. The features were then fed to an Artificial

Neural Network for final melanoma classification. The idea of separating image pixels

into homogeneous groups and extracting desired features was succeeded in describing

images properly. Our comprehensive method is capable of achieving high results in dis-

tinguishing given lesions without the need for user interaction. We believe that using

the proposed approach could reduce the time and the work required for conventional

supervised dermoscopy structures segmentation and classification.
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1.8 Thesis Outline

This section outlines the structure of this thesis, which comprises seven chapters, including

conclusions. Every chapter is an independent section of research in its own right. All chapters

follow the same format, which includes the introduction of the primary problem, demonstration

of the techniques used and the experimentation results. As with all traditional researches,

collectively the chapters provide an evolution of ideas, following a story regarding the use of

the CAD systems in modern dermatology. Figure 1.2 illustrates the structure of the main

chapters.

Chapter 2 provides general background information relevant to each chapter. It includes

the current imaging tools employed to capture the photographs of skin cancer and a brief in-

troduction to the dermoscopic image analysis. In addition, the chapter presents some previous

work, including skin cancer image segmentation and classification.

Chapters 3 and 4 will introduce the segmentation of the skin lesion area. Chapter 3

provides the lesion border segmentation using the Fuzzy C-means (FCM) and The Markov

Random Field (MRF) approaches for the purpose of extracting the actual lesion borders.

While Chapter 4 improves the lesion boundary extraction by combining The Particle Swarm

Optimization approach with the MRF method.

Chapter 5 will introduce the detection of the pigment network structure using directional

Gabor filter, image sharpening, Sobel filter and image inpainting method to remove most of

the hair, and enhance the lines of the pigment network, which is needed to be segmented.

Chapter 6 will introduce a comprehensive approach consists of image enhancement, seg-

mentation, feature extraction and classification, for the purpose of malignant melanoma iden-

tification. With respect to the feature extraction, we provide a different method for extracting

desired features from homogeneous clusters, by applying K-means approach on segmented

lesions.

Chapter 7 provides a conclusion of the work presented in this thesis, research limitations,

and highlights future research directions currently under investigation.
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Chapter 2

Background of Dermoscopy Images

and Literature Review

2.1 Introduction

Skin cancer is considered one of the most serious public health problems since it increases

significantly the mortality rate, especially if it is not detected early. With late diagnosis,

melanoma typically does not respond to treatment and can result in death. Thus, successful

treatment of melanoma is through performing a simple surgical procedure, is wholly reliant

on the early detection of the affected lesion area.

Since the early diagnosis of malignant melanoma significantly raises the survival rate of

the patients, non-invasive imaging tools, such as dermoscopy, have emerged and developed in

recent years. These tools assist the screening process and boost diagnostic accuracy. Der-

moscopy allows the examination of skin lesions at a higher magnification, which in turn leads

to provide more details of the morphological structures. This tool is capable to produce a bet-

ter visualization of several clinical features from the pigmented skin lesion, which are invisible

to the naked eye examination.

Several medical diagnosis methods are adopted, such as the 3-point checklist, the ABCDE

rule, 7-point checklist, Menzies method, and pattern analysis, in order to guide dermatologists
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in diagnosing melanoma skin cancer. Generally, the obtained clinical features must be as-

sessed by expert doctors using several dermoscopic criteria, such asymmetry, border, colours,

differential structures for the purpose of producing the final clinical diagnosis.

Several computer aided diagnosis (CAD) systems have been implemented and proposed by

many research groups to reduce the time required for diagnosis, assist the clinical evaluation

of dermoscopic structures, and increase the accuracy of the results. Depending on medical

knowledge, CAD systems try to mimic the performance of skin cancer experts for distinguish-

ing the pigmented skin lesion type. Overall, A CAD system has usually four stages, namely:

image pre-processing, region segmentation, feature extraction, and lesion classification. The

combination of CAD systems and dermoscopy techniques is capable to help and support the

doctors for obtaining an accurate and correct diagnosis of the disease.

This chapter is structured as follows: Section 2.2 provides an overview of dermoscopy. The

dataset description is presented in Section 2.3. Section 2.4 provides an overview of an image

segmentation and previous works. Previous works related to lesion segmentation are presented

in Section 2.5. Finally, Section 2.6 provides an overview of skin lesion classification methods

developed previously.

2.2 Dermoscopy

Dermoscopy is a non-invasive diagnostic technique used to check a variety of patterns and

clinical features in affected skin lesions that are invisible to the naked eye. These features are

very useful for the characterization of skin lesions type. Dermoscopy has several other names

such as Epiluminescence Light Microscopy (ELM), dermatoscopy or skin surface microscopy.

This technique is widely used by dermatologists due to its value in providing meaningful

clinical features from pigmented skin lesions. In particular, the technique consists of placing

water, oil, alcohol or gel on the surface of the affected area. Thus, the lesion is inspected using

a dermatoscope, a camera or a digital imaging system. Depending on the instrument used,

the magnication of a given lesion ranges from 6x to 40x and even up to 100x [70]. With the

magnication, several clinical structures become visible and can be used as an input in several
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Table 2.1: Different datasets used by researchers. SE-sensitivity and SP-specificity.

Classification Algorithm Reference SE SP Images/Melanomas
[123] 93.3% 93.8% 588/200

ANN [78] 85.9% 86.0% 1258/198
[104] 67.5% 80.5% 180/72
[125] 78.4% 95.7% 98/51

SVM [45] 92.0% 93.3% 564/88
[120] 72.4% 72.4% 358/134

AdaBoost [103] 92.0% 70.0% 152/42
[41] 90.0% 77.0% 655/511

procedures that are used by physicians to distinguish between different types of skin lesions

(melanocytic and non-melanocytic), as well as in the detection of melanomas. Examples of

dermoscopic criteria and more information about dermoscopic clinical structures are illustrated

in Appendix A.

2.3 Dataset Description

Most of the CAD systems are trained and tested using dermoscopic databases that are obtained

at one or more hospitals. Each researcher tends to use their own dataset, which differ in size,

number of melanomas, number of non- melanoma and acquisition setups. Table 2.1 illustrates

a number of previous works that used various datasets with a different number of images. For

instance, the authors in the work presented in [123] used their archive images, which include

about 4200 cases. While the work presented in [78] used data provided from Keio University

and Vienna University. Moreover, authors in [104] used a database of over 180 images, which

was validated by a survey of dermatologists in the CHUT (Centre hospitalier Universitaire de

Tlemcen, Algeria). On this basis, we observed that most of these datasets are not publicly

available. This led to the inability to make a direct comparison between approaches, which is

required to understand the value of each method

It is worth mentioning that many research groups use a large commercial dataset, which

usually comes with medical information, such as the diagnosis and the evaluation of lesions.
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Figure 2.1: Manual segmentation of pigmented skin lesion. Left: original dermoscopy image. Right: manual
segmentation mask(ground truth). (Source:[101])

The use of these datasets decreases the variability between systems, since they are trained

using approximately the same set of images. However, commercial databases can be expensive

and very difcult to acquire.

To the best of our knowledge, the first publicly available dataset of dermoscopic images is

PH2 dataset. it was released by the dermatology service of Hospital Pedro Hispano, Portugal

[101]. The dermoscopic images were acquired under the same situation through Tuebinger

Mole Analyzer system using a magnification of 20x. The images are 8-bit RGB colour com-

ponent with a resolution of 768 x 560 pixels. The dataset consists of 200 dermoscopic images,

including 80 common nevi, 80 atypical nevi, and 40 malignant melanomas. The database

also contains the manual segmentation of each image, which is represented as a binary mask.

The pixels with an intensity value of 1 correspond to the segmented lesion (foreground or

ROI), whereas pixels with a value of 0 correspond to the healthy skin (background). The

ground truth images are essential and significant, for the evaluation of the segmentation phase

of CAD systems. An example of a dermoscopic image with its ground truth mask (manual

segmentation) can be seen in Figure 2.1 .

The customised annotation tool (known as DerMAT) was used by dermatologists to per-

form the manual segmentation and annotation of the images [61] [101]. Figure 2.2 illustrates

an example of the manual segmentation of two lesions using the DerMAT software.
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Figure 2.2: Example of DerMAT interface for the delineation and labeling of multiple regions of interest in
the image. (Source:[101])

Furthermore, the dataset includes the evaluation of all images, which is significant for the

evaluation while performing the classification step of CAD systems. The evaluation of each

image performed by skin cancer experts followed the parameters below:

• Manual segmentation of the pigmented skin lesion, known as ground truth.

• Clinical diagnosis.

• Dermoscopic criteria (asymmetry, colors, pigment network, dots, globules, streaks, re-

gression areas and bluewhitish veil).

Recently, the International Skin Imaging Collaboration (ISIC) dermoscopic archive con-

tains over than 13,000 dermoscopic images, which were collected from leading clinical centers

internationally, and acquired from a difference devices [1]. Based on our knowledge, no pub-

lished works containing the whole images are available so far; therefore and due to the amount

of available information in the PH2 dataset, such as providing the ground truth, lesion type

and the information of presence or absence of relevant medical criteria, we have been moti-

vated to use it as a source to test and evaluate our approaches. Moreover, different researchers
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can acquire it and compare their results with those obtained using different methods. This

also encouraged us to use it since several works have been published already based on this

dataset; thus it also helped us perform the comparison. It is desired that PH2 can be used for

a fair comparison between different systems, which is why it is adopted in the work described

in this thesis.

2.4 An Overview of an Image Segmentation and Previous Works

Before reviewing previous works in dermoscopic images, clarification is required of the meaning

and significance of image segmentation process. This can be referred to as the partitioning

of an image into disjoint regions (groups) that are homogeneous with respect to a chosen

property such as luminance, texture, and color [44]. Segmented images capable to improve

image analysis by providing unobserved information (useful features) from original images.

In case of melanoma detection using dermoscopy images, the purpose of image segmentation

is to extract the affected region (lesion area) from the background (normal healthy skin).

Image lesion segmentation is a crucial stage as it allows the identification of various clinical

features, locally and globally. Moreover, the boundary of the segmented lesion provides useful

information for use in lesion analysis. Efficient lesion segmentation leads to desired feature

extraction, correct lesion classification and therefore accurate diagnosis. Consequently, the

final diagnostic results of melanoma disease depend largely on the performance of the lesion

segmentation stage [107].

According to the work presented by Celebi et al[44], the algorithms of image segmentation

techniques can be classified into the following categories:

• Histogram thresholding. These methods include the determination of one or more his-

togram threshold values that extract the objects (ROI) from the background [38] [39]

[96].

• Clustering. These methods involve the partitioning of a colour space into homogeneous

groups using unsupervised clustering approaches such as k-means and fuzzy c-means

methods [93] [100][42].
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• Edge-based. These methods include the detection of edges between various regions using

edge operators (Sobel and Canny edge detector).

• Region-based. These methods involve the clustering or grouping of image pixels into

homogeneous regions using region merging, region splitting, or both [149] [161].

• Morphological. These methods comprise the detection of object contours from predefined

seeds using the watershed transform.

• Model-based. These methods involve the modeling of images as random fields whose

parameters are determined using various optimization procedures.

• Active contours (snakes and their variants). These methods involve the detection of

object contours using curve evolution techniques.

• Soft computing. These methods involve the classification of pixels using soft-computing

techniques including neural networks, fuzzy logic, and evolutionary computation.

The segmentation of dermoscopic structures and the distinction between lesions type in

dermoscopic images are considered one of the challenging issues, due to the containing of

several artifacts such as uneven illumination or lightening reflection, hair, and presence of

noise. Furthermore, the low contrast between the lesion and its surrounding skin, and the

variegated colouring inside the affected lesion. Therefore, several methods attempted to apply

image processing techniques for different purposes, including image enhancement, pigmented

lesion segmentation, and lesion classification. In this thesis, we categorised the previous works

as skin lesion segmentation and skin lesion classification as presented in the following sections.

2.5 Previous Works Related to Lesion Segmentation

In dermoscopy image analysis, the morphology of the lesion boundaries (shape and size) in-

dicator for assessing the presence of melanoma disease. Therefore, numerous methods have

been proposed to perform the segmentation of the affected lesions over skin images, in order to

produce a new approach capable to support the dermatologists for the final clinical diagnosis.
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Hence, we review several different methods applied to skin cancer images as a way to extract

the affected lesion areas, using fully-automatic and semi-automatic algorithms.

A fully automated segmentation method is based on a threshold for dermoscopic images,

as described in Kruk et al[88]. The method uses histogram-based thresholding for all three

RGB colour components.

Celebi et al [43] presented a fusion based method to segment the accurate lesion boarders

in dermoscopic images. In their work, they applied several thresholding methods for a group

of images using a fusion of four algorithms, which includes Otsu’s algorithm [115], Kapur’s

algorithm [83], Huang’s algorithm [73], and Kittler’s algorithm [87].

Also, Humayun et al [74] proposed a multi threshold method, which divides the image

histogram iteratively into multiple classes by selecting the threshold values for each class,

based on intensity level using Otsu’s method.

In another method of lesion border detection, Abbas et al [8] presented an unsupervised

approach for multiple lesion segmentation using a modified region-based active contour (RACs)

[92]scheme. Iterative histogram thresholding was performed on luminance image to initialise

the level set automatically. Then a localised region-based active-contour model was applied to

the segmented lesions. Their method was able to segment the lesion border properly whether

the boundary lesion was clear, and had a good contrast with the normal skin (background).

However, it failed to detect the lesions that transition smoothly with the surrounding healthy

skin.

Abbas et al[7] proposed a new technique for lesion boarder delineation. Their method be-

gan with a pre-processing step where several artifacts are removed using homomorphic filtering

and weighted median filtering. Then, the least-squares method (LSM)[155] was performed to

obtain edge points. Therefore they utilised the dynamic programming(DP) [92] [78] technique

to locate the optimal boundary of the lesion.

Zhou et al [161] introduced a new mean shift [48] based gradient vector flow (GVF) [150] al-

gorithm that drives the internal/external energies towards the correct direction. they combined

a mean field term within the standard GVF objective function to perform the segmentation

process of skin lesions in dermoscopy images.
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Yukse et al. [156] proposed a method to extract the boundary of pigmented skin lesion from

healthy skin.The authors applied type-2 fuzzy logic technique for the purpose of determining

an automatic threshold value, which was used to classify the image pixels as foreground (lesion

area) and background (healthy skin).

Celebi et al. [59] presented a method to segment skin lesion in dermoscopy images through

statistical region merging method. The method is a technique developed to segment images

based on region growth and merging approaches.

An automatic iterative stochastic region-merging method was implemented by Wong et al

[149] to segment the affected skin lesions from macroscopic images. In terms of the algorithm

process and as an initial step, every single pixel in the image was assigned to a unique region,

then based on a region merging likelihood function, these regions were merged with other

regions in a stochastic manner. Therefore, the regions formed during the initial phase were

merged using the same stochastic region merging process to obtain the final image segmen-

tation of the skin lesions. This process continues refining the segmentation results until a

stopping criterion is met.

Based on clustering algorithms, which are grouping a set of homogeneous pixels in one

group, Lee and Chan [93] proposed a method based on fuzzy c-mean approach (FCM) by

using type-2 fuzzy set algorithm (Zadeh [157]), for the purpose of obtaining an optimum

threshold value, and delineating the cancerous boundaries from the skin images correctly.

They also utilised the 3D colour constancy algorithm to minimise the shadows and affects of

skin tone variations in images during the pre-processing phase.

Another approach based on fuzzy c-mean clustering and density-based clustering (DB-

SCAN) was applied to the segmentation of lesions from surrounding healthy skin on mobile

platforms Mendi et al [100].

The K-means method was also adopted by Castillejos et al. [42] as a clustering algorithm.

The authors presented a novel approach to segment and detect the border of the skin lesion

based on the wavelet transform for K-Means, Fuzzy C-Means and Cluster Preselection Fuzzy

C-Means methods.

Zhou et al. [160] proposed a new type of dynamic energy for the segmentation of pigmented
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skin lesions in dermoscopy images. The authors combined the classical gradient vector flow

(GVF) model with the mean shift method to improve the segmentation accuracy.

Threshold method was used by several researchers such as Alocon et al[12] and Pirnog

et al [118] for the purpose of extracting the lesion area from surrounding health skin, using

dermoscopic images. In the work presented by Pirnog et al [118], the RGB image was converted

into HSV representation, the image histogram of the saturation (S) image component was

computed. Therefore, the threshold value was determined and used to segment the image

into two parts: foreground, which was denoted by the lesion area, and background, which was

indicated the normal skin.

A new mean shift approach based on FCM method is proposed by Zhou et al [162] to

extract the pigmented skin lesions from normal healthy skin. It is more effective than the

FCM method and less computational time than the mean shift method.

Abbas et al [9] proposed a novel perceptually oriented approach for melanoma border

detection by combining region and edge-based segmentation techniques. In their method, the

RGB images were transformed to CIE L*a*b* color space, then lesion contrast was enhanced

by adjusting and mapping the intensity values of the lesion pixels in the specified range using

the three channels of CIE L*a*b*. Therefore, a hill-climbing method was adopted to detect the

region-of-interest (ROI) and an adaptive thresholding was applied to determine the optimal

lesion border.

Another novel unified approach was proposed by Abbas et al [10] for automatic lesion de-

tection. A pre-processing step was performed by normalised smoothing filter (NSF) to reduce

the background noise. Then, the mixture models technique was utilised to initially segment the

lesion area roughly. Afterwards, local entropy thresholding was performed to extract the lesion

candidate pixels. Finally, the authors applied the morphological reconstruction algorithms to

refine the lesion segmentation process.

A new approach for lesion segmentation is proposed by Pennisi et at [117]. Closing op-

eration is used to remove the hair and few outlier pixels. Subsequently, two segmentation

processes are implemented in parallel; thereby providing two different images. One image is

constructed by detecting the skin region, while the other is created by applying edge detected
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through Delaunay Triangulation. Finally, the authors combine these two images to extract

the final lesion area.

Bi et al [33] proposed a new automatic melanoma detection method for dermoscopic images

via multi-scale lesion-biased representation and joint reverse classification. They attempted

to represent the skin lesions using multiple of closely-related histograms derived from different

rotations and scales of the image.

After removing the hair and several reflection artifacts from images, the region-growing

method was implemented, for the purpose of extracting and segmenting the affected lesion

area Jaworek et al [81].

A novel automatic segmentation approach was proposed by Garnavi et al. [65]. The

authors used colour space analysis and clustering based on histogram thresholding to find

out the optimal colour channel. Therefore, the skin lesion segmentation was performed using

well-known Otsu’s thresholding method.

Fuzzy c-means (FCM) thresholding technique was used to classify image pixels into two

categories for the purpose of obtaining an accurate segmentation of the pigmented lesion [139].

An automatic adaptive threshold (AT) is used by Silveira et al [134]. With respect to

a segmentation step, the pixels whose intensity value were greater than the threshold were

classified as a region of interest (lesion), while the others pixels were classified as background

(healthy skin).

Hwang et al [75] used Gabor filters approach to extract several texture features form

dermoscopy images and applied the g-means clustering method [72]. The g-means approach

automatically determined the number of clusters and separated the given image into regions,

which are homogeneous in texture.

Dermoscopy image segmentation based on texture distinctiveness (TD) is proposed by

Jeffrey et al [69]. Their method attempted to capture the dissimilarity between different

texture distributions based on TD metric.

Barata et al [27] proposed two systems for melanoma detection in dermoscopy images. The

texture and colour features were used in accordance with local and global features. Histogram

computation, peak detection and threshold estimation were implemented to obtain an adaptive
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threshold and segment the pigmented skin lesion.

A new automated method based on the JSEG algorithm [54] was developed by Celebi et

al [45], and used for lesion border detection. The method was started by removing the noise

from images as a pre-processing step. Therefore, the lesion boundary was delineated based on

the calculation of three approaches including j-images, region-growing, and region merging.

For the purpose of refining the final segmentation results, the post-processing stage including

removal of the unwanted objects that belong to the background, elimination of the isolated

regions, and combining of the remaining regions was performed.

An adaptive filter inspired by Swarm Intelligence (SI) optimization algorithms was devel-

oped by Nowak et al[111], for the purpose of detecting pigment network structures. At the

beginning of filtration process, the filters (agents) are applied randomly to sections of the

image, where each adapts its output based on its neighbours. Agents share information with

other agents located in immediate vicinity. This is a new approach to the problem of der-

matoscopic structure detection, and the authors claim it is highly flexible, as it can be applied

to images without the need of previous pre-processing step. However, the method inherited

high computation complexity of the optimisation problems, which renders it very difficult to

develop and fine tune. For instance, processing one image can take up to 5 minutes depending

on the agent’s count, iterations and image size.

Recently, convolutional neural networks have been adopted for the purpose of increasing

the segmentation accuracy of medical images. Qi et al [119] applied a Fully Convolutional Neu-

ral Network (FCNN) with a pre-trained VGG 16-layer net [95], by replacing all fully connected

layers by convolution layers, with randomly initialized weights for skin lesion segmentation.

Their pre-trained network eliminated the need for a larger training data. In addition, stochas-

tic gradient descent was used for fine tuning the network.

Furthermore, based on deep learning approaches, a new method for accurate segmentation

of skin lesions was proposed by Jafari et al [80]. After the input image was pre-processed by

removing unwanted objects, the extraction of color and texture descriptors from images were

used to feed the deep Convolutional Neural Network (CNN) and outputting a label for each

image pixel. In line with this, the mask referred to as the region of interest (affected lesion)
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was extracted from its surrounding skin. As a final step, the mask was refined by applying

post processing operations.

Another approach based on the deep convolutional neural network for skin lesion detection

was proposed by Yuan e al[154]. Several effective training strategies were implemented to solve

the limited data problem during training a deep network. The segmentation performance of

the lesion boundaries was improved by the use of techniques such as adam optimization [84],

batch normalization [76], and Jacquard index [79] based loss function.

A novel computational method was presented by Oliveira et al [113] for extracting skin

lesion features from images based on asymmetry, border, colour and texture analysis, for

the purpose of determining skin lesions type. Their approach was based on an anisotropic

diffusion filter, an active contour model without edges and a support vector machine to reduce

the noise presented in images, segment the lesion borders and perform lesion classification

stage respectively.

2.6 Previous Methods Related to Skin Lesion Classification

In recent years, there has been an increasing interest in early detection of skin cancer using

CAD systems. Most of these diagnosis techniques are based on the ABCD rule and the 7-

point checklist criterion [49] [116] [18] [23] [46] [15]. This section introduces several different

methods used to differentiate between melanoma and non-melanoma lesions.

Colour distribution in the RGB colour components (mean RGB distance, maximum dis-

tance, and variance) was used by Seidenari et al[132] to distinguish between three types of

lesions including melanomas, atypical nevi, and clearly benign nevi.

Relative colour histogram analysis technique was also adopted by Stanley et al [141] to

evaluate pigmented skin lesion discrimination based on colour feature calculations in different

regions of the skin lesion in dermoscopy images. The purpose of this was to distinguish between

melanomas and benign or atypical nevi .

Sheha et al [133] presented an automated method for melanoma diagnosis using a set of

dermoscopy images. The authors extracted several features based on gray level Co-occurrence
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matrix (GLCM), and they used multilayer perceptron classifier (MLP) to classify between

Melanocytic Nevi and Malignant melanoma.

The system proposed by Iyatomi et al[78] is an Internet-based melanoma screening system

that uses different features to distinguish between lesions types. A total of 428 image-related

objective features with reference to the ABCD rule and differential structures of the lesions

are calculated and used as input to the neural network classifier.

Situ et al [135] presented a new method for melanoma detection using a bag-of-features

(BoF) approach. They represented each image as a set of several patches sampled from a 16

× 16 regular grid placed on the pigmented skin lesion. In order to describe each patch, they

used wavelets and Gabor-like [131] filters, leading to a total of 23 features. Therefore, two

different classifiers (naive Bayes and SVM) were applied and compared.

Sadeghi et al.[126] aim to detect the holes of the network. Three different stages were

implemented to detect the holes. First, a Laplacian of Gaussian (LoG) filter is used in order

to find meshes or cyclic structures. Second, an 8-connected components analysis is applied

to transform the filtered image to a set of graphs. Finally, a search is conducted for loops or

cyclic graphs. Then, the distance between the holes is measured and based on this distance a

new graph is created. This graph is used to detect the pigment network. The same research

group presented a new method for classifying between Absent, Typical and Atypical [127].

They detected the net structure and extracted structural, geometric, chromatic and texture

features, and used these features to train a boosting classifier.

Two different techniques structural and spectral are proposed by Betta et al.[31] They

started to combine these techniques to perform the detection of pigment network. Firstly, they

used structural techniques to search for simple shape structures, like lines or dots. Secondly,

the spectral technique is based on a Fourier analysis of the gray-level image. A sequence of Fast

Fourier Transform, high-pass filtering, Inverse Fast Fourier Transform and thresholding were

applied. Eventually, the mask from each technique is combined together to provide a network

image. This study has been updated and proposed by Di Leo et al[55]. They classified the

areas which constitute the network image as either atypical or typical, the existence of typical

pigment network or the absence of network are both included in the same class. Chromatic
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and spatial features such as mean and standard deviation related to the obtained structures

were extracted and used to train a decision tree algorithm.

Grana et al[71] Proposed an algorithm to undertake the detection of the pigment network.

They used Gaussian derivative kernel to detect the net edges and Fisher linear technique to

provide the optimal thresholds. Morphological masks are used to complete the line linking

process. However, the experiments which have been performed are not focused on the task of

distinguishing between pigment network and no pigment network.

Barata et al[25] proposed a new approach to extract pigment networks from dermoscopy

images using a bank of direction filters and many morphological operations. Two distinctive

properties: region pigment network intensity and geometry were used, and several features

were extracted. Next, an Adaboost algorithm was used to classify the given region as either

normal or abnormal.

Based on colour discrimination, Barata et al [26] proposed a method to evaluate the impor-

tance of color in the keypoint detection. They applied Harris Laplace detector method [106]

and its colour extensions to compare the performance of gray scale with that of colour sampling

methods. In every image, square patches were extracted from each interest point, and feature

vectors were created using two different types of features, SIFT feature [97] and color-SEFT

feature [144] as a patch descriptor. The authors applied the Bag-of-Features (BoF) model

[136] to equalise the number of extracted patches from all images. Thus, the decision rule was

computed using the k-Nearest Neighbor (kNN) classifier to identify melanoma lesions, and

quite promising results were obtained. However, using the square patches to extract features

from images requires more computational time and this could be expensive when the patch

size is large. Moreover, the authors used only 176 dermoscopy images from a total of 200

images.

Furthermore, a Bag-of-Features (BoF) model for the classification of melanoma in der-

moscopy images was implemented by Barata et al [24]. The authors used two different types

of local descriptors: colour and texture, and their performance was evaluated separately, and

then compared to assess their ability to describe the different dermoscopic features. The same

research group presented a new method to classify skin cancer images as either melanoma or
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non-melanoma [22]. Colour features and texture features were used based on colour histograms

in three different colour (HSV, L*a*b*, and Opponent) and gradient related histogram. All

used features were extracted globally and locally from each image. Therefore, the authors

investigated the best way to combine the features by applying two strategies (early and late

fusion). A Random Forests classifier yielded the best results.

Celebi et al [46] proposed a machine learning method for automated quantification of

clinically-significant colours in dermoscopy images. The K-means clustering approach was

used to cluster each image with an optimal K value, which was estimated separately using five

commonly used cluster validity criteria.

An automatic framework for detection of melanoma from dysplastic nevi was proposed

by Rastgoo et al [121]. They combined several extracted features such as colour, shape, size

and texture features with well-known texture features such as local binary pattern, grey-level

co-occurrence matrix, a histogram of gradients and the Gabor filter. Support Vector Machines

(SVM), gradient boosting and random forest methods were used to evaluate the performance

of their work.

A new methodology for color identification in dermoscopy images was introduced by Barata

et al [23]. The authors used the Gaussian mixtures model to learn a statistical model for five

colors (black, dark brown, light brown, blue-gray and white). Therefore, the learned mixtures

were used to assess the colors of a larger set of images.

Alfed et al [14] proposed a new method for melanoma diagnosis. They used a bank of

direction filters to segment pigment networks from images, then extracted a few features from

the segmented image and used Artificial Neural Network (ANN) as a classifier. The same

group introduced a new method for improving a bag-of-words approach by combining color

histogram features and first order moments with the Histogram of Oriented Gradients (HOG)

[13]. Three classifiers methods were used in their work K-Nearest Neighbors (KNN), SVM

and AdaBoost, where the SVM achieved the best results.

The detection of melanoma lesions in dermoscopy images was addressed by Marques et al

[99]. The authors used two types of features to represent the image including color and texture

features. The colour features consist of an information obtained from a number of colors

29



Literature Review: Chapter 2 Introduction

(L*a*b) and its distribution in the pigmented skin lesion. While the texture features contain

information about the differential dermoscopic structures such as dots, globules, streaks, and

pigment network which are appeared in the lesion. The multiple region approaches was applied

to obtained two boarder regions close to the boundary (inner region and boarder region).

Therefore, the colour and texture histograms were computed for the two regions separately,

and their outcomes were concentrated to obtain an extended feature vector to represent the

image. A classifier was trained and detected melanoma lesions with high sensitivity. However,

not all dataset images were used to perform the experiments; indeed, the authors selected only

163 cases from a total of 200 images.

Riaz et al [122] also used the color distribution in the skin lesions and the texture as

fundamental visual characteristics to represent the image. In terms of texture features, the

scale adaptive patterns were extracted at each pixel in the image using the strength of the Local

Binary Pattern (LBP) [112], followed by constructing a histogram. The standard histogram

of the HSV colour space was applied, in order to acquire a colour feature vector. To be able

to represent the image, the extracted features (color and texture) were combined to form a

feature vector for an image. The differentiation between melanoma and non-melanoma lesions

was performed by applying the support vector machines as a classifier algorithm.

Four colour constancy algorithms including GrayWorld [35], max-RGB [91], Shades of

Gray [62], and General Gray World [145] were investigated by Barata et al [21], based on

the assumption of correcting the colour variation using the colour constancy algorithm [68]

to identify melanoma lesions using multisource skin images. The normalisation of the RGB

color component was performed using the four mentioned algorithms for the purpose of esti-

mating the color of the illuminant. The authors used SIFT features [97] algorithm to extract

several local features from each patch in the image. Therefore, five different BoF systems

were trained and tested, including one that refers to the non-normalised image (original) and

four indicating normalised images, using the k-means approach to create visual words, and

the SVM method to classify the histogram of visual words. The obtained results from the

Shades of Gray algorithm were higher than those from the non-normalised images. However,

The manual segmentation (ground truth images) performed by the dermatologist was used to
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prevent an incorrect segmentation of the pigmented region, and increase the accuracy of lesion

classification.

A novel computational method was presented by Oliveira et al [113] for extracting skin

lesion features from images based on asymmetry, border, colour and texture analysis, for

the purpose of determining skin lesions type. Their approach was based on an anisotropic

diffusion filter [28], an active contour model without edges [47] and a support vector machine

[37] to reduce the noise presented in images, segment the lesion borders and perform lesion

classification stage respectively.

Another work presented by Yu et al [153] adopted residual learning techniques to train

deep neural networks. Thus, they designed a Fully Convolutional Residual Network (FCRN)

comprising more than 50 layers for both the segmentation and the classification phases to

obtain an accurate skin lesion recognition. They combined their proposed FCRN (used for

segmentation) and other very deep residual networks (used for classification) to form a two-

stage framework. This framework enabled the classification network to extract more specific

and representative features based on segmented results instead of the whole images. The

support vector machine (SVM) and the Softmax classifiers were used to obtain two predictions

of the lesions and their average was performed to acquire the final results.

Yang et al [152] also presented a new approach to perform the segmentation and the

classification of the given skin lesions, by using a multi-task deep neural network. Their

network consisted of three components for the robust analysis of the skin dataset including

segmentation of the lesion boundaries, categorization of dermoscopic data into melanoma or

non-melanoma, and detection of features to categorize the lesions into melanoma or non-

melanoma.

To improve the quality of existing diagnostic systems, provide meaningful information such

as actual lesions boundaries, and assist clinicians who are not fully experienced in dermoscopy

images observation, and make a right decision for final disease diagnosis in less time, we propose

four main methods for increasing the accuracy of lesion segmentation and classification. The

process related for each method is presented in one chapter of the next four chapters.
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Chapter 3

Segmentation of Pigmented Regions

in Dermoscopy Images

3.1 Introduction

Correct segmentation of the lesion area in dermoscopy images is fundamental and essential

for increasing the effectiveness of the subsequent stages, such as feature extraction and lesion

classification, because it strongly affects their results. Segmented lesions allow dermatologists

to perform large population vision screening exams for the early detection of melanoma diseases

and treatment evaluation. An accurate segmentation of the pigmented regions plays a vital

role in identifying melanoma disease properly. It derives border structure information, such

as asymmetry, diameter and border irregularity of the lesion area, which are essential in

melanoma diagnosis. Moreover, important features such as globules, blue-white areas and

atypical pigment network, can be extracted only when high accuracy detection of the lesion

border is achieved [60]. Consequently, lesion segmentation phase is the most critical step

in identifying melanoma at an early stage. However, lesion border detection in dermoscopy

images is a challenging task, since the presence of noise such as air bubbles, reflections, skin

lines and hairs in the images cause huge errors in the segmentation. In addition to the noise,

the intensity inhomogeneity and the low contrast of the lesion borders cause a significant
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degradation to the performance of automated skin segmentation techniques. The intensity

inhomogeneity of dermoscopy images is attributed generally to the acquisition of the image

under different situations of illumination. Thus, a robust and reliable automated method for

skin region detection is essential in computer-aided diagnosis.

This chapter presents a new automatic method for removing the noise and detecting the

affected lesions on dermoscopic images. In the first method, the image is pre-processed for

the purpose of removing an unwanted object (noise) and enhancing its quality. Moreover, it

facilitates the segmentation process and enhances the accuracy of the final results. The method

is based on applying four approaches to remove most of the noise from images. A sample

threshold is used to detect the lighting reflection, and the Gabor filters using a bank of 64

directional filters with image sharpening and Sobel filter are implemented to detect and extract

the hair. Image inpainting is curried out to fill in the unknown regions by replacing their

pixels. In terms of the second method and for the purpose of delineating the affected lesion,

the Fuzzy C-Means (FCM) is implemented, in order to provide the mean and the variance of

each cluster, which can be used as initial parameters for the Markov Random Field (MRF)

approach. The MRF classify the image pixels as either skin lesion (foreground) or healthy skin

(background) based on the minimum cost of the energy function. The process repeated labeling

the pixels to the clusters based on the highest probability (minimize the energy function),

until stopping criteria are met. As a final step, a morphological operation is performed,

for the purpose of filling in the holes inside the segmented region. Upon comparison, the

proposed method provided good performance in achieving automatic image segmentation over

dermoscopy images. This chapter is structured as follows: Section 3.2 provides an overview

of the FCM and MRF methods. The proposed method in details is presented in Section

3.3. Section 3.4 illustrates the results and discussions. Finally, a summary of the chapter is

presented in Section 3.5.
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3.2 Overview of the FCM and MRF Methods

3.2.1 The FCM Method

The basic idea of the FCM method is to find the centre of each cluster iteratively by adjusting

their position, and evaluating an objective function [42]. This process is more flexible, since

partial membership can be introduced to other clusters. The method optimises the process

by minimising the cost function.

F =
N∑
J=1

c∑
i=1

umij ‖ xj − vi ‖2

where N number of pixels, c number of clusters, uij refers to the degree of membership of

pixel xj in the ith cluster, vi represent the cluster centre, and m indicates the fuzzifier. The

membership function and cluster centre are iteratively updated by:

uij = 1∑c
k−1( ‖xj−vi‖‖xj−vk‖)2/(m−1)

vi =
∑N
j=1 u

m
ijxj∑N

j=1 u
m
ij

3.2.2 The MRF Method

The MRF method is a statistical model, but can be used for segmentation methods, it was

introduced in image analysis by Geman and Geman [66]. MRF theory provides a tool for

modelling a vision problem within the Bayes framework using spatial continuity. The image

pixels are indexed by a rectangular patch S and each image pixel s is characterised by the

grey level ys from the set y = ys : s ∈ S. The labelling process consists of accurately labelling

each image pixel s ∈ S with a class label representing the pattern class in the image. A label

set is defined asΛ = 1, 2, ..C where C is the number of classes. A labelling is indicated by

x = xs : xs ∈ Λ, s ∈ S where xs = l denotes that the class label l is assigned to the pixel s.

The goal is to discover the labelling x̂ of the image, which is the estimation of the true but
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unknown labelling x∗. According to the MAP estimate [66], we have

x̂ = argmaxP (x|y)

According to Bayes’ theorem we have

P (x|y) = P (y|x)P (x)
P (y)

where P (x) is the prior density of the labelling x and P (y|x) is the conditional probability

density of the image y. The prior probability of the image P (y) is independent of the labeling

x; therefore, it is rewritten as follows:

x̂ = argmax{P (y|x).P (x)}

The Gaussian distribution is used with the assumption of the existence of Gaussian noise in

images. Therefore, the possibility of pixel s with the assumption of belonging to class xs is

equal to ys and can be calculated as follows:

P (ys|xs) = 1√
2πσ2

xs

exp{−(ys − µxs)2

2σ2
xs

}

Based on the conditional independence assumption of y, the conditional density P (y|x) takes

the form of

P (y|x) =
∏
s∈S

P (ys|xs)

Therefore, P (y|x) can be written as follows.

P (y|x) =
∏
s∈S

[ 1√
2π

exp(−(ys − µxs)2

2σ2
xs

− log(σxs))]

This can be written as

P (y|x) = 1
(2π) s

2
exp[−

∑
s∈S

((ys − µxs)2

2σ2
xs

+ log(σxs))] (3.2.1)
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where µxs and σxs indicate the mean and variance of the class xs respectively.

The previous model is based on 2D MRF and assumes that the adjacent pixels have the

same class label. The Hammersley-Clifford theorem [30] establishes a relation between the

MRF and Gibbs distribution. According to this theorem, the previous model P (x) is given by

a Gibbs distribution with respect to the neighbourhood system N, and it takes the form of

P (x) = 1
Z

exp[−
∑
c∈C

Vc(x)] (3.2.2)

where Z is the normalisation constant or partition function, Vc(x) is the potential function for

clique c and C is the set of all cliques in the image. According to the equations (3.2.1) and

(3.2.2), we can rewrite the posterior probability as:

P (x|y) =∝ exp[−U(x)]

where the energy function U(x) has the form

U(x) = [
∑
s∈S

(ys − µxs)2

2σ2
xs

+
∑
s∈S

log(σxs) +
∑
c∈C

Vc(x)] (3.2.3)

3.3 Proposed Method

The proposed approach is divided into two steps, image pre-processing and segmentation. The

pre-processing stage includes reflection artifact, hairs detection and removal. The Directional

Gabor filters, image sharpening, Sobel filter with image inpainting methods are implemented

to extract most of the hair, and a threshold algorithm is performed to detect reflection artifact

from images. While the segmentation step includes applying the FCM method on dermoscopy

images in order to get two benefits: estimate the initial parameters and segment the lesion

area, then implementing the MRF method based on the previous parameters. The MRF

iterate assigning each pixel to a cluster based on minimising the energy function, until there

are no more changes to the label. Therefore, the segmented image is refined by applying a

morphological operation. The scheme of lesion detection is illustrated in Figure 3.1, and full
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Figure 3.1: Diagram of melanoma detection system.

details are provided in the following section.

3.3.1 Dermoscopic Image Pre-processing

The purpose of image pre-processing is to improve the image data by removing unwanted

distortions from the image or enhancing image features, which can be used as input to other

image processing techniques. Pre-processing is an important step in medical image analysis,

in order to avoid the negative effect of noise in extracting the object. It also facilitates the

segmentation and the classification processes. Typically, dermoscopic images do not have the

expected quality to perform the diagnostic analysis. Thus, the step of image pre-processing

is very important and necessary, in order to reduce the number of artifacts and noise from

images. Dark hair, skin lines, oil, air bubbles and lightening reflection caused by placing gel

or oil before capturing the image are present in almost every image (see Figure 3.2), which in

turn affects the segmentation step; thereby leading to the wrong diagnosis of the disease. Our

process of image enhancement involves two key operations: hairs, reflection artifact detection

and removal. According to [134], the blue channel of the colour images is selected, as it has

been proven experimentally to provide the best discrimination in most dermoscopy images.

3.3.1.1 Reflection Detection

Reflection artifacts and air bubbles appear like noise in dermoscopy images due to the place-

ment of oil or gel on the lesion area before capturing the image (see Figure 3.2). A simple
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Figure 3.2: Examples of two dermoscopic images show different types of noise. Left: presence of hairs. Right:
presence of gel and reflection artifacts. (Source:[101])

threshold algorithm is applied to detect this type of noise. Every pixel (x, y) can be detected

and classified as a reflection artifact if its intensity value is higher than threshold TR1 and if

its intensity value minus the average intensity Iavg(x, y) of its surrounding neighbourhood is

higher than threshold TR2, i.e.

{I(x, y) > TR1}and{(I(x, y)− Iavq(x, y)) > TR2}.

where I is the image, Iavg(x, y) is the average intensity value in a local neighbourhood of

the selected pixel, which is computed using a local mean filter with dimensions 11x11 and

TR1=0.7, TR2=0.098. An example of lightning reflection detection is illustrated in Figure 3.3.

3.3.1.2 Hair Detection

Most of the dermoscopic images contain hairs, which could subsequently affect the outer

borders of the lesion area during the segmentation step, since their shapes are largely similar.

Thus, this leads to the wrong detection of the lesion or make the borders invisible. Based on

our knowledge, median filter, adaptive threshold and morphological operations such as Top

Hat filter (Opening and Closing image) were widely used for this purpose [41] [125] [65] [139].

In our approach and with the purpose of enhancing the image quality, the Directional

Gabor filters are implemented to extract hair artifacts from dermoscopic images. However,

the parameters used in the Gaussian filters at each stage are different [25]. A bank of 64
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Figure 3.3: Two examples illustrate the reflection artifact detection. original image (Source:[101])(first
column) and reflection detection masks (second column).
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directional filters has been used to perform hair detection. Let

hθi(x, y) = G1(x, y)−G2(x, y). (3.3.1)

be the impulse of a directional filter with angle θi where θi ∈ [0,π] , i=0· · · 64 and Gk is a

Gaussian filter:

GK(x, y) = CK exp{− x′2

2σ2
xk

− y′2

2σ2
yk

}, k = 1, 2. (3.3.2)

The difference between two consecutive filters θi and θi+1 is constant and equal to π
N .

Therefore, N + 1 filter are used. In (3.3.2), CK is a normalization constant and the values of

(x′, y′) are dependent on or related with (x, y) by a rotation of amplitude θi.

x′ = x cos θi + y sin θi.

y′ = y cos θi − x sin θi.

Parameters value have been obtained experimentally and set as: σx1 =20, σy1=6, σx2=20 and

σy2=0.5. The size of the mask filter is 41 x 41. The difference of Gaussians in Equation (3.3.1)

is used because it ensures greater enhancement of directional structures while removing the

background effect. The image I is filtered by each directional filter. The output of the ith

directional filter is given by the following convolution:

Ii(x, y) = hθi(x, y) ∗ I(x, y).

After filtering the image by each directional filter, the combination of the output of N + 1

directional filters are estimated, and the maximum output at each pixel (x, y) is selected

according to the following equation:

J(x, y) = maxi∈{1,2,..N+1}(Ii(x, y)).

where J is the final image obtained from Gabor filter, this image contains both: hairs and
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pigment network lines, since their shapes are very similar.

Adjusting the threshold is tricky. Therefore, we used a different approach than that used

by Barata et al[25], in order to be able to extract vast majority of the hair from images without

extraction the lines of pigment network. Image sharpening is applied to the outcome image

from Gabor filter, to increase the contrast between different colours, and sharpen the transition

from black to white, where all edges become sharp. Then, we compute the gradient vector at

each point in the sharpened image using Sobel masks. A pair of 3×3 convolution kernels are

used to respond maximally to edges running vertically (Gx) and horizontally (Gy) relative to

the pixel grid, one kernel for each of the two perpendicular orientations. The kernels were

applied separately to the sharpened image, in order to produce separate measurements of the

gradient component in each orientation (Gx) and Gy). Then we combined them together to

find the absolute magnitude of the gradient at each point using the following equation.

|G| =
√

(Gx2 +Gy2)

Sobel filter is applied to the sharpened image with a threshold of 0.0145. This process

ignores all edges that are weaker than the threshold value, and detects the remaining edges

as hair. Thus, most of the hair is detected and classified as a noise. Figure 3.4 illustrates the

hair detection results by applying the proposed approach algorithm.

It is possible that the algorithm performs well in terms of hair detection and achieves

reasonable results. However, it failed to identify small hairs in few cases, as illustrated in

Figure 3.5. This is because the hair is quite thin and difficult to detect. In addition, in many

cases, the hair tends to be grey in colour; thereby rendering it more challenging to identify,

especially if present in low contrast images.

The outcomes of the previous steps are two binary masks for each image: one indicates

the reflection artifacts mask, and the other refers to the hair. The OR gate is used to match

these two masks, in order to obtain one mask for each image. Therefore, the morphological

operation such as dilation is implemented with a disk of radius r, which was empirically chosen

to be 3. The reason of that was to allow a simple dilation of hair lines, as well as guaranteeing
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Figure 3.4: Two examples show the hair detection stage. original image (Source:[101])(first column) and hair
detection masks (second column).

Figure 3.5: Example refers to the fail hair detection. Left: original image (Source:[101]). Right: presence of
thin hair in cleaned (pre-processed) image.
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the majority of the hair is removed from images. This step will increase the accuracy of hair

removed and increase the performance of the image inpainting stage in the next step.

3.3.1.3 Image Inpainting

Image inpainting is a technique that provides a means for reconstruction of damaged area

from the image, or fills its missing regions. Thus, it works by removing undesirable objects

from images by using their surrounding information. [29]. Most of the inpainting techniques

works as:

• Select the regions that will be inpainted (usually manually).

• Propagate the colour information inward from region borders (known regions are used

to fill in the unknown area.)

Based on the concept of image inpainting technique, we could use it as an approach to

perform hair removal in dermoscopy images. After the reflection artifacts and hair are detected

and dilated, their binary masks are multiplied and matched with the original images. This step

leads to the appearance of gaps, which indicate the unknown regions in the images. As can

be seen in Figure 3.6, the unknown regions are brighter than their surroundings. Therefore,

these regions could be filled by propagating the information from surrounding neighbourhood

(known regions). In each image, the brighter pixels (unknown regions) are replaced by a new

value obtained from its neighbours. Patch priorities (data term and confidence term) are

computed in the borders of the unknown regions based on their neighbours. The patch with

the highest priority is filled out with data extracted from the source region, and then the patch

priorities are updated. This process continues until no more gaps exist [52]. Patch priority

P (p) is defined as the product of two terms:

P (p) = C(p)D(p)
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Figure 3.6: Two examples indicate the appearance of the gaps in the images. The pixels value of the hair,
lightening reflection and gel were replaced with 255 based on their masks.

where C(p) call the confidence term and D(p) the data term, and they are defined as follows:

C(p) =
Σq∈Ψp

⋂
Ω̄C(q)

|Ψp|
, D(p) =

|∇I⊥
p
.np|

α

where |Ψp| is the area of Ψp , α is a normalisation factor (e.g., α = 255 for a grey level image),

δΩ is a target region border, and np is a unit vector orthogonal to the front δΩ in p point

(perpendicular). The priority of every border patch is computed with distinct patches for each

pixel on the boundary of the target lesion. More details of the inpainting method are provided

in Appendix B.

Three examples are illustrated in Figure.3.7. It can observed that the inpainting method

can remove the hair by replacing its pixel value with the new colour value obtained from its

neighbours. The final images obtained are clean and will be used in the subsequent step.

3.3.2 Skin Lesion Segmentation

The segmentation stage is one of the most important and challenging steps in image process-

ing. It must be fast and accurate, because the subsequent steps such as feature extraction

and classification are largely dependent on its performance. As mentioned previously, seg-

mentation process for dermoscopy images is extremely difficult, due to the existence of several

factors such as the low contrast between the lesion and the healthy skin, variance of colours
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Figure 3.7: Examples of applying inpainting process: original dermoscopic images (Source:[101]) (first row)
and inpainted image (second row)

inside the pigmented region and other artifacts. However, it is very helpful to dermatologists

because information can be acquired, such as asymmetry, border irregularity, colour and di-

ameter, which play an essential role in melanoma diagnosis. Therefore, by applying a suitable

segmentation method to delineate the whole lesion areas from images will be of great benefit

in the diagnostic process. Accordingly, the FCM and the MRF were incorporated to perform

the final segmentation of all images.

The FCM method is used to initiate the segmentation process. The pixels of an input

image is divided into two clusters: cancerous pixels as the foreground (ROI) and normal skin

pixels as the background. The major drawback with the FCM method is that it address

pixels individually only by their intensity values; thus, it lacks the capacity to model the

overall appearance of a local neighbourhood region. The MRF method is implemented to

refine the previous segmentation of the image to address this issue. The main goal of the

image segmentation using the MRF method is to minimise the energy function or maximise

the probability of pixel allocation to a cluster by using Maximum A Post Priority (MAP)

equation (3.2.2). The iterated conditional modes (ICM) method is performed to minimise the

energy function. In our work, we assume that one pixel has 8-neighbours. Then, the clique
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Figure 3.8: Examples of fill in the holes inside the segmented lesion in dermoscopy images: pre-processed
image (first column), holes inside the segmented lesion (second column) and final segmented lesion (third

column).

potential is defined on pairs of neighbouring pixels:

Vc(xi, xj) = (1− ixi,xj)

where ixi,xj = 0 if xi 6= xj and 1 if xi = xj.

We obtained the mean and the variance, which can be used as initial parameters for the

MRF method to refine the image segmentation. The MRF method is then iterated as follows.

Each pixel is assigned to a cluster based on the highest probability P (y|x) using equation

(3.2.1). A calculation is then made of the previous probability using equation (3.2.2). All

pixels will be assigned again to different classes by obtaining the minimum cost, equation

(3.2.3). This process continues until there is no further change between clusters.

Typically, many parts belonging to the region of interest (lesion area) are classified as back-

ground (healthy skin), as indicated in Figure 3.8, which appear as holes inside the segmented

lesion. This, subsequently, led to under-segmentation. Therefore, to address this issue and

obtain a clear segmentation of the complete regions, a morphological operation such as filling,

which is a Matlab function, was used to fill in these small holes [138]. This process allowed

the missing pixels of the detected lesion area to be filled in. Moreover, the segmented lesion

appeared as one connected region, as presented in 3.8.
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3.4 Results and Discussions

The proposed approach was tested on the PH2 dataset [101] which provides 200 RGB dermo-

scopic images. The images are divided into benign lesions (80 common mole and 80 atypical

nevi) and malignant lesions (40 melanoma images). Manually segmented images were also

available and used as ground truth. Four different criteria are used to evaluate the perfor-

mance of our proposed method; namely, sensitivity (SE), specificity (SP), accuracy (AC) and

dice similarity coefficient (DSC) [90]. These measurements criteria are used widely in the

literature to measure the performance of skin lesion segmentation and they are defined as:

SE = TP

(TP + FN)

SP = TN

(TN + FP )

AC = (TP + FN)
(TN + TP + FN + FP )

where TP, TN, FP and FN indicate to true positive, true negative, false positive and false

negative respectively. TP represents the number of pixels which are part of the lesion that

classified correctly by both the system and the expert dermatologists. TN represents the

number of pixels which are part of the background skin that classified correctly by both the

system and the expert dermatologists. FP represents the number of pixels which are classified

as a part of the lesion by the system but labelled as a part of the background by the expert.

Finally, FN represents the number of pixels which are classified as a part of the background

by the system but labelled as a part of the lesion by the dermatologists.

With respect to the dice similarity coefficient (DSC), it is defined as a measure of overlap

between the true and the estimated classes, and can be calculated by the following formulation:

DSC = 2 (PPVi ∗ TP )
(PPVi + TP )

where PPVi indicates the Positive Predictive Value and can be calculated using the following
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equation:

PPVi = TP

(TP + FP )

Segmentation of skin cancer was conducted using the FCM and the proposed method.

Therefore, a comparison of these methods was undertaken with the lesions obtained by an

expert dermatologist, in order to evaluate the performance of the proposed method. Figure

3.9 illustrates the results of the manual segmentation by expert dermatologists together with

the results of two methods. In general, the proposed approach has the best performance in

terms of the accuracy. For instance, in the second row, the FCM method did not detect the

whole lesion area, which leads to misclassification. In addition, the edges of the test images

are not close to the real boundaries of the lesions, which means part of the lesion was classified

as background. Images in the third row show the results obtained by our method. We can

observe that the obtained edges are closer to the boundaries of the skin lesions and their shape

is similar to that of the ground truth (first row) compared with the previous method.

Although the quantitative comparison between various methods is difficult because differ-

ent datasets and criteria have been used. In addition to the visual observations, we were able

to perform the quantitative evaluation by comparing the performance of our method against

selection of six well-known segmentation methods; namely, FCM [32], J-image segmentation

(JSEG) [54], Statistical Region Merging (SRM) [110], Otsu [114], Level Set [51] and the Auto-

matic Skin Lesion Method (ASLM) [117], which have been already considered for dermoscopy

image segmentation, as they have used the same dataset and evaluation criteria. The exper-

imental results of the total dermoscopy images are presented in Table 3.1. The performance

results of J-image segmentation (JSEG) [54], Statistical Region Merging (SRM) [110], Otsu

[114], Level Set [51] and an Automatic Skin Lesion Method (ASLM) [117] were generated from

their original manuscripts, while the performance results of FCM [32] was obtained by our

implementation. The performance of the dierent methods was generated using all 200 dermo-

scopic images. Our proposed method has the highest average sensitivity = 0.9320, specificity

= 0.9800, accuracy = 0.9400 and with an average dice similarity coefficient of = 0.9105, it out-
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Figure 3.9: Results of lesion segmentation in dermoscopic images: lesion delineation derived from ground
truth (first row), results derived from applying the FCM (second row) and the proposed method outcomes

(third row).
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Table 3.1: Segmentation performance on the complete dataset. SE-sensitivity, SP-specificity, AC-accuracy
and DSC-Dice similarity coefficient.

Method SE SP AC DSC
FCM [32] 0.8800 0.9510 0.9200 0.9040
JSEG [54] 0.7108 0.9714 0.8947 0.7554
SRM [110] 0.1035 0.8757 0.6766 0.1218
Otsu [114] 0.5221 0.7064 0.6518 0.4293
Level Set [51] 0.7188 0.8003 0.7842 0.6456
ASLM [117] 0.8024 0.9722 0.8966 0.8257
Proposed Method 0.9320 0.9800 0.9400 0.9105

performs all other methods in terms of all evaluation metrics. For example and in comparison

with the results obtained by applying the FCM, the sensitivity increases form 0.8800 to 0.9320,

the specificity raises from 0.9510 to 0.9800, the accuracy increases from 0.9200 to 0.9400 and

the dice similarity coefficient becomes 0.9105 as opposed to 0.9040. We have observed that

the same increases can be produced if the comparison with the JSEG or the ASLM methods

was performed, since their results are quite close to the FCM’s results. Thus, we can say that

the method performed well and achieved promising results in segmenting the affected lesion

areas.

As mentioned above, the images are assigned according to their medical diagnosis, Thus,

we performed a finer analysis by implementing the validation of the three diagnostic classes

(common moles, atypical nevi and melanomas) separately. Table 3.2 illustrates the exper-

imental results of 80 common mole images only. It can be seen that, for our method, the

sensitivity raises from 0.9320 to 0.9531, the accuracy increases form 0.9400 to 0.9680. and the

dice similarity coefficient raises from 0.9105 to 0.9242. In terms of the accuracy, the proposed

method results is higher than the performance results of FCM [32], JSEG [54], SRM [110],

Otsu [114], Level Set [51] and ASLM [117] methods, it increases approximately 0.10%, 3.30%,

33.51%, 40.06%, 21.06% and 2.14% respectively. We also observed that the specificity ratio

of our method is slightly less than the one obtained by the FCM [32] method; meanwhile, the

sensitivity is the highest compared with the alternative methods that, in turn, refer to the

segmented lesions. An overall of the proposed results, the performance of the method is still
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Table 3.2: Segmentation performance on 80 common healthy images. SE-sensitivity, SP-specificity,
AC-accuracy and DSC-Dice similarity coefficient.

Method SE SP AC DSC
FCM [32] 0.9182 0.9835 0.9670 0.9083
JSEG [54] 0.6977 0.9783 0.9370 0.7265
SRM [110] 0.0751 0.9332 0.7250 0.0611
Otsu [114] 0.4777 0.7832 0.6911 0.3658
Level Set [51] 0.7069 0.8262 0.7996 0.5856
ASLM [117] 0.8717 0.9760 0.9477 0.8690
Proposed Method 0.9531 0.9783 0.9680 0.9242

the highest against the other methods in terms of almost all evaluation metrics. This indicates

that the proposed approach achieves higher results in segmentation images of common moles.

The segmentation performance of 80 atypical nevi images only is shown in Table 3.3. It is

also very clear that the proposed approach outperformed the alternative methods in all used

criteria. in particular, the rise from 0.9320 to 0.9457, 0.9400 to 0.9631 and 0.9105 to 0.9295 of

the sensitivity, accuracy and dice similarity coefficient respectively. In addition, we observed

that our implemented algorithm (FCM [32]) is the only comparable method, since its results

are close to the current method results. With respect to the four criteria including sensitivity,

specificity, accuracy and dice similarity coefficient, the percentage of increase obtained were

3.09%, 0.43%, 0.38% and 0.39% respectively. Moreover, the same raises can be produced if the

comparison with the JSEG or the ASLM methods was performed, since their results are quite

close to the FCM’s results. As for the specificity, it was slightly decreased compared to the

one presented in Table 3.1 and 3.2, but it was higher than other methods that we compared

to. Consequently, even in the case of atypical nevus, which is considered as benign lesions,

the proposed approach continues to obtain higher segmentation results.

Conversely, a huge decrease can be observed in the quality of segmentation results when

only melanoma images (40 images) are processed. The overall segmentation performance re-

sults of 40 melanoma images are presented in Table 3.4. In particular, the proposed method

presents a large decrease in terms of three criteria: the sensitivity decreases to 0.8203 com-

pared with that presented in Table 3.1 (0.9320), the accuracy becomes 0.8389 as opposed
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Table 3.3: Segmentation performance on 80 atypical mole images. SE-sensitivity, SP-specificity, AC-accuracy
and Dice similarity coefficient.

Method SE SP AC DSC
FCM [32] 0.9173 0.9739 0.9594 0.9258
JSEG [54] 0.7435 0.9708 0.9236 0.7768
SRM [110] 0.1042 0.8954 0.6812 0.0919
Otsu [114] 0.5515 0.7579 0.6779 0.4372
Level Set [51] 0.7364 0.8237 0.7985 0.6532
ASLM [117] 0.8640 0.9733 0.9271 0.8689
Proposed Method 0.9457 0.9781 0.9631 0.9295

to 0.9400 and the dice similarity coefficient decreases from 0.9105 to 0.8588. Although the

large decrease in terms of almost all criteria, the method still achieved the highest results

and outperformed all six methods. For instance, by comparing the performance results of our

method with the results derived from the FCM [32] method, we can demonstrate the per-

centage difference between these two methods in terms of the all evaluation metrics as 1.53%

sensitivity, 15.06% specificity, 1.87% accuracy and 1.16% dice. Furthermore, another compar-

ison can be performed with results obtained by the JSEG [54] method. The increase ratio is

approximately 21.59% sensitivity, 2.14% specificity, 10.51% accuracy and 11.38% dice similar-

ity coefficient. This means the method continues to yield promising results and outperforms

the other methods, even in cases of melanoma images.

It is worth mentioning that the specificity ratio in terms of all images type (common

moles, atypical nevi and melanomas) was approximately 98%, which means that the method

able to classify the background pixels (normal skin) as a healthy normal skin. Thus, the all

results confirm that the proposed approach outperforms the six methods with respect to all

evaluation criteria. The experimental results indicated that the proposed method achieved

a high accuracy of skin lesion segmentation, it successfully achieved 93.2% sensitivity, 98.0%

specificity and 94.0% accuracy.

In summary, the proposed approach achieved very good results in terms of the four crite-

ria, when dealing with the whole dermoscopy images (200). In addition, the accuracy of all

evaluation metrics increased with regards to the benign lesions (common moles and atypical
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Table 3.4: Segmentation performance on 40 melanoma images. SE-sensitivity, SP-specificity, AC-accuracy and
Dice similarity coefficient.

Method SE SP AC DSC
FCM [32] 0.8079 0.8516 0.8235 0.8489
JSEG [54] 0.6746 0.9593 0.7591 0.7710
SRM [110] 0.2234 0.7512 0.4148 0.2852
Otsu [114] 0.5971 0.4870 0.5524 0.6064
Level Set [51] 0.7073 0.7015 0.7249 0.7503
ASLM [117] 0.5404 0.9597 0.6615 0.6524
Proposed Method 0.8203 0.9799 0.8389 0.8588

nevi), while a decline was observed in the method’s performance when melanoma images were

processed.

3.5 Summary

This chapter described an automated segmentation process of lesion areas in dermoscopy

images using Fuzzy C-means and Markov Random Field methods. The algorithm began by

enhancing the quality of the image by detecting and removing the noise, to perform that lesion

area segmentation. The results of this process improve the robustness and the accuracy of the

Markov Random Field segmentation. Expected regions are extracted by combining the Fuzzy

C-Means and the Markov Random Field methods. The proposed method was tested on a

dataset of 200 dermoscopy images including 40 melanoma, 80 common moles and 80 atypical

moles. The results of the proposed method were compared with the ground truth lesions.

Our experimental results indicated that the proposed method provided high accuracy of skin

lesion segmentation, and also achieved exceptional performance against alternative methods

we used in comparison.

There is a need for fully automated segmentation techniques, and we have described one

possible way in this chapter, with promising results. However, due to the impact and sen-

sitive nature of the systems, as it deals with the health status of individuals, the need for

improvement arises as always. This is beneficial in assisting dermatologists to acquire mean-
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ingful information from the image and properly identify diseased lesions, since the actual lesion

should be determined and extracted with neither under-segmentation or over-segmentation.

The next chapter explores an alternate and slightly more efficient approach to improve the

performance of fully automated lesion segmentation methods.
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Chapter 4

Lesion Segmentation in Dermoscopy

Images Using Particle Swarm

Optimization and Markov Random

Field

4.1 Introduction

The standard approach in dermoscopic image analysis often comprises four phases: artifacts

detection and removal, lesion segmentation, feature extraction and lesion classification. The

most important stage is image segmentation, since the subsequent steps usually rely on its per-

formance for their accuracy. It helps acquire meaningful information from images and assists

the dermatologists to interpret skin cancer images properly; as well as identify melanoma. The

segmentation process should be accurate and robust, because it plays an important role in de-

termining melanoma disease at its early stage. For instance, the borders structure information,

as mentioned in Chapter 3, is very important as it plays a key role in identifying melanoma

diagnosis early. It is well known that the over segmentation and under segmentation both af-

fect the lesion segmentation accuracy, which leads to the wrong diagnosis later. Consequently,
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lesion segmentation must be correct and accurate. However, due to the existence of the hair

and reflection artifacts on images as described earlier. In addition, many melanoma borders

are often invisible or fuzzy, which makes visual identification very difficult for dermatologists.

Furthermore, the interpretation of the images is time consuming and subjective. The lesion

border delineation is a daunting task and very challenging.

This chapter presents a novel method for detecting lesion borders on dermoscopy images.

First, the image is pre-processed to remove the noise and enhance its quality. This process

improves the accuracy of the image segmentation stage. Second, the Particle Swarm Opti-

mization (PSO) and the Markov Random Field (MRF) are combined to segment the lesion

area from images. The image segmentation is formulated as an optimisation problem of the

energy function with MRF theory. The PSO method is used to perform the initial labeling

based on the optimal threshold value, which was obtained by maximizing the fitness function.

Then, an additional local search is performed for each segmented image by integrating it with

MRF method. Accordingly, the pixels are reassigned to different classes based on the minimum

cost. This process continues until a stopping criterion is met. Upon comparison, the proposed

approach provides high performance in automatic image segmentation on dermoscopic images.

This chapter is structured as follows: Section 4.2 provides an overview of the PSO method.

The proposed method is described in details in Section 4.3. Section 4.4 illustrates the results

and discussions. Finally, a summary of the chapter is presented in Section 4.5.

4.2 Overview of the PSO Method

The original PSO proposed by Eberhart and Kennedy [56] is a computational optimisation

method based on swarm intelligence theory. It is initialised with a group of random particles

to discover the optimal solution through the search space; each particle represents a candidate

solution of the problem based on a fitness function. In the PSO approach, the whole swarm

is modelled as multidimensional space S; therefore, each particle Pi = {Fi, Vi} ∈ S has two

components: position Fi and velocity Vi. The best previously visited position of particle i is

denoted as its individual best position, while the best position of all these individual bests
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is denoted as the global best position. In the beginning, the position and the velocity of

each particle (solution of the problem) are initialised randomly. Then, the problem is being

optimised by flying each particle through the search space, and updating its individual best

position and global best position. Therefore, the performance of each particle is evaluated

using a fitness function. This process is repeated until a stopping criterion is met. The

stopping criterion could be that all particles positions do not change any more than a certain

threshold, or the maximum number of iterations is met. At each step, the velocity and the

position of particle fi are updated using (4.2.1) and (4.2.2), respectively.

vi = w × vi + c1 × r1 × (fbi − fi) + c2 × r2 × (G− fi) (4.2.1)

fi = fi + vi (4.2.2)

where w is the inertia weight which controls the interaction power between the particles, vi is

the current velocity and fi, fbi and G are the current position of the particle, the best position

which particle has achieved so far and the location of overall best value respectively. The r1

and r2 are random values generated in the range between 0 and 1. The positive values c1 and

c2 are constants referring to the acceleration coefficients in order to guide particles into good

directions, and control the maximum step size.

4.3 The Proposed Method

In the pre-processing stage, the image enhancement is carried out by detecting hairs and

reflection artifacts. The Image inpainting method is applied to remove the pixels which indicate

the hairs and reflection artifacts mask. The second step of the proposed method is to delineate

the border of the lesion area, which is achieved by combining the PSO with the MRF method.

The image segmentation is formulated as an optimization problem of the energy function with

MRF theory. The PSO approach assigns each image pixel to a cluster based on the highest

fitness function; then the PSO and the MRF are integrated, in order to do a local search and

refine the segmented image. Accordingly, the pixels are reassigned to different classes based
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on the minimum cost. This process continues until a stopping criterion is met. The full details

of individual steps are described as follows:

4.3.1 Dermoscopic Image Pre-processing

The pre-processing stage is responsible for detecting and reducing the number of artifacts

from images, with the purpose of enhancing their quality. Therefore, this step is mandatory,

since as aforementioned that the dermoscopic images contain several types of noise (hairs and

reflection artifacts), which is covering most of the lesion areas. Incorrect segmentation of

pigmented lesions can be obtained if hairs covering the images and lightening reflection are

not detected and removed. Therefore, we used the same algorithm presented in Chapter 3

Section 3.3.1 to eliminate all these issues and obtain clearer images.

4.3.2 Skin Lesion Segmentation

Image segmentation is the process of adequately separating pixels into few groups, whose pixels

share similar characteristics, such as texture, colour, and shape. Indeed, the performance of

segmentation should be fast and accurate, since all the subsequent steps, such as feature

extraction, feature selection and classification phase are dependent on its performance. In

dermoscopy images, the segmentation stage is one of the most important and challenging

steps, due to several reasons, such as the lesions have large variations in size and colour, low

contrast between the lesion area and surrounding healthy skin, as well as the presence of the

hairs with several artifacts as mentioned earlier.

Our approach aims primarily to construct an efficient, robust and automatic segmentation

tool for melanoma lesion detection. The image segmentation phase is implemented, in order

to separate the lesion area from the healthy skin. Useful results can be acquired by applying

appropriate segmentation techniques. Consequently, the PSO and the MRF methods were

combined to perform the final segmentation of the images by minimising the energy function.

The image segmentation is formulated as an optimisation problem of the energy function

with the MRF method. For this, we use the PSO method to perform the initial labelling. The

underlying idea of our approach is a cooperative search of the best class label for each pixel

58



Lesion Segmentation Using PSO and MRF: Chapter 4 Method

in the image, using a population of artificial particles. Each particle assigns pixels to a class

iteratively based on fitness function. In the beginning, the number of particles is determined,

and then the position value of each particle is randomly set within the boundaries of the

search space, while the velocity of each particle is set to zero. The search space will rely on

the maximum intensity value L, which means the number of particles are distributed randomly

between 0 and 255. One particle in the swarm represents one solution for clustering the image

based on fitness function. Therefore, the whole swarm represents a number of candidate

clustering solutions for the whole image. In each step of the proposed algorithm, each particle

compares its current fitness value with the value of its own Pbest solution; as well as the fitness

value of the whole swarm Gbest solution. The fitness function is defined as the between-class

variance σ2
b of the intensity distributions of the image [67] by:

σ2
b =

n∑
j=1

wj(µj − µt)2 (4.3.1)

where j represents a specific class in such a way that µj and wj are the average and the

probability of occurrence of class j respectively. The probabilities of occurrence wj of class

D1, ..., Dn are given by:

wj =
tj∑
i=1

pi, j = 1

where pi is the probability of occurrence of each pixel in the image, which can be obtained by:

pi = hi
N
,
N∑
i=1

pi = 1

where i represents intensity level, i.e., 0 <= i >= L− 1, N represent the total number of the

pixels in the image and hi refers to the image histogram.

And the average of each class µj can be calculated as:

µj =
tj∑
i=1

ipi
wj
, j = 1
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where ipi presents the total mean (combined mean) and can be obtained by:

µt =
L∑
i=1

ipi

In other words, the segmentation problem is reduced to an optimisation problem to search for

the optimal threshold value by maximising the fitness function. Higher fitness means there is

a greater probability of the particle being successful.

ft = max σ2
b (t) (4.3.2)

Therefore, the optimal threshold value can be used for dividing the image into 2 classes:

foreground and background. Through this process, we can obtain the membership value easily

for each pixel in the image by:

g(x, y) =

 1, if f(x,y) > T

0, if f(x,y) ≤ T


The main drawback of the PSO approach is that it addresses each pixel individually using

its intensity value. An additional local search must be performed for each segmented image by

combining it with the MRF method in order to address this issue and enhance the performance

of the PSO method.

As a statistical method, the MRF provides a tool for Bayesian modelling using spatial

continuity and has been widely used in image segmentation with numerous applications [66,

129, 130]. Typically, it is based on a local calculation of probability and potential functions.

As we described the process in Chapter 3 Section 3.2.2, the pixels of the image are indexed

by a rectangular patch S and each image pixel s is characterised by the grey level ys from the

set y = {ys : s ∈ S}. The labelling process consists of accurately labelling each image pixel

s ∈ S with a class label representing the pattern class in the image. A label set is defined as

Λ = 1, 2, ..C where C is the number of classes. A labelling is indicated by x = xs : xs ∈ Λ, s ∈ S

where xs = l denotes that the class label l is assigned to the pixel s. The goal is to discover
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the labelling x̂ of the image, which maximises P (x|y) based on the Bayes decision theorem.

The primary aim of using the MRF to perform image segmentation is minimising the energy

function or maximizing the probability of pixel allocation to a cluster by using Maximum

A Post Priority (MAP) [66]. According to the MAP estimate and the Hammersley-Clifford

theorem [30] with assumption of existence of Gaussian noise in the images, the energy function

can written as

U(x) = [
∑
s∈S

(ys − µxs)2

2σ2
xs

+
∑
s∈S

log(σxs) +
∑
c∈C

Vc(x)]

The overview of the MRF method can bee seen in Chapter 3 Section 3.2.2.

Our algorithm used the membership value instead of the conditional probability to correctly

assign each image pixel and refine the segmented image. Equation (4.3.3) is used to calculate

the conditional probability.

Vc(yi|xj) = g(x, y) (4.3.3)

The Iterated Conditional Modes (ICM) method is used widely in MRF applications, which

achieves optimal labelling with minimum energy. Actually, ICM is an iterated algorithm, which

maximises local conditional probabilities by propagating messages along nodes in the MRF.

Therefore, we use it to obtain optimal clusters. Our method assumes that one pixel has 8-

neighbours. Therefore, the second order clique potential is defined on pairs of neighbouring

pixels:

Vc(xi, xj) = (1− ixi,xj)

where ixi,xj = 0 if xi 6= xj and 1 if xi = xj. Therefore, the energy function is defined as the

sum of conditional probability and the second order energies as in (4.3.4).

U(X) =
∑
i∈S

Vc(yi|xj) +
∑
j∈S

∑
Ni

Vc(xi, xj) (4.3.4)

By applying the PSO approach, each pixel in the image is labeled to a cluster based on the

highest fitness function. Thus, to perform the local search and refine the segmented image,

we integrate the PSO with the MRF approach. Accordingly, all pixels will be labeled again to

different classes by getting the minimum cost (4.3.4). This process continues until a stopping
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criterion is met or no further change occurs between clusters. The general schema of our

approach is given in Algorithm 1. As a final step of the method, the morphological operations

were used to fill in and remove several existing holes inside the segmented lesion; as well as

few outlier pixels in the background.

Algorithm 1 PSO-MRF image segmentation
1: procedure MyProcedure
2: Result: Regions of interest (objects)
3: Initialization:
4: Place images pixels in a matrix;
5: Initialize randomly the position of each particles;
6: The velocity of each particle is set to zero vi = 0;
7: Repeat
8: for each particle i in S do
9: Compute the fitness function based on equation (4.3.1);

10: Get the optimal threshold value (best fitness) by maximising the fitness function equa-
tion (4.3.2);

11: Construct the candidate segmentation according to optimal threshold value ;
12: Calculate the membership value using equation (4.3.3);
13: //* Local search *//
14: Improve the solution by using the steepest descent method (local minimum) equation

(4.3.4);
15: Update the particle’s best position
16: Update the global best position
17: Update the particle’s velocity and position
18: Update the velocity of particle fi using equation (4.2.1);
19: Update the position using equation (4.2.2);
20: end for
21: it = it+ 1; // Number of iteration
22: until The number of iterations (total max ) is reached
23: end procedure

It is worth noting that the implementation of new segmentation method for affected lesions

in dermoscopic images is desperately needed for several purposes, as described below:

• Due to the effect and sensitive nature of the existing systems, as it deals with the health

status of individuals.

• Real lesions provide enough information without neither less or more irrelevant features,

such as in under-segmentation and over-segmentation.
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• The actual lesions have the key role in melanoma diagnosis since the ABCD-E rule is

dependent on its accurate segmentation.

• An effective segmentation of the actual lesions can improve the productivity of derma-

tologists during diagnosis process.

In addition to the extraction of the actual lesion boundary (true positive) and improvement

the segmentation accuracy, there is also the need for new segmentation techniques to handle

the major drawback by using the previous method proposed in Chapter 3. The method’s

major drawback lies with the FCM approach as it addresses pixels individually based solely

on their intensity values. Therefore, it lacks the capacity to model the overall appearance of

a local neighbourhood region. Moreover, the FCM was used for the purpose of estimating

the initial parameters (mean and variance) in the first iteration, which were needed in the

MRF method. Moreover, in the FCM the initial points (centroids) started randomly, which

means sometimes no results provided at all. Meanwhile, in this chapter, the PSO algorithm

generated the best solution (always have a solution) to provide the initial parameters and

share its solution with the MRF approach to perform a local search in each iteration. Thus,

each pixel is reassigned to an optimal cluster; therefore pixels are divided into two clusters:

cancerous pixels as the foreground (lesion) and normal skin pixels as the background.

4.4 Results and Discussions

The proposed method was tested on a publicly-available database PH2 [101], the same dataset

used in Chapter 3. Four different criteria have been selected to evaluate the performance of the

segmentation results: sensitivity (SE), specificity (SP), accuracy (AC) and the Dice similarity

coefficient (DSC) [90]. Segmentation of the skin lesion was implemented using PSO [67], Fuzzy

C-Means (FCM) [32] and the proposed method respectively. Thus, the comparison of these

three methods was performed with the lesions acquired by an expert dermatologist, in order

to evaluate the performance of the proposed method.

Examples of manual segmentation by dermatologists together with the results by three

methods of skin lesion segmentation are shown in Figure. 4.1. The ground-truth is shown in the
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Figure 4.1: Results of lesion delineation: lesion border detection derived from ground truth (top left), results
of lesion delineation derived from applying the PSO (top right), lesion boundary detection obtained from

applying the FCM (bottom left) and the proposed method outcomes (bottom right).

top left image and results obtained using the PSO, FCM and the proposed method are in the

top right, bottom left and bottom right images respectively. In general, the proposed method

has the best performance in terms of the accuracy. For instance, as we can see in Figure. 4.1,

the image in the top right (PSO method) did not succeed in delineating the entire lesion, with

part of the lesion misclassified as a healthy skin (background). Moreover, the detected edge is

not close to the actual boundary of the lesion; thereby leading to misclassification. This was

the same when the FCM method was applied, as seen in the bottom left image. The result

from the proposed method reveals that the detected edge is quite close to the real boundary

of the skin lesion, while almost the whole lesion was detected and delineated.

In addition to the qualitative evaluation (visual observations), a quantitative evaluation

was performed by comparing the performance of our method with 8 alternatives; namely, J-

image segmentation (JSEG) [54], Statistical Region Merging (SRM) [110], Otsu [114], Level

Set [51], Automatic Skin Lesion Method (ASLM) [117], PSO [67], FCM [32] and Y. Li et al
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[94], which have been already used for the same dataset, and considered for lesion segmen-

tation. The total experimental results on the same dataset of 200 dermoscopy images are

presented in Table 4.1. The performance results of J-image segmentation (JSEG) [54], Statis-

tical Region Merging (SRM) [110], Otsu [114], Level Set [51] and the Automatic Skin Lesion

Method (ASLM) [117] were generated from their original manuscripts, while the performance

results of FCM [32] and PSO [67] methods were obtained through our implementation. The

performance of the dierent methods was generated using all the 200 dermoscopic images. We

observed that the method presented by Y. Li et al [94], FCM [32] and PSO [67] are the only

comparable methods, since their results are close to the current method results. Therefore,

withe respect to Y. Li et al [94] method, it can be seen that the sensitivity, accuracy and

dice are slightly increased, while the specificity value remained unchanged. The percentage

of increase obtained are 0.72% sensitivity, 0.78% accuracy and 1.38% dice. Conversely, if we

compare our performance results with the results obtained by the PSO [67] and the FCM [32]

methods, we can get approximately 3.12% and 1.44% increase respectively, in terms of the

accuracy alone. With respect to sensitivity and specificity, the percentage of increase approxi-

mately 19.95%, 0.93% and 5.72%, 2.97% compared with PSO and FCM methods respectively.

Consequently, all results confirm that the proposed approach outperforms the eight methods,

in terms of all evaluation criteria. It performs the best in delineating the lesion area, and the

experimental results indicated that the proposed method successfully achieved approximately

94.00% sensitivity, 98.00% specificity, 95.00% accuracy and 92.30% dice. Therefore, we be-

lieve that it can be used for classification stage and provide greater accuracy for melanoma

detection as an alternative to ground truth labelling.

The same analysis to that reported in Section 3.4 was conducted to implement a finer

analysis of all images. Three diagnostic classes (common moles, atypical nevi and melanomas)

were evaluated separately. Table 4.2 illustrates the experimental segmentation results of 80

common mole images only. In our method, the sensitivity raises from 0.9388 to 0.9651, the

specificity slightly increases from 0.9758 to 0.9784, the accuracy increases form 0.9474 to

0.9740. and the dice similarity coefficient raises from 0.9231 to 0.9361. By comparing our

results with an alternative method, such as the PSO [67] approach, we can observe that the
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Table 4.1: Segmentation performance on the complete dataset. SE-sensitivity, SP-specificity, AC-accuracy
and DSC-Dice Similarity Coefficient.

Method SE SP AC DSC
PSO [67] 0.7826 0.9709 0.9187 0.8481
FCM [32] 0.8880 0.9517 0.9339 0.9040
JSEG [54] 0.7108 0.9714 0.8947 0.7554
SRM [110] 0.1035 08757 0.6766 0.1218
Otsu [114] 0.5221 0.7064 0.6518 0.4293
Level Set [51] 0.7188 0.8003 0.7842 0.6456
ASLM [117] 0.8024 0.9722 0.8966 0.8257
Y. Li et al. [94] 0.9320 0.9800 0.9400 0.9105
Proposed Method 0.9388 0.9800 0.9474 0.9231

proposed method still achieves higher performance in terms of all evaluation metric. The

sensitivity increases from 0.7535 to 0.9651, the specificity raises from 0.9711 to 0.9784, the

accuracy becomes 0.9740 as opposed to 0.9479 and the dice similarity coefficient increases

from 0.8156 to 0.9361. Moreover, another comparison can be made of the results obtained

by FCM [32] method. Similarly, the sensitivity raises from 0.9182 to 0.9651, the accuracy

increases from 0.9670 to 0.9740 and the dice similarity coefficient becomes 0.9361 as opposed

to 0.9083. However, the specificity slightly decreases from 0.9835 to 0.9784, this means the

percentage of decrease approximately 0.5%, which is quite low. Whereas, The increase ratio of

the sensitivity, accuracy and the dice similarity coefficient are about 5.10%, 0.72% and 3.06%,

which are too high. We believe that the performance of our method is still the highest against

the other methods, in terms of all the evaluation metrics. This indicates that the proposed

approach achieves higher results in segmenting images of common moles.

The region segmentation performance of 80 atypical nevi images only is presented in Table

4.3. Moreover, it is very clear that the proposed approach outperformed all other methods in

almost all used criteria. In particular, the sensitivity rises from 0.9388 to 0.9589, the accuracy

increases form 0.9474 to 0.9653. and the dice similarity coefficient raises from 0.9231 to 0.9321.

In terms of the comparison with other methods, our results are higher than those obtained

from PSO [67] method. The rise from 0.8334 to 0.9589, 0.9702 to 0.9709, 0.9432 to 0.9653
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Table 4.2: Segmentation performance on 80 common healthy images. SE-sensitivity, SP-specificity,
AC-accuracy and DSC-Dice similarity coefficient.

Method SE SP AC DSC
PSO [67] 0.7535 0.9711 0.9479 0.8156
FCM [32] 0.9182 0.9835 0.9670 0.9083
JSEG [54] 0.6977 0.9783 0.9370 0.7265
SRM [110] 0.0751 0.9332 0.7250 0.0611
Otsu [114] 0.4777 0.7832 0.6911 0.3658
Level Set [51] 0.7069 0.8262 0.7996 0.5856
ASLM [117] 0.8717 0.9760 0.9477 0.8690
Y. Li et al. [94] 0.9531 0.9783 0.9680 0.9242
Proposed Method 0.9651 0.9784 0.9740 0.9361

and 0.8867 to 0.9321 of the sensitivity, specificity, accuracy and dice similarity coefficient

respectively. Furthermore, its results much better than the results achieved by FCM [32]. The

sensitivity, accuracy and dice similarity coefficient respectively are increased from 0.9173 to

0.9589, 0.9594 to 0.9653 and 0.9258 to 0.9321. Another comparison can be performed with

the method presented in ASLM [117] work. Likewise, the increases of the sensitivity accuracy

and dice similarity coefficient is approximately of 10.98%, 4.12% and 7.27% respectively. With

respect to the specificity, we observed that it reduces to 0.9709 compared to FCM [32] and

ASLM [117] results, but in the meanwhile, our segmentation accuracy is the highest, compared

with the other methods. Thus, even in the case of atypical nevus, which are considered benign

lesions, the proposed approach continues to obtain higher segmentation results.

Conversely, a huge decrease can be observed in the quality of segmentation results when

only melanoma images (40 images) are processed. The overall segmentation performance

results of 40 melanoma images are presented in Table 4.4. In particular, the proposed method

presents a large decrease in terms of four criteria: the sensitivity decreases to 0.8459 compared

with that in Table 4.1 (0.9388), the specificity reduced from 0.9800 to 0.9595, the accuracy

becomes 0.8605 instead of 0.9474 and the dice similarity coefficient decreases from 0.9231 to

0.8821. Despite, the large decrease in all evaluation criteria, the method still achieved the

highest results and outperformed all other methods. For example, comparing the performance
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Table 4.3: Segmentation performance on 80 atypical mole images. SE-sensitivity, SP-specificity, AC-accuracy
and Dice similarity coefficient.

Method SE SP AC DSC
PSO [67] 0.8334 0.9702 0.9432 0.8867
FCM [32] 0.9173 0.9739 0.9594 0.9258
JSEG [54] 0.7435 0.9708 0.9236 0.7768
SRM [110] 0.1042 0.8954 0.6812 0.0919
Otsu [114] 0.5515 0.7579 0.6779 0.4372
Level Set [51] 0.7364 0.8237 0.7985 0.6532
ASLM [117] 0.8640 0.9733 0.9271 0.8689
Y. Li et al. [94] 0.9457 0.9781 0.9631 0.9295
Proposed Method 0.9589 0.9709 0.9653 0.9321

results of the proposed method with those derived from PSO [67] approach, we can note that

our method yielded better results. I was able to increase the sensitivity, accuracy and dice

similarity coefficient by 12.05%, 5.88% and 5.66% respectively. Moreover, it produced higher

results than the ones obtained from the FCM [32] method. With respect to the all evaluation

metric, the method raises the sensitivity form 0.8079 to 0.8459, specificity from 0.8516 to

0.9595, accuracy from 0.8235 to 0.8605 and the dice similarity coefficient from 0.8489 to

0.8821. This indicates that, even in the case of melanoma images, the method successfully

achieved promising results and its performance is better than the other alternative methods

that we compared to.

Despite, the obtained promising results of skin lesion segmentation, the method was not

able to delineate the whole actual lesion in many cases of melanoma images as provided by

dermatologists. The example in Figure 4.2 illustrates three melanoma images with proposed

obtained result and ground truth respectively. It is clear that the method provided a binary

image containing under-estimated lesions, as illustrated in the second column, which means

not all of the affected lesion was segmented. The reason of that is because many cases have

variegate colouring inside the lesion area such as the one in the first row, which makes the

detection of the whole lesion quite difficult, since in our approach, the number of clusters was

set as 2. Moreover, in cases of presence very poor contrast between the lesion edges and the
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Table 4.4: Segmentation performance on 40 melanoma images. SE-sensitivity, SP-specificity, AC-accuracy and
Dice similarity coefficient.

Method SE SP AC DSC
PSO [67] 0.7549 0.9763 0.8127 0.8348
FCM [32] 0.8079 0.8516 0.8235 0.8489
JSEG [54] 0.6746 0.9593 0.7591 0.7710
SRM [110] 0.2234 0.7512 0.4148 0.2852
Otsu [114] 0.5971 0.4870 0.5524 0.6064
Level Set [51] 0.7073 0.7015 0.7249 0.7503
ASLM [117] 0.5404 0.9597 0.6615 0.6524
Y. Li et al. [94] 0.8203 0.9799 0.8389 0.8588
Proposed Method 0.8459 0.9595 0.8605 0.8821

surrounding healthy skin in many parts of the lesion as appears in the images in the second and

the third row, the dermatologists usually delineate the lesion area with extra parts in order to

be more accurate. Therefore, the algorithm could not classify these parts correctly; further-

more, this process affects the segmentation evaluation results, since the manual segmentation

is used as a ground truth.

In summary, the proposed approach yielded excellent results regarding the four criteria

when dealing with the whole dermoscopy images (200). In addition, the accuracy of all evalu-

ation metrics was increased when dealing with the benign lesions (common moles and atypical

nevi), while decreasing when melanoma images are processed.

It is worth noting that the comparison with the method presented in Chapter 3 (FCM

with MRF) has been performed, for the purpose of clarifying the difference between their

results, and demonstrating the advantages of combining the PSO and the MRF methods.

As mentioned previously that integrating these two methods to do a local search gave the

algorithm robustness and high accuracy in detecting the real lesion area as seen in Figure

(4.3). The example in Figure (4.3) illustrates the outcomes derived from skin cancer experts

(ground truth) in the first column, the previous method (FCM with MRF) in the second

column, and the current method (PSO-MRF) presented in the third column. It is noticeable

that the lesions illustrated in the second column images are not detected properly, compared
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Figure 4.2: Example shows some cases of dermoscopic images: original images (Source:[101]) (first column),
results derived from our method [94] (second column) and the ground truth (third column).
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Figure 4.3: Results of lesion delineation in dermoscopic images: lesion border detection derived from ground
truth (first column), results of lesion delineation obtained from applying the FCM with MRF "our previous

method" (second column), and the proposed (PSO-MRF) method outcomes (third column).

with the ground truth images. In the part of low contrast edges between the lesion area and

its surrounding skin, the method classified part of the lesion as a background (normal healthy

skin), which in turn led to obtaining under-segmentation (see the blue arrows). This issue

occurred because incorrect initial parameters (mean and variance) were obtained and used for

MRF method, since the FCM deals with pixels individually by their intensity values only as

aforementioned. Whereas the lesions presented in the third column images are almost fully

detected. This is due to assigning each pixel to classes properly by sharing the obtained best

solution from PSOmethod with the neighbours of each pixel. Furthermore, the detected lesions

presented in the third column are very close to the actual boundary, which is quite similar to

the one acquired from the dermatologists (ground truth). In terms of the segmentation of the

whole dataset images, as we described earlier that the current method achieved approximately

94.74% accuracy, while the method presented in Chapter 3 obtained accuracy of 94.00%,

which means the percentage of increase obtained is about 0.78%. We acknowledge that it is

slightly increased of the accuracy, but achieving greater accuracy, however slight, is useful and

meaningful.
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4.5 Summary

This study presents an automated approach for region segmentation in dermoscopy images.

The images are pre-processed using the aforementioned method presented in Chapter 3 Section

3.3.1. The results of this process improve the robustness and the accuracy of the lesion

segmentation. Lesions are segmented by integrating the PSO and the MRF methods. The

method proved accurate and robust, leading to successful segmentation results of the region

boundaries used to assess and monitor skin cancer disease.

The proposed method was tested on a dataset of 200 dermoscopy images including 40

melanoma, 80 common moles and 80 atypical moles. The results of the proposed method were

compared with the ground truth lesions. The experimental results indicated that the proposed

method provided a high accuracy of skin lesion delineation. In addition, a comparison against

a selection of several alternative methods shows that the proposed method performs the best

in terms of all evaluation metric. It also exhibited better performance opposed to our previous

method proposed in Chapter 3, as it is capable of segmenting almost the whole actual lesion.

All the above factors indicate that this approach can cope with the image noise, and provide

a high accuracy of skin lesion detection.

According to the obtained unaffected borders of the pigmented regions when images are

pre-processed, we believe that our pre-processing approach can be useful when extracting

pigment network structures since it was able to extract the hair without affecting the lesion

boundaries. Therefore, it can be applied when dealing with pigment network detection.

From the promising results obtained in the identification of the pigmented region areas,

we deem it necessary to provide a new method of melanoma detection. This will improve the

productivity of dermatologists by reducing their time required while diagnosis process. Conse-

quently, the next chapter describes a semi-automated method for pigmented lesion detection.
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Chapter 5

Detection of Pigment Network

Structures in Dermoscopy Images

5.1 Introduction

Based on the ABCD-E criteria, the pigment networks structures correspond with the (D)

parameter, which refers to the differential structures criteria detailed in Appendix A Section

(A.2). The segmentation of dermoscopic image structures, such as dots, pigment network,

streaks and blue-whitish veil, has been of great interest since it could be used as a non-invasive

diagnosis in modern dermatology. The pigment network is regarded as one of the most relevant

dermoscopic structures, its appearance on the body is an indicator of the existence of melanin

in deep layers of the skin. It appears as a grid of thin brown lines over a lighter background

with a shape very similar to a honeycomb called reticular [25] [20]. Pigment network can cover

almost the whole lesion area as illustrated in Figure 5.1(left), or only several small parts of it,

as illustrated in Figure 5.1(right). The shape of the pigment network can be classified as either

Typical or Atypical: typical when the pattern is regularly with a light-to-dark-brown network

small uniform space network holes and thin network lines distributed more or less regular

throughout the lesion; while atypical is characterised by black, brown, or gray and thickened

lines distributed irregularly throughout the lesion. Consequently, an atypical pigment network
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is considered as a melanoma[19] [25]. Examples are illustrated in Figure 5.2.

In the classification of skin lesions, the pigment network plays an essential role in identifying

the lesions as melanoma, because it facilitates the distinction between various classes in the

lesions. Therefore, the presence of pigment network on lesion areas in dermoscopy images

represents an important feature, which can be used for melanoma detection in its early stage.

Computer-aided diagnosis (CAD) systems have been proposed by many different groups

to identify malignant melanomas in dermoscopy images. These systems use several features,

such as colour, shape and texture, to classify the images as either normal or abnormal.[19] [25]

[105]. In the detection of melanoma, dermatologists typically use the ABCD rule to analyse

four parameters (Asymmetry, Border, Colors and Diameter) and distinguish skin lesions on

the 7-points checklist. This is a scoring method for a set of different classifiers according

to colour, shape and texture [147] [105]. However, it must be clarified that this procedure

is time consuming and requires significant effort. Thus, the use of an automated system

decreases the time consumed and fatigue. In addition, it assists physicians in interpreting

the image correctly and supports their diagnosis. Besides, storing the diagnostic information

could be very useful in future investigation or developing a new method. It is noteworthy that

the automatic detection of pigment networks is a challenging task because there is a smooth

transition between the colour of the pigment network lines and the background. Moreover, the

presence of dark hair covering the lesions and the existence of specular reflection. In addition,

the circular structures, such as dots, are detected wrongly as pigment networks or vice-versa

[25].

This chapter outlines the four steps implemented to construct an automatic algorithm

for the detection of pigment network lines in dermoscopy images, with a view to the early

diagnosis of melanoma skin cancer. First, the image is pre-processed to remove the noise; for

example, hairs and reflection detection. We focus on this process since it improves the accuracy

of the subsequent steps such as segmentation and classification. A sample threshold is used

to extract the lightening reflection, and then the Gabor filters using a bank of 64 directional

filters with image sharpening and Sobel filter are implemented to detect and extract the hair.

Second, based on the intensity values and geometrical properties of the pigment networks, a
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(a) (b)

Figure 5.1: Two examples of pigment network distribution in dermoscopy images. Left: the pigment network
is diffusing in almost the whole lesion. Right: it is existing in separate parts of the pigmented lesion area.

(Source:[101]).

Figure 5.2: Examples of pigment network shapes in dermoscopy images. Left: a typical pigment network.
Right: an atypical pigment network. (Source:[101]).

set of tentative pigment network regions are detected using connected component analysis.

Then, features are extracted from the given lesion and by using a trained classifier, the given

lesion is classified in one of two classes (with or without pigment network). This chapter is

structured as follows. The proposed system is described in details in Section 5.2. Section 5.3

illustrates the experimental results. Finally, a summary of the chapter is presented in Section

5.4.

75



Detection of Pigment Network Structures: Chapter 5 Methods

Figure 5.3: Overview of the detection system.

5.2 Methods

This section describes and discusses the proposed system for skin lesion detection. Initially,

image quality is enhanced by detecting and removing the light reflection and hairs. Next,

the lines of pigment network are detected using a bank of directional filters with a connected

component analysis. Thus, several features are extracted from the segmented network and

used to train an Artificial Neural Network and classify each lesion as normal or abnormal

skin. The scheme of melanoma detection is illustrated in Figure 5.3.

5.2.1 Image Pre-processing

As mentioned previously that the hairs are presence in most of the dermoscopy images, which

in turn could affect the lines of pigment networks during segmentation process, since their

shapes are quite similar. Hairs covering the lesion areas could also hide the pigment network

lines and make them invisible, which make its detection a challenge. In addition, incorrect

detection of the lesion (pigment network features) could lead to the wrong classification later.

Accordingly, the whole hair should be detected and removed, in order to obtain effective

segmentation and classification results. Due to the similarity between the pigment network

lines and the hair, it is challenging to extract hairs without any effect of the pigment network

lines, but at the same time, we can use the same approach to detect both. Thus, we used
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Figure 5.4: Examples of hair detection process and inpainting images: original image (Source:[101]) (first
column), hair detection mask (second column) and inpainted image (third column).

the same algorithm presented in Chapter 3 Section 3.3.1.2 to obtain images that were more

understandable. One such example can be seen in Figure. 5.4.

It should be noted here that the hair which was not detected using previous methods,

such as "Barata’s method" [25], was identified and classified as a noise. Three examples are

illustrated in Figure.5.5.

5.2.2 Pigment Network Detection

Pigment network is considered one of the features that used by experts dermatologists to

perform the diagnosis of melanoma. In general, dermatologists use the net hole size and the

thickness of lines to assess the network structure and classify it as either typical or atypical

[25]. Therefore, we tried to implement an algorithm to extract the skeleton of pigment network

from dermoscopy images, which could be quite useful for the specialist.

Pigment network and hair artifacts both have a very similar line shape, and they appear

with more than one orientation in dermoscopy images. Therefore, the same technique (Gabor

Filter) with different parameters can be used to detect the pigment network lines. Two primary

steps have been applied for this purpose: network enhancement and network detection.

5.2.2.1 Network Enhancement

The output image that was obtained from pre-processing stage (cleaned image) is filtered

with a bank of directional filters {see equations (3.3.1)-(3.3.1.2} in Chapter 3. Due to the

difference of the length and the width of each line stroke of the hairs and pigment network,
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Figure 5.5: Examples of hair detection process: original images (Source:[101])(first row), results derived from
Barata’s method [25](second row) and our results (third row).
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the parameters used to detect the pigment network lines are different from those used to detect

the hairs. Theses parameters were set as: σx1 =40, σy1=40, σx2=3 and σy2=0.5 with mask

filter dimension of 11 x 11 and the number of rotations for θi was set as N = 18.

To detect the pixels which belong to the net of pigment networks, a threshold value is

implemented and set as TH=0.0185. Thus, the process replaces each pixel in the segmented

image with a white pixel (1) if the image intensity value greater than threshold I(x, y) > T and

black otherwise (0). It is noteworthy that all these parameters were determined experimentally

and the obtained results were promising for all images [25].

5.2.2.2 Network Detection

This step is to extract large linked lines of pigment networks, since it is assumed that the

pigment network consists a set of connected lines. Therefore, a connected component analysis

is used to identify the connectivity between these pixels. Connected component analysis

(labeling) scans the segmented image (from top to bottom and left to right) and groups its

pixels into components (objects), based on pixel connectivity. We used 8-connectivity (8

neighbours pixels), since it provides the information of vertical, horizontal, and diagonals

connections. The pixels whose have similar value and connected to each other become one

connected component (one group). Once all groups have been defined, each pixel is labeled

with the same colour (colour labeling) according to the component to which it was assigned.

The 8-connectivity of a pixel p(x,y) is defined as:

N8(p) ={(x+ 1, y), (x− 1, y), (x, y + 1), (x, y − 1),

(x+ 1, y + 1), (x− 1, y − 1), (x+ 1, y − 1), (x− 1, y + 1).}

To extract the large linked group or object, a threshold value is applied for each connected

components, each connected component in the binary image is extracted and classified as a

pigment network if its area is greater than the threshold value, and it is given by the following

condition.

A(Rc) > Amin
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Figure 5.6: Example shows the process of pigment network detection. Left: the pre-processed image. Medial:
the output of the directional filters bank and threshold . Right: Final outcomes of the connected component

analysis (the largest connected groups of pigment networks).

where Rc is the cth connected region, A(Rc) is its area, and Amin is a threshold value which

was set as 900 experimentally. By applying the previous condition, all connected components

with a small area can be classified as noise. An example of pigment network detection is shown

in Figure.5.6. The obtained image is a binary “net mask ”of all connected regions according

to following equation:

R =
⋃

c:A(Rc)>Amin

Rc

5.2.3 Feature extraction

It is well known that the diagnosis of melanoma in dermoscopy images using CAD systems

usually requires a selection of suitable features, which in turn could assist the dermatologists

in their diagnosis. As mentioned previously in Chapter 2, the features could be extracted

from images as either globally or locally; however, consideration must be given to the fact

that the extracted features should contain sufficient information to distinguish between two

classes (melanoma or non-melanoma). On this basis, our proposed algorithm aims to extract

the relevant features from the final binary images. The density and regular distribution of the

pigment networks are the main properties, and they can be used to identify the images, where

pigment network is present. By characterising these two properties of pigment network, we

defined five features, and we believe that they will be quite good in distinguishing between all

images.
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Figure 5.7: Examples of lesion segmentation: Left: original dermoscopy image. Right: binary segmentation
mask. (Source:[101])

All the five features that were identified to be useful in melanoma diagnosis require both:

pigment networks detection and the border of the lesion areas. Therefore, it was necessary to

segment the lesions, in order to extract the discriminant features. Since the lesion segmentation

is not the main focus of this method, this phase was not automated. Consequently, the ground

truth images were used as segmented lesions, which is actually a binary mask. One example

can be seen in Figure 5.7. The extracted features from all dermoscopy images, which will be

used in the final stage for melanoma classification are described as:

Network/Lesion Ratio: This value computes the area of the network R (see Section

5.2.2) with the area of the whole lesion

Network/Lesion = A(R)
A(L)

where A(R) is the area of the detected pigment network and A(L) is the area of the seg-

mented lesion, which has been segmented by an experienced dermatologist (Figure.5.7 shows

an example).

Network/Region Ratio: This value computes the area of the pigment network lines with

the area of pigment network regions, because the pigment network consists of holes surrounded

by pigmented lines. A simple morphological filling process is applied for all connected regions,

to get the pigment network region Bc (see Figure.5.8(c)). Then a pigment network regions
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mask is defined as the union of all the regions.

B = ∪cBc

The network/regions ratio is then obtained as follows:

Network/Region = A(R)
A(B)

where A(R) is the area of the detected network R and A(B) is the area of all the pigment

network regions present in B.

Number Of Holes: As above mentioned, the pigment network consists of holes sur-

rounded by pigment network lines. Therefore, this value computes the total number of the

holes of the detected net. It can be simply obtained by subtracting R from B, where R is the

detected image and B is the union of all regions. An example can be observed in Figure.5.8(d).

Holes/Lesion Ratio: This value compares the number of the holes with the area of the

lesion.

Holes/lesion = Hn

A(L)

where Hn is the total number of the holes in the detected image and A(L) is the area of the

segmented lesion L.

Holes/Region Ratio: This value compares the number of the holes with the area of the

detected region.

Holes/Region = Hn

A(B)

where Hn is the total number of the holes in the detected image and A(B) is the area of all

the pigment network regions B.

The same number of features was acquired from all images and used as image descriptor

to classify the new images using machine learning techniques. These are described in the

following section.
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Figure 5.8: Pigment network masks. (a) original image with pigment network regions highlighted; (b)
pigment network detection ;(c) pigment network regions-mask and (d) holes mask.
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5.2.4 Lesion Classification

For the automatic classification of the pigmented skin lesions, many different classication

methods were used in literature such as Support Vector Machine (SVM), K-Nearest Neighbour

(KNN), AdaBoost, Artificial Neural Network (ANN), etc for the purpose of classifying a given

lesion into one of two classes ( melanoma or non melanoma). Before describing the lesion

classification process, a brief definition is provided of several algorithms used for classification.

• Support Vector Machine (SVM): Support Vector Machines proposed by Cortes and Vap-

nik in 1995 [50]. It has been introduced recently in the statistical learning theory domain

for classication and regression problems. Based on statistical learning, SVM provides an

optimal design criterion for linear classier. The technique consists in nding the optimal

separation surface between classes thanks to the identication of the most representative

training samples of the side of the class. These samples are called support vector [102].

The separation hyperplane must be the one that has the largest distance to the nearest

training pattern of each class. This distance is called margin, hence one can formulate

the learning problem of SVM as that of nding the optimal hyperplane, that maximizes

the margin of the training data. Occasionally, it is not possible to separate the train-

ing data using a hyperplane, since the two clouds of training features overlap. A brief

description of the classification process is given as:

A two class classication problem can be stated the following way: N training sample are

available and can be represented by the set pairs (yi, xi), i = 1, 2, ..., N with yi a class

label of value ś1 and xin feature vector with n components. The classier is represented

by the function f(x; )ßy with the parameters of the classier. The SVM method consist

in nding the optimum separating hyperplan so that:

– Samples with labels y = ś1 are located on each side of the hyperplane.

– The distance of the closest vectors to the hyperplane on each side of the maximum.

These are called support vectors and the distance is the optimal margin (see Figure

5.9).
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Figure 5.9: Generalized optimal separation hyperplane: Left: Linear separability. Right: non linear
separability. (Source:[102])

The hyperplane is dened by w.x+b = 0 where (w, b) are the parameters of the hyperplane.

The vectors that are not on this hyperplane lead to: w.x+ b0 and allow the classier to

be dened as: f(x; ) = sign(w.x+ b). The support vectors lie on two hyperplanes, which

are parallel to the optimal hyperplane, of the equation: w.x+ b = ś1. The maximisation

of the margin with the equations of the two support vector hyperplanes leads to the

following constrained optimisation problem:

min
1
2 ‖ w ‖

2withyi(w.x+ b) >= 1, i = 1, ..., N.

If the training data set cannot be separated linearly, a kernel method is used to simulate

a non-linear projection of the data in a higher dimension space, where the classes are

separated linearly. Different kernel functions can be used and the most popular is the

Gaussian radial basis function (RBF), dened as follows:

Kernel(xi, xj) = exp(−γ ‖ x1 − xj ‖2),

where xi, xj are feature vectors associated with patterns i and j, and γ is a parameter
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that must be optimised and dene the width of the kernel.

• K-Nearest Neighbour (KNN): The algorithm has a very simple formulation, given a

training set of patterns (feature vectors) for which the classes are known, each new

pattern will be classied in the same class as that of the closest training pattern (called

nearest neighbour). The comparison between patterns is performed by computing the

distance between feature vectors. It is possible to determine the class of the test pattern

by taking into account not only one, but the k closest training patterns (neighbours).

In this case, the class of the pattern is that which is more common among the selected

training patterns. Two parameters must be optimised for this algorithm: the number

of neighbours k and the distance metric used to compare the feature vectors of training

and test images.

• AdaBoost: The AdaBoost classier was originally proposed by Freund and Schapire [63].

It is a parallel classier combined with many linear weak classiers. every weak classier

only focuses on the classication of one dimension in the input feature vector. During

the entire training process, after the goal is given to the classier, the algorithm is able

to self-adaptively increase the number of weak classiers, so as to improve the overall

accuracy rate of the classication and focus on key features. Following the addition of a

weak classifier, the algorithm uses the minimum error to calculate its weight value and

readjust the weight value of every training example. The value is then passed to the next

newly-added weak classier. Based on the newly-added weak classier, the effect of the

overall parallel classier is improved. The summary of the algorithm and how to obtain

the strong classifier is illustrated below.

– Assign weights to each training pattern.

– For W iterations:

∗ Learn a stump (weak) classier for each feature component and determine its

performance.

∗ Choose the weak classier with the lowest classication error.
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∗ Update the weights of the training patterns: increase the weight if a pattern is

misclassied and decrease it otherwise.

– Dene the strong classier as a linear combination of the W weak classiers.

• Artificial Neural Network (ANN): An artificial neural network is a mathematical model

that is inspired by the structure and/or functional aspects of biological neural networks.

A neural network consists of several artificial neurons that are highly interconnected. In

most cases, an ANN is an adaptive system that changes its structure based on external

or internal information, that flows through the network during the learning phase. The

neurons are arranged in layers, the neurons in the first layer called the input layer

and receive the feature vector of an object. Information will flow from this layer until

the output layer. If it is a multilayer network, there will be intermediate layers called

hidden layers, which include an activation function. The most commonly used and the

simplest type of ANN is the feed-forward neural network, it named like this because the

information flows in one direction only (forward ) from the neurons in the input layer

to the neurons in the output layer (see Figure 5.10). They are also called supervised

networks because they require a desired response in order to be trained. In order to

train a network, the most common algorithm used is the back propagation algorithm

[57]. At the training stage, the feature vectors are applied to the input of the network,

and the desired output classes are known. Once the information reaches the output

layer, where the input features result in a class label, the back propagation algorithm

runs the network in the opposite direction, updating the weights and biases. These are

often initialised randomly between the connected neurons until all examples are correctly

classified or a stopping criterion is reached.

Our intention was to use the ANN algorithm to determine lesions type, since it is simple

and easy to implement; moreover, it achieves competitive performances when the size of the

dataset and/or feature space is small, as is the case of this work.

It is well known that after extracting features from images and storing them in a database,

machine learning techniques are needed in order to learn the system, which in turn could
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Figure 5.10: Feed forward neural network. (Source:[57])

classify new cases properly. Classifier performance always depends on the characteristics of

the data to be classified, and no single classifier works efficiently on all problems. Thus, in

melanoma detection problem, the feed forward neural network based upon the scaled conjugate

gradient back-propagation methods with a sigmoid function in hidden layers as a transfer

function has been selected, since it is one of the most popular classifiers and has been used in

previous works related with malignant melanoma detection.

Scaled conjugate gradient back-propagation is a network training function, that updates

weight and bias values according to the scaled conjugate gradient method. Back-propagation

is used to calculate derivatives of performance with respect to the weight and bias variables.

The advantages of using this function in lesion classification include not performing a line

search at each iteration, which is computationally expensive [108] [53].

In our approach, the discriminant features of the pigment networks were extracted from

images and stored in a database as numerical data, which is then used as input to a classifier,

in order to determine the image type as a normal image or abnormal. Accordingly, the data
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is divided into two cases: training and testing, then the training data with the known target

are used to feed an Artificial Neural Network (ANN) as a binary classifier. As a target: (0)

indicates an abnormal skin and (1) indicates a normal skin. Two-layers feed-forward network

(hidden layer and output layer) are used with 10 neurons in a hidden layer. The sigmoid

transfer function is used to map the sum of the weighted inputs to the output of the neuron.

Therefore, the network is trained with supervision using a gradient descent training technique

called back-propagation, which minimises the squared error between the actual outputs and

the desired outputs of the whole network. That means the hidden and output layer nodes

adjust the value of the weight depending on the classification error to predict the correct

class. Once the network is trained with the known target, the testing data (unknown images)

are used as input to the network to assess its performance in classifying new cases as normal

or abnormal.

5.3 Experimental Results

The system described in the previous sections was evaluated using a public database PH2 [101],

which provides 200 dermoscopy images (84 with pigment network and 116 without pigment

network). Each image was classified by an experienced dermatologist as either melanoma

or non-melanoma, which in turn used as ground truth. These images were taken from the

database of Hospital Pedro Hispano, Matosinhos, and were obtained by dermatologists during

clinical exams using a dermatoscope with a magnification of 20×. They are acquired in 8-bit

RGB colour and stored in bitmap (BMP) formats with an average resolution of 573x765. Three

criteria are used to evaluate the performance of our proposed method; namely, sensitivity,

specificity, and accuracy.

The aim of this step is to evaluate the ability of our approach to classify images of skin

lesions as malignant melanoma or benign. In order to fulfill this purpose, the performance of

the network has to be tested. Consequently, new samples (set of similar data unused during

training) are fed to the network and then classified. Then, the predicted classes are compared

to the known classes. Thus, to be more accurate for lesion classification, the training and
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Table 5.1: The average results of lesion classification.

No Sensitivity Specificity Accuracy
1 83.3% 95.8% 93.3%
2 95.0% 96.3% 85.3%
3 100.0% 90.3% 90.0%
4 100.0% 96.0% 90.0%
5 88.7% 92.0% 86.7%
6 100.0% 100.0% 93.3%
7 90.0% 92.6% 86.7%
8 86.0% 100.0 % 83.3%
9 87.6% 100.0 % 96.7%
10 100.0% 96.0% 94.0%
11 100.0% 89.3% 90.0%
12 83.3% 87.5% 86.7%
13 100.0% 96.2% 93.7%
14 100.0% 92.9% 86.7%
15 83.3% 96.0% 93.3%
16 80.0% 96.7% 90.0%
17 100.0% 94.5% 93.3%
18 83.3% 91.7% 86.3%
19 100.0% 92.3% 93.3%
20 86.0% 100.0 % 90.0%
Average 92.3% 94.8% 90.1%

testing operations were repeated 20 times, and the three evaluation criteria namely sensitivity,

specificity and accuracy were obtained as can bee seen in Table 5.1. The final average of all

the above mentioned criteria shows that the method performed well in identifying lesions type

and achieved promising results, it successfully achieved 92.3% sensitivity, 94.8% specificity

and 90.1% accuracy. This refers to that the method is able to determine the lesion types with

high accuracy.

Quantitative comparison between various methods is difficult because different datasets

and criteria have been used. However, we were able to evaluate our method against Barata

et al [25], as they have the same objectives and are based on the same dataset. Table 5.2 and

Figure 5.11 present the comparative results. They indicate that our method achieved better

results and outperforms Barata et al [25] by three evaluation criteria namely: sensitivity,

specificity and accuracy. For instance, the sensitivity and specificity increase from 91.1 to
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Table 5.2: Results of the lesion classification SE-sensitivity, SP-specificity and AC-accuracy.

Work SE SP AC
Barata et al[25] 91.1% 82.1% 86.2%
Proposed method 92.3% 95.0% 90.1%

Figure 5.11: Results of lesion classification SE-sensitivity, SP-specificity and AC-accuracy

92.3 and from 82.1 to 95.0 respectively, which means the correct classification of lesions were

increased by 1.31% sensitivity and 15.71% specificity. This refers to that melanoma images

were classified as melanoma cases correctly, and non-melanoma images were identified as

normal skin. With respect to the accuracy, it raises from 86.2 to 90.1, this means an increase

of approximately 4.5% percent. As a conclude, removing hairs from images using Sobel filter

after applying Gabor filter made the method accurate and robust; also able to classify the

given lesions as either normal or abnormal skin. In addition, increase all the above criteria

and obtained high results; as well as located the pigment network structures, which can assist

dermatologists in making visual observations and the right diagnostic decisions.

It is important to highlight that the manual segmentation images are required to extract the

desired features from actual lesions. Since the lesion segmentation phase is not the primary

focus of this method and the method presented in Chapter 4 failed to segment the actual

whole lesions in many cases, especially melanoma images, as presented in Figure 4.2. This led
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subsequently to a huge decrease in terms of sensitivity, specificity, and accuracy, as mentioned

in Section 4.4. Moreover, the extracted features are dependent on the affected lesions in three

types (common moles, atypical nevi and melanoma images), the ground truth images are

adopted to obtain the required features from the real affected lesions.

5.4 Summary

The work reported in this chapter described a process of automated enhancement and segmen-

tation of the pigment network structures in dermoscopy images, in addition, feature extraction

and classification. In order to perform the segmentation of the pigment network features, and

determination of lesions type as melanoma or normal skin, the algorithm started by enhancing

the appearance of several noises in the image. Thus, the enhanced images were obtained by

applying the same algorithm presented in Chapter 3 Section 3.3.1.2. The outcomes of these

process improve the robustness and the accuracy of the segmentation step and classification

result. Due to the similarity between the hair and the pigment network lines, the segmentation

step was also applied by using Gabor filter with different parameters. Consequently, connected

component analysis with threshold approach was applied to detect the large connected ob-

jects, which in turn indicate the pigment network lines. Several features were extracted and

used to feed the Artificial Neural Network as classifier approach. The proposed method was

tested on a dataset of 200 dermoscopy images including 84 with pigment network and 116

without pigment network. The evaluations also show that our method achieved exceptional

performance against alternative methods we compared to.

Although the final results of melanoma detection were quite promising, user interven-

tion was necessary to determine and segment the affected lesions; leading ultimately to the

construction of a semi-automatic system. Thus, to construct an integrated diagnostic sys-

tem without user intervention, an appropriate algorithm should be selected and implemented.

Therefore, a new fully automated approach for lesion detection is presented in the next chapter.
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Chapter 6

Skin Cancer Detection in

Dermoscopy Images Using

Sub-Region Features

6.1 Introduction

The early detection of skin cancer is extremely important since it can often be cured with

a simple excision[148]; thereby reducing the mortality rate. Dermoscopy is one of the major

tools used in its diagnosis and is used widely by dermatologists, due to its value in the early

detection of malignant melanoma. The tool provides better visualisation of several pigmented

structures that are invisible to the naked eye, such as streaks, dots, pigment networks and

blue-white areas [159].

In the last two decades, computer-aided diagnosis (CAD) systems of melanoma detection

have diminished the gap between the medical and engineering knowledge, since these systems

try to mimic the performance of dermatologists when diagnosing a skin lesion area. Thus,

they help differentiate more quickly between melanoma and benign lesions [24] [134].

In dermoscopy image analysis, images and segments the lesion areas (ROI) are typically

enhanced first. This is followed by extracting several features, which could be local or global
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and using them to learn an appropriate classifier, in order to predict the lesion label (melanoma

or non-melanoma). Each step of above process depends on the previous one. For instance, the

classification stage depends on the performance of all previous steps. Therefore, to achieve a

high classification rate and increase the accuracy of the diagnosis of skin cancer, all or most

of the previous steps should be implemented with the best strategy.

It is well-known that the skin lesion classification methods are based typically on the

feature extraction. Therefore, the extraction of representative features of the lesions under

analysis is a very important stage for efficient classification [113]. In the ABCD-E rule, the

colour features which indicate the (C) parameter describes the colour properties inside the

lesion thus; many different features can be obtained such as statistical descriptors (mean,

standard deviation, skewness, entropy, etc) and colour histograms. For this purpose, we focus

on the best way to extract the desired colour features from images, using an improved method

to segment the lesion.

In this chapter, four main steps have been implemented to build an automatic process

for detection of malignant melanoma in dermoscopy images. First, a pre-processing step

was applied on each image, for the purpose of removing undesirable artifacts. Second, the

Particle Swarm Optimization (PSO) [56] and the Markov Random Field (MRF) [66] methods

are integrated to segment the pigmented lesion areas. Therefore, the k-means was applied

on the segmented image (lesion), in order to separate each homogeneous set of pixels in one

group (cluster). Consequently, several features are extracted from the given lesion based

on existing clusters. By using a trained classifier, the lesion is classified as either benign

or melanoma. The proposed method provides a high performance in automatic melanoma

detection on dermoscopic images. This chapter is structured as follows: Section 6.2 explains

the proposed method including image pre-processing, image segmentation, feature extraction

and lesion classification. Section 6.3 illustrates the experimental results. Finally, a summary

of the chapter is presented in Section 6.4.
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Figure 6.1: Overview of the proposed approach for skin lesions classification.

6.2 The Proposed Method

The proposed method for skin cancer detection is described and discussed in this section. As

an initial step, the quality of the image is improved by detecting and removing several artifacts,

which have been described in previous chapters. Then, the skin lesion which is expected to

be a melanoma or non-melanoma is segmented from the surrounding healthy skin by applying

PSO with MRF methods. Therefore, the k-means approach was applied on the segmented

image (lesion) to divide it into sub region (clusters). Thus, a number of features, such as the

colour moments and colour histogram, are extracted from each sub region and used as input

to an Artificial Neural Network (ANN) classifier, in order to be trained and determine the

skin lesions type. The overview of the proposed approach is illustrated in Figure. 6.1.

6.2.1 Pre-Processing of Dermoscopic Images

As mentioned in previous chapters the dermoscopic images do not have the expected quality

to perform the diagnostic analysis. Moreover, the pre-processing stage is quite important and

mandatory, since the noise presence in images affect the subsequent stages. The improvement

of the image quality should be performed as a first step. Thus, to improve the quality of

images and prevent false positive detection; as well as obtain a high accuracy of melanoma
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detection, we adopt the same algorithm described in Chapter 3 Section 3.3.1 to detect and

remove most of the hair from images.

6.2.2 Image Segmentation

The purpose of image segmentation is to separate the homogeneous lesions from the surround-

ing healthy skin. It is the most important phase for analysing images properly, since it affects

the subsequent steps accuracy. However, appropriate segmentation in dermoscopy images is

a daunting task and very challenging, because the lesions have large variations in size, shape

and colour. As well as, the existence of low contrast between the lesions and surrounding

healthy skin. In this work the image segmentation stage was implemented in two steps, the

lesion area was segmented in the first step, while the sub region inside the segmented lesion

was segmented in the second.

6.2.2.1 Skin Lesion Segmentation

The automatic segmentation approach was implemented to extract the whole lesion areas.

The PSO and the MRF methods were combined, in order to minimise the energy function.

The image segmentation is formulated as an optimization problem of the energy function with

MRF theory. The PSO method is used to perform the initial labeling based on the optimal

threshold value, which was obtained by maximising the fitness function. Then, an additional

local search is performed for each segmented image by integrating it with MRF method.

The purpose of this is to refine the segmented image by minimising the energy function or

maximising the probability of pixel allocation to a cluster, by using Maximum A Post Priority

(MAP). [66]. Accordingly, the pixels are reassigned to different classes based on the minimum

cost. This process continues until a stopping criterion is met. More details of the approach

can be found in Chapter 4 4.3.2.

6.2.2.2 Sub-Region Clustering

Our aim is to divide the segmented lesion into a few clusters, with a more homogeneous

distribution of pixels for each cluster. A simple K-means approach is used for this purpose.
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Figure 6.2: Segmentation and clustering: Blue scale image (pre-processed)(top left), segmented binary image
(top right), segmented blue scale image, i.e. the lesion (bottom left) and result of clustering (bottom right).

The outcomes (binary masks or segmented lesions) from the previous step are multiplied by

grey scale images (see the bottom left image in Figure. 6.2), to separate the pixels located

inside the lesion into several groups. The K-means clustering method is used since it is very

simple and has low computational complexity. Moreover, the number of clusters (k) could be

determined easily. Hence, the number of clusters has been experimentally obtained and set as

k=5, (discussions in section 6.3).

The Euclidean distance is used to calculate the distance between the image pixels and the

centroids of the clusters. Every single pixel was assigned to the appropriate cluster, based on

its distance. Thus, the location of each cluster was updated and the pixels were re-assigned.

This process continues until no more changes to cluster membership. The final result of this

step is several homogeneous clusters, which can be used for the subsequent step of feature

extraction. An example is given in Figure. 6.2.
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6.2.3 Feature Extractions

Hundreds of features can be acquired from each dermoscopy image and used as an image

descriptor. However, not all are appropriate for lesion classification. Too many irrelevant fea-

tures make the classifier complicated and require more computational time, which also reduces

the classification accuracy. The best features have to be able to represent the characteristics

of the regions in skin cancer images. Therefore, the suitable number of features should be

extracted, with the best way possible to distinguish between images. Accordingly, melanoma

images can be discriminated significantly from the benign images by a classifier. On this basis,

the segmented lesion images can be used to extract several numbers of features as the best

way to address the region in isolation. The density and the regular distribution of the blue

color are the main properties and can be used to identify the images. In this work, three

colour moments with colour histogram are used as features, in order to determine the skin

lesion type.

6.2.3.1 Colour Moments

Colour moments can be used to distinguish images based on their colour distribution. Typi-

cally, probability distributions are characterised by the number of unique moments [13]. Con-

sequently, they can be used as colour features. The first colour moment can be interpreted

as the average colour in each sub region inside the lesion, and can be calculated using the

following equation:

Ei =
N∑
i=1

1
N
Pi .

where N is the total number of pixels inside the sub region and Pi is the pixel value.

The second colour moment used as a feature is the standard deviation, which can be

obtained by taking the square root of the variance of the colour distribution.

σi =

√√√√( 1
N

N∑
i=1

(pi− Ei)2) .

where Ei is the average value and N is the total number of the pixels inside the sub region.
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The third and final colour moment used in our approach is the skewness; in other words

the colour distribution asymmetry. Therefore, this provides useful information pertaining to

the shape of the colour distribution. Skewness can be calculated as:

Si = 3

√√√√( 1
N

N∑
i=1

(pi− Ei)3) .

6.2.3.2 Colour Histogram

Colour histogram is a way to represent the distribution of the composition of colours in images.

It reveals the number of pixels in each type of colour in the image. The histogram associated

with the blue colour component Ic, c ∈ {3} is given by:

hc(i) = 1
N

∑
x,y

bc(Ic(x, y))i = 1, ..., Bc .

where N is the number of pixels inside the sub region, i is histogram bin, Bc in the number

of bins and bc(.) is the characteristic function of ith.

bc(Ic(x, y)) =

 1 Ic(x, y) ∈ ith colour bin

0 otherwise

 .

The bins are defined by dividing the colour component range into intervals with the same

width. For all histograms, the number of bins is given by:

Bc ∈ {5, 10, 15, 20}.

It was found that the best performance was achieved when the number of bins set as 10

(discussions in section 6.3). Thus, the elements of each sub region are divided into 10 equally

spaced bins.

The colour moments and colour histogram features are concatenated into one vector, to

represent the image. It is noteworthy that all the extracted features are obtained from only

the blue colour moment, since it provides the best discriminatory performance. The same
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number of features was obtained from all images, three features related to the colour moment

and ten features from the colour histogram. These features are used as an image descriptor

and the images are classified using machine learning techniques.

6.2.4 Skin Lesion Classification

Based on the extracted features from images. The classification process of skin lesions must

be performed to a very high standard, because it supports the decision of the dermatologists

when diagnosing melanoma. Therefore, the Artificial Neural Network (ANN) as a classifier

is used to determine the image type as normal or abnormal. The output of the classifier is

(1) for melanoma and (0) for non-melanoma. The Radial Basis Function (RBF) is used as an

activation function and given by: [36] [14].

h(x) = exp

(
−(x− c)2

r2

)

where c is the center of bell-shaped Gaussian and r is the width.

A radial basis function (RBF) network is a special type of neural network, that uses a

radial basis function as its activation function. It is a type of feed forward neural network

composed of three layers, namely input, hidden and output layer [89]. It adds new neurons to

the hidden layer of a radial basis network until the specified mean squared error goal is met

or a maximum number of neurons is reached. The error of the new network is checked if it is

low enough, the network is finished. Otherwise, the next neuron is added. The advantages of

using this function in lesion classification images include designing a radial basis network often

takes less time than training a sigmoid network, and can sometimes result in the use of fewer

neurons [98]. Therefore, the network was constructed by two-layers (hidden layer and output

layer) with 100 neurons in the hidden layer. All the discriminant features were extracted and

stored in a database as numerical data, which was divided into training and testing. For the

purpose of training the classifier, the training data with its target are used as input to the

Radial Basis Function Network to make a prediction. As a target: (1) refers to melanoma and

(0) indicates a normal skin. Once the network is trained with the known target, the testing
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data, which is the data that is not yet trained (unknown images), are used as input to the

network to assess its performance.

6.3 Experimental Results

The proposed approach was evaluated on a public database PH2 [101] which provides 200

dermoscopic images. Each image in the database was classified by the dermatologists as

either normal or abnormal (the ground truth labels). The extracted features from all images

were used as an input to the ANN classifier, with the ground truth labels as the output.

The training and testing process was performed by using a 5-fold stratified cross-validation

method. The images were divided into five subsets, each of which contained approximately

the same number of melanoma and non-melanoma images.

We used five common evaluation criteria i.e. Sensitivity or True Positive Rate (TPR),

Specificity or True Negative Rate (TNR), Accuracy (AC), False Positive Rate (FPR), and

Mean Square Error (MSE). The AC is defined as the sum of the true positives (images correctly

classified as melanoma) and the true negatives (normal skin correctly identified as a non-

melanoma), divided by the total number of images. The TPR is defined as the total number of

true positives divided by the total number of images marked in the ground truth as melanoma.

The TNR is defined as the total number of true negatives divided by the total number of images

marked in the ground truth as normal skin. The FNR is calculated as the total number of

false negatives divided by the number of images marked as non-melanoma in the ground truth

image. It is noteworthy that a perfect classification would have a sensitivity (TPR) of 1 and

FNR and MSE of 0.

The obtained results of our method are presented in Table 6.1. The training and testing

operations were repeated 5 times for greater accuracy in the lesion classification results; thus,

the average of all the above mentioned criteria was calculated. It is clear that the method

yielded promising results regarding all aforementioned evaluation criteria. The average of the

sensitivity, specificity and accuracy were approximately 99.00%, 85.00% and 96.00% respec-

tively. This means the method was able to distinguish between lesions type with high accuracy.
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Table 6.1: Results of lesion classification in dermoscopy images.

No SE (TPR) SP (TNR) AC FNR MSE
1 0.9874 0.9000 0.9698 0.01257 0.0470
2 1.0000 0.8750 0.9748 0.0000 0.0420
3 0.9748 0.8250 0.9447 0.0251 0.0592
4 0.9937 0.8250 0.9597 0.0062 0.0474
5 0.9811 0.8250 0.9497 0.0188 0.0514
Mean 0.9874 0.8500 0.9597 0.0125 0.0494

Moreover, the FNR and MSE averages were quite low, which means a few melanoma images

were classified incorrectly as non-melanoma.

Making a quantitative comparison of various methods is difficult since different datasets

and criteria have been used. However, we evaluated the performance of our approach against

Barata et al [25] [24] [22], Alfed et al[13], Eltayef et al[58], Marques et al[99], Barata et al[26],

Barata et al[21], Riaz et al[122], Barata et al[27] and Lei et al [33] as they have the same

objectives, and they are based on the same database. Table 6.2 presents the comparison

results.

To facilitate the performance comparison between our method and the alternate ap-

proaches, parameters, such as sensitivity (SE), specificity (SP), accuracy rates (AC) and bal-

ance accuracy (average of sensitivity and specificity, denoted as BAC) are computed for each

method against the ground truth. Table 6.2 presents the results of performance comparison.

Out of the four criteria, the proposed method performed better than all other methods by

SE and AC; however, it is not as good as Eltayef [58] and Barata [22] in terms of SP and

BAC, respectively. However, it is worth mentioning that the ground truth was used as the

segmented images in both methods, while we did both segmentation and classification from

the original images. Moreover, the work presented in [22] requires more computational time,

because a number of image patches are used for feature extraction, and this could be expensive

when the patch size is large. Furthermore, the late fusion strategy was used in their work,

which requires additional time to classify each type of features separately. Consequently, our

method achieved higher accuracy in identifying melanoma skin cancer compared with the
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Table 6.2: Performance comparison with several methods.

Method SE SP AC BAC
Barata et al[25] 91.10% 82.10% 86.20 86.60%
Barata et al[24] 93.00% 85.00% —— 89.00%
Barata et al[22] 98.00% 90.00% —— 94.00%
Alfed et al[13] 91.00% 85.00% —— 88.00%
Eltayef et al[58] 92.30% 95.00% 90.00 93.65%
Marques et al[99] 94.10% 77.40% 79.10% 85.75%
Barata et al[26] 85.00% 87.00% 87.00% 86.00%
Barata et al[21] 92.5% 76.30% 84.30% 84.40%
Riaz et al[122] 84.00% 94.00% —— 89.00%
Barata et al[27] 96.00% 80.00% —— 88.50%
Lei et al [33] 87.50% 93.13% 92.00% 90.31%
Proposed method 98.74% 85.00% 95.97% 91.87%

state-of-the-art methods. This provides a clear indication that the method can be used in the

early detection of melanoma.

It is worth mentioning that the comparison with the method presented in Chapter 5

(pigment network detection) was undertaken, in order to present that which obtained greater

accuracy in the classification of lesions. The method presented in Chapter 5 used five extracted

features to identify the given lesions type as melanoma, and it successfully achieved 92.30%

sensitivity, 95.00% specificity and 90.00% accuracy. Whereas, the current method used colour

moments and colour histogram to extract relevant required features. The method produced

exactly 98.74% sensitivity, 85.00% specificity and 95.97% accuracy. It is clear that the current

method yielded better results than the previous one in terms of sensitivity and accuracy. The

sensitivity and accuracy are increased from 92.30 to 98.74 and from 90.00 to 95.97 respec-

tively, which means the increases average of sensitivity is approximately 6.97% and specificity

is about 6.63% percentage. This indicates that many melanoma images were wrongly classified

as non-melanoma cases in the previous method, and correctly detected in this method. Speci-

ficity decreased significantly from 95.00% to 85.00%, which means the percentage decrease

is about 11.76%. However, the method presented in Chapter 5 is a semi-automatic method,

since it used the ground truth as a segmented image to extract various of features, while the
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Table 6.3: Results of determining the number of clusters.

No of clusters SE SP AC FNR FPR
3 0.9836 0.8100 0.9487 0.01635 0.1900
4 0.9849 0.7700 0.9417 0.01509 0.2300
5 0.9874 0.8500 0.9597 0.01132 0.1500
7 0.9886 0.7800 0.9467 0.01635 0.2200
8 0.9861 0.8300 0.9547 0.01383 0.1700
10 0.9761 0.8150 0.9437 0.02389 0.1850

current one is a fully automatic method. It performed the full process including image pre-

processing, segmentation, feature extraction and classification automatically and without user

intervention. Moreover, it determined the lesion types with high accuracy. Thus, we believe

the method has great potential to detect malignant melanoma at an early stage, and support

the clinical diagnosis.

Furthermore, to determine the number of clusters, we selected 6 numbers randomly and

then apply k-means method inside the segmented lesions based on these numbers separately.

At each stage, where the k-means is applied, we extract the mentioned features and use them

as input to the ANN classifier. Thus, we evaluate the performance of the lesion classification

by the five fore mentioned criteria. As can bee seen in Table 6.3, it is clear that the best

performance was achieved when the number of clusters (k) was set to 5, since it gives the

highest accuracy and specificity, alongside the lowest false negative and false positive rate.

Therefore, it is selected as the best number of clusters.

The same strategy has been adopted to define the best number of bins. Table 6.4 illustrates

the experimental results of determining the best number of bins value from four random

numbers. It was observed that the higher accuracy and specificity were obtained when the

number of bins was set to 10, beside that the lower false negative and false positive rate was

acquired. Thus, the value of bins was set to 10.

It is important to state that the experimental results in Table 6.3 reveal that the results

for each single metric are very close, which means the method is not impacted significantly by

a different number of clusters. For instance, the sensitivity metrics are quite similar and high
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Table 6.4: Results of determining the number of bins.

No. bins SE SP AC FNR FPR
5 0.9886 0.8350 0.9577 0.01132 0.1650
10 0.9874 0.8500 0.9597 0.01132 0.1500
15 0.9886 0.8250 0.9557 0.01257 0.1750
20 0.9861 0.8400 0.9567 0.01383 0.1600

in terms of all clusters, and the same applies to the accuracy metrics. Moreover, the same

thing occurred in Table 6.4 when the number of bins was defined. This is a clear indication

that our method does not require complex parameters or specific numbers of bins or clusters

to classify the lesions with a high accuracy, which is an additional advantage of the proposed

method.

Conversely, the combination of the features derived from pigment network detection pre-

sented in Chapter 5 with the current extracted features was performed in an attempt to boost

the accuracy of lesion classification. The overall classification performance results of 200 im-

ages are presented in Table 6.5. Moreover, the training and testing operations were repeated

5 times to ensure the result of lesion classification is correct. The average of all evaluation

metrics reveals that the method performed well and obtained higher results. It achieves ap-

proximately 97.00% sensitivity, 83.00% specificity, and 94.10% accuracy; thereby indicating

that the method can be used in the detection of melanoma lesions. However, a slight decrease

can be observed in the classification results with respect to all evaluation criteria, compared

with the current method results. In particular, the sensitivity decreases to 0.9698 compared to

that presented in Table 6.1 (0.9874), the specificity reduced to 0.8300, the accuracy becomes

0.9417 as opposed to 0.9596. Moreover, the average of FNR and MSE are decreased from

0.0125 to 0.0301 and from 0.0494 to 0.0522 respectively. The reason of that is because, in

the pigment network detection, the method extracted the net mask from inside and outside

the lesion, which in turns led to producing irrelevant features. These features have reduced

the average value of the classification accuracy. Moreover, undetected thin/grey hairs as men-

tioned in Chapter 3 Section 3.3.1.2 may produce wrong values of extracted features, such as
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Table 6.5: Performance results of lesion classification in dermoscopic images using pigment network and
sub-region features.

No SE (TPR) SP (TNR) AC FNR MSE
1 0.9811 0.8000 0.9447 0.0188 0.0499
2 0.9685 0.8250 0.9396 0.0314 0.0509
3 0.9622 0.8500 0.9396 0.0377 0.0546
4 0.9685 0.8500 0.9447 0.0314 0.0564
5 0.9685 0.8250 0.9396 0.0314 0.0492
Mean 0.9698 0.8300 0.9417 0.0301 0.0522

number of holes, which led to a decrease in the accuracy of lesion identification. Despite,

the reduction of all aforementioned criteria, the method still yielded very promising results

and can be used as a tool for non-invasive diagnostic technique in dermatology, in addition to

supporting dermatologists in their diagnosis.

6.4 Summary

In this chapter, a fully automatic approach to melanoma detection in dermoscopy images

was performed. The input images are first pre-processed by detecting and removing the

noise. Then the lesions are segmented by applying PSO and MRF methods. Therefore, the

segmented lesion was used to extract a number of features, the K-means is applied on the

segmented image, and the features such as the colour moments and colour histogram, are

extracted at the sub-region (cluster) level. Consequently, The features are used as input to an

ANN for final melanoma classification. The proposed approach achieved approximately 96.0%

accuracy, 99.00% sensitivity and 85.00% specificity on a dataset of 200 images. A comparison

of several alternative methods reveals that the proposed method achieved overall superior

performance in terms of sensitivity and accuracy.

The main contributions of the work are as follows.

1. A comprehensive method including the whole process of image enhancing, segmentation

of lesions and melanoma classification is developed.
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2. A method for lesion segmentation is proposed by combining the PSO and MRF methods.

3. Feature extraction at the sub-region level is performed by separating the segmented

lesions into homogeneous clusters.

The method proved to be flexible, robust, accurate, and fast; thereby leading to successful

classification results. However, there remains scope for improvement in certain aspects of this

study. This includes the removal of thin and grey hair from images without affecting lesion

borders, improving lesion segmentation accuracy especially with melanoma images alone, and

extracting more relevant features, which can increase the rate of the accuracy in diagnosing

skin cancer.
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Chapter 7

Conclusion and Future Work

7.1 Introduction

In recent years, incidences of skin cancer have become more widespread in countries including

the USA, Australia and the UK; especially among white-skinned people who are exposed

to the sun. Dermoscopy is considered one of the major tools in its diagnosis and is used

widely by clinicians due to its value in early detection. Medical research has been accelerating

through the use of computers and software to interpret medical data and provide meaningful

information. The motivation for this is obvious; when performed manually, the analysis of

medical images can be time consuming, tedious and subjective.

The introduction of computer-aided diagnosis (CAD) in dermoscopy image analysis signi-

fied the arrival of a new platform for the early detection of melanoma. Using computers in

melanoma diagnosis has become a major research area in recent years with the aim of helping

the dermatologists through the provision of useful information on the skin lesions. The struc-

tures, such as pigment network and region area, are considered key indicators of melanoma

disease. Thus, effective segmentation of these significant structures can improve the produc-

tivity of dermatologists by reducing their time required while diagnosis process. This chapter

is organized as follows: Section 7.2 reflects the overall aim/objectives of this study, Section

7.3 demonstrates the research limitations, and the future work is described in Section 7.4.
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7.2 Research Summary

The main aim/objectives of this thesis as summarised in Chapter 1, were as follows:

• provide accurate, robust and reliable automated dermoscopy image analysis technique,

for the purpose of facilitating early detection of melanoma skin cancer disease.

• Develop a new method to reduce the noise from dermoscopic images without corrupting

image information, and produce images more suitable for further processing.

• Implement a new algorithm to extract the actual lesion boundaries in dermoscopic im-

ages.

• Develop an automatic algorithm for the detection of pigment network structures.

• Identify skin lesion types based on the presence or absence of the pigment network

structures.

• Develop a fully automatic approach for melanoma detection in dermoscopy images based

on the suitable number of features with an ideal extraction process.

To address the aforementioned research aim/objectives, we conducted a review of the liter-

ature in Chapter 2 to identify existing ndings alongside gaps in the state-of-the-art methods.

Then, we proposed four innovative methods, including two for lesion segmentation, one for

pigment network detection, and one for lesion classification. The whole experimental results

were obtained on a public database PH2, alongside a comparison of existing methods in the

literature, which revealed that our proposed approach is accurate, robust and efficient in the

segmentation and classification of the pigmented lesions in dermoscopy images. The afore-

mentioned objectives of this study are outlined in the following sections.

7.2.1 Region Segmentation

Determining the actual regions in dermoscopy images is quite important and necessary since

it is responsible for identifying melanoma in the early stage by applying (ABCD) rule, which

is an essential role for melanoma diagnosis. Over segmentation and under segmentation both
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affect the lesion segmentation accuracy and lead to the wrong diagnosis later. Thus, region

segmentation must be correct and accurate to obtain exact and meaningful information for

diagnosing melanoma correctly. Chapters 3 and 4 provided two methods of region border

detection in dermoscopy images, which can be used in modern dermatology to assist in the

diagnosis of melanoma.

In Chapter 3, the automatic segmentation process of regions in dermoscopy images began

by removing the noise from all images, since this increases the accuracy of the segmenta-

tion results. Therefore, the robust pre-processing approach was performed for the purpose of

enhancing the quality of images and rendering them more understandable. It involves reflec-

tion detection using adaptive threshold, hair extraction using directional Gabor filter, image

sharpening and Sobel filter and lightning reflection and hair repairing using image inpainting

approach. The experimental results indicate that the method was able to detect and inpaint

the noise pixels with highly accurate. The visual observations indicate that the pre-processed

images were clearer than the original one, which led to making the region borders more visible.

In terms of the region segmentation, the FCM and the MRF methods were used to detect and

extract the region border, the FCM was executed for the purpose of segmenting the region area

and providing the initial parameters. Therefore, the MRF method was implemented based on

the estimated parameters to refine the segmented images by reassigning each image pixel to

one cluster based on higher probability. A morphological operation was performed, to fill in

the holes and remove the small few objects to present the segmented region as one connected

region.

Another fully automatic method of region border extraction in dermoscopy images was

presented in Chapter 4. Images must be pre-processed to enhance the quality of images and

increase the accuracy of the segmentation results. Therefore, the same algorithm presented in

Chapter 3 section 3.3.1 was applied to detect and remove most of the noise from images, as

an image pre-processing phase. The obtained pre-processed images displayed the region area

clearly, which helped significantly in the process of region segmentation. Combining the PSO

with the MRF methods was performed to segment the region area from surrounding healthy

skin. Based on the highest fitness function, the PSO method was able to segment the image
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into the foreground (region) and the background. Therefore, to perform a local search and

obtain a robust segmentation, the segmented image was integrated with the MRF approach.

The process relabeled each pixel to a different class based on its neighbours. The main aim

of this process was to reassign each pixel to optimal cluster based on its neighbors by getting

the minimum cost of the energy function in each iteration. The morphological operation such

as fill in function was used to remove or fill in the holes in the obtained segmented images.

It is worth mentioning that this method exhibited better performance opposed to our

previous method proposed in Chapter 3, as it is capable of segmenting almost the whole

actual region. This method used the best solution obtained form PSO algorithm, based on

the highest fitness and shared it with MRF approach to performing a local search in each

iteration. While in the method presented in Chapter 3, the FCM was used only to estimate

the initial parameters. Moreover, in FCM, the initial points began randomly, which means

sometimes no results were yielded; however, there is always a solution with PSO, since each

particle provide one solution.

In terms of the qualitative and quantitative evaluation, the two proposed methods were

tested on a dataset of 200 dermoscopy images, including 40 melanoma, 80 common moles, and

80 atypical moles. As a qualitative evaluation, the obtained segmented images of the proposed

methods were compared with the ground truth lesions. The experimental results of the two

methods indicated that they provided a high accuracy of skin lesion delineation. While with

respect to the quantitative evaluation, the experimental results were also compared against a

selection of several other methods in the literature on the same dataset and objects. Their

comparison indicated that the two proposed methods achieved exceptional performance and

outperformed the all selected methods. It is worth mentioning that, the proposed approach

presented in Chapter 4 performed well in terms of all validation criteria. We believe it can

address the image noise and provide high accuracy of skin lesion segmentation. Due to the

great potential for detecting the region border correctly, the method can be used to help the

dermatologists for visual observation of the lesion area.

It is important to state that the two proposed approaches outperformed all the other

methods in terms of the accuracy of all the evaluation metrics in processing the benign images,
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while the accuracy decreased with respect to melanoma images.

7.2.2 Pigment Network Detection

Pigment network is considered one of the significant features that can be used to identify

melanoma in the early stage. Therefore, Chapter 5 proposed a novel approach to pigment

network detection in dermoscopy images. The algorithm was started by applying a robust

proposed approach described in chapter 3 section 3.3.1 for the purpose of enhancement the

image quality, because it was able to remove most of the noise and provide very clear images,

without impacting the pigment network features. This process known as pre-processing phase

involves directional Gabor filter, image sharpening, Sobel filter, and image inpainting methods.

The pre-processed images worked very well with segmentation process; thereby boosting its

accuracy, since the noise (hair) covering the pigmented lesions was mostly removed, which

led to the lines of pigment network becoming more visible. Therefore, the outcomes of this

process increase the segmentation and the classification accuracy. With respect to detecting

and segmenting the pigment network lines, directional Gabor filter was also executed with

different parameters from those used to detect the hairs. Thus, the large mesh of pigment

network lines was extracted by implementing the connected component analysis with adaptive

threshold method. The Artificial Neural Network is trained by several features which were

extracted from the segmented image to identify the image type as normal or abnormal. The

proposed method was tested on a dataset of 200 dermoscopy images, including 84 with pigment

network and 116 without pigment network. The evaluations also reveal that our method

yielded promising results and outperformed the alternative method with which it was compared

The key achievement of this chapter is that the method was able to extract the hair from

images without affecting the pigment network lines, which led subsequently to segmenting the

pigment network correctly. In addition, we classified the lesions as melanoma or non-melanoma

based on the extracted features, which were obtained from the mesh of the pigment network.

Consequently, this method can be used as a part of an automatic diagnosis system for lesion

classification.
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7.2.3 Sub-Region Feature Extraction

A comprehensive approach to determining the skin lesions type was presented in Chapter 6.

As the first stage of image processing technique and for the purpose of removing undesirable

objects, the original input images are pre-processed by detecting and removing the noise.

Therefore, the region areas are extracted by applying the PSO and the MRF methods. As

opposed to direct feature extraction from the segmented lesions, K-means is applied and the

desired features, such as the colour moments and colour histogram, are extracted at the sub-

region (cluster) level. These features are fed into an ANN with Radial Basis Function as an

activation function for final melanoma classification. The proposed approach proved to be

robust and accurate, leading to successful classification results of lesions; subsequently, aiding

in the assessment of melanoma disease.

Regarding the qualitative evaluation, the experimental results of 200 dermoscopy images

of the proposed approach were compared with the ground truth. The method achieved ap-

proximately 96.0% accuracy, 99.00% sensitivity, and 85.00% specificity, which are considered

very promising results. In addition to the qualitative evaluation, a comparison of several al-

ternative methods was performed. The evaluation metric indicated that the method achieved

the highest results. Thus, we believe that our efficient and robust method can help dermatol-

ogists reach better diagnoses, and in a fast and accurate way. Once the code is loaded onto

dermoscopy machines, the method will enhance these doctors abilities, and the outcomes for

skin cancer patients.

7.3 Research Limitations

This work has certain limitations that should be acknowledged. For the purpose of enhancing

the quality of images, the algorithm was mostly focused on hair detection and removal. How-

ever, it may be possible to focus on detecting other noises as well such as air bubbles and gel,

to render the images even more understandable and gain clear images.

The accurate segmentation of lesion boundaries (actual lesions) can provide meaningful

and fundamental information for malignant melanoma detection in an early stage. However,

113



Conclusion and Future Work: Chapter 7 Future work

our segmentation methods performed well in case of benign images. However, with regard to

melanoma images, the algorithms failed to delineate whole lesions in many cases, which could

be considered a limitation of this study.

With respect to feature extraction, the study focused solely on extracting several features

from the pigment network structures or the lesion areas. This also can be a limitation of this

work, since those features depended only on the regular distribution of the pigment network,

colour and intensity value. We could have considered more features, such as lesion shape,

texture etc.

Additionally, another possible limitation might be that all four methods were applied

to one dataset (200 images), obtained from (dermatology service of Hospital Pedro Hispano

Portugal [101]). Consequently, the generalisability of findings to other sources of datasets may

be limited.

7.4 Future Work

One of the primary aims of the process of dermoscopic image analysis using CAD systems

is to increase physicians’ confidence in differentiating between normal and abnormal skins.

Therefore, future work will focus primarily on implementing computer algorithms that are

capable of analysing accurately and more efficiently, for the purpose of diagnosing the disease

correctly. In this section, we propose and discuss ideas that will drive the future direction of

this research.

Firstly, in this thesis, we have performed a segmentation of dermoscopic images with lesion

classification using one dataset. In planning for future work, we intend using a different dataset

of skin cancer images to determine whether our methods are limited to dermoscopic images.

Moreover, different classiers like AdaBoost, KNN or SVM could be tested and the one with

the higher accuracy adopted.

Secondly, in the three diagnostic classes (common moles, atypical nevi and melanomas),

the segmentation methods were able to detect the actual lesions with very high accuracy rate,

in terms of the common moles and atypical nevi. However, the accuracy rate was decreased

114



Conclusion and Future Work: Chapter 7 Future work

when melanoma images are processed. Thus, it will be interesting to improve our approach

and focus more on melanoma images, and images with low contrast between lesion edges and

surrounding healthy skin.

Thirdly, we introduced a method for detecting and removing the hair from images. as plans

for future work, we should extend or improve the method to detect and remove the thin hair

and the hair which tends to be grey in colour, since it causes a significant degradation to the

pigment network lines and regions border segmentation. Furthermore, in Chapter 5, we have

proposed a pigment network detection approach. This approach is currently semi-automate

since the ground truth images are used as segmented lesions. Therefore, it is imperative to

implement an algorithm capable of segmenting the actual lesions of any affected area. We

plan to develop our algorithm by integrating it with another method able to delineate the real

lesions. Moreover, dermoscopic features such as dots/globules and streaks are crucial, since

their presence in pigmented skin lesions are a sign of malignancy. We intend to work out

to extract these important structures for the purpose of increasing the accuracy diagnosis of

melanoma disease.

In addition to the proposed extracted features presented in Chapter 6, researchers could

work towards extracting more topological features using different detect descriptors such as

Speeded Up Robust Features (SURF), Scale Invariant Feature Transform (SIFT), Histogram

of Oriented Gradient (HOG),etc, in order to provide some extra information regarding the

intensity of the region. Moreover, they can extract several features from the three colour

channels (RGB), rather than using only grey scale images. Thus, these features could be

combined with those derived from the proposed method and used as an image descriptor.

This might provide high accuracy in differentiating between lesions types.

115



Bibliography

[1] https://challenge.kitware.com/challenge/n/isic2017

[2] https://livelovefruit.com/10-skin-cancer-signs-you-should-never-ignore/.

[3] https://www.dermnetnz.org/cme/dermoscopy-course/introduction-to-dermoscopy/.

[4] https://www.dermnetnz.org/cme/dermoscopy-course/pattern-analysis/.

[5] http://www.dermoscopy.org/atlas/base.htm.

[6] http://www.dermoscopy.org/consensus/2b.asp.

[7] Q. Abbas, M. E. Celebi, I. Fondón García, and M. Rashid. Lesion border detection in der-

moscopy images using dynamic programming. Skin Research and Technology, 17(1):91–100,

2011.

[8] Q. Abbas, I. Fondón, and M. Rashid. Unsupervised skin lesions border detection via two-

dimensional image analysis. Computer methods and programs in biomedicine, 104(3):e1–e15,

2011.

[9] Q. Abbas, I. F. Garcia, M. Emre Celebi, W. Ahmad, and Q. Mushtaq. A perceptually oriented

method for contrast enhancement and segmentation of dermoscopy images. Skin Research and

Technology, 19(1):e490–e497, 2013.

[10] Q. Abbas, I. F. Garcia, M. Emre Celebi, W. Ahmad, and Q. Mushtaq. Unified approach

for lesion border detection based on mixture modeling and local entropy thresholding. Skin

Research and Technology, 19(3):314–319, 2013.

116



[11] N. R. Abbasi, H. M. Shaw, D. S. Rigel, R. J. Friedman, W. H. McCarthy, I. Osman, A. W.

Kopf, and D. Polsky. Early diagnosis of cutaneous melanoma: revisiting the abcd criteria.

Jama, 292(22):2771–2776, 2004.

[12] J. F. Alcón, C. Ciuhu, W. Ten Kate, A. Heinrich, N. Uzunbajakava, G. Krekels, D. Siem, and

G. De Haan. Automatic imaging system with decision support for inspection of pigmented

skin lesions and melanoma diagnosis. IEEE journal of selected topics in signal processing,

3(1):14–25, 2009.

[13] N. Alfed, F. Khelifi, and A. Bouridane. Improving a bag of words approach for skin cancer

detection in dermoscopic images. In Control, Decision and Information Technologies (CoDIT),

2016 International Conference on, pages 024–027. IEEE, 2016.

[14] N. Alfed, F. Khelifi, A. Bouridane, and H. Seker. Pigment network-based skin cancer detection.

In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International

Conference of the IEEE, pages 7214–7217. IEEE, 2015.

[15] G. Argenziano, C. Catricalà, M. Ardigo, P. Buccini, P. De Simone, L. Eibenschutz, A. Ferrari,

G. Mariani, V. Silipo, I. Sperduti, et al. Seven-point checklist of dermoscopy revisited. British

Journal of Dermatology, 164(4):785–790, 2011.

[16] G. Argenziano, G. Fabbrocini, P. Carli, V. De Giorgi, E. Sammarco, and M. Delfino. Epilumi-

nescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the

abcd rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Archives of

dermatology, 134(12):1563–1570, 1998.

[17] G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cer-

roni, G. De Rosa, G. Ferrara, et al. Dermoscopy of pigmented skin lesions: results of a consen-

sus meeting via the internet. Journal of the American Academy of Dermatology, 48(5):679–693,

2003.

[18] B. Aribisala and E. Claridge. A border irregularity measure using a modified conditional

entropy method as a malignant melanoma predictor. Image analysis and recognition, pages

914–921, 2005.

117



[19] J. L. G. Arroyo and B. G. Zapirain. Detection of pigment network in dermoscopy images

using supervised machine learning and structural analysis. Computers in biology and medicine,

44:144–157, 2014.

[20] J. L. G. Arroyo and B. G. Zapirain. Detection of pigment network in dermoscopy images using

supervised machine learning and structural analysis. Computers in Biology and Medicine,

44:144 – 157, 2014.

[21] C. Barata, M. E. Celebi, and J. S. Marques. Improving dermoscopy image classification using

color constancy. IEEE journal of biomedical and health informatics, 19(3):1146–1152, 2015.

[22] C. Barata, M. E. Celebi, and J. S. Marques. Melanoma detection algorithm based on feature

fusion. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual Interna-

tional Conference of the IEEE, pages 2653–2656. IEEE, 2015.

[23] C. Barata, M. A. Figueiredo, M. E. Celebi, and J. S. Marques. Color identification in der-

moscopy images using gaussian mixture models. In Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on, pages 3611–3615. IEEE, 2014.

[24] C. Barata, J. S. Marques, and T. Mendonça. Bag-of-features classification model for the diag-

nose of melanoma in dermoscopy images using color and texture descriptors. In International

Conference Image Analysis and Recognition, pages 547–555. Springer, 2013.

[25] C. Barata, J. S. Marques, and J. Rozeira. A system for the detection of pigment network in

dermoscopy images using directional filters. Biomedical Engineering, IEEE Transactions on,

59(10):2744–2754, 2012.

[26] C. Barata, J. S. Marques, and J. Rozeira. Evaluation of color based keypoints and features for

the classification of melanomas using the bag-of-features model. In International Symposium

on Visual Computing, pages 40–49. Springer, 2013.

[27] C. Barata, M. Ruela, M. Francisco, T. Mendonça, and J. S. Marques. Two systems for the

detection of melanomas in dermoscopy images using texture and color features. IEEE Systems

Journal, 8(3):965–979, 2014.

118



[28] C. A. Z. Barcelos, M. Boaventura, and E. Silva. A well-balanced flow equation for noise

removal and edge detection. IEEE Transactions on image processing, 12(7):751–763, 2003.

[29] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proceedings of

the 27th annual conference on Computer graphics and interactive techniques, pages 417–424.

ACM Press/Addison-Wesley Publishing Co., 2000.

[30] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society.

Series B (Methodological), pages 259–302, 1986.

[31] G. Betta, G. Di Leo, G. Fabbrocini, A. Paolillo, and P. Sommella. Dermoscopic image-analysis

system: estimation of atypical pigment network and atypical vascular pattern. In Medical

Measurement and Applications, 2006. MeMea 2006. IEEE International Workshop on, pages

63–67. IEEE, 2006.

[32] J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algorithm. Com-

puters & Geosciences, 10(2-3):191–203, 1984.

[33] L. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham. Automatic melanoma detection via multi-scale

lesion-biased representation and joint reverse classification. In 2016 IEEE 13th International

Symposium on Biomedical Imaging (ISBI), pages 1055–1058. IEEE, 2016.

[34] R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J.-H. Saurat. Dermoscopy of

pigmented skin lesions. Journal of the American Academy of Dermatology, 52(1):109–121,

2005.

[35] G. Buchsbaum. A spatial processor model for object colour perception. Journal of the Franklin

institute, 310(1):1–26, 1980.

[36] M. D. Buhmann. Radial basis functions: theory and implementations, volume 12. Cambridge

university press, 2003.

[37] C. J. Burges. A tutorial on support vector machines for pattern recognition. Data mining and

knowledge discovery, 2(2):121–167, 1998.

119



[38] H. Bustince, E. Barrenechea, and M. Pagola. Image thresholding using restricted equivalence

functions and maximizing the measures of similarity. Fuzzy Sets and Systems, 158(5):496–516,

2007.

[39] H. Bustince, M. Pagola, E. Barrenechea, J. Fernández, P. Melo-Pinto, P. Couto, H. R.

Tizhoosh, and J. Montero. Ignorance functions. an application to the calculation of the thresh-

old in prostate ultrasound images. Fuzzy sets and Systems, 161(1):20–36, 2010.

[40] G. Campos-do Carmo and M. Ramos-e Silva. Dermoscopy: basic concepts. International

journal of dermatology, 47(7):712–719, 2008.

[41] G. Capdehourat, A. Corez, A. Bazzano, R. Alonso, and P. Musé. Toward a combined tool

to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin

lesions. Pattern Recognition Letters, 32(16):2187–2196, 2011.

[42] H. Castillejos, V. Ponomaryov, L. Nino-de Rivera, and V. Golikov. Wavelet transform fuzzy

algorithms for dermoscopic image segmentation. Computational and mathematical methods in

medicine, 2012, 2012.

[43] M. E. Celebi, S. Hwang, H. Iyatomi, and G. Schaefer. Robust border detection in dermoscopy

images using threshold fusion. In Image Processing (ICIP), 2010 17th IEEE International

Conference on, pages 2541–2544. IEEE, 2010.

[44] M. E. Celebi, H. Iyatomi, G. Schaefer, and W. V. Stoecker. Lesion border detection in

dermoscopy images. Computerized medical imaging and graphics, 33(2):148–153, 2009.

[45] M. E. Celebi, H. A. Kingravi, B. Uddin, H. Iyatomi, Y. A. Aslandogan, W. V. Stoecker,

and R. H. Moss. A methodological approach to the classification of dermoscopy images.

Computerized Medical Imaging and Graphics, 31(6):362–373, 2007.

[46] M. E. Celebi and A. Zornberg. Automated quantification of clinically significant colors in

dermoscopy images and its application to skin lesion classification. IEEE systems journal,

8(3):980–984, 2014.

120



[47] T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on image

processing, 10(2):266–277, 2001.

[48] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern analysis

and machine intelligence, 17(8):790–799, 1995.

[49] K. Clawson, P. Morrow, B. Scotney, D. McKenna, and O. Dolan. Computerised skin lesion sur-

face analysis for pigment asymmetry quantification. In Machine Vision and Image Processing

Conference, 2007. IMVIP 2007. International, pages 75–82. IEEE, 2007.

[50] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[51] R. Crandall. Image segmentation using the chan–vese algorithm. Project report from ECE,

532, 2009.

[52] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based inpainting. In

Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society

Conference on, volume 2, pages II–721. IEEE, 2003.

[53] H. Demuth, M. Beale, and M. Hagan. Neural network toolbox™ 6. User’s guide, pages 37–55,

2008.

[54] Y. Deng and B. Manjunath. Unsupervised segmentation of color-texture regions in images

and video. IEEE transactions on pattern analysis and machine intelligence, 23(8):800–810,

2001.

[55] G. Di Leo, C. Liguori, A. Paolillo, and P. Sommella. An improved procedure for the automatic

detection of dermoscopic structures in digital elm images of skin lesions. In Virtual Environ-

ments, Human-Computer Interfaces and Measurement Systems, 2008. VECIMS 2008. IEEE

Conference on, pages 190–194. IEEE, 2008.

[56] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Micro Machine

and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on,

pages 39–43. IEEE, 1995.

121



[57] M. Elgamal. Automatic skin cancer images classification. IJACSA) International Journal of

Advanced Computer Science and Applications, 4(3):287–294, 2013.

[58] K. Eltayef, Y. Li, and X. Liu. Detection of pigment networks in dermoscopy images. In Journal

of Physics: Conference Series, volume 787. IOP Publishing, 2017.

[59] M. Emre Celebi, H. A. Kingravi, H. Iyatomi, Y. Alp Aslandogan, W. V. Stoecker, R. H. Moss,

J. M. Malters, J. M. Grichnik, A. A. Marghoob, H. S. Rabinovitz, et al. Border detection in

dermoscopy images using statistical region merging. Skin Research and Technology, 14(3):347–

353, 2008.

[60] M. Emre Celebi, Q. Wen, S. Hwang, H. Iyatomi, and G. Schaefer. Lesion border detection in

dermoscopy images using ensembles of thresholding methods. Skin Research and Technology,

19(1), 2013.

[61] P. M. Ferreira, T. Mendonça, J. Rozeira, and P. Rocha. An annotation tool for dermoscopic

image segmentation. In Proceedings of the 1st International Workshop on Visual Interfaces

for Ground Truth Collection in Computer Vision Applications, page 5. ACM, 2012.

[62] G. D. Finlayson and E. Trezzi. Shades of gray and colour constancy. In Color and Imaging

Conference, volume 2004, pages 37–41. Society for Imaging Science and Technology, 2004.

[63] Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm. In Icml,

volume 96, pages 148–156. Bari, Italy, 1996.

[64] R. J. Friedman, D. S. Rigel, and A. W. Kopf. Early detection of malignant melanoma: The

role of physician examination and self-examination of the skin. CA: a cancer journal for

clinicians, 35(3):130–151, 1985.

[65] R. Garnavi, M. Aldeen, M. E. Celebi, A. Bhuiyan, C. Dolianitis, and G. Varigos. Automatic

segmentation of dermoscopy images using histogram thresholding on optimal color channels.

International Journal of Medicine and Medical Sciences, 1(2):126–134, 2010.

122



[66] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restora-

tion of images. IEEE Transactions on pattern analysis and machine intelligence, (6):721–741,

1984.

[67] P. Ghamisi, M. S. Couceiro, J. A. Benediktsson, and N. M. Ferreira. An efficient method for

segmentation of images based on fractional calculus and natural selection. Expert Systems

with Applications, 39(16):12407–12417, 2012.

[68] A. Gijsenij, T. Gevers, and J. Van De Weijer. Computational color constancy: Survey and

experiments. IEEE Transactions on Image Processing, 20(9):2475–2489, 2011.

[69] J. Glaister, A. Wong, and D. A. Clausi. Segmentation of skin lesions from digital images

using joint statistical texture distinctiveness. IEEE transactions on biomedical engineering,

61(4):1220–1230, 2014.

[70] A. G. Goodson and D. Grossman. Strategies for early melanoma detection: Approaches to the

patient with nevi. Journal of the American Academy of Dermatology, 60(5):719–735, 2009.

[71] C. Grana, R. Cucchiara, G. Pellacani, and S. Seidenari. Line detection and texture character-

ization of network patterns. 2006.

[72] G. Hamerly and C. Elkan. Learning the k in k-means. In Advances in neural information

processing systems, pages 281–288, 2004.

[73] L.-K. Huang and M.-J. J. Wang. Image thresholding by minimizing the measures of fuzziness.

Pattern recognition, 28(1):41–51, 1995.

[74] J. Humayun, A. S. Malik, and N. Kamel. Multilevel thresholding for segmentation of pig-

mented skin lesions. In Imaging Systems and Techniques (IST), 2011 IEEE International

Conference on, pages 310–314. IEEE, 2011.

[75] S. Hwang and M. E. Celebi. Texture segmentation of dermoscopy images using gabor filters

and g-means clustering. In IPCV, pages 882–886, 2010.

123



[76] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International Conference on Machine Learning, pages 448–456,

2015.

[77] A. G. Isasi, B. G. Zapirain, and A. M. Zorrilla. Melanomas non-invasive diagnosis application

based on the abcd rule and pattern recognition image processing algorithms. Computers in

Biology and Medicine, 41(9):742–755, 2011.

[78] H. Iyatomi, H. Oka, M. E. Celebi, M. Hashimoto, M. Hagiwara, M. Tanaka, and K. Ogawa.

An improved internet-based melanoma screening system with dermatologist-like tumor area

extraction algorithm. Computerized Medical Imaging and Graphics, 32(7):566–579, 2008.

[79] P. Jaccard. The distribution of the flora in the alpine zone. New phytologist, 11(2):37–50,

1912.

[80] M. Jafari, N. Karimi, E. Nasr-Esfahani, S. Samavi, S. Soroushmehr, K. Ward, and K. Najarian.

Skin lesion segmentation in clinical images using deep learning. In Pattern Recognition (ICPR),

2016 23rd International Conference on, 2016.

[81] J. Jaworek-Korjakowska and R. Tadeusiewicz. Determination of border irregularity in dermo-

scopic color images of pigmented skin lesions. In Engineering in Medicine and Biology Society

(EMBC), 2014 36th Annual International Conference of the IEEE, pages 6459–6462. IEEE,

2014.

[82] R. H. Johr. Dermoscopy: alternative melanocytic algorithms—the abcd rule of dermatoscopy,

menzies scoring method, and 7-point checklist. Clinics in dermatology, 20(3):240–247, 2002.

[83] J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new method for gray-level picture thresh-

olding using the entropy of the histogram. Computer vision, graphics, and image processing,

29(3):273–285, 1985.

[84] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

124



[85] H. Kittler, H. Pehamberger, K. Wolff, and M. Binder. Diagnostic accuracy of dermoscopy.

The lancet oncology, 3(3):159–165, 2002.

[86] H. Kittler, M. Seltenheim, M. Dawid, H. Pehamberger, K. Wolff, and M. Binder. Morphologic

changes of pigmented skin lesions: a useful extension of the abcd rule for dermatoscopy.

Journal of the American Academy of Dermatology, 40(4):558–562, 1999.

[87] J. Kittler and J. Illingworth. Minimum error thresholding. Pattern recognition, 19(1):41–47,

1986.

[88] M. Kruk, B. Świderski, S. Osowski, J. Kurek, M. Słowińska, and I. Walecka. Melanoma

recognition using extended set of descriptors and classifiers. Eurasip Journal on Image and

Video Processing, 2015(1):43, 2015.

[89] T. Kurban and E. Beşdok. A comparison of rbf neural network training algorithms for inertial

sensor based terrain classification. Sensors, 9(8):6312–6329, 2009.

[90] V. Labatut and H. Cherifi. Accuracy measures for the comparison of classifiers. arXiv preprint

arXiv:1207.3790, 2012.

[91] E. H. Land. The retinex theory of color vision. Scientific American, 237(6):108–129, 1977.

[92] S. Lankton and A. Tannenbaum. Localizing region-based active contours. IEEE transactions

on image processing, 17(11):2029–2039, 2008.

[93] H. Lee and Y.-P. P. Chen. Skin cancer extraction with optimum fuzzy thresholding technique.

Applied intelligence, 40(3):415–426, 2014.

[94] Y. Li et al. Lesion segmentation in dermoscopy images using particle swarm optimization and

markov random field. 2017.

[95] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

3431–3440, 2015.

125



[96] N. V. Lopes, P. A. M. do Couto, H. Bustince, and P. Melo-Pinto. Automatic histogram

threshold using fuzzy measures. IEEE Transactions on Image Processing, 19(1):199–204,

2010.

[97] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110, 2004.

[98] A. R. Maouche and M. Attari. Nonlinear adaptive rbfnn control of a one-link flexible manip-

ulator. In Machine and Web Intelligence (ICMWI), 2010 International Conference on, pages

165–170. IEEE, 2010.

[99] J. S. Marques, C. Barata, and T. Mendonça. On the role of texture and color in the classifi-

cation of dermoscopy images. In Engineering in Medicine and Biology Society (EMBC), 2012

Annual International Conference of the IEEE, pages 4402–4405. IEEE, 2012.

[100] E. Mendi, C. Yogurtcular, Y. Sezgin, and C. Bayrak. Automatic mobile segmentation of der-

moscopy images using density based and fuzzy c-means clustering. In Medical Measurements

and Applications (MeMeA), 2014 IEEE International Symposium on, pages 1–6. IEEE, 2014.

[101] T. Mendonça, P. M. Ferreira, J. S. Marques, A. R. Marcal, and J. Rozeira. Ph 2-a dermoscopic

image database for research and benchmarking. In 2013 35th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5437–5440. IEEE,

2013.

[102] G. Mercier and M. Lennon. Support vector machines for hyperspectral image classification with

spectral-based kernels. In Geoscience and Remote Sensing Symposium, 2003. IGARSS’03.

Proceedings. 2003 IEEE International, volume 1, pages 288–290. IEEE, 2003.

[103] S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Tuning cost-sensitive boosting and its

application to melanoma diagnosis. In International Workshop on Multiple Classifier Systems,

pages 32–42. Springer, 2001.

[104] M. Messadi, A. Bessaid, and A. Taleb-Ahmed. Extraction of specific parameters for skin

tumour classification. Journal of medical engineering & technology, 33(4):288–295, 2009.

126



[105] M. Messadi, H. Cherifi, and A. Bessaid. Segmentation and abcd rule extraction for skin tumors

classification. Journal of Convergence Information Technology, 9(2):21, 2014.

[106] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. International

journal of computer vision, 60(1):63–86, 2004.

[107] N. K. Mishra and M. E. Celebi. An overview of melanoma detection in dermoscopy images

using image processing and machine learning. arXiv preprint arXiv:1601.07843, 2016.

[108] M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural

networks, 6(4):525–533, 1993.

[109] F. Nachbar, W. Stolz, T. Merkle, A. B. Cognetta, T. Vogt, M. Landthaler, P. Bilek, O. Braun-

Falco, and G. Plewig. The abcd rule of dermatoscopy: high prospective value in the diagno-

sis of doubtful melanocytic skin lesions. Journal of the American Academy of Dermatology,

30(4):551–559, 1994.

[110] R. Nock and F. Nielsen. Statistical region merging. IEEE Transactions on pattern analysis

and machine intelligence, 26(11):1452–1458, 2004.

[111] L. A. Nowak, M. J. Ogorzalek, and M. P. Pawlowski. Pigmented network structure detection

using semi-smart adaptive filters. In Systems Biology (ISB), 2012 IEEE 6th International

Conference on, pages 310–314. IEEE, 2012.

[112] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns. IEEE Transactions on pattern analysis and

machine intelligence, 24(7):971–987, 2002.

[113] R. B. Oliveira, J. P. Papa, A. S. Pereira, and J. M. R. Tavares. Computational methods for

pigmented skin lesion classification in images: review and future trends. Neural Computing

and Applications, pages 1–24, 2016.

[114] N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-

296):23–27, 1975.

127



[115] N. Otsu. A threshold selection method from gray-level histograms. IEEE transactions on

systems, man, and cybernetics, 9(1):62–66, 1979.

[116] G. Pellacani, C. Grana, and S. Seidenari. Algorithmic reproduction of asymmetry and bor-

der cut-off parameters according to the abcd rule for dermoscopy. Journal of the European

Academy of Dermatology and Venereology, 20(10):1214–1219, 2006.

[117] A. Pennisi, D. D. Bloisi, D. Nardi, A. R. Giampetruzzi, C. Mondino, and A. Facchiano. Skin

lesion image segmentation using delaunay triangulation for melanoma detection. Computerized

Medical Imaging and Graphics, 2016.

[118] I. Pirnog, R. O. Preda, C. Oprea, and C. Paleologu. Automatic lesion segmentation for

melanoma diagnostics in macroscopic images. In Signal Processing Conference (EUSIPCO),

2015 23rd European, pages 659–663. IEEE, 2015.

[119] J. Qi, M. Le, C. Li, and P. Zhou. Global and local information based deep network for skin

lesion segmentation. arXiv preprint arXiv:1703.05467, 2017.

[120] M. M. Rahman and P. Bhattacharya. An integrated and interactive decision support system

for automated melanoma recognition of dermoscopic images. Computerized Medical Imaging

and Graphics, 34(6):479–486, 2010.

[121] M. Rastgoo, R. Garcia, O. Morel, and F. Marzani. Automatic differentiation of melanoma

from dysplastic nevi. Computerized Medical Imaging and Graphics, 43:44–52, 2015.

[122] F. Riaz, A. Hassan, M. Y. Javed, and M. T. Coimbra. Detecting melanoma in dermoscopy

images using scale adaptive local binary patterns. In Engineering in Medicine and Biology

Society (EMBC), 2014 36th Annual International Conference of the IEEE, pages 6758–6761.

IEEE, 2014.

[123] P. Rubegni, G. Cevenini, M. Burroni, R. Perotti, G. Dell’Eva, P. Sbano, C. Miracco, P. Luzi,

P. Tosi, P. Barbini, et al. Automated diagnosis of pigmented skin lesions. International Journal

of Cancer, 101(6):576–580, 2002.

128



[124] M. Ruela, C. Barata, J. S. Marques, and J. Rozeira. A system for the detection of melanomas in

dermoscopy images using shape and symmetry features. Computer Methods in Biomechanics

and Biomedical Engineering: Imaging & Visualization, 5(2):127–137, 2017.

[125] D. Ruiz, V. Berenguer, A. Soriano, and B. SáNchez. A decision support system for the diagno-

sis of melanoma: A comparative approach. Expert Systems with Applications, 38(12):15217–

15223, 2011.

[126] M. Sadeghi, M. Razmara, T. K. Lee, and M. S. Atkins. A novel method for detection of

pigment network in dermoscopic images using graphs. Computerized Medical Imaging and

Graphics, 35(2):137–143, 2011.

[127] M. Sadeghi, M. Razmara, P. Wighton, T. K. Lee, and M. S. Atkins. Modeling the dermoscopic

structure pigment network using a clinically inspired feature set. In Medical Imaging and

Augmented Reality, pages 467–474. Springer, 2010.

[128] A. Sáez, B. Acha, and C. Serrano. Pattern analysis in dermoscopic images. In Computer

Vision Techniques for the Diagnosis of Skin Cancer, pages 23–48. Springer, 2014.

[129] A. Salazar-Gonzalez, D. Kaba, Y. Li, and X. Liu. Segmentation of the blood vessels and optic

disk in retinal images. IEEE journal of biomedical and health informatics, 18(6):1874–1886,

2014.

[130] A. Salazar-Gonzalez, Y. Li, and D. Kaba. MRF reconstruction of retinal images for the optic

disc segmentation. In International Conference on Health Information Science, pages 88–99.

Springer, 2012.

[131] C. Schmid. Constructing models for content-based image retrieval. In Computer Vision and

Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, volume 2, pages II–II. IEEE, 2001.

[132] S. Seidenari, G. Pellacani, and C. Grana. Pigment distribution in melanocytic lesion images: a

digital parameter to be employed for computer-aided diagnosis. Skin Research and Technology,

11(4):236–241, 2005.

129



[133] M. A. Sheha, M. S. Mabrouk, and A. Sharawy. Automatic detection of melanoma skin cancer

using texture analysis. International Journal of Computer Applications, 42(20):22–26, 2012.

[134] M. Silveira, J. C. Nascimento, J. S. Marques, A. R. Marçal, T. Mendonça, S. Yamauchi,

J. Maeda, and J. Rozeira. Comparison of segmentation methods for melanoma diagnosis in

dermoscopy images. Selected Topics in Signal Processing, IEEE Journal of, 3(1):35–45, 2009.

[135] N. Situ, X. Yuan, J. Chen, and G. Zouridakis. Malignant melanoma detection by bag-of-

features classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008.

30th Annual International Conference of the IEEE, pages 3110–3113. IEEE, 2008.

[136] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in

videos. In null, page 1470. IEEE, 2003.

[137] N. Smaoui and S. Bessassi. A developed system for melanoma diagnosis. International Journal

of Computer Vision and Signal Processing, 3(1):10–17, 2013.

[138] P. Soille. Morphological image analysis: principles and applications. Springer Science &

Business Media, 2013.

[139] S. Sookpotharom. Border detection of skin lesion images based on fuzzy c-means thresholding.

In Genetic and Evolutionary Computing, 2009. WGEC’09. 3rd International Conference on,

pages 777–780. IEEE, 2009.

[140] H. P. Soyer, G. Argenziano, I. Zalaudek, R. Corona, F. Sera, R. Talamini, F. Barbato, A. Ba-

roni, L. Cicale, A. Di Stefani, et al. Three-point checklist of dermoscopy. Dermatology,

208(1):27–31, 2004.

[141] R. J. Stanley, W. V. Stoecker, and R. H. Moss. A relative color approach to color discrimination

for malignant melanoma detection in dermoscopy images. Skin Research and Technology,

13(1):62–72, 2007.

[142] S. Suer, S. Kockara, and M. Mete. An improved border detection in dermoscopy images for

density based clustering. BMC bioinformatics, 12(10):S12, 2011.

130



[143] S. C. Trotter, N. Sroa, R. R. Winkelmann, T. Olencki, and M. Bechtel. A global review of

melanoma follow-up guidelines. Journal of Clinical & Aesthetic Dermatology, 6(9), 2013.

[144] K. Van De Sande, T. Gevers, and C. Snoek. Evaluating color descriptors for object and scene

recognition. IEEE transactions on pattern analysis and machine intelligence, 32(9):1582–1596,

2010.

[145] J. Van De Weijer, T. Gevers, and A. Gijsenij. Edge-based color constancy. IEEE Transactions

on image processing, 16(9):2207–2214, 2007.

[146] M. Vestergaard, P. Macaskill, P. Holt, and S. Menzies. Dermoscopy compared with naked eye

examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in

a clinical setting. British Journal of Dermatology, 159(3):669–676, 2008.

[147] F. M. Walter, A. T. Prevost, J. Vasconcelos, P. N. Hall, N. P. Burrows, H. C. Morris, A. L.

Kinmonth, and J. D. Emery. Using the 7-point checklist as a diagnostic aid for pigmented skin

lesions in general practice: a diagnostic validation study. Br J Gen Pract, 63(610):e345–e353,

2013.

[148] P. Wighton, T. K. Lee, H. Lui, D. I. McLean, and M. S. Atkins. Generalizing common

tasks in automated skin lesion diagnosis. IEEE Transactions on Information Technology in

Biomedicine, 15(4):622–629, 2011.

[149] A. Wong, J. Scharcanski, and P. Fieguth. Automatic skin lesion segmentation via iterative

stochastic region merging. IEEE Transactions on Information Technology in Biomedicine,

15(6):929–936, 2011.

[150] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on

image processing, 7(3):359–369, 1998.

[151] L. Xu, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, and A. Huntley.

Segmentation of skin cancer images. Image and Vision Computing, 17(1):65–74, 1999.

[152] X. Yang, Z. Zeng, S. Y. Yeo, C. Tan, H. L. Tey, and Y. Su. A novel multi-task deep learning

model for skin lesion segmentation and classification. arXiv preprint arXiv:1703.01025, 2017.

131



[153] L. Yu, H. Chen, Q. Dou, J. Qin, and P.-A. Heng. Automated melanoma recognition in

dermoscopy images via very deep residual networks. IEEE transactions on medical imaging,

36(4):994–1004, 2017.

[154] Y. Yuan, M. Chao, and Y.-C. Lo. Automatic skin lesion segmentation using deep fully convo-

lutional networks with jaccard distance. IEEE Transactions on Medical Imaging, 2017.

[155] Y. Yuan, M. L. Giger, H. Li, K. Suzuki, and C. Sennett. A dual-stage method for lesion

segmentation on digital mammograms. Medical physics, 34(11):4180–4193, 2007.

[156] M. E. Yüksel and M. Borlu. Accurate segmentation of dermoscopic images by image thresh-

olding based on type-2 fuzzy logic. IEEE Transactions on Fuzzy Systems, 17(4):976–982,

2009.

[157] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reason-

ing—i. Information sciences, 8(3):199–249, 1975.

[158] I. Zalaudek, J. Kreusch, J. Giacomel, G. Ferrara, C. Catricalà, and G. Argenziano. How to

diagnose nonpigmented skin tumors: a review of vascular structures seen with dermoscopy:

part i. melanocytic skin tumors. Journal of the American Academy of Dermatology, 63(3):361–

374, 2010.

[159] H. Zhou, M. Chen, L. Zou, R. Gass, L. Ferris, L. Drogowski, and J. M. Rehg. Spatially

constrained segmentation of dermoscopy images. In Biomedical Imaging: From Nano to Macro,

2008. ISBI 2008. 5th IEEE International Symposium on, pages 800–803. IEEE, 2008.

[160] H. Zhou, G. Schaefer, M. E. Celebi, H. Iyatomi, K.-A. Norton, T. Liu, and F. Lin. Skin lesion

segmentation using an improved snake model. In 2010 Annual International Conference of

the IEEE Engineering in Medicine and Biology, pages 1974–1977. IEEE, 2010.

[161] H. Zhou, G. Schaefer, M. E. Celebi, F. Lin, and T. Liu. Gradient vector flow with mean shift

for skin lesion segmentation. Computerized Medical Imaging and Graphics, 35(2):121–127,

2011.

132



[162] H. Zhou, G. Schaefer, A. H. Sadka, and M. E. Celebi. Anisotropic mean shift based fuzzy

c-means segmentation of dermoscopy images. IEEE Journal of Selected Topics in Signal

Processing, 3(1):26–34, 2009.

133



Appendix A

A.1 Dermoscopy Images

Dermoscopy or epiluminescence light microscopy (ELM) is a non-invasive method that en-

ables the skin cancer experts to perform direct microscopic examination of diagnostic clinical

features, for the purpose of detecting melanoma disease an early stage. It is also one of the

major tools allows for a better visualization of pigmented skin lesion structures; therefore

permits the identification and recognition of several dermoscopic structures, which are not

visible to the naked eye examination. This technique is widely used by physicians, due to its

value in providing a meaningful clinical features from pigmented skin lesions [70]. Examples

of dermoscopy imaging devices are shown in Figure 1.

It has been shown that the naked eye test for the diagnosis of melanoma in image skin le-

sions is less accurate than dermoscopy image examination. A comparison between dermoscopy

Figure 1: Examples of dermoscopy imaging tools. (Source:[3])
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images and naked eye examinations has been performed by M. Vestergaard et al [146]. There

report showed that the mean sensitivity of 95.00% was achieved with dermoscopy images,

which is higher than the obtained sensitivity with naked eye examination 74.00%.

In addition, the macroscopic images which are obtained by using a magnifying glass, pro-

vide less details compared to dermoscopy images. Figure 2 illustrates a visual comparison

between two dermatoscopic and macroscopic images of the same lesion. In terms of normal

blue nevus, the images in the first row show two images (macroscopic and dermatoscopic) of

the same skin region area. It has been observed that the only one single color (steel-blue areas)

is appeared, and no clinical feature structures are visible in both images, which can easily be

classified as a normal blue nevus . The second row presents images of an affected skin lesion

(melanoma). It is very clear that the pigment network and streaks structures are appeared

in dermoscopy image (bottom right), while they are completely invisible in macroscopic im-

age (bottom left). This indicates the high performance of dermoscopy images in detecting

melanoma at early stage.

The expert dermatologists are able to perform a clinical diagnosis of melanoma disease

based on several number of dermoscopic clinical features, which are obtained from pigmented

skin lesion images. These features have to be assessed in the most widely used medical

diagnosis procedures, such as the ABCDE rule and 7-point checklist. The presence of these

specific structures in different regions of the same skin lesion contributes to make a diagnosis

of melanocytic lesions. Most dermoscopic features such as pigment network, dots/globules,

streaks,regression area, and blue-whitish veil structures, whose used by the dermatologists to

detect or distinguish between benign and malignant melanoma lesions are described below.

A.1.1 Pigment Network

The pigment network structure is a grid composed of pigmented lines, which tend to be a brown

or a black, and hypopigmented holes. The appearance of it on the lesion can be either typical

or atypical. A typical network is relatively uniform, regularly distributed throughout the

lesion, homogeneous in color(light-to-dark-brown), and usually thinning out at the periphery.

An atypical network is non-uniform thickened lines, with grey, brown, or black broadened
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Figure 2: Examples of dermoscopy and macroscopic images: macroscopic image of a blue nevus (top left),
dermoscopy of the same lesion shows steel-blue areas (top right), macroscopic image of a superficial spreading
malignant melanoma (bottom left) and dermoscopy image of the same lesion illustrates (atypical) pigment

network and branched streaks (bottom right). (Source:[34]).
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lines and holes, which are inhomogeneous in shape and area. The pigmented lines may end

abruptly at the periphery [34]. The presence of an atypical network in the pigmented skin

lesions always denotes to melanoma disease, which makes it play a key role in distinguishing

between benign and melanoma lesions.

A.1.2 Dots/Globules

Dots appear in the affected lesion as small round structures, with diameter less than 0.1 mm

(smaller than globules). Their color can be brown, grey, blue or black. In the pigmented

benign lesions (non-melanoma), dots locate in the center of the lesion and they are rather

regular in size and shape, while in case of melanoma, usually they present in the periphery

and tend to vary in size and shape. A multiple grey-bluish occurrence indicates melanophages

in the dermis, and a spotted pattern or pattern resembling “black pepper grains” suggests

melanoma [40] [34].

Globules are round structures and they may present different colors (brown, black, or red)

depending on the degree of aggregation of melanin. Globules are larger than dots, where their

diameter usually exceed 0.1 mm. Milky red globules often corresponding to an elevated part

of the lesion [158] [40] [34].

Both dots and globules may occur in benign or melanoma skin lesions.Their presence in

lesion area is particularly useful for the distinction between melanoma and non-melanoma

lesions.

A.1.3 Streaks

Streaks are defined as finger like projections of the pigment network from the periphery of the

lesion. They can appear as regular (symmetrical radial arrangement over the whole lesion) or

irregular, when they are unevenly distributed. The existence of streaks in a skin lesions is by

itself a signal of malignancy [101].
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A.1.4 Regression or Depigmentation Areas

Regression area appears as white scar-like de-pigmentation, usually it is lighter than the

surrounding skin, or it appears as “peppering” (speckled multiple blue-grey granules within a

hypopigmented area). Not uncommonly, malignant melanomas can have both color patterns

of regression in a skin lesion. [34] [82].

A.1.5 Blue-whitish veil

The blue white veil can be defined as an irregular, indistinct, blue pigmentation areas with an

overlying white color, pale, and ground-glass haze [34] [17]. The pigmentation can not cover

the entire skin lesion.

These significant clinical features can be shown in the lesion with an regular/irregular or

typical/atypical nature, implying malignancy or not. Example of several dermoscopic features

appear throughout the lesion can be seen in Figure 3.

In the literature section we will briefly explain numerous works that are focused on the

automatic detection of several local features and used for melanoma identification.

A.2 Melanoma Diagnosis Criteria

To be able to distinguish melanoma versus benign melanocytic lesions, the expert dermatol-

ogists are adopted four main diagnosis methods namely; the ABCD rule, Menzies method,

pattern analysis, and 7-Point Checklist. All these approaches were evaluated during the 2,000

Consensus NetMeeting on Dermoscopy (CNMD) [17] by skin cancer experts from all over the

world. A two-step process was applied to facilitate the diagnosis:

• To distinguish the lesion as either melanocytic or non-melanocytic.

• To determine whether the melanocytic lesion is suspect, benign, or malignant.

In addition to the previous methods, there is one more method named 3-point checklist

which also used for the same purpose, due to its simplification. Brief description of all these

methods is presented below.

138



Figure 3: Example shows the dermoscopic structures with its score. (Source:[6])
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A.2.1 Pattern Analysis

Pattern analysis process is considered as one of the preferred method by many skin can-

cer experts to distinguish between skin lesions (benign melanocytic or malignant melanoma).

They also perform the final clinical diagnoses of the disease. Pattern analysis indicates the

simultaneous assessment of the diagnostic value of all dermoscopic clinical structures shown

by the pigmented skin lesion. In other word, it seeks to detect specific patterns from the

lesions (locally and globally). The global features usually are appeared as arrangements of

textured patterns covering most of skin lesion area. Whereas, The local dermoscopic features

are presented as individual groups of characteristics throughout the lesion. The multicompo-

nent pattern (three patterns or more and usually non-concentric) was considered as the most

predictive for the diagnosis of melanoma melanocytic lesions. While the cobblestone, globular,

starburst and homogeneous patterns were considered as the most predictive for the diagno-

sis of benign lesions. Regarding to the local dermoscopic features, it has been shown that

the presence of irregular streaks, atypical pigment networks, and regression structures on the

lesion, followed by irregular blotches, irregular dots/globules, and blue-whitish veil indicate

the melanoma. On the contrary, the existence of regular streaks, typical pigment networks,

regular blotches, and regular dots/globules are mostly referred to benign melanocytic lesions

[128] [4].

As a summary, benign tumours have limited number of colours, symmetrical in pattern,

and a regular structure. Whereas, malignant malignant lesions often have several colours,

asymmetry of pattern, and disordered structure. The brief description of the pattern analysis

in dermoscopy images is illustrated below:

• Local features of benign lesion

– Pigment network diffused regularly and fading out.

– Dots and globules distributed regularly.

– Streaks distributed regularly.

• Global features of benign lesions
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– Reticular pattern (spread or patchy network).

– Globular pattern (globules within brown color shades).

– Homogeneous pattern in colour.

– Starburst pattern (uniform peripheral radial streaks, dots or globules).

– Parallel pattern (along furrows, palms and soles only).

– Multicomponent pattern which can be three patterns, and usually concentric).

– Complex pattern, which can be two patterns within one lesion, and usually sym-

metrically or regularly distributed.

• Local features of melanoma lesions

– Multicomponent pattern, which can be three or more and usually non-concentric.

– Unspecific pattern (mainly structureless or two patterns, irregular).

– Parallel pattern (along ridges, palms and soles only).

• Global features of melanoma lesions

– Atypical pigment network structures (thickened, asymmetrical)

– Dots and globules diffused irregularly throughout the lesion, and of different shapes

and sizes.

– Asymmetrical blotches (featureless colours).

– Mostly five or six colours (white, grey, red, tan, brown, black).

– Blue-white veil over part of the lesion.

– White scar like depigmentation (Regression area).

– Blue pepper like granules.

A.2.2 ABCD-E Rule

The ABCD criteria was proposed by Friedman et al [64] in 1985, which has been widely used

in clinical practice, for the purpose of distinguishing between benign and malignant melanoma
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lesions. In The diagnosis of a pigmented skin lesion based on its Asymmetry (A), Border

irregularity (B), Color variegation (C), and Diameter (D) > 6mm across (approximately ĳ

inch), although malignant lesions can sometimes be smaller than this. On other hand, (D)

also could refers to Differential structures such as pigment network, structureless area, dots,

globules, and streaks. Later in 2004, Abbas et al [11] proposed expanding the ABCD criteria

to ABCDE rule by combining the evolving (E) lesion during the time [70]. The ABCDE rule

was the second algorithm developed after the pattern analysis method, and the first attempt

to simplify the process of melanoma early detection. It was very helpful for clinicians who

are not fully experienced in dermoscopy images observation, since of its lower complexity vs

pattern analysis method. The choice of these five parameters is based on dermatology criteria

which is including color, shape, and symmetry. In order to diagnosing pigmented skin lesions

as melanoma or not, These significant criteria have to be assessed by the dermatologists [82].

The images in Figure 4 illustrate the typical normal nevus and melanomas, which are quite

useful in showing the people the variations between lesions, as a start point to detect the

disease. The method is based on check the skin lesion as shown below:

A.2.2.1 Asymmetry

Asymmetry is a significant parameter that most contributes to the final diagnosis of melanoma.

This clinical features is considered in terms of shape and color. With respect to the form, the

lesion is divided into halves, along the principal axes, and folded one half of the lesion over the

other half. Therefore, asymmetry can be defined as one half of the lesion does not match the

other half in 2 perpendicular axes (see Figure 5). Whereas in color, asymmetry is performed by

assessing the overall color similarity between symmetric patches or blocks over the pigmented

skin lesion [124]. Example of color symmetry analysis is shown in Figure 6.

According to the work presented in [34], Asymmetry has a weighting factor of 1.3, which

is higher than the other weighting factors of all criteria, as displayed in Table 1. In terms of

the evaluation process, the a symmetry is assessed as follow:

• If it is asymmetric in both axes (vertical and horizontal), it will score 2.6.
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Figure 4: Example of Asymmetry, Border, Color, Diameter, and Evolution (ABCD-E) rule for Melanoma
Diagnosis. (Source:[2]).

• if it is asymmetric in just one of the axes, it will score 1.3.

• if it is fully symmetric, it will score zero.

A.2.2.2 Border

Melanoma boundaries are usually irregular, ragged, or blurred, while benign lesions are clearly

defined. For the evaluation of the border score, the pigmented skin lesion is visually divided

into 8 sectors (pie-shaped) as shown in Figure 7. For each sector in which abrupt cutoff of

pigment pattern is present, one point is added to the score leading to a minimum border score

of zero and maximum border score of eight. The calculation is based on the euclidean distance

and the standard derivation in each sector [137] [86].
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Figure 5: Example of lesion divided into halves according to the principal axes (2 perpendicular axes) of the
image. (Source: [124])

Figure 6: Example of lesion divided into regular grid of blocks. (Source: [124])

144



Table 1: ABCD rule criteria of dermoscopy according to [34].

Parameter Defination Points Weight factor
Asymmetry Complete symmetry 0 1.3

Asymmetry in 1 axis 1
Asymmetry in 2 axis 2

Border 8 sectors 0-8 0.1
Color 1 point for each color 1-6 0.5

White
Red
Light brown
Dark brown
Black
Blue-grey

Differential structures 1 point for every structure 1-5 0.5
Pigment network
Structureless area
Dots
Globules
Streaks

Figure 7: Example of lesion divided into eight sectors. [6]
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A.2.2.3 Color

During the diagnosis of a melanocytic lesion, the skin cancer experts are focused on several

number of different colors over the skin lesion, because malignant melanoma is characterized

by the appearance of these colors throughout the lesion. These different colors comprises the

white, red, light brown, dark brown, blue-grey, and black. For the color score, the number

of colors appear within the skin lesion are counted, and therefore one point for each color is

added, this leads to a maximum score of six when the six colors are present, and the minimum

score is one [86].

A.2.2.4 Differential structures

The differential structures criteria such as pigment network, structureless area, dots, globules,

and streaks have a weighting factor of 0.5 and score range from one to five, which means one

pint for each structure [34].

A.2.2.5 Evolving

The evolving criteria was introduced by Abbas et al [11] to increase the diagnosis accuracy of

melanoma disease. They defined the evolving of lesions as the changing of size, shape, symp-

toms (eg, itching, tenderness), surface (eg, bleeding), or shades of color, which are indicator

to be malignant melanoma.

As a final step of the ABCD-E rule, and with the purpose of differentiating between benign

and melanoma lesions, the obtained values of the above parameters are used to calculate

the Total Dermatoscopic Value (TDV) based on the equation A.2.1, where each one of the

presented characteristics is multiplied by its corresponding weighting factor as descried in the

work presented by Stolz et al [109] and appeared in Table 1.

TDS = 1.3 ∗A+ 0.1 ∗B + 0.5 ∗ C + 0.5 ∗D. (A.2.1)

This score contributes to identify melanoma or benign lesions as follows

• TDS < 4.75 refers to benign lesion.

146



• 4.75 6 TDS 6 5.45 indicates suspicious.

• TDS>5.45 considered to be melanoma.

According to the work presented in [86], the enhanced ABCD-E score was calculated by

adding 1.2 to the standard ABCD score for changing lesions and subtracting 0.8 from the

standard ABCD score for nonchanging lesions according to the results of their multivariate

analysis.

A.2.3 3-point checklist

In the detection of skin cancer at an early stage, the dermoscopy 3-point checklist method has

a high sensitivity for melanoma [140]. The main purpose of it is to define whether the lesion

being examined has to undergo a biopsy or not. Therefore, It does not need accurate diagnosis

to be made. There a high probability of malignancy (melanoma or basal cell carcinoma) if an

affected skin lesion has any two of the following criteria:

• Asymmetry: asymmetry of colour and structure in one or two perpendicular axes

• Atypical network: pigment network with irregular holes and thick lines

• Blue-white structures: any type of blue and/or white colour, i.e. combination of blue-

white veil and regression structures

The 3-point checklist method is quite easy to learn and has been designed to permit non-

expert dermatologists not to miss detection of melanomas. However, it is not as specific as

pattern analysis method.

A.2.4 7-point checklist

Based on the the analysis of 342 skin images, which was performed by Argenziano and col-

leagues in 1998 [16] [17] [34], the 7-point checklist was adopted by focusing on seven dermo-

scopic features in the pigmented skin lesion, which have to be assessed by the clinicians. These

dermoscopic clinical structures are divided into two groups namely major and minor criteria.
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Table 2: 7-point checklist criteria of dermoscopy with related individual score according to [16].

7-point checklist criteria Score
Major criteria 1. Atypical pigment network 2

2. Blue-whitish veil 2
3. Atypical vascular pattern 2

Minor criteria 4. Irregular streaks 1
5. Irregular pigmentation 1
6. Irregular dots/globules 1
7. Regression structures 1

The major criteria have score of 2 points, while the minor criteria have 1 point, as can be

illustrated in Table 2. Based on 7-point checklist, a minimum total score of 3 is required for

the detection of melanoma skin cancer [34]. The pigmented skin lesion is considered to be

melanoma or not dependent on the following conditionals:

• If a total score of three or more is given, the lesion is classified as malignant melanoma.

• If a total score of less than three is given, the lesion is diagnosed as normal mole or

nevus.

The major criteria consists of an atypical pigment network, blue-whitish veil, and atypi-

cal vascular pattern. While, the minor criteria includes radial or irregular streaks, irregular

pigmentation, globules and irregular spots, and regression patterns.

A.2.5 Menzies Scoring Method

According to Menzies method, eleven dermoscopic features are adopted for the purpose of

distinguishing melanoma melanocytic lesions. The characteristics were divided into two groups

(negative and positive). The negative group which is consisting of a symmetry of the lesion

and presence of a single color is used to define the lesions as benign. While, the blue-whitish

veil, multiple brown dots, pseudopods, radiated streaks, scar-like depigmentation, black dots

and globules in the periphery of the lesion, multiple different colors (5 or 6), multiple blue-grey

dots, and enlarged pigmentary net are considered to be in the positive group, and utilized to

determine the lesion as melanoma. The existence of a positive features (single color and a
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Table 3: The dermoscopic characteristics adopted by Menzies scoring method according to [34].

Negative features
1. Point and axial symmetry of pigmentation
2. presence of a single color
Positive features
3. Blue-white veil
4. Multiple brown dots
5. Pseudopods
6. Radial streaks
7. Scar-like depigmentation
8. Peripheral black dots-globules
9. Multiple different colors (5 or 6)
10. Multiple blue/gray dots
11. Broadened network

symmetry lesion), added to the absence of all other negative features structures, is extremely

sufficient for the diagnosis of cutaneous melanoma [34] [40]. Table 3 shows the 11 dermoscopic

characteristics used in Menzies scoring method.
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Appendix B

B.1 Inpainting Approach

Consider the user determine a target region, Ω, to be filled. The source region, Φ, may be

defined as the whole image mines the target region (Φ = I − Ω) as a dilated band around

the target region. The user also determine the size of the template window Ψ. Once all these

parameters are defined, the algorithm iterates the following steps until all pixels in the target

region are filled:

B.1.1 Computing patch priorities

The task is performed by computing the priority value of each patch.The priority computation

is biased toward those patches which are on the continuation of strong edges and which are

surrounded by high-confidence pixels. For instance, patches that include corners of the target

region will be filled first, since they are surrounded by more pixels from the original image.

Given a patch Ψp centered at point p for some p ∈ δΩ (see Figure 8), its priority P (p) is

defined as the product of two terms:

P (p) = C(p)D(p)

where C(p) call the confidence term and D(p) the data term, and they are defined as follows:

C(p) =
Σq∈Ψp

⋂
Ω̄C(q)

|Ψp|
, D(p) =

|∇I⊥
p
.np|

α
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where |Ψp| is the area of Ψp , α is a normalization factor (e.g., α = 255 for a gray level image),

δΩ is a target region border, and np is a unit vector orthogonal to the front δΩ in p point

(perpendicular). The priority of every border patch is computed with distinct patches for each

pixel on the boundary of the target lesion.

The confidence term C(p) can be considered as a measure of the amount of reliable in-

formation surrounding the patch center point (pixel p). The main aim is to fill in first those

patches, since they have more pixels. The data term D(p) is a function of the strength of

isophotes hitting the front δΩ at each iteration. This term boosts the priority of a patch that

an isophote “flows” into.

B.1.2 Propagating texture and structure information

Once all the priorities have been computed on the boundary of target region δΩ, the patch Ψp̂

with the highest priority is found and filled by image texture data extracted from the source

region Φ. The following equation is used to search for the patch which is most similar to Ψp̂

in the source region.

Ψq̂ = arg min
Ψq∈Φ

d(Ψp̂,Ψq)

where the distance d(Ψp̂,Ψq) between two generic patches Ψp̂ and Ψq is defined as the sum

of squared differences (SSD) of the already filled pixels in the two patches. Having found

the source exemplar Ψq̂, the value of each pixel to be fill, p′|p′ ∈ Ψp̂
⋂

Ω is copied from its

corresponding position inside Ψq̂ . This process is sufficient to achieve the propagation of

both: structure and information from Source Φ to target Ω.

B.1.3 Updating confidence values

After the patch Ψp̂ is filled with new pixel values, the confidence term C(p) is updated in the

area delimited by Ψp̂ as follows:

C(q) = C(p̂)∀q ∈ Ψp̂

⋂
Ω
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Figure 8: Notation diagram. Given the patch Ψp , np is normal to the contour δΩ of the target region or
inpainted region Ω, the boundary region is denoted by δΩ and ∇I⊥

p
is the isophote (direction and intensity) at

point p. The source region is denoted by Φ while the entire image is referred to I.
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