1,390 research outputs found

    Distributed coordination of self-organizing mechanisms in communication networks

    Get PDF
    The fast development of the Self-Organizing Network (SON) technology in mobile networks renders the problem of coordinating SON functionalities operating simultaneously critical. SON functionalities can be viewed as control loops that may need to be coordinated to guarantee conflict free operation, to enforce stability of the network and to achieve performance gain. This paper proposes a distributed solution for coordinating SON functionalities. It uses Rosen's concave games framework in conjunction with convex optimization. The SON functionalities are modeled as linear Ordinary Differential Equation (ODE)s. The stability of the system is first evaluated using a basic control theory approach. The coordination solution consists in finding a linear map (called coordination matrix) that stabilizes the system of SON functionalities. It is proven that the solution remains valid in a noisy environment using Stochastic Approximation. A practical example involving three different SON functionalities deployed in Base Stations (BSs) of a Long Term Evolution (LTE) network demonstrates the usefulness of the proposed method.Comment: submitted to IEEE TCNS. arXiv admin note: substantial text overlap with arXiv:1209.123

    Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms

    Full text link
    We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar et al., 2013), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on smoothed functional algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work and turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of several numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian (Bhatnagar, 2007) and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms (Ghoshdastidar et al., 2013).Comment: This is a longer of version of the paper with the same title accepted in Automatic

    State Estimation for the Individual and the Population in Mean Field Control with Application to Demand Dispatch

    Full text link
    This paper concerns state estimation problems in a mean field control setting. In a finite population model, the goal is to estimate the joint distribution of the population state and the state of a typical individual. The observation equations are a noisy measurement of the population. The general results are applied to demand dispatch for regulation of the power grid, based on randomized local control algorithms. In prior work by the authors it has been shown that local control can be carefully designed so that the aggregate of loads behaves as a controllable resource with accuracy matching or exceeding traditional sources of frequency regulation. The operational cost is nearly zero in many cases. The information exchange between grid and load is minimal, but it is assumed in the overall control architecture that the aggregate power consumption of loads is available to the grid operator. It is shown that the Kalman filter can be constructed to reduce these communication requirements,Comment: To appear, IEEE Trans. Auto. Control. Preliminary version appeared in the 54rd IEEE Conference on Decision and Control, 201

    Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Full text link
    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, KK users and NFN_F independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity O(KN)\mathcal O(KN), which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin

    Submodular Stochastic Probing on Matroids

    Get PDF
    In a stochastic probing problem we are given a universe EE, where each element e∈Ee \in E is active independently with probability pep_e, and only a probe of e can tell us whether it is active or not. On this universe we execute a process that one by one probes elements --- if a probed element is active, then we have to include it in the solution, which we gradually construct. Throughout the process we need to obey inner constraints on the set of elements taken into the solution, and outer constraints on the set of all probed elements. This abstract model was presented by Gupta and Nagarajan (IPCO '13), and provides a unified view of a number of problems. Thus far, all the results falling under this general framework pertain mainly to the case in which we are maximizing a linear objective function of the successfully probed elements. In this paper we generalize the stochastic probing problem by considering a monotone submodular objective function. We give a (1−1/e)/(kin+kout+1)(1 - 1/e)/(k_{in} + k_{out}+1)-approximation algorithm for the case in which we are given kink_{in} matroids as inner constraints and koutk_{out} matroids as outer constraints. Additionally, we obtain an improved 1/(kin+kout)1/(k_{in} + k_{out})-approximation algorithm for linear objective functions

    Forecast Design in Monetary Capital Stock Measurement

    Get PDF
    We design a procedure for measuring the United States capital stock of money implied by the Divisia monetary aggregate service flow, in a manner consistent with the present-value model of economic capital stock. We permit non-martingale expectations and time varying discount rates. Based on Barnett’s (1991) definition of the economic stock of money, we compute the U.S. economic stock of money by discounting to present value the flow of expected expenditure on the services of monetary assets, where expenditure on monetary services is evaluated at the user costs of the monetary components. As a theoretically consistent measure of money stock, our economic stock of money nests Rotemberg, Driscoll, and Poterba’s (1995) currency equivalent index as a special case, under the assumption of martingale expectations. To compute the economic stock of money without imposing martingale expectations, we define a procedure for producing the necessary forecasts based on an asymmetric vector autoregressive model and a Bayesian vector autoregressive model. In application of this proposed procedure, Barnett, Chae, and Keating (2005) find the resulting capital-stock growth-rate index to be surprisingly robust to the modeling of expectations. Similarly the primary conclusions of this supporting paper regard robustness. We believe that further experiments with other forecasting models would further confirm our robustness conclusion. Different forecasting models can produce substantial differences in forecasts into the distant future. But since the distant future is heavily discounted in our stock formula, and since alternative forecasting formulas rarely produce dramatic differences in short term forecasts, we believe that our robustness result obviates prior concerns about the dependency of theoretical monetary capital stock computations upon forecasts of future expected flows. Even the simple martingale forecast, which has no unknown parameters and is easily computed with current period data, produces a discounted stock measure that is adequate for most purposes. Determining an easily measured extended index that can remove the small bias that we identify under the martingale forecast remains a subject for our future research. At the time that Milton Friedman (1969) was at the University of Chicago, the “Chicago School” view on the monetary transmission mechanism was based upon the wealth effect, called the “real balance effect” or “Pigou (1943) effect,” of open market operations. Our research identifies very large errors in the wealth effects computed from the conventional simple sum monetary aggregates and makes substantial progress in the direction of accurate measurement of monetary-policy wealth effects.Monetary aggregation, Divisia money aggregate, economic stock of money, user cost of money, currency equivalent index, Bayesian vector autoregression, asymmetric vector autoregression.
    • 

    corecore