research

Newton based Stochastic Optimization using q-Gaussian Smoothed Functional Algorithms

Abstract

We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar et al., 2013), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on smoothed functional algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work and turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of several numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian (Bhatnagar, 2007) and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms (Ghoshdastidar et al., 2013).Comment: This is a longer of version of the paper with the same title accepted in Automatic

    Similar works

    Full text

    thumbnail-image

    Available Versions