97 research outputs found

    Ride blending control for electric vehicles

    Get PDF
    Vehicles equipped with in-wheel motors (IWMs) feature advanced control functions that allow for enhanced vehicle dynamics and stability. However, these improvements occur to the detriment of ride comfort due to the increased unsprung mass. This study investigates the driving comfort enhancement in electric vehicles that can be achieved through blended control of IWMs and active suspensions (ASs). The term “ride blending”, coined in a previous authors’ work and herein retained, is proposed by analogy with the brake blending to identify the blended action of IWMs and ASs. In the present work, the superior performance of the ride blending control is demonstrated against several driving manoeuvres typically used for the evaluation of the ride quality. The effectiveness of the proposed ride blending control is confirmed by the improved key performance indexes associated with driving comfort and active safety. The simulation results refer to the comparison of the conventional sport utility vehicle (SUV) equipped with a passive suspension system and its electric version provided with ride blending control. The simulation analysis is conducted with an experimentally validated vehicle model in CarMaker® and MATLAB/Simulink co-simulation environment including high-fidelity vehicle subsystems models

    Traction Control Allocation Employing Vehicle Motion Feedback Controller for Four-wheel-independent-drive Vehicle

    Full text link
    A novel vehicle traction algorithm solving the traction force allocation problem based on vehicle center point motion feedback controller is proposed in this paper. The center point motion feedback control system proposed utilizes individual wheel torque actuation assuming all wheels are individually driven. The approach presented is an alternative to the various direct optimization-based traction force/torque allocation schemes. The proposed system has many benefits, such as significant reduction of the algorithm complexity by merging most traction system functionalities into one. Such a system enables significant simplification, unification, and standardization of powertrain control design. Moreover, many signals needed by conventional traction force allocation methods are not required to be measured or estimated with the proposed approach, which are among others vehicle mass, wheel loading (normal force), and vehicle center of gravity location. Vehicle center point trajectory setpoints and measurements are transformed to each wheel, where the tracking is ensured using the wheel torque actuation. The proposed control architecture performance and analysis are shown using the nonlinear twin-track vehicle model implemented in Matlab &\& Simulink environment. The performance is then validated using high fidelity FEE CTU in Prague EFORCE formula model implemented in IPG CarMaker environment with selected test scenarios. Finally, the results of the proposed control allocation are compared to the state-of-the-art approach

    In Depth Analysis of Power Balance, Handling, and the Traction Subsystem of an Articulated Skid-Steering Robot for Sustainable Agricultural Monitoring

    Get PDF
    This paper reports on the energy balance test performed on Agri.Q, an eight-wheel articulated robot intended to be a sustainable monitoring tool within the precision agriculture paradigm, and proposes an in-depth analysis of the traction subsystem in order to develop an appropriate traction allocation strategy to improve navigation through hilly or mountainous crops. Tests were conducted on the contribution of the orientable photovoltaic panel to the mission duration and overall sustainability, showing that a suitable mission plan, including dedicated charging phases, could significantly increase the robot’s operating time. A series of simulations of circular trajectories of different curvature and at different longitudinal velocities on flat ground were performed, with the aim of mapping the robot’s behaviour at steady state. The results of the simulations were analysed, paying particular attention to the required torques, manoeuvrability and forces exchanged on the ground. The simulations conducted demonstrated and extended previous results obtained on similar robotic architectures, which suffer from significant understeer behaviour due to significant lateral wheel slip during turning. They also showed the limitations of currently employed traction motors, but also the advantages of a proper traction allocation strategy involving the rear module. Article highlights. Agri.Q energy balance tests have been carried out to assess its endurance and sustainability The traction and handling behaviours of Agri.Q were mapped and discussed in detail in order to improve them Agri.Q has proven to be a basis for the future implementation of precision agriculture to advance the SDG

    Design and Validation of a High-Level Controller for Automotive Active Systems

    Get PDF
    Active systems, from active safety to energy management, play a crucial role in the development of new road vehicles. However, the increasing number of controllers creates an important issue regarding complexity and system integration. This article proposes a high-level controller managing the individual active systems - namely, Torque Vectoring (TV), Active Aerodynamics, Active Suspension, and Active Safety (Anti-lock Braking System [ABS], Traction Control, and Electronic Stability Program [ESP]) - through a dynamic state variation. The high-level controller is implemented and validated in a simulation environment, with a series of tests, and evaluate the performance of the original design and the proposed high-level control. Then, a comparison of the Virtual Driver (VD) response and the Driver-in-the-Loop (DiL) behavior is performed to assess the limits between virtual simulation and real-driver response in a lap time condition. The main advantages of the proposed design methodology are its simplicity and overall cooperation of different active systems, where the proposed model was able to improve the vehicle behavior both in terms of safety and performance, giving more confidence to the driver when cornering and under braking. Some differences were discovered between the behavior of the VD and the DiL, especially regarding the sensitivity to external disturbances

    Systematization of integrated motion control of ground vehicles

    Get PDF
    This paper gives an extended analysis of automotive control systems as components of the integrated motion control (IMC). The cooperation of various chassis and powertrain systems is discussed from a viewpoint of improvement of vehicle performance in relation to longitudinal, lateral, and vertical motion dynamics. The classification of IMC systems is proposed. Particular attention is placed on the architecture and methods of subsystems integration

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Integrated braking control for electric vehicles with in-wheel propulsion and fully decoupled brake-by-wire system

    Get PDF
    This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like anti-lock braking system (ABS), and enhanced functionalities, like torque blending. The presented controller was intended to also show the potential of continuous control strategies with regard to active safety, vehicle stability and driving comfort. Therefore, an integral sliding mode (ISM) and proportional integral (PI) control were used for wheel slip control (WSC) and benchmarked against each other and against classical used rule-based approach. The controller was realized in MatLab/Simulink and tested under real-time conditions in IPG CarMaker simulation environment for experimentally validated models of the target vehicle and its systems. The controller also contains robust observers for estimation of non-measurable vehicle states and parameters e.g., vehicle mass or road grade, which can have a significant influence on control performance and vehicle safety

    Automobile Safety Technology

    Get PDF
    The purpose of this project was to evaluate the educational level of the WPI community on automobile safety devices and develop an interactive medium through which visitors can establish a better understanding of the technology. A video presentation and museum exhibit were constructed together to educate the community on the criteria of history, purpose, and functionality for several automotive technologies. The presentation component incorporates pictures, videos, and diagrams to portray the educational material about each technology, while the actual exhibit includes physical components from each category to aide in visualization of these devices. This project produced positive feedback from members of the community as well as several recommendations for future revisions of this project

    Energy-efficient torque-vectoring control of electric vehicles with multiple drivetrains

    Get PDF
    The safety benefits of torque-vectoring control of electric vehicles with multiple drivetrains are well known and extensively discussed in the literature. Also, several authors analyze wheel torque control allocation algorithms for reducing the energy consumption while obtaining the wheel torque demand and reference yaw moment specified by the higher layer of a torque-vectoring controller. Based on a set of novel experimental results, this study demonstrates that further significant energy consumption reductions can be achieved through the appropriate tuning of the reference understeer characteristics. The effects of drivetrain power losses and tire slip power losses are discussed for the case of identical drivetrains at the four vehicle corners. Easily implementable yet effective rule-based algorithms are presented for the set-up of the energy-efficient reference yaw rate, feedforward yaw moment and wheel torque distribution of the torque-vectoring controller

    Intelligent traction motor control techniques for hybrid and electric vehicles

    Get PDF
    This thesis presents the research undertaken by the author within the field of intelligent traction motor control for Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) applications. A robust Fuzzy Logic (FL) based traction motor field-orientated control scheme is developed which can control multiple motor topologies and HEV/EV powertrain architectures without the need for re-tuning. This control scheme can aid in the development of an HEV/EV and for continuous control of the traction motor/s in the final production vehicle. An overcurrent-tolerant traction motor sizing strategy is developed to gauge if a prospective motor’s torque and thermal characteristics can fulfil a vehicle’s target dynamic and electrical objectives during the early development stages of an HEV/EV. An industrial case study is presented. An on-line reduced switching multilevel inverter control scheme is investigated which increases the inverter’s efficiency while maintaining acceptable levels of output waveform harmonic distortion. A FL based vehicle stability control system is developed that improves the controllability and stability of an HEV/EV during an emergency braking manoeuvre. This system requires minimal vehicle parameters to be used within the control system, is insensitive to variable vehicle parameters and can be tuned to meet a vehicle’s target dynamic objectives
    • …
    corecore