18,861 research outputs found

    A Comprehensive Framework for Controlled Query Evaluation, Consistent Query Answering and KB Updates in Description Logics

    Get PDF
    In this extended abstract we discuss the relationship between confidentiality-preserving frameworks and inconsistency-tolerant repair and update semantics in Description Logics (DL). In particular, we consider the well-known problems of Consistent Query Answering, Controlled Query Evaluation, and Knowledge Base Update in DL and introduce a unifying framework that can be naturally instantiated to capture significant settings for the above problems, previously investigated in the literature

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Rational and Efficient Algorithm for View Revision in Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics

    Belief Revision, Minimal Change and Relaxation: A General Framework based on Satisfaction Systems, and Applications to Description Logics

    Get PDF
    Belief revision of knowledge bases represented by a set of sentences in a given logic has been extensively studied but for specific logics, mainly propositional, and also recently Horn and description logics. Here, we propose to generalize this operation from a model-theoretic point of view, by defining revision in an abstract model theory known under the name of satisfaction systems. In this framework, we generalize to any satisfaction systems the characterization of the well known AGM postulates given by Katsuno and Mendelzon for propositional logic in terms of minimal change among interpretations. Moreover, we study how to define revision, satisfying the AGM postulates, from relaxation notions that have been first introduced in description logics to define dissimilarity measures between concepts, and the consequence of which is to relax the set of models of the old belief until it becomes consistent with the new pieces of knowledge. We show how the proposed general framework can be instantiated in different logics such as propositional, first-order, description and Horn logics. In particular for description logics, we introduce several concrete relaxation operators tailored for the description logic \ALC{} and its fragments \EL{} and \ELext{}, discuss their properties and provide some illustrative examples

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    Consent Verification Under Evolving Privacy Policies

    Get PDF

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery
    • …
    corecore