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ABSTRACT.This paper presents an adaptive logic enhancement of conditional logicsof normality
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are enriched by the ability to perform default inferencing. The idea is to apply Modus Ponens
defeasibly to a conditionalA  B and a factA on the condition that it is “safe” to do so
concerning the factual and conditional knowledge at hand. It is for instance not safe if the
given information describes exceptional circumstances: although birds usually fly, penguins
are exceptional to this rule. The two adaptive standard strategies are shown to correspond to
different intuitions, a skeptical and a credulous reasoning type, which manifest themselves in
the handling of so-called floating conclusions.
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1. Introduction

1.1. Some Background

Since the early eighties, default reasoning, i.e., reasoning on the basis of what is
normally or typically the case, has drawn much attention from philosophical logicians
as well as scholars working in Artificial Intelligence. Thisis not surprising concerning
the prominent role which reasoning on the basis of notions such as normality and typ-
icality has. It clearly occupies a central place from everyday common sense reasoning
to expert reasoning in many domains. Thus, logicians are urged to develop formal
models which accurately explicate these reasoning forms.

In recent years the traditional formalisms of default reasoning such as presented in
the landmark articles on default logic (Reiter, 1980), on circumscription (McCarthy,
1980), and on autoepistemic logic (Moore, 1984) have been criticized and alternative
conditional approaches have been developed.

In pioneering works on logics of conditionals the main interest was to model con-
ditionals in everyday language which have the form “if . . . then”. Most of the research
in this domain has been in the vein of the following influential conditional logics: Stal-
naker (Stalnaker, 1968) and Lewis (Lewis, 2000) who offer anontic interpretation of
the conditional, Adams (Adams, 1975) who introduces probabilities in the discussion,
and Gärdenfors’ belief revision principles which are more concerned with acceptabil-
ity than probability and truth (Gärdenfors, 1978).

There has been, especially since the late eighties, an increasing interest in making
use of techniques and properties of conditional logics within the field of nonmonotonic
reasoning, such as employed in default reasoning or reasoning with respect to prima
facie obligations. The focus of this paper is on conditionallogics of normality that
have been inspired by pioneering works such as (Boutilier, 1994a; Lamarre, 1991;
Kraus et al., 1990). There, a statement of the formA  B is read as “FromA
normally/typically followsB” or “If A is the case then normally/typically alsoB is
the case”. We will call “A  B” a conditional, and a sequence of conditionals,
writtenA1  A2  . . .  An as an abbreviation for(A1  A2) ∧ (A2  A3) ∧
· · · ∧ (An−1  An), an argument.

Conditional logics are attractive candidates for dealing with default reasoning for
various reasons: First, the conditional does not have unwanted properties such
as Strengthening the Antecedent, fromA  B infer (A ∧ C)  B, Transitivity,
from A  B andB  C infer A  C, and Contraposition, fromA  B infer
¬B  ¬A. That the validity of any of these properties leads to undesired results in
the context of reasoning on the basis of normality is well-known. Take, for instance,
Strengthening the Antecedent: although birds usually fly,b f , penguins do not,(b∧
p)  ¬f . Thus(b ∧ p)  f should not be derived. To find similar counterexamples
for the other properties is left to the reader (see e.g., (Boutilier, 1994a) p. 92.). Another
advantage is the naturalness and simplicity of the representation of default knowledge
by conditionalsA  B compared to the cumbersome representation by the classical
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approaches mentioned above. The latter use rules such asA∧π(B) ⊃ B whereπ(B)
expresses for instance that we do not believe¬B in the case of autoepistemic logic,
or thatB can consistently be assumed in the case of default reasoning. Furthermore,
certain disadvantages of the classical approach can be avoided in the framework of
conditional logics. Boutilier for instance argues that certain paradoxes of material
implication are inherited by the classical approaches due to the way default knowledge
is represented in them (see (Boutilier, 1994a) pp. 89–90).

Starting from the pioneering works such as (Boutilier, 1994a; Delgrande, 1988;
Krauset al., 1990; Lamarre, 1991) there has been vigorous research activity on condi-
tional logics of normality. To mention a few: they have been applied to belief revision
in (Boutilier, 1994b; Wobcke, 1995), strengthenings have been proposed for instance
to give a more sophisticated account of Strengthening the Antecedent (see (Lehmann
et al., 1992; Pearl, 1990)), a labeled natural deduction system has been introduced
in (Brodaet al., 2002), and various authors have investigated tableaux methods and
sequent calculi for conditional logics (see e.g. (Schröderet al., 2010; Giordanoet
al., 2006; Schröderet al., 2010)). Furthermore, the influential work in (Krauset
al., 1990) is greatly generalized in (Arieliet al., 2000) by their plausible nonmonotonic
consequence relations, and in (Friedmanet al., 1996) by their plausibility measures.

There is a remarkable agreement concerning fundamental properties for default
reasoning in the various formal models. These properties have been dubbedconser-
vative coreby Pearl and Geffner (Geffneret al., 1992) and are also commonly known
as theKLM-properties(see (Krauset al., 1990)). Some of the most interesting and
important problems in this field are, on the one hand, relatedto a proper treatment
of irrelevant information (see (Delgrande, 1988)) and, on the other hand, to a proper
treatment of specificity.

1.2. Contribution and Structure of this Paper

This paper tackles another important problem related to conditional logics of nor-
mality: while they are able to derive from conditional knowledge bases, i.e., sets of
conditionals, other conditionals, their treatment of factual knowledge is mostly rather
rudimentary. This concerns most importantly their treatment of Modus Ponens (MP),
i.e., to deriveB from A andA  B. We will also speak about detachingB from
A B in caseA is valid. Usually we do not only have a conditional knowledgebase
at hand but also factual informationF . In order to make use of the knowledge base,
it is in our primary interest to derive, givenF , what normally should be the case. It
goes without saying that for the practical usage of a conditional knowledge base this
kind of application to factual information is essential andthat the proper treatment of
MP for conditionals is a central key to its modeling.

It is clear that full MP should not be applied unrestrictedlyto conditional asser-
tions: although birds usually fly,b  f , we should not deduce that a given bird flies
if we also know that it is a penguin, since penguins usually donot fly, p ¬f . How-
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ever, if we do not know anything about it than the fact that it is a bird, MP should be
applied tob f andb. Furthermore, it would be useful if this application is of a de-
feasible kind, since later we might learn that the bird in question is after all a penguin
or a kiwi.

In this paper a simple generic method is presented to enrich agiven conditional
logic of normalityL by a defeasible MP. We considerL to consist at least of the core
properties (see Section 2). We will refer toL as thebase logic. As hinted above,
there are several circumstances when we do not want to apply MP: cases of specificity
such as the example with the penguin, or cases in which conditionals conflict, such
as the well-known Nixon-Diamond. The central idea presented in this paper is to
apply MP conditionally, namely on the condition that it is safe to apply it. This idea
will informally be motivated and outlined in Section 3. Formally, the conditional
applications of MP are realized by adaptive logics, namelyDLpm andDLpr (see
Definition 5, page 14). The idea of adaptive logics is to interpret a premise set “as
normally as possible” with respect to a certain standard of normality. They allow for
some rules to be applied conditionally. I introduce adaptive logics formally in Section
4. In our case, as demonstrated in Section 5, MP is going to be applied as much as
possible, i.e., as long as no cases of overriding via specificity or similar conflicts take
place concerning the conditionals to which MP is going to be applied. That is to say,
we are going to apply MP toA  B andA on the condition that the other factual
information at hand does not describe exceptional circumstances with respect toA.
As a consequence, detachment fromb  f andb is for instance blocked ifp is the
case.

It will be demonstrated that choosing different adaptive strategies serves different
intuitions: one corresponding to a more skeptical and the other one corresponding to
a more credulous type of reasoning. This difference manifests itself in the handling of
so-called floating conclusions.1

I will spend some time in demonstrating the modus operandi ofthe proposed logics
and thereby their strengths by having a look at various benchmark examples. In Sec-
tion 6 I highlight some advantages of the adaptive logic approach, compare it to other
approaches, and discuss some other related issues. The semantics are investigated in
the Appendix.

2. Conditional Logics, Their Core Properties and Related Work

Conditional logics are often presented in terms of extending classical propositional
logic with a conditional operator . 2 Our language is defined by the(∧,∨,⊃,¬,≡)-

1. A floating conclusion is a proposition that can be reached by two conflicting and equally
strong arguments.

2. In some conditional logics of normality is not primitive. For instance in (Boutilier,
1994a) it is defined by making use of modal logic. There the core properties are shown to be
equivalent to an extension of the modal logicS4. See (Friedmanet al., 1996) for a comparative
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closure of the set of propositional variables and conditionals of the formA  B,
whereA andB are classical propositional formulas. Hence, to keep things simple we
do not consider here nested occurrences of and focus on flat conditional logics. We
refer toA as the antecedent and toB as the conclusion of the conditional. We writeW
for the set of all classical propositional formulas (i.e., formulas without occurrences
of  ). We abbreviate(A  B) ∧ (B  A) by A ∼ B and¬(A  B) by A 6 
B. Furthermore, we require that a conditional logicL satisfies the following core
properties, whereCL is classical propositional logic (see (Krauset al., 1990)):3

If ⊢CL A ≡ B, then ⊢ (A C) ≡ (B  C) [RCEA]

If ⊢CL B ⊃ C, then ⊢ (A B) ⊃ (A C) [RCM]

⊢ A A [ID]

⊢
(

(A B) ∧ ((A ∧B) C)
)

⊃ (A C) [RT]

⊢
(

(A B) ∧ (A C)
)

⊃ ((A ∧B) C) [ASC]

⊢
(

(A C) ∧ (B  C)
)

⊃ ((A ∨B) C) [CA]

The logic defined by these rules and axioms isP. Note that for instance the following
properties are valid inP: 4

⊢
(

(A B) ∧ (A C)
)

⊃ (A (B ∧ C)) [CC]

⊢ ((A ∧B) C) ⊃ (A (B ⊃ C)) [CW]

⊢
(

(A ∼ B) ∧ (B  C)
)

⊃ (A C) [EQ]

⊢CL A ⊃ B, then ⊢ A B [CI]

We consider these properties to be valid for all the conditional logics of normality
in the remainder. Adding the following Rational Monotonicity principle to the core
properties yields logicR (see (Lehmannet al., 1992)):5

⊢
(

(A C) ∧ (A 6 ¬B)
)

⊃ ((A ∧B) C) [RM]

study of various semantic systems for the core properties such as the preferential structures of
(Krauset al., 1990), theǫ-semantics of (Pearl, 1989), the possibilistic structures of (Duboiset
al., 1991) andκ-rankings of (Goldszmidtet al., 1992; Spohn, 1988).

3. We will use the name convention that is associated with conditional logics ofnormality
(see (Chellas, 1975), (Nute, 1980)) and not the one associated with nonmonotonic consequence
relations which is used e.g. in (Krauset al., 1990).

4. The proofs are fairly standard and can be found e.g. in (Krauset al., 1990).
5. I adopt the namesP andR for these logics from (Giordanoet al., 2006). Although these

are the same names as used for the systems in the pioneering KLM paper (Krauset al., 1990),
the reader may be warned: the approach in terms of conditional logics differs from the KLM
perspective which deals with rules of inference rather than with axioms. Also, strictly speaking,
Rational Monotonicity as defined in (Krauset al., 1990) is a rule of inference whereas (RM) as
defined above is an axiomatic counterpart to it.
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The core properties are not without criticism. On the one hand, it has been pointed out
that certain principles ofP resp.R are not always perfectly intuitive. For instance,
Neufeld (Neufeld, 1989) has argued against [CA], Poole (Poole, 1991) against [CC],
and Stalnaker (Stalnaker, 1994) and Giordano et al. (Giordanoet al., 2010b; Giordano
et al., 2010a) against [RM].6

On the other hand, the core properties have been criticized for being too weak.
Many nonmonotonic strengthenings have been developed in order to overcome certain
weaknesses.

Rational closure (see e.g. (Lehmannet al., 1992; Goldszmidtet al., 1990; Freund,
1997)) for instance strengthensR by means of a Shoham-like preferential semantics
(Shoham, 1987; Shoham, 1988). The idea is to assign natural numbers, i.e. ranks,
to formulas. The rank indicates how exceptional a formula is. If for instance(A ∨
¬A)  A thenA has the lowest rank, 0. In our penguin examplep is of a higher
rank thanb since after all(p ∨ b)  ¬b. Each formula is ranked as low as possible.
A defaultA  B is in the rational closure of a set of defaultsD iff the rank ofA is
strictly less than the rank ofA ∧ ¬B. In this way a significant problem ofP andR is
tackled, namely its suboptimal treatment of irrelevant information. For instance, the
proposition “Tweety is a green bird.”,g, will get the same rank as “Tweety is a bird.”,b.
Hence, the Rational Closure of{b f, g  b} contains the default(b∧ g) f , that
green birds fly. The latter is neither entailed byP nor byR. Rational Closure has been
shown to be equivalent to Pearl’s systemZ (see (Pearl, 1990; Goldszmidtet al., 1990))
which employs a probabilistic interpretation of defaults.These and similar approaches
have been criticized for inheriting some of the weaknesses of the core properties (see
e.g. (Geffneret al., 1992)) resp. of rational monotonicity (see (Giordanoet al., 2010a))
and for introducing new problems (see Example 8).

Giordano et al. introduce another preferential semantics based onP and a tableaux
calculus for it. Their systemPmin selects models that minimize non-typical worlds
with respect to a given set of formulas. Adding to our examplethe conditionalp a,
that penguins live in the arctic,Pmin concludes nonmonotonically that there are no
penguins that do not live in the arctic:(p ∧ ¬a)  ⊥. This is not a consequence
of Z resp. Rational Closure. However,Pmin’s treatment of irrelevant information is
suboptimal: unlikeZ and Rational ClosurePmin does not lead to the consequence
(b ∧ g) f .

Lehmann’s Lexicographic Closure (see (Lehmann, 1995; Benferhatet al., 1993))
improves on some of the shortcomings of Rational Closure by strengthening it fur-
ther.7 On the one hand, it introduces a more rigorous approach to strengthening the

6. Some weakening or variants of Rational Monotonicity have been proposed: e.g.⊢ ((A 

B) ∧ ((A ∧ C) 6 ¬B)) ⊃ ((A ∧ C)  B) (IRR) in the context of Description Logic by
Giordano et al. (Giordanoet al., 2009) or in the context of conditional deontic logics⊢ ((A 

B) ∧ (A 6 ¬(B ∧ C))) ⊃ ((A ∧ C) B) (WRM) by Goble in (Goble, 2004).
7. More precisely, Lexicographic Closure strengthens Rational Closure for all defaults with

antecedents that have a finite rank: ifA has finite rank andA  B is in the rational closure of
D, thenA B is in the lexicographic closure ofD.
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antecedent and hence avoids the so-called Drowning Problem(we discuss this in more
detail in Section 6). On the other hand, it makes sure that in cases of contradictory de-
faults quantitatively as many defaults as possible are satisfied. The policy is to strictly
prefer more specific defaults over less specific ones. The quantitative aspect makes
the Lexicographic Closure dependent on the way defaults arepresented.

The maximum entropy approach of (Goldzsmidtet al., 1993) is in the probabilis-
tic tradition of the 1-entailment of systemZ. It follows a similar intuition as Lexi-
cographic Closure concerning conflicting defaults. One difference is, however, that
in some cases the violation of a more specific default may leadto a higher overall
entropy than the violation of some less specific defaults andmay be thus preferred.

In his critical discussion of the core properties Delgrande(Delgrande, 2006) points
out that there are two interpretations of conditionalsA  B. Many approaches,
such as the ones listed above, treat defaults as weak material implications that have
a defeasible character, e.g. in specificity cases. He identifies several counter-intuitive
instances where the core properties obtain contrapositives of defaults. This, so he
argues, is a result of treating default conditionals in terms of material implications
rather than in terms of inference rules. In the spirit of the latter perspective he develops
a system based on a weakened core logic (in comparison toP). He demonstrates
that his rule-based system has a lot of nice properties in terms of treating irrelevant
information and conflicting defaults. Another rule-based approach is e.g. presented by
Dung and Son in (Dunget al., 2001).

The take on defaults in terms of weak material implications is very obvious in
approaches that make abnormality assumptions explicit (see McCarthy’s Circum-
scription (McCarthy, 1980), Geffner and Pearl’s Conditional Entailment (Geffneret
al., 1992), as well as the one presented in this paper). Here a default A  B is
presented byA ∧ α ⊃ B (or by both in the case of Conditional Entailment) where
α expresses normality conditions that have to hold for this default. The interesting
aspect of conditional entailment is that it extracts a priority order on the normality
assumptions automatically from the knowledge base. The idea is to interpret a given
knowledge base such that the normality assumptions of the defaults are validated “as
much as possible”. The priority order takes care that in caseof conflicts more specific
defaults are preferred where possible.

We conclude this section by noting that conditional logics have been successfully
applied to various fields. For instance their relevance for belief revision has been in-
vestigated in (Wobcke, 1995; Boutilier, 1994b; Booth, 2001). The description logic
ALC has been enhanced with a “typicality” operator in (Giordanoet al., 2009). Sim-
ilar to the logics that are going to be presented in the present paper this system allows
for inferences on the basis of factual information. However, in its current form the
logic faces the problem of irrelevance pointed out above: given the information that
typical birds fly the logic does not allow to infer that typical green birds fly. In order
to deal with such problems the authors propose to integrate “a standard mechanism to
reason about defaults” (p. 14) which is left for future research. Furthermore, recently
conditional logics have been applied to access control and security in (Genoveseet
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al., 2011). There the authors extend Garg and Abadi’s access control logic ICL from
(Garget al., 2008) with intuitionistic conditional logic.

3. Modus Ponens in Conditional Logics of Normality

In this section I will informally motivate and outline the main idea behind the
modeling of a defeasible MP in this paper.

A naïve way to apply MP would be to use the unrestricted version

⊢
(

(A B) ∧A
)

⊃ B [MP ]

However, this would lead to logical explosion whenever we are confronted with con-
flicting defaults, for instance in cases ofspecificity. Informally speaking, specificity
occurs if a more specific argument overrides a more general one. One way to formalize
this is as follows: ifA is the case andA B  C, as well asA ¬C, thenB  C

is overridden byA  ¬C, or in terms of arguments,A  B  C is overridden by
A  ¬C. The reader finds an illustration in Figure 1a. The illustrations in Figures
1 and 2 have to be read in a similar way as inheritance networks(see (Horty, 1994)):
nodes are in our case propositions, “A→ B” indicatesA B, “A · ·> B” indicates
A ¬B, “A => B” indicatesA ⊢CL B, and “A ==> B” indicatesA ⊢CL ¬B.

Example1. A standard example illustrating a case of specificity is the following (see
Figure 1b):

– Birds normally fly.—b f

– Penguins are (normally) birds.—p b

– Penguins normally do not fly.—p ¬f

The information represented byp is less specific or normal than the information
represented byb. Thus, obviously the more specificp  ¬f overridesb  f . This
has an important consequence: Givenp ∧ b or p we do not want to apply MP tob and
b  f . However, if we only haveb as factual knowledge it would be justified on the
basis of default reasoning to apply MP tob andb f .

Since, as argued above, full MP is highly problematic in the context of default in-
ferencing, we will in the remainder make use of a restricted MP. The idea is to restrict
MP to “safe” antecedents. In order to express this, we introduce a unary operator•
into our language which is applicable to propositional formulas. •A expresses that
the given factual information is atypical or exceptional for A. Hence, in case•A, MP
should not be applied to conditionals with antecedentA. The following restricted MP
realizes this idea.

⊢
(

(A B) ∧A ∧ ¬ •A
)

⊃ B [rMP]

Due to the restriction, MP is only applied in case we are able to derive that the factual
information is not exceptional with respect toA, i.e., ¬ • A. The following is an
immediate consequence of [rMP] and the core properties:

⊢
(

A ∧B ∧ (B  ¬A)
)

⊃ •B [Spe1]



Adaptively Applying Modus Ponens 9

The antecedent of [Spe1] expresses that the defaultB  ¬A is factually overridden
sinceA is the case. If the factual information describes atypical circumstances forA
andA  B, then we also have atypical circumstances forB, since after allA is at
least as specific asB. This motivates the following axiom:8

⊢
(

•A ∧ (A B)
)

⊃ •B [Inh]

Fact 1. [rMP], [Inh] and the core properties entail

⊢
(

A ∧ (A B  C) ∧ (A ¬C)
)

⊃ •B [Spe2]

The antecedent of [Spe2] describes a case of specificity: thedefaultB  C is
overridden by the more specific defaultA ¬C and the factA. Let us take a look at
a proof fragment for our example:

1 p b PREM
2 b f PREM
3 p ¬f PREM
4 p PREM
5 b PREM
6 •b 1,2,3,4; Spe2

Due to the fact that•b is derived at line 6, our restriction prevents MP of being
applicable tob andb  f in order to derivef . Indeed, due top we are in atypical
circumstances with respect tob. This is for instance witnessed by the fact that by the
core propertiesb ¬p is derivable from our premise set, andp is a premise.

Note that something is still missing in order to model default inferencing properly.
Due to the restricted MP we are able to block MP from being applied to excepted
antecedents. However, we lack the ability to apply MP top  ¬f andp since we
miss¬ • p. This can be tackled by applying MP conditionally. More specifically, MP
is applied toA B andA on the condition that the antecedentA can be assumed to
be not excepted, i.e., on the condition that•A can be assumed not to be the case. This
is technically realized by means of adaptive logics.

I will introduce adaptive logics formally in Section 4 but let me sketch the main
idea already now. In order to rewrite the proof above in the style of adaptive logics,
we need to add a fourth column containing sets of so-called abnormalities. In our case
abnormalities are of the form•A.

8. The name [Inh] indicates that the property of being exceptional isinherited along -
paths.
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1 b f PREM ∅
2 p b PREM ∅
3 p ¬f PREM ∅
4 b PREM ∅
5 p PREM ∅

76 f 1,4; RC
{

•b
}

7 •b 1,2,3,5; Spe2 ∅
8 ¬f 3,5; RC

{

•p
}

At lines 6 and 8 MP is applied conditionally (indicated by RC for “rule condi-
tional”). For instance at line 8 the condition is{•p}. In other words, MP is applied to
p andp ¬f on the condition thatp can be assumed to be not excepted. Note that if
¬ • p would be derivable, we would be able to apply [rMP] top, p  ¬f and¬ • p
in order to detach¬f . However,¬ • p is not derivable. Nevertheless, adaptive logics
offer the option to apply MP conditionally. Similarly, at line 6 MP is applied tob f

andb on the condition thatb is not excepted. However, at line 7,•b is derived. Note
that at this point line 6 is marked by 7. The idea is that lines with “unsafe” conditions
are marked and the formulas in the second column of marked lines are not considered
as being derived. Of course, sincef is derived on the condition thatb is not excepted,
this very condition cannot be considered safe anymore as soon as we derive thatb is
excepted at line 7. There are two adaptive strategies that specify what it exactly means
that a condition of a line is “unsafe”. For instance in case ofthe so-called reliability
strategy a line is marked at a given stage of the proof in case amember of its condi-
tion has been derived as part of a minimal disjunction of abnormalities (in our case a
disjunction of formulas preceded by a•) on the condition∅. 9 Minimality means that
no sub-formula of the disjunction has been derived. Since•p is not derivable as part
of a disjunction of abnormalities, line 8 is not going to be marked. There is obviously
no reason to treat its condition as unsafe.

In the following sections I will realize the idea that was informally presented in
this section. First, in Section 4, I introduce adaptive logics. Then, in Section 5, the
adaptive logics for conditionally applying MP will be defined.

A

B C
(a)

p

b f
(b)

n

r q

p
(c)

a

b c

d

e
(d)

a ∧ c

a c ¬(b ∧ d)

b d
(e)

Figure 1: Illustrations and Examples

9. A more precise notion of what it means that a condition is “unsafe” will be given in the
next section by means of a marking definition.
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4. Adaptive logics

An adaptive logicAL in standard format is a triple consisting of (i) a lower limit
logic (henceforthLLL), which is a reflexive, transitive, monotonic, and compact logic
that has a characteristic semantics and containsCL (classical logic), (ii) a set of abnor-
malitiesΩ, characterized by a (possibly restricted) logical form, and (iii) an adaptive
strategy. Formulating an adaptive logic in the standard format provides the logic with
all of the important meta-theoretic features, such as soundness and completeness (as
is shown in (Batens, 2007)).

In the following we useϕ andψ as meta-variables for well-formed formulas of
a given language. The proof dynamics is governed by a markingdefinition for proof
lines. The fact that the proofs are of a dynamic nature makes adaptive logics very
useful for the modeling of defeasible reasoning, since a formula derivable at one stage
of the proof may turn out not to be derivable at a later stage. Aline of a proof consists
of a line number, a formula, a justification, and a condition.Conditions are sets of ab-
normalities. We abbreviate

∨

ϕ∈∆
ϕ byDab(∆) for some finite set∆ of abnormalities

signifying the “disjunction of abnormalities in∆”. Adaptive proofs are characterized
by the following generic rules:

PREM Ifϕ ∈ Γ :
...

...
ϕ ∅

RU If ϕ1, . . . , ϕn ⊢LLL ψ :

ϕ1 ∆1

...
...

ϕn ∆n

ψ ∆1 ∪ . . . ∪∆n

RC If ϕ1, . . . , ϕn ⊢LLL ψ ∨ Dab(Θ) :

ϕ1 ∆1

...
...

ϕn ∆n

ψ ∆1 ∪ . . . ∪∆n ∪Θ

RU says that if a formulaψ is derived on a linel by means of theLLL from
ϕ1, . . . , ϕn that are derived on conditions∆1, . . . ,∆n, then these conditions are car-
ried forward to linel. Note, that by RU allLLL-rules are valid inAL and thus all
LLL-consequences areAL-consequences.

The essential strength of adaptive logics comes with the rule RC. It enables us
to derive formulas conditionally. Also for applications ofRC conditions are carried
forward, as it was the case for RU. RC is used to deriveψ on the conditionΘ if, by
LLL,ψ∨Dab(Θ) is derivable. The idea is to assume that the abnormal membersof Θ
are false, in which caseψ has to be true. Of course, there are circumstances in which
this assumption cannot be maintained. In such cases lines with “unsafe” conditions
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are marked. Before I come to the marking definition, some morenotions have to be
introduced.

Stagesof proofs are lists of lines obtained by applications of the generic rules
above (with the usual understanding that the justification of a line should only refer
to lines preceding it in the list). The empty list will be considered as stage 0 of every
proof. Wheres is a stage,s′ is an extension ofs iff all lines that occur ins occur in
the same order ins′. A (dynamic) proof is a sequence of stages.

Given a premise setΓ, Dab(∆) is aminimalDab-formulaat stages of the proof
from Γ, iff it is the formula of a line with condition∅ and noDab(∆′), where∆′ ⊂
∆, is the formula of a line with condition∅. WhereDab(∆1),Dab(∆2), . . . are the
minimalDab-formulas at stages, we define the set ofunreliable formulasat stages,
Us(Γ) = ∆1 ∪∆2 ∪ . . . . We call the minimalDab-formulas derivable withLLL, the
minimalDab-consequences. WhereDab(∆1),Dab(∆2), . . . are the minimalDab-
consequences, we define the set of unreliable formulas,U(Γ) = ∆1 ∪∆2 . . . .

It is the job of the marking definition to determine if lines are “in” or “out” of the
proof at a certain stage, i.e., to govern the dynamics of the proof procedure. For the
reliability strategylines are marked which have unreliable formulas in their condition.

Definition 1 (Marking for Reliability). Line i is marked at stages iff, where∆ is its
condition,∆ ∩ Us(Γ) 6= ∅.

For theminimal abnormality strategya few more notions need to be introduced. A
choice setof Σ = {∆1,∆2, . . .} is a set that contains an element out of each member
of Σ. A minimal choice setof Σ is a choice set ofΣ of which no proper subset is a
choice set ofΣ. Where, for a premise setΓ, Dab(∆1),Dab(∆2), . . . are the minimal
Dab-formulas at stages, Φs(Γ) is the set of the minimal choice sets of{∆1,∆2, . . .}.

Definition 2 (Marking for minimal abnormality). Line i is marked at stages iff, where
ϕ is derived on the condition∆ at linei,

(i) there is no∆′ ∈ Φs(Γ) such that∆′ ∩∆ = ∅, or
(ii) for some∆′ ∈ Φs(Γ), there is no line at whichϕ is derived on a conditionΘ for

which∆′ ∩Θ = ∅.

Note that a line may be marked at a stages of the proof, but be unmarked at a later
stages′. Indeed, even ifDab(∆) is a minimalDab-formula at stages, we may be able
to deriveDab(∆′) where∆′ ⊂ ∆ at a later stages′. This may lead to an alteration
of the unreliable formulas or/and the minimal choice sets and thus to changes in the
marking of lines. In order to define the consequence set of an adaptive logic, a stable
criterion for derivability is offered by the following definition.

Definition 3. ϕ is finally derivedfrom Γ on line i of a proof at a finite stages iff (i)
ϕ is the second element of linei, (ii) line i is not marked at stages and (iii) every
extension of the proof in which linei is marked may be further extended in such a
way that linei is unmarked.
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Γ ⊢AL ϕ (ϕ is finally AL-derivablefrom Γ) iff ϕ is finally derived on a line of a
proof fromΓ.

Let us have a look at the semantics. The idea behind the minimal abnormality
strategy is that only the models (of a given premise set) which validate a minimal set
of abnormalities are taken into account. For the reliability strategy only models are
considered whose abnormal part is a subset of the set of unreliable formulas.

Definition 4. An LLL-modelM is reliable iff Ab (M) ⊆ U(Γ), where Ab(M) =df

{ϕ | M |= ϕ} ∩ Ω. An LLL-modelM of Γ is minimal abnormaliff there is no
LLL-modelM ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Γ 
AL ϕ (ϕ is anAL-semantic consequence ofΓ) iff ϕ is verified by, depending
on the strategy, all reliable models resp. all minimal abnormalLLL-models ofΓ.

The following completeness and soundness result is valid for all adaptive logics
AL in standard format (as shown in (Batens, 2007)):Γ ⊢AL ϕ iff Γ 
AL ϕ.

5. Applying Modus Ponens Conditionally

As discussed in Section 3, we use a unary operator ‘•’ in order to label propo-
sitional formulas for which MP should be blocked. These are propositions that are
excepted by the information given in the premises. That is tosay, the factual informa-
tion at hand describes unusual circumstances concerning them.

We have seen thatb, “Tweety is a bird.”, is excepted if alsop, “Tweety is a pen-
guin.”, is given. The second proposition describes an exceptional context for the first
one due to the conditionalsb  f , p  b andp  ¬f wheref = “Tweety flies”.
Thus,f should not be detached fromb f andb if p is the case:b f is overridden
by the more specificp ¬f .

The following fact shows that in various cases of specificitythe least specific ar-
guments are excepted.

Fact 2. The core properties,[rMP] and [Inh] imply [Spe1], [Spe2]and the following:

If ⊢ A ⊃ B, then ⊢
(

A ∧ (B  C) ∧ (A ¬C)
)

⊃ •B [sSpe]

⊢
(

A ∧ (A B1  . . . Bn  C) ∧ (A ¬C)
)

⊃ •Bn [SpeG]

⊢
(

A ∧ (A B1  . . . Bn  D)∧
(A C1  . . . Cm  ¬D) ∧ (Bn  . . . Cm)

)

⊃ •Cm
[PreE]

If ⊢ ¬
∧

I
Di, then ⊢

(

A ∧
∧

I
(A . . . Bi  Di)

)

⊃
∨

I
•Bi [Conf]
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[SpeG] is a generalization of [Spe2] (see Figure 2b). The preemption rule [PreE]
is a further generalization (see Figure 2c).10 [Conf] shows that if there are multiple
conflicting argumentsA . . . Bi  Di then at least one of theBi’s is excepted.

Let in the remainderLp be the base logicL enriched by [rMP] and [Inh]. In this
paper we will focus on base logicsL ∈ {P,R} (see Section 2).

Definition 5. We defineDLpx wherex ∈ {r,m} as an adaptive logic in standard
format by the following triple:

– the lower limit logic isLp,
– the set of abnormalities isΩ = {•A | A ∈ W},
– the strategy is eitherreliability (for DLpr) or minimal abnormality (for

DLpm).

To adaptively interpret premise sets “as normally as possible” means in our case
to interpret the propositional formulas as not being excepted whenever possible, i.e.,
whenever this is consistent with the given premises. In turn, this allows us to apply
MP as much as possible since the additional antecedents of [rMP], ¬•A, are validated
as much as possible. Note that due to [rMP] we have

⊢Lp

(

A ∧ (A B)
)

⊃
(

B ∨ •A
)

Hence, by RC,B is derivable fromA andA B on the condition{•A}.

The (object-level) proofs presented in the following examples are for both adaptive
logics,DLpr, andDLpm, if not specified differently. I presume thatL ∈ {P,R}.
Let us take a look at a simple case of specificity.

Example2. We equip the conditional knowledge base in Example 1 (see Figure 1b)
with the factual knowledge{p}.

1 p b PREM ∅
2 b f PREM ∅
3 p ¬f PREM ∅
4 p PREM ∅

5 b 1,4; RC
{

•p
}

86 f 2,5; RC
{

•p, •b
}

7 ¬f 3,4; RC
{

•p
}

8 •b 1,2,3,4; RU ∅

At line 5, MP is applied top  b andp on the condition{•p}. 11 Similar con-
ditional applications take place at lines 6 and 7. The desired ¬f andb are (finally)
derivable since the condition,•p, is not part of any minimalDab-consequence. More-
over, MP is blocked fromb f andb since at line 8,•b is derived and hence line 6 is
marked.

Example3. Let us have a look at conflicting conditionals by means of the Nixon
Diamond (see Figure 1c) with the factual knowledge{n} and the usual reading ofq
as ‘being a Quaker’,r ‘being a Republican’ andp as ‘being a pacifist’.

10. Preemption plays an important role in the research on inheritance networks (see (Horty,
1994)).

11. This is accomplished by means of the generic rule RC as defined on page 11.
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1 n q PREM ∅
2 n r PREM ∅
3 q  p PREM ∅
4 r  ¬p PREM ∅
5 n PREM ∅

6 q 1,5; RC
{

•n
}

7 r 2,5; RC
{

•n
}

108 p 3,6; RC
{

•n, •q
}

109 ¬p 4,7; RC
{

•n, •r
}

10 •q∨•r 1,2,3,4,5; RU ∅

The logic proceeds as expected:r andq are derivable while the derivations ofp
and¬p get marked for both strategies. Note that the condition of line 6 and 7, namely
{•n}, is not part of any minimalDab-consequence. In order to make the example
more interesting let us introduce two more conditionals:q  e andr  e wheree
represents for instance ’being politically motivated’.

11 q  e PREM ∅
12 r  e PREM ∅
13 e 6,11; RC

{

•n, •q
}

14 e 7,12; RC
{

•n, •r
}

By the reliability strategy lines 13 and 14 are marked (due tothe fact that•q ∨
•r at line 10 is a minimalDab-consequence). They are not marked by the minimal
abnormality strategy, since the minimal choice sets at line14 are{•q} and{•r}. It
is easy to see that there is no way to extend the proof in a way such that lines 13
and 14 are marked according to the minimal abnormality strategy. This shows that
the reliability strategy models a more skeptical reasoningin comparison to the bolder
reasoning type modeled by the minimal abnormality strategy.

We have a similar scenario for the example depicted in Figure2e. By the minimal
abnormality strategyp is derivable given the factual knowledgex. It is not derivable
by the reliability strategy.

Propositions such asp in Figure 2e are commonly dubbed “floating conclusions”.
There is a vivid debate about whether such propositions should be accepted.12 Instead
of trying to have the final word on the discussion I want to point out that, as the
example shows, the minimal abnormality strategy detaches floating conclusions, while
the more skeptical reliability strategy rejects them. Different applications may ask
for different strategies. The credulous character of the minimal abnormality strategy
makes it interesting for applications in which “the value ofdrawing conclusions is
high relative to the costs involved if some of those conclusions turn out not to be
correct.” ((Horty, 1994), p. 14). The reliability strategyon the other hand is, due to its
more skeptical character, better “when the cost of error rises” (ibid.).

Example4. Let our knowledge base beΓ4 = {ai  ai+1 | 1 ≤ i < n} (see Figure
2a) with factual knowledge{a1}. Note thatΓ4 0P a1  aj andΓ4 0R a1  aj
where2 < j ≤ n. However, our adaptive logics are able to detach all theai’s:

12. While Ginsberg (Ginsberg, 1994), and Makinson and Schlechta (Makinsonet al., 1991)
argue for the acceptance, Horty (Horty, 2002) argues against it.
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a1

a2

...

an
(a)

a

b1

...

bn
(b)

a

...
...

bn . . . cm

d
(c)

p ∧ s ∧ r

p ∧ s r

p q

(d)

x

y z

u v

p
(e)

Figure 2: Illustrations and Examples

1 a1  a2 PREM ∅
...

...
... ∅

n−1 an−1  an PREM ∅
n a1 PREM ∅

n+1 a2 n;RC {•a1}
n+2 a3 n+1;RC {•a1, •a2}

...
...

...
...

2n−1 an 2n−2;RC {•a1, . . . , •an−1}

Obviously none of the linesn+1, . . . , 2n−1 can be marked by extending the proof.
The fact thatΓ4 ∪ {a1} ⊢DLpx ai, wherei ≤ n, x ∈ {r,m} andL ∈ {P,R}, while
Γ4 0L a1  ai demonstrates that our handling of MP overcomes certain weaknesses
of the core logic in terms of the handling of transitive relations among conditionals.

Example5. Let our factual knowledge bea. b1, . . . , bn−1 and¬bn are derivable from
the knowledge base depicted in Figure 2b by means ofDPpx (wherex ∈ {r,m}).
We obtain e.g. theDab-formula•bn−1 (by [SpeG]) and•bn (by means of the former
and [Inh]). Note that no•bi wherei < n − 1 is derivable as a part of a minimal
Dab-consequence. Hence we can iteratively apply Modus Ponens conditionally to
a  b1 andbi  bi+1 wherei < n − 1 in such a way that the corresponding lines
are unmarked. Note thata bn−1 is neither aP-consequence nor aR-consequence
of the given premises, nor is it derivable by means of Rational Closure. However, it is
entailed byPmin. 13

The situation is slightly different inDRpx: besides•bn−1 and•bn also•bn−2 ∨
•¬bn−2 isRp-derivable from the premises.14 It is easy to see that due to thisbn−1 is
notDRpx-derivable since the only means of derivingbn−1 from the given premises

13. Note that in case we do not adda 6 ⊥ to our premises,Pmin is rather rigorous and also
entailsa ⊥.

14. The reason is as follows. Suppose first thatbn−1 6 ¬bn−2. In this case by means of
[RM] and sincebn−1  bn also(bn−1 ∧ bn−2)  bn. By [RT] and sincebn−2  bn−1,
bn−2  bn. But then sincea, a  ¬bn anda  . . .  bn−2  bn, by [SpeG],•bn−2. Now
supposebn−1  ¬bn−2. Since•bn−1 we get•¬bn−2 by [Inh]. Altogether,•bn−2 ∨ •¬bn−2.
Note that this argument does not hold inPp since it makes essentially use of [RM].
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is by detaching it from the conditionalbn−2  bn−1 on the condition{•bn−2}. Yet,
due to the minimalDab-consequence•bn−2 ∨ •¬bn−2 any such attempt gets marked
in the proof. However, if we add the premisebn−2 6 bn we get the consequencesbi
for all i < n and¬bn just as forDPpx. It is easy to see that in this case•bn−2 is not
anymore part of any minimalDab-consequence.

Similarly, b1, . . . , bn, c1, . . . , cm and¬d areDPpx-derivable from the knowledge
base depicted in Figure 2c. Analogous to the previous paragraph we need to add
another premise, e.g.cm−1 6 a, in order to get the same consequences forDRpx.
The proofs are simple and left to the reader.

Example6. Let us take a look at a variant of the Nixon Diamond (Figure 1d)by means
of the logicDPpx (wherex ∈ {r,m}):

1 a b PREM ∅
2 a c PREM ∅
3 b ¬e PREM ∅
4 c d PREM ∅
5 d e PREM ∅
6 a PREM ∅

7 b 1,6; RC
{

•a
}

128 ¬e 3,7; RC
{

•a, •b
}

9 c 2,6; RC
{

•a
}

10 d 4,9; RC
{

•a, •c
}

1211 e 5,10; RC
{

•a, •c, •d
}

12 •b∨•d 1–6; RU ∅

Note that neither isa d derivable by the core properties nor is it in the Rational
Closure, nor is it entailed by Conditional Entailment.15 Thus, in the given example our
logic handles the transitive relations between defaults better than these systems, since
(with both strategies)d is derivable following argumenta c d. Furthermore, as
desired, neithere nor¬e is derivable since there are conflicting arguments concerning
e and¬e.

The situation is different inDRpx since by means ofRp also the minimalDab-
consequence•c∨•¬c is derivable.16 Hence, thered at line 10 is not finally derivable.
However, by addingc 6 ¬a to the premises alsod is aDRpx-consequence of this
premise set.

Example7. We take a look at Figure 1e with factual knowledge{a∧c}. This example
illustrates a more complex case of specificity.

15. Note thatPmin entailsa  d and moreovera  ⊥ (in case we do not manually add
a 6 ⊥ to the premises, see also footnote 13).

16. The reason is as follows. Suppose¬ • c. Suppose (i)b  ¬a. Since alsoa, a  b and
a  a (by [ID]) we get•b by [Spe2]. Assumeb 6 ¬c. By [RM], (b ∧ c)  ¬a. Since also
a, a  a anda  (b ∧ c) (by [CC], a  b anda  c) we have•(b ∧ c) by [Spe2]. By [Inh]
and [CI] also•c,—a contradiction. Hence,b  ¬c. By [Inh] •¬c. Now suppose (ii)b 6 ¬a.
Sinceb  ¬e by [RM] (a ∧ b)  ¬e. Sincea  b by [RT] a  ¬e. By the latter,a, ¬ • c

anda  c we havec 6 e due to [Spe2]. Bya, a  ¬e anda  c  d  e we have•d due
to [SpeG]. Assumed 6 ¬c. Then by [RM](c∧d) e and by [RT],c e,—a contradiction.
Henced ¬c and by [Inh],•¬c. Altogether we get•c ∨ •¬c.
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1 a ∧ c ¬(b ∧ d) PREM ∅
2 a b PREM ∅
3 c d PREM ∅
4 a ∧ c PREM ∅
5 ¬(b ∧ d) 1,4; RC

{

•(a ∧ c)
}

96 b 2,4; RC
{

•a
}

97 d 3,4; RC
{

•c
}

8 •a ∨ •c ∨ •(a ∧ c) 1,2,3,4; RU ∅
9 •a ∨ •c 8; RU ∅

10 b ∨ d 6; RU
{

•a
}

11 b ∨ d 7; RU
{

•c
}

Line 9 follows from line 8 in view of [Inh] and [CI]. By the reliability strategy
lines 10 and 11 are marked since both,•a and•c, are unreliable formulas. Not so by
the minimal abnormality strategy, sinceb ∨ d is derivable on both conditions,{•a}
and{•c} (see Definition 1).

This example is interesting also in another respect. It features a more complex
type of specificity. While none of the argumentsA1 = (a ∧ c)  a  b andA2 =
(a ∧ c)  c  d suffices in its own respect to cause a case of specificity with
(a ∧ c)  ¬(b ∧ d), both taken together do. Indeed, if we follow both lines of
argument,A1 andA2, we arrive atb andd. However, the conjunctionb∧d contradicts
¬(b∧ d). Thus,a∧ c ¬(b∧ d) overrides the joint application of argumentsA1 and
A2 (see also the illustration in Figure 1e).

Both, minimal abnormality and reliability strategy, validate¬(b ∧ d). Again, if
we apply reliability we take a more skeptical route concerningA1 andA2, since both
arguments are considered as being unreliable and thus neither argument is validated:
we neither deriveb, nor d, nor b ∨ d. Minimal abnormality however validates one
of the two arguments. Indeed, taken isolated from each other, neitherA1 nor A2 is
overridden bya ∧ c  ¬(b ∧ d). Thus, the credulous reasoning provided by the
minimal abnormality strategy validatesb ∨ d and¬(b ∧ d).

Example8. Given the factual knowledgep∧ s∧ r and the defaults depicted in Figure
2d we have the minimalDab-consequence•(p ∧ s) ∨ •r. That shows that neitherq
nor¬q is derivable. This is intuitive as pointed out by Geffner andPearl in (Geffneret
al., 1992) since there are no reasons to prefer argument(p ∧ s)  q overr  ¬q or
vice versa. Note however that the counter-intuitive(p ∧ s ∧ r) q is in the Rational
and Lexicographic Closure, and it is entailed by the maximumentropy approach.17

6. Discussion

In this discussion section I will point out some advantages of the presented logics,
also in comparison with other systems from the literature. Moreover I will comment
on some other related and interesting points which were not mentioned so far.

17. It is not entailed byPmin in case we add(p ∧ s ∧ r) 6 ⊥.
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6.1. Some advantages of the adaptive approach

Adaptive logics offer a very generic framework enabling defeasible MP for con-
ditional logics of normality since they can be applied to anyconditional lower limit
logic as long as it is reflexive, transitive, monotonic and compact. Depending on the
application the reader is free to use any conditional logic of normality asLLL as
long as it fulfills the mentioned requirements. Since adaptive logics have shown great
unifying power in representing nonmonotonic, defeasible logics18, even conditional
logics that do not fulfill the requirements may be represented by adaptive logics.19

By applying techniques of combining adaptive systems the framework developed in
this paper may be applicable also in such cases. Furthermore, similar techniques as
presented here for defeasible MP in the context of default reasoning can be applied to
conditional deontic logics (see (Straßer, 2010)).

The meta-theory of adaptive logics in standard format is well-researched (see
(Batens, 2007; Putteet al., 201X)). Many useful properties have been established
generically. For instance, completeness and soundness of an adaptive logic are guar-
anteed by the completeness and soundness of itsLLL, the consequence relation of an
adaptive logic defines a fixed point and is cautious monotonic, etc.

Pollock distinguished in (Pollock, 1987) between two typesof dynamics that char-
acterize defeasible reasoning: one based onsynchronic defeasibilityand another one
based ondiachronic defeasibility. As I will discuss in the following, adaptive logics
are able to model both of them.

The internal dynamicsof defeasible reasoning is caused by diachronic defeasibil-
ity. Often achieving a better understanding of the information at hand forces us to
withdraw certain inferences even in cases in which no new information is available.
This is modeled by the dynamic proof theory of adaptive logics. For instance, if we
(conditionally) apply MP tob f andb but at a later moment also derivep, p ¬f
andp  b from the same premises, we revise the former derivation. In the adaptive
proof the line at which MP has been applied tob  f andb is going to be marked
and is hence considered not to be valid. Thus, while our insight in the given knowl-
edge base —i.e., the premises— grows, we may consider revising some conclusions
drawn before, especially if the knowledge base is of a complex nature. Hence, our
treatment of common sense reasoning with factual information on the basis of con-
ditional knowledge bases does not just reach intuitive results but the explication of
the reasoning process itself is an integral part of the prooftheory. This is an advan-
tage compared to other systems which are able to model default inferencing such as
Delgrande’s (Delgrande, 1988), Lamarre’s (Lamarre, 1993), or Geffner and Pearl’s
(Geffneret al., 1992).

Lamarre in (Lamarre, 1993) presents a powerful approach based on semantic selec-
tion procedures on the models of a given conditional base logic, where the facts valid

18. For the most recent survey see (Batenset al., 2009).
19. As has been shown, for instance, for Rational Closure in (Straßer, 2009).
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in all the selected models characterize the consequence setof his system.20 What is
missing, however, is a syntactical approach correspondingto it that mirrors our com-
mon sense reasoning by its proof theory. Delgrande’s system(Delgrande, 1988) is
syntactical in nature. The idea here is to iteratively enrich the given factual knowl-
edge by further contingent information in order to form so-called maximal contin-
gent extensions.21 Special attention in building these extensions is given to cases of
specificity: similar as in the presented approach, the worldat hand is interpreted as
non-exceptional as possible. Furthermore, in the construction of the extensions only
relevant information is considered with respect to the knowledge base at hand. What
is derivable by classical logic from these maximal contingent extensions corresponds
to the factual consequences we draw via default reasoning. While Delgrande’s as-
sumptions concerning the normality of the actual world and his restriction to relevant
information accord with a natural intuition concerning default reasoning, the way we
arrive at the inferences by Delgrande’s approach seems rather unnatural, i.e., the tech-
nical necessity to first built up all the maximal consistent factual extensions and then
to infer from them by classical reasoning. This procedure does not model our actual
default inferencing in an accurate way. Geffner and Pearl’sConditional Entailment
has been already mentioned on Section 2. Although the authors provide a syntactic
check-criterion for conditionally entailed propositions, they do not offer a derivational
procedure that mirrors our actual reasoning processes suchas the dynamic proofs of
adaptive logics.22

As mentioned, another advantage of adaptive logics is theirability to deal with
the synchronic defeasibility that causes theexternal dynamicsof reasoning processes.
Often with the introduction of new information we are forcedto withdraw certain
inferences. Again, the markings of the dynamic proofs are able to model cases of
specificity and conflicting arguments which might be caused by new information. In
contrast, in Lamarre’s approach the arrival of new information forces us to re-initiate
the semantic selection procedure, and, similarly, for Delgrande’s account we have to
re-construct the maximal contingent extensions. In the adaptive approach, despite the
fact that new information might force us to withdraw certainconclusions, the proof
dynamics model in an accurate way the fact that we continue reasoning facing new
information instead of beginning the reasoning process again from scratch.

20. As discussed in Section 4, adaptive logics also employ semantic selections on the models
of theLLL.

21. Delgrande introduces in fact two equivalent proposals in this paper. The other one, which
I do not discuss above, is based on forming maximal consistent extensions of the conditional
knowledge base at hand (in contrast to the maximal consistent extensions of the factual knowl-
edge which I discuss here). Note, however, that a similar criticism appliesto both approaches.

22. Computing Conditional Entailment is a pretty complex and challenging task. Hence,
the authors only offer a computational approximation in terms of an assumption-based truth
maintenance-like system (see (de Kleer, 1987)).



Adaptively Applying Modus Ponens 21

6.2. The Drowning Problem

In Examples 4 and 6 it was demonstrated that the presented treatment of MP some-
times outgrows the abilities of the core system in terms of transitively closing .
However, there are limitations to it. To show this I extend Example 2 by a further
conditional:

Example9. We add to the conditionals of Example 2,b  w, wherew stands for
“having wings”. The proof of Example 2 is extended in the following way:

9 b w PREM ∅
810 w 5,9; RC

{

•p, •b
}

Note that the conditional derivation ofw is not successful in the sense that it gets
marked. This is due to the fact thatb is excepted since we havep andb ¬p. Indeed
there is no way to derivew from the given premises. This is also due to the fact that in
P andR neitherp w nor (p∧ b) w is derivable (neither are they in the Rational
Closure). Note that if one of the latter would be derivable,w would be detachable
from p  w andp, or resp.(p ∧ b)  w andp ∧ b. Thus, the limitation of the
adaptive treatment of MP concerning excepted propositionsmirrors a limitation of the
base logic concerning conditional consequences.

This problem is commonly known as the Drowning Problem: suppose a default
with antecedentA is excepted, then all other defaults with antecedentA are blocked
from MP as well.

The first question to ask at this point is whether a “solution”to the drown-
ing problem is at all desirable. Some scholars voice worries(see e.g. (Jeffryet
al., 1994; Wobcke, 1995; Bonevac, 2003; Koons, 2009)). For instance, Koons asserts
that there are good reasons why we should not apply MP to defaults with excepted
antecedents. “Consider the following variant on the problem: birds fly, Tweety is a
bird that doesn’t fly, and birds have strong forelimb muscles. Here it seems we should
refrain from concluding that Tweety has strong forelimb muscles, since there is reason
to doubt that the strength of wing muscles is causally (and hence, probabilistically) in-
dependent of capacity for flight. Once we know that Tweety is an exceptional bird,
we should refrain from applying other conditionals withTweety is a birdas their an-
tecedents, unless we know that these conditionals are independent of flight, that is,
unless we know that the conditional with the stronger antecedent,Tweety is a non-
flying bird, is also true.” (see (Koons, 2009), Section 5.7)

Moreover, Lehmann in (Lehmann, 1995) (see the discussion inSection 4) points
out that there are two perspectives on default reasoning. Onthe one hand there is the
prototypicalreading whereb f is understood as “Birds typically fly.” On the other
hand, according to thepresumptivereading it is read as “Birds are presumed to fly un-
less there is evidence to the contrary.” The former was proposed in (Reiteret al., 1981)
and Lehmann states that it is the intended reading for Rational Closure, whereas the
presumptive reading is intended for the Lexicographic Closure. According to the pro-
totypical reading the Drowning problem should not be solved. This is due to the fact
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that if there is an exception to some conditional with antecedentA then the situation
is not typical with respect toA. However, defaults with antecedentA only account
for typical situations (with respect toA). Hence, MP should not be applied to any
conditionalA B according to this view.

6.3. Taking into account negative knowledge

So far we focused on knowledge bases consisting on the one hand of condi-
tionals and on the other hand of facts, i.e., facts expressedby propositions. It
is interesting to enable the logic to also deal with knowledge bases including
negative conditionals, i.e., formulas of the formA 6 B. Note that the framework
proposed in this paper is not able to deal with such knowledgebases in the case
that our base system only consists of the core properties. Take for instance the
simple penguin Example 2 and replace the premisep  ¬f by p 6 f . Note that for
the logicsDPpx (wherex ∈ {r,m}) the unwantedf is derivable for this premise set.

1 p b PREM ∅
2 p 6 f PREM ∅
3 b f PREM ∅

4 p PREM ∅
5 b 1,4; RU

{

•p
}

6 f 3,5; RU
{

•p, •b
}

Note that there is no way to mark line 6 (in either of the strategies). However, as
the following fact shows, the situation is different in caseR is chosen as base system,
i.e., for lower limit logicRp.

Fact 3. The core properties,[RM] , [rMP] and [Inh] imply23

⊢
(

A ∧ (A B  C) ∧ (A 6 C)
)

⊃ •B [Spe’]

⊢
(

A ∧ (A B1  . . . Bn  C) ∧ (A 6 C)
)

⊃ •Bn [SpeG’]

⊢
(

A ∧ (A B1  . . . Bn) ∧ (Bn 6 D) ∧

(A C1  . . . Cm  D) ∧ (Bn  . . . Cm)
)

⊃ •Cm [PreE’]

In DRpx f is not derivable since line 6 is marked by the following extension of
the proof:

7 •b 1,2,3,4; Spe’ ∅

7. Conclusion

In this paper an adaptive logic approach to Modus Ponens for conditional logics
of normality was presented. By adaptively enhancing a givenbase logic we enrich it
by the ability to model actual default inferencing. By meansof benchmark examples
it was demonstrated that the adaptive systems deal with specificity and conflicting

23. The proofs can be found in the Appendix.
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arguments in an intuitive way. The two adaptive standard strategies have been shown
to correspond to two different intuitions: a more skepticaland a more credulous one.
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APPENDIX

A. Some proofs

Lemma 1. The core properties,[rMP] and [Inh] entail
(

A1 ∧ (A1  . . .  An  B)
)

⊃
(B ∨ •An).

Proof. Due toA1,A1  A2 and [rMP] we haveA2∨•A1. Analogously we getA3∨•A2∨•A1

and finallyB ∨ •An ∨ · · · ∨ •A1. By iterated applications of [Inh] we getB ∨ •An.

Proof of Fact 1. By means ofA, A  B  C and the lemma, (†) C ∨ •B. By means ofA
andA  ¬C, by (rMP)¬C ∨ •A. SinceA  B, by [Inh], •A ⊃ •B. Hence, (‡) ¬C ∨ •B.
By (†) and (‡), •B.

Proof of Fact 2. “[Spe1]”: this is trivial. “[SpeG]”: By Lemma 1,C ∨ •Bn and¬C ∨ •A. By
multiple applications of [Inh],•A ⊃ •Bn. Hence¬C ∨ •Bn. Thus,•Bn. [Spe2] and [sSpe]
follow immediately with [SpeG] and [CI]. “[PreE]”: By Lemma 1,D ∨ •Bn and¬D ∨ •Cm.
By multiple applications of [Inh],•Bn ⊃ •Cm. Hence,D ∨ •Cm. Thus,•Cm. “[Conf]”: By
Lemma 1,Di ∨ •Bi. Due to¬

∧

I
Di and by classical logic,

∨

I
•Bi.

Proof of Fact 3. “[Spe’]”: Suppose¬•B. Then, due to [Spe1],B 6 ¬A. By (RM), (A∧B) 

C. But then by [RT],A  C,—a contradiction. “[SpeG’]”: Suppose¬ • Bn. Hence, due to
[Inh], ¬ • Bi for all i < n and¬ • A. Hence, due to [Spe’],A Bi for all i ≤ n (otherwise,
•Bi). But then by [Spe’],•Bn,—a contradiction. “[PreE’]”: similar and left to the reader.

B. The semantics

I focused in this paper on the base logicsL ∈ {P,R}. There are many semantics around
for the core properties (see Footnote 2). Paradigmatically I will extend thesemantics based on
preferential models (see (Krauset al., 1990)) for our lower limit logicsLp. Again there are
various ways to enhance preferential models such as to serve as semantical representations of
Lp. I am going to present versions which are technically straightforward. In this appendix I
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will cover the case forL = P and hence the logicPp. However, forRp the semantics are
defined analogously.

We call interpretationsW → {0, 1} which satisfy the classical truth conditions for
∧,∨,¬,⊃ and≡ classical propositional worldsand writeU for the set of all classical proposi-
tional worlds.

Definition 6. Let≺ be a partial order on a setU andV ⊆ U . We say thatx ∈ V is minimal in
V iff there is noy ∈ V , such thaty ≺ x. We shall say thatV is smoothiff for all x ∈ V , either
there is ay minimal inV , such thaty ≺ x or x is itself minimal.

Definition 7. A preferential modelM is a triple 〈S, l,≺〉 whereS is a set, the elements of
which will be called states,l : S → U assigns a classical propositional world to each state and
≺ is a strict partial order onS satisfying the followingsmoothness condition: for all A ∈ W,
the set of stateŝA =df {s | s ∈ S, s |≡A} is smooth, where|≡ is defined ass |≡A (reads
satisfiesA) iff l(s)(A) = 1. M validatesA  B, in signsM |= A  B, iff, for any s

minimal in Â, s |≡B. For the classical connectives|= is defined as usual:

M |= A ∨B iff M |= A orM |= B [S-∨]

M |= A ∧B iff M |= A andM |= B [S-∧]

M |= ¬A iff M 2 A [S-¬]

M |= A ⊃ B iff M |= ¬A ∨B [S-⊃]

M |= A ≡ B iff M |= A ⊃ B andM |= B ⊃ A [S-≡]

whereA andB are in the(∧,∨,⊃,¬,≡)-closure ofW andW is the set of all condition-
als.

Let W• be the set of all formulas of the form•A. Let P be the(∧,∨,⊃,¬,≡)-closure
of W ∪ W• ∪ W . We have two tasks in order to define the semantics forPp. On the one
hand, preferential models have to be generalized in order to allow for themodeling of factual
premises. On the other hand, the new rules [rMP] and [Inh] have to be taken into account. We
will realize both requirements by introducing an actual world to the preferential models defined
above.

Definition 8. A preferentialc modelM with an actual worldis defined by〈S, l,≺,@〉 where
M ′ = 〈S, l,≺〉 is a preferential model and@ is an interpretationP → {0, 1} such that the clas-
sical clauses (where nowA,B ∈ P) [S-∨], [S-∧], [S-¬], [S-⊃], and [S-≡] and the following
rules are valid:

M
′ |= A B iff @(A B) = 1 [S-@]

If @(A) = @(A B) = 1 and@(•A) = 0, then@(B) = 1 [S-rMP]

If @(•A) = @(A B) = 1, then@(•B) = 1 [S-Inh]

We defineM |= ϕ iff @(ϕ) = 1. We denote the corresponding semantic consequence relation
by
p

P which is defined in the usual way:Γ 
p

P ϕ iff all preferentialc modelsM with an actual
world that verify all members ofΓ also verifyϕ.

Lemma 2. LetΓ ⊂ P be aPp-consistent premise set. There is a preferentialc modelM with
an actual world for whichM |= Γ.
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Sketch of the proof.LetΓ′ be a maximal consistent (w.r.t.Pp) extension ofΓ. Take any prefer-
ential modelM ′ of Γ′∩W . Obviously such a model exists sinceΓ′∩W isPp-consistent.
Let @ be defined by@(A) = 1 iff A ∈ Γ′. LetM = 〈M ′,@〉. Obviously @ fulfills the rules
[S-@], [S-rMP], [S-Inh], the classical rules and the core properties.

Theorem 1. If Γ ⊢Pp ϕ thenΓ 
p

P ϕ.

Sketch of the proof.The proof proceeds via an induction over the derivative steps constituting
a proof ofϕ.

“n = 1”: If ϕ is derived by a core ruleR, then the antecedents of the rule are valid in all
modelsM = 〈M ′,@〉 of Γ since they are inΓ and due to the fact thatM ′ is a preferential
model,ϕ is also valid inM ′. By [S-@],ϕ is valid inM . If ϕ = B has been derived by [rMP]
fromA, A B, and¬ •A, thenA,A B,¬ •A ∈ Γ. By [S-rMP] and [S-@],B is valid in
all models. For [S-Inh] and the classical rules the argument is similar.

“n → n+1”: Let ϕ be derived by a core ruleR. All antecedents of the rule are valid in all
modelsM = 〈M ′,@〉 of Γ and sinceM ′ is a preferential model, also the consequent ofR is
valid inM ′. By [S-@],ϕ is valid inM . If ϕ = B has been derived by [rMP] fromA, A B,
and¬ • A, thenΓ 
p

P A,A  B,¬ • A. By [S-rMP],B is valid in all models. For [S-Inh]
and the classical rules the argument is similar.

Theorem 2. If Γ 
p

P ϕ thenΓ ⊢Pp ϕ.

Proof. SupposeΓ 0Pp ϕ, thenΓ ∪ {¬ϕ} is Pp-consistent. Thus, by Lemma 2, there is a
preferentialc model with an actual world forΓ ∪ {¬ϕ}.

So far I have presented the semantics for the adaptive logics based on the core properties,
i.e., based onP. ForRp the semantics are defined analogously. Instead of preferential mod-
els, ranked models are used. Ranked models are preferential modelsfor which ≺ is modular
(see (Lehmannet al., 1992) for details). The completeness and soundness results are shown
analogously. The easy meta-proofs are left to the reader.
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