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ABSTRACTThis paper presents an adaptive logic enhancement of conditional loficamality
that allows for defeasible applications of Modus Ponens to conditionals. diitiad to the
possibilities these logics already offer in terms of reasoning about condlspthis way they
are enriched by the ability to perform default inferencing. The idea is to applgud Ponens
defeasibly to a conditionall ~~ B and a factA on the condition that it is “safe” to do so
concerning the factual and conditional knowledge at hand. It is for instamot safe if the
given information describes exceptional circumstances: although bsdally fly, penguins
are exceptional to this rule. The two adaptive standard strategies arerstmaorrespond to
different intuitions, a skeptical and a credulous reasoning type, whiahifest themselves in
the handling of so-called floating conclusions.
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1. Introduction
1.1. Some Background

Since the early eighties, default reasoning, i.e., reagpan the basis of what is
normally or typically the case, has drawn much attentiomfahilosophical logicians
as well as scholars working in Artificial Intelligence. Tigsot surprising concerning
the prominent role which reasoning on the basis of notionk 88 normality and typ-
icality has. It clearly occupies a central place from evagydommon sense reasoning
to expert reasoning in many domains. Thus, logicians aredutg develop formal
models which accurately explicate these reasoning forms.

In recent years the traditional formalisms of default re@sg such as presented in
the landmark articles on default logic (Reiter, 1980), acwinscription (McCarthy,
1980), and on autoepistemic logic (Moore, 1984) have beiénized and alternative
conditional approaches have been developed.

In pioneering works on logics of conditionals the main ie#was to model con-
ditionals in everyday language which have the form “if . eth Most of the research
in this domain has been in the vein of the following influehtianditional logics: Stal-
naker (Stalnaker, 1968) and Lewis (Lewis, 2000) who offeoatic interpretation of
the conditional, Adams (Adams, 1975) who introduces praibaks in the discussion,
and Gardenfors’ belief revision principles which are masaaerned with acceptabil-
ity than probability and truth (G&rdenfors, 1978).

There has been, especially since the late eighties, aresiageinterest in making
use of techniques and properties of conditional logicsiwithe field of nonmonotonic
reasoning, such as employed in default reasoning or reagavith respect to prima
facie obligations. The focus of this paper is on conditidogics of normality that
have been inspired by pioneering works such as (Boutili@®44a; Lamarre, 1991,
Krauset al, 1990). There, a statement of the forin~ B is read as “FromA
normally/typically follows B” or “If A is the case then normally/typically alg® is
the case”. We will call A ~ B” a conditional, and a sequence of conditionals,
written A; ~ Ay ~ ... ~ A, as an abbreviation fotd; ~ As) A (Ay ~ A3) A

A (Ap-1 ~ Ay), an argument.

Conditional logics are attractive candidates for dealiriip wefault reasoning for
various reasons: First, the conditional does not have unwanted properties such
as Strengthening the Antecedent, froin~ B infer (A A C') ~ B, Transitivity,
from A ~ B andB ~» C infer A ~ C, and Contraposition, from ~ B infer
-B ~ —A. That the validity of any of these properties leads to urrdesiesults in
the context of reasoning on the basis of normality is wetlkn. Take, for instance,
Strengthening the Antecedent: although birds usually fly, f, penguins do no{pA
p) ~ —f. Thus(b A p) ~ f should not be derived. To find similar counterexamples
for the other properties is left to the reader (see e.g., {iBen11994a) p. 92.). Another
advantage is the naturalness and simplicity of the reptaen of default knowledge
by conditionalsA ~~ B compared to the cumbersome representation by the classical
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approaches mentioned above. The latter use rules su¢hha$B) > B wherern(B)
expresses for instance that we do not believg in the case of autoepistemic logic,
or that B can consistently be assumed in the case of default reasdrimthermore,
certain disadvantages of the classical approach can bdeaai the framework of
conditional logics. Boutilier for instance argues thattaer paradoxes of material
implication are inherited by the classical approaches dtiest way default knowledge
is represented in them (see (Boutilier, 1994a) pp. 89-90).

Starting from the pioneering works such as (Boutilier, 1®9%elgrande, 1988;
Krauset al, 1990; Lamarre, 1991) there has been vigorous researeftyaoti condi-
tional logics of normality. To mention a few: they have bepplad to belief revision
in (Boutilier, 1994b; Wobcke, 1995), strengthenings haeerbproposed for instance
to give a more sophisticated account of Strengthening thedsaent (see (Lehmann
et al, 1992; Pearl, 1990)), a labeled natural deduction systesrbben introduced
in (Brodaet al, 2002), and various authors have investigated tableaukadstand
sequent calculi for conditional logics (see e.g. (Schréateal, 2010; Giordancet
al., 2006; Schrodeet al, 2010)). Furthermore, the influential work in (Kraes
al., 1990) is greatly generalized in (Ariedt al., 2000) by their plausible nonmonotonic
consequence relations, and in (Friedredal, 1996) by their plausibility measures.

There is a remarkable agreement concerning fundamentpegies for default
reasoning in the various formal models. These properties haen dubbedonser-
vative coreby Pearl and Geffner (Geffnet al, 1992) and are also commonly known
as theKLM-properties(see (Kraust al,, 1990)). Some of the most interesting and
important problems in this field are, on the one hand, rel&deal proper treatment
of irrelevant information (see (Delgrande, 1988)) and, lendther hand, to a proper
treatment of specificity.

1.2. Contribution and Structure of this Paper

This paper tackles another important problem related talitional logics of nor-
mality: while they are able to derive from conditional knedge bases, i.e., sets of
conditionals, other conditionals, their treatment of tatknowledge is mostly rather
rudimentary. This concerns most importantly their treathwé Modus Ponens (MP),
i.e., to deriveB from A and A ~ B. We will also speak about detachirig) from
A ~ Bin caseA is valid. Usually we do not only have a conditional knowletgse
at hand but also factual informatiof. In order to make use of the knowledge base,
it is in our primary interest to derive, givefi, what normally should be the case. It
goes without saying that for the practical usage of a comuliti knowledge base this
kind of application to factual information is essential d@hdt the proper treatment of
MP for conditionals is a central key to its modeling.

It is clear that full MP should not be applied unrestrictettiyconditional asser-
tions: although birds usually fly, ~ f, we should not deduce that a given bird flies
if we also know that it is a penguin, since penguins usuallpaidfly, p ~ —f. How-
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ever, if we do not know anything about it than the fact thas iaibird, MP should be
applied tob ~ f andb. Furthermore, it would be useful if this application is ofed
feasible kind, since later we might learn that the bird ingjios is after all a penguin
or a kiwi.

In this paper a simple generic method is presented to enrgiliem conditional
logic of normalityLL by a defeasible MP. We considErto consist at least of the core
properties (see Section 2). We will refer Inas thebase logic As hinted above,
there are several circumstances when we do not want to applycstes of specificity
such as the example with the penguin, or cases in which d¢ondis conflict, such
as the well-known Nixon-Diamond. The central idea presgimethis paper is to
apply MP conditionally, namely on the condition that it i$esto apply it. This idea
will informally be motivated and outlined in Section 3. Falhy, the conditional
applications of MP are realized by adaptive logics, nanalyp™ and DLp* (see
Definition 5, page 14). The idea of adaptive logics is to iotet a premise set “as
normally as possible” with respect to a certain standardoofality. They allow for
some rules to be applied conditionally. | introduce adapiibgics formally in Section
4. In our case, as demonstrated in Section 5, MP is going t@pked as much as
possible, i.e., as long as no cases of overriding via spigitic similar conflicts take
place concerning the conditionals to which MP is going to pygliad. That is to say,
we are going to apply MP tal ~ B and A on the condition that the other factual
information at hand does not describe exceptional circantss with respect td.
As a consequence, detachment frorm> f andb is for instance blocked ip is the
case.

It will be demonstrated that choosing different adaptivatsgies serves different
intuitions: one corresponding to a more skeptical and therabne corresponding to
a more credulous type of reasoning. This difference matsifeself in the handling of
so-called floating conclusions.

I will spend some time in demonstrating the modus operantiieproposed logics
and thereby their strengths by having a look at various baack examples. In Sec-
tion 6 | highlight some advantages of the adaptive logic agpin, compare it to other
approaches, and discuss some other related issues. Thet&snase investigated in
the Appendix.

2. Conditional Logics, Their Core Properties and Related Wok

Conditional logics are often presented in terms of extemdiassical propositional
logic with a conditional operator-.? Our language is defined by tie, v, >, -, =)-

1. Afloating conclusion is a proposition that can be reached by two condjiatid equally

strong arguments.
2. In some conditional logics of normality> is not primitive. For instance in (Boutilier,

1994a) it is defined by making use of modal logic. There the core piepeare shown to be
equivalent to an extension of the modal lo§i¢. See (Friedmaet al, 1996) for a comparative
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closure of the set of propositional variables and conditisrof the formA ~ B,
whereA and B are classical propositional formulas. Hence, to keep thgigple we
do not consider here nested occurrences:aind focus on flat conditional logics. We
refer toA as the antecedent andbas the conclusion of the conditional. We writé
for the set of all classical propositional formulas (i.@frfiulas without occurrences
of ~»). We abbreviatd A ~ B) A (B ~ A) by A ~ Band—(A ~ B) by A »
B. Furthermore, we require that a conditional lodicsatisfies the following core
properties, wher€L is classical propositional logic (see (Kraetsal, 1990)):3

If o A= B, thent (A~ C) = (B~ C) [RCEA]
If Fe BD C, thenk (A~ B)D (A~ C) [RCM]
FA~ A [ID]

F((A~ B)A((AAB)~C)) D (A~ C) [RT]
F((A~ B)A(A~C)) D ((AAB) ~ C) [ASC]
F((A~ C)AN(B~C))D((AVB)~ C) [CA]

The logic defined by these rules and axiomPisNote that for instance the following
properties are valid i:

F((A~ B)A(A~C)) D (A~ (BAQ)) [CC]
F((AAB)~C)D (A~ (B>O0O)) [CW]
F((A~B)A(B~C)) D (A~ C) [EQ]

Fe AD B, then- A~ B [CI]

We consider these properties to be valid for all the condiitidogics of normality
in the remainder. Adding the following Rational Monotomjcprinciple to the core
properties yields logiR (see (Lehmanet al,, 1992))5

F((A~ C)A(A+ =B)) > (AN B) ~ C) [RM]

study of various semantic systems for the core properties such asflieegntial structures of
(Krauset al, 1990), thec-semantics of (Pearl, 1989), the possibilistic structures of (Dubtois

al., 1991) andk-rankings of (Goldszmidet al,, 1992; Spohn, 1988).
3. We will use the name convention that is associated with conditional logiesrofality

(see (Chellas, 1975), (Nute, 1980)) and not the one associated withammtonic consequence
relations which is used e.g. in (Kraasal, 1990).

4. The proofs are fairly standard and can be found e.g. in (Ketak, 1990).

5. l adopt the nameR andR for these logics from (Giordanet al., 2006). Although these
are the same names as used for the systems in the pioneering KLM Kamasét al., 1990),
the reader may be warned: the approach in terms of conditional logfessdifom the KLM
perspective which deals with rules of inference rather than with axioitss, Atrictly speaking,
Rational Monotonicity as defined in (Kraesal,, 1990) is a rule of inference whereas (RM) as
defined above is an axiomatic counterpart to it.
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The core properties are not without criticism. On the onedhéias been pointed out
that certain principles oP resp.R are not always perfectly intuitive. For instance,
Neufeld (Neufeld, 1989) has argued against [CA], Poole @d®91) against [CC],
and Stalnaker (Stalnaker, 1994) and Giordano et al. (Giardaal., 2010b; Giordano
et al, 2010a) against [RM}.

On the other hand, the core properties have been criticazebding too weak.
Many nonmonotonic strengthenings have been developedér to overcome certain
weaknesses.

Rational closure (see e.g. (Lehmaetral, 1992; Goldszmidet al., 1990; Freund,
1997)) for instance strengthe®sby means of a Shoham-like preferential semantics
(Shoham, 1987; Shoham, 1988). The idea is to assign naturabers, i.e. ranks,
to formulas. The rank indicates how exceptional a formulalfigor instance(A Vv
-A) ~ A then A has the lowest rank, 0. In our penguin examplis of a higher
rank thanb since after al(p v b) ~ —b. Each formula is ranked as low as possible.
A default A ~ B is in the rational closure of a set of defaultsiff the rank of A is
strictly less than the rank of A —B. In this way a significant problem @ andR is
tackled, namely its suboptimal treatment of irrelevantinfation. For instance, the
proposition “Tweety is a green bird g, will get the same rank as “Tweety is a birdy’,
Hence, the Rational Closure {f ~~ f, g ~~ b} contains the defaul A g) ~ f, that
green birds fly. The latter is neither entailedyior byR.. Rational Closure has been
shown to be equivalent to Pearl’s systéntsee (Pearl, 1990; Goldszmigital., 1990))
which employs a probabilistic interpretation of defaulthese and similar approaches
have been criticized for inheriting some of the weaknes§éseocore properties (see
e.g. (Geffneetal,, 1992)) resp. of rational monotonicity (see (Giordatal., 2010a))
and for introducing new problems (see Example 8).

Giordano et al. introduce another preferential semantiset or and a tableaux
calculus for it. Their systen® ,,;,, selects models that minimize non-typical worlds
with respect to a given set of formulas. Adding to our exantpéeconditionap ~ a,
that penguins live in the arcti®,;,, concludes nonmonotonically that there are no
penguins that do not live in the arcti€¢p A —a) ~» L. This is not a consequence
of Z resp. Rational Closure. Howevd®,,,;,,'s treatment of irrelevant information is
suboptimal: unlikeZ and Rational Closur® ,,;, does not lead to the consequence

(bAg)~ f.

Lehmann’s Lexicographic Closure (see (Lehmann, 1995; &batet al,, 1993))
improves on some of the shortcomings of Rational Closuretigngthening it fur-
ther.” On the one hand, it introduces a more rigorous approacheagttiening the

6. Some weakening or variants of Rational Monotonicity have been peahb@.gt- ((A ~
B)A((AANC) + —=B)) D ((AAC) ~ B) (IRR) in the context of Description Logic by
Giordano et al. (Giordanet al,, 2009) or in the context of conditional deontic logieg (A ~
BYAN(A ¥ =~(BAC))) D ((AAC)~ B)(WRM) by Goble in (Goble, 2004).

7. More precisely, Lexicographic Closure strengthens Rational Gidsuill defaults with
antecedents that have a finite rankAihas finite rank andl ~~ B is in the rational closure of
D, thenA ~ Biis in the lexicographic closure db.



Adaptively Applying Modus Ponens 7

antecedent and hence avoids the so-called Drowning Prailerdiscuss this in more
detail in Section 6). On the other hand, it makes sure thases of contradictory de-
faults quantitatively as many defaults as possible arsfgadi The policy is to strictly
prefer more specific defaults over less specific ones. Thatjaidve aspect makes
the Lexicographic Closure dependent on the way defaultprasented.

The maximum entropy approach of (Goldzsmetlal,, 1993) is in the probabilis-
tic tradition of the 1-entailment of systef. It follows a similar intuition as Lexi-
cographic Closure concerning conflicting defaults. Onédihce is, however, that
in some cases the violation of a more specific default may lead higher overall
entropy than the violation of some less specific defaultsraay be thus preferred.

In his critical discussion of the core properties Delgrafigielgrande, 2006) points
out that there are two interpretations of conditiondls~» B. Many approaches,
such as the ones listed above, treat defaults as weak nhatgpiacations that have
a defeasible character, e.g. in specificity cases. He filnseveral counter-intuitive
instances where the core properties obtain contrapasitfalefaults. This, so he
argues, is a result of treating default conditionals in &hmaterial implications
rather than in terms of inference rules. In the spirit of titegr perspective he develops
a system based on a weakened core logic (in comparis@.toHe demonstrates
that his rule-based system has a lot of nice properties mgef treating irrelevant
information and conflicting defaults. Another rule-baspgraach is e.g. presented by
Dung and Son in (Dungt al,, 2001).

The take on defaults in terms of weak material implicationséry obvious in
approaches that make abnormality assumptions explic# §eCarthy's Circum-
scription (McCarthy, 1980), Geffner and Pearl's CondiibEntailment (Geffneet
al., 1992), as well as the one presented in this paper). Hereaaltdef ~ B is
presented byd A o« O B (or by both in the case of Conditional Entailment) where
a expresses normality conditions that have to hold for thfmule The interesting
aspect of conditional entailment is that it extracts a fisjoorder on the normality
assumptions automatically from the knowledge base. The il interpret a given
knowledge base such that the normality assumptions of tfailie are validated “as
much as possible”. The priority order takes care that in oasenflicts more specific
defaults are preferred where possible.

We conclude this section by noting that conditional logiaséhbeen successfully
applied to various fields. For instance their relevance &diebrevision has been in-
vestigated in (Wobcke, 1995; Boutilier, 1994b; Booth, 200Ihe description logic
ALC has been enhanced with a “typicality” operator in (Giordahal,, 2009). Sim-
ilar to the logics that are going to be presented in the ptgsgper this system allows
for inferences on the basis of factual information. Howevrelits current form the
logic faces the problem of irrelevance pointed out aboveemgihe information that
typical birds fly the logic does not allow to infer that typicmeen birds fly. In order
to deal with such problems the authors propose to integeastéghdard mechanism to
reason about defaults” (p. 14) which is left for future reshaFurthermore, recently
conditional logics have been applied to access control andrigy in (Genoveset
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al., 2011). There the authors extend Garg and Abadi’s accesottmgic ICL from
(Garget al, 2008) with intuitionistic conditional logic.

3. Modus Ponens in Conditional Logics of Normality

In this section | will informally motivate and outline the maidea behind the
modeling of a defeasible MP in this paper.

A naive way to apply MP would be to use the unrestricted varsio
F((A~ B)AA) DB [MP~~]

However, this would lead to logical explosion whenever we@nfronted with con-
flicting defaults, for instance in cases gpecificity Informally speaking, specificity
occurs if a more specific argument overrides a more geneeal®ne way to formalize
this is as follows: ifA is the case and ~ B ~ C, aswellasd ~ —-C, thenB ~ C
is overridden byA ~ =, or in terms of argumentsi ~ B ~» C'is overridden by
A ~ =C. The reader finds an illustration in Figure 1a. The illustras in Figures
1 and 2 have to be read in a similar way as inheritance netwedes(Horty, 1994)):
nodes are in our case propositiond, “+ B” indicatesA ~ B, “A - -> B” indicates
A~ =B,"“A => B"indicatesA ¢, B, and “A ==> B” indicatesA ¢, —B.
Examplel. A standard example illustrating a case of specificity is tiiling (see
Figure 1b):

— Birds normally fly.— ~ f
— Penguins are (normally) birdsp—~ b
— Penguins normally do not fly.g—~ = f

The information represented hyis less specific or normal than the information
represented by. Thus, obviously the more specific~ —f overridesb ~ f. This
has an important consequence: GiygeR b or p we do not want to apply MP tband
b ~ f. However, if we only havé as factual knowledge it would be justified on the
basis of default reasoning to apply MPitandb ~ f.

Since, as argued above, full MP is highly problematic in thietext of default in-
ferencing, we will in the remainder make use of a restrictd®l Whe idea is to restrict
MP to “safe” antecedents. In order to express this, we intceca unary operatar
into our language which is applicable to propositional falas. e A expresses that
the given factual information is atypical or exceptional fo Hence, in caseA, MP
should not be applied to conditionals with antecedénThe following restricted MP
realizes this idea.

F((A~ B)AAAN-eA) DB [rMP]

Due to the restriction, MP is only applied in case we are ablterive that the factual
information is not exceptional with respect 1y i.e., = e« A. The following is an
immediate consequence of [rMP] and the core properties:

F(AABA (B~ —A)) DeB [Spel]
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The antecedent of [Spel] expresses that the default — A is factually overridden
sinceA is the case. If the factual information describes atypigauenstances forl
and A ~ B, then we also have atypical circumstancesBrsince after allA is at
least as specific aB. This motivates the following axior:

F(eAA (A~ B)) DeB [Inh]
Fact 1. [rMP], [Inh] and the core properties entail

F(AA(A~ B~ C)A (A~ =C)) D eB [Spe2]

The antecedent of [Spe2] describes a case of specificityddfeult B ~~ C'is
overridden by the more specific defadit~ —C' and the factA. Let us take a look at
a proof fragment for our example:

1 p~b PREM
2 b f PREM
3 pef PREM
4 p PREM
5 b PREM
6 eb 1,2,3,4; Spe2

Due to the fact tha#b is derived at line 6, our restriction prevents MP of being
applicable tob andb ~+ f in order to derivef. Indeed, due t@ we are in atypical
circumstances with respect &o This is for instance witnessed by the fact that by the
core propertie$ ~ —p is derivable from our premise set, apds a premise.

Note that something is still missing in order to model detfanferencing properly.
Due to the restricted MP we are able to block MP from being iadpio excepted
antecedents. However, we lack the ability to apply MR te»~ —f andp since we
miss— e p. This can be tackled by applying MP conditionally. More sfieally, MP
is applied toA ~ B and A on the condition that the antecedehtan be assumed to
be not excepted, i.e., on the condition thkatcan be assumed not to be the case. This
is technically realized by means of adaptive logics.

I will introduce adaptive logics formally in Section 4 but lme sketch the main
idea already now. In order to rewrite the proof above in tlyéesdf adaptive logics,
we need to add a fourth column containing sets of so-calladrahalities. In our case
abnormalities are of the formA.

8. The name [Inh] indicates that the property of being exceptionalhierited along ~~-
paths.
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1 b~ f PREM )

2 p~b PREM )

3 p~f PREM 0

4 b PREM )

5 p PREM 0
6 f 1,4;RC {eb}
7 eb 1,2,3,5; Spe2

8 ~f 3,5;RC {op}

At lines 6 and 8 MP is applied conditionally (indicated by R& frule condi-
tional”). For instance at line 8 the condition{isp}. In other words, MP is applied to
p andp ~ —f on the condition thgb can be assumed to be not excepted. Note that if
— e p would be derivable, we would be able to apply [rMPhtop ~ —f and— e p
in order to detach-f. However,— e p is not derivable. Nevertheless, adaptive logics
offer the option to apply MP conditionally. Similarly, abk 6 MP is applied té ~ f
andb on the condition thak is not excepted. However, at line & is derived. Note
that at this point line 6 is marked by 7. The idea is that linéh Ywinsafe” conditions
are marked and the formulas in the second column of marked &re not considered
as being derived. Of course, singés derived on the condition thatis not excepted,
this very condition cannot be considered safe anymore as a®ave derive that is
excepted at line 7. There are two adaptive strategies thatfgpvhat it exactly means
that a condition of a line is “unsafe”. For instance in cas¢hefso-called reliability
strategy a line is marked at a given stage of the proof in caseraber of its condi-
tion has been derived as part of a minimal disjunction of afmadities (in our case a
disjunction of formulas preceded byson the conditiorf). °* Minimality means that
no sub-formula of the disjunction has been derived. Swmcis not derivable as part
of a disjunction of abnormalities, line 8 is not going to berkea. There is obviously
no reason to treat its condition as unsafe.

In the following sections | will realize the idea that wasdmhally presented in
this section. First, in Section 4, | introduce adaptive ¢sgiThen, in Section 5, the
adaptive logics for conditionally applying MP will be defthe

2N

. g r/n\q b."-
o ‘* _..‘.*p / "*.‘e/ i

@) (b) () (d) (e)

-
©
o«
®

Figure 1: lllustrations and Examples

9. A more precise notion of what it means that a condition is “unsafe” wilglven in the
next section by means of a marking definition.
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4. Adaptive logics

An adaptive logicAL in standard format is a triple consisting of (i) a lower limit
logic (hencefortLLL), which is a reflexive, transitive, monotonic, and compagtd
that has a characteristic semantics and cont@ingclassical logic), (ii) a set of abnor-
malities(?, characterized by a (possibly restricted) logical fornd &ii) an adaptive
strategy. Formulating an adaptive logic in the standamhé&drprovides the logic with
all of the important meta-theoretic features, such as soesgland completeness (as
is shown in (Batens, 2007)).

In the following we usep and as meta-variables for well-formed formulas of
a given language. The proof dynamics is governed by a madeifigition for proof
lines. The fact that the proofs are of a dynamic nature makeptave logics very
useful for the modeling of defeasible reasoning, sincemiia derivable at one stage
of the proof may turn out not to be derivable at a later stagkneé\of a proof consists
of a line number, a formula, a justification, and a conditi@onditions are sets of ab-
normalities. We abbrevialg . » by Dab(A) for some finite sef\ of abnormalities
signifying the “disjunction of abnormalities iA”. Adaptive proofs are characterized
by the following generic rules:

PREM Ifpel:

RAN|
RU If@17~--;99n|_LLL77[}5 -
on  Ap

b A U...UA,
1 Ay
RC  Ifg1,...,¢n Fris ¢V Dab(®) : Do
on Ay
b AU...UA, UG

RU says that if a formula) is derived on a lind by means of thdLLL from
®1,- - ., pn that are derived on conditions,, ..., A,, then these conditions are car-
ried forward to linel. Note, that by RU allLLL-rules are valid inAL and thus all
LLL-consequences areL-consequences.

The essential strength of adaptive logics comes with the REC. It enables us
to derive formulas conditionally. Also for applications RC conditions are carried
forward, as it was the case for RU. RC is used to detiven the conditior® if, by
LLL, ¢V Dab(©) is derivable. The idea is to assume that the abnormal merabérs
are false, in which casg¢ has to be true. Of course, there are circumstances in which
this assumption cannot be maintained. In such cases lirths‘wisafe” conditions
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are marked. Before | come to the marking definition, some mot&®ns have to be
introduced.

Stagesof proofs are lists of lines obtained by applications of tlemeyic rules
above (with the usual understanding that the justificatiba line should only refer
to lines preceding it in the list). The empty list will be caered as stage 0 of every
proof. Wheres is a stages’ is an extension of iff all lines that occur ins occur in
the same order ig’. A (dynamic) proof is a sequence of stages.

Given a premise sdt, Dab(A) is aminimal Dab-formulaat stages of the proof
from T, iff it is the formula of a line with conditior) and noDab(A’), whereA’ C
A, is the formula of a line with conditioi. WhereDab(A;), Dab(As),... are the
minimal Dab-formulas at stage, we define the set afnreliable formulasat stages,
Us(T) = Ay UAs U. ... We call the minimaDab-formulas derivable witiLLL, the
minimal Dab-consequencesWhereDab(A;), Dab(A,),... are the minimaDab-
consequences, we define the set of unreliable formUléls) = A; U A, .. ..

It is the job of the marking definition to determine if lineg&m” or “out” of the
proof at a certain stage, i.e., to govern the dynamics of thefgprocedure. For the
reliability strategylines are marked which have unreliable formulas in theiditoon.

Definition 1 (Marking for Reliability) Line i is marked at stageiff, where A is its
condition,A N U, (T") # 0.

For theminimal abnormality strategg few more notions need to be introduced. A
choice sebf ¥ = {A;, A,,...} is a set that contains an element out of each member
of . A minimal choice sebf X is a choice set o of which no proper subset is a
choice set of2. Where, for a premise s&t Dab(A;), Dab(A3),. .. are the minimal
Dab-formulas at stage, ®,(T") is the set of the minimal choice sets{ak;, A,, .. .}.

Definition 2 (Marking for minimal abnormality) Line i is marked at stageiff, where
v is derived on the conditio at lines,

(i) there is noA’ € &,(T") such thatA’ N A =, or
(i) for someA’ € ®,(T"), there is no line at which is derived on a conditio® for
which A’ N © = 0.

Note that a line may be marked at a stagd the proof, but be unmarked at a later
stages’. Indeed, even iDab(A) is a minimalDab-formula at stage, we may be able
to deriveDab(A’) where A’ C A at a later stage’. This may lead to an alteration
of the unreliable formulas or/and the minimal choice set$ thous to changes in the
marking of lines. In order to define the consequence set oflaptive logic, a stable
criterion for derivability is offered by the following defiion.

Definition 3. ¢ is finally derivedfrom I" on linei of a proof at a finite stageiff (i)

o is the second element of ling (i) line ¢ is not marked at stage and (iii) every
extension of the proof in which linéis marked may be further extended in such a
way that linei is unmarked.
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I' FaL ¢ (¢ isfinally AL-derivablefrom I) iff ¢ is finally derived on a line of a
proof fromT.

Let us have a look at the semantics. The idea behind the migbreormality
strategy is that only the models (of a given premise set) whadidate a minimal set
of abnormalities are taken into account. For the religbgirategy only models are
considered whose abnormal part is a subset of the set ofalriesformulas.

Definition 4. An LLL-model M is reliable iff Ab (M) C U(T"), where AGM) =g
{¢ | M = ¢} N Q. An LLL-model M of I" is minimal abnormaliff there is no
LLL-model M’ of T such that ABM’) C Ab(M).

I' IFar ¢ (p is anAL-semantic consequenceldfiff ¢ is verified by, depending
on the strategy, all reliable models resp. all minimal abredd.LL-models ofT".

The following completeness and soundness result is vatidlfadaptive logics
AL in standard format (as shown in (Batens, 2007)}:ar, ¢ iff T IFar .

5. Applying Modus Ponens Conditionally

As discussed in Section 3, we use a unary operaton‘order to label propo-
sitional formulas for which MP should be blocked. These ampgsitions that are
excepted by the information given in the premises. That &t the factual informa-
tion at hand describes unusual circumstances concerréng. th

We have seen that “Tweety is a bird.”, is excepted if alsa, “Tweety is a pen-
guin.”, is given. The second proposition describes an ei@egl context for the first
one due to the conditionals~ f, p ~» b andp ~ —f wheref = “Tweety flies”.
Thus, f should not be detached frobmw f andb if p is the caseb ~ f is overridden
by the more specifip ~ —f.

The following fact shows that in various cases of specifitiig least specific ar-
guments are excepted.

Fact 2. The core propertiedrMP] and[Inh] imply [Spel] [Spe2]and the following:
If -A>B,thent (AA(B~ C)A(A~ —C)) DeB  [sSpe]
F(AAN(A~ By~ ...~ By~ C)A (A~ =C)) DeB, [SpeG]

F(AN(A~ By~ ...~ B, ~ D)A

(AWClW"'Wcmw_'D)/\(BnW“-WCm)):)‘Cm [PreE]

If ==\, Di. then (A/\ N\, (A~ By Di)) 5\/,*B; [Conf
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[SpeG] is a generalization of [Spe2] (see Figure 2b). Themgion rule [PreE]
is a further generalization (see Figure 2€)[Conf] shows that if there are multiple
conflicting argumentst ~ ... ~ B; ~» D, then at least one of thB;’s is excepted.

Let in the remaindeLp be the base logit. enriched by [rMP] and [Inh]. In this
paper we will focus on base logigse {P, R} (see Section 2).

Definition 5. We defineDLp* wherex € {r,m} as an adaptive logic in standard
format by the following triple:

— the lower limit logic isLp,

— the set of abnormalities 8 = {eA | A € W},

— the strategy is eithereliability (for DLp*) or minimal abnormality (for
DLp™).

To adaptively interpret premise sets “as normally as ptessineans in our case
to interpret the propositional formulas as not being exegpthenever possible, i.e.,
whenever this is consistent with the given premises. In,tinis allows us to apply
MP as much as possible since the additional antecedentglBi,[r-e A, are validated
as much as possible. Note that due to [rMP] we have

Fep (AA (A~ B)) D (BVeA)

Hence, by RCB is derivable from4 and A ~ B on the condition{eA}.

The (object-level) proofs presented in the following exéespre for both adaptive
logics, DLp*, andDLp™, if not specified differently. | presume thhte {P,R}.
Let us take a look at a simple case of specificity.

Example2. We equip the conditional knowledge base in Example 1 (sear&ifjb)
with the factual knowledgép}.

1 p~b PREM () 5 b 1,4; RC {op}
2 b f PREM () 86 f 2,5;RC {op, ob}
3 p~-f PREM 0 7 —f 3,4;RC {op}
4 p PREM () 8 eb 1,2,3,4:RU 0

At line 5, MP is applied tg ~~ b andp on the condition{ep}.! Similar con-
ditional applications take place at lines 6 and 7. The ddsirg andb are (finally)
derivable since the conditiomp, is not part of any minimaDab-consequence. More-
over, MP is blocked frond ~ f andb since at line 8¢ is derived and hence line 6 is
marked.

Example3. Let us have a look at conflicting conditionals by means of ttixeol
Diamond (see Figure 1c) with the factual knowledge and the usual reading qf
as ‘being a Quaker’; ‘being a Republican’ and as ‘being a pacifist’.

10. Preemption plays an important role in the research on inheritancenkst(gee (Horty,
1994)).
11. This is accomplished by means of the generic rule RC as definedjeriLfia
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1 nwyq PREM 6 ¢ 1,5 RC on

2 nwr PREM 0 7 r 2,5;RC on%

3 g~p PREM ( 198 p 3,6; RC on, eq}
4 r~-p PREM ¢ 199 -—p 4,7, RC {on, or}
5 n PREM 10 egVer 12345 RU ()

The logic proceeds as expectedandq are derivable while the derivations pf
and—p get marked for both strategies. Note that the conditionn&f 6 and 7, namely
{en}, is not part of any minimaDab-consequence. In order to make the example
more interesting let us introduce two more conditiongls:>» e andr ~ e wheree
represents for instance 'being politically motivated’.

11 g~e PREM U
12 r~e PREM ]
13 e 6,11; RC {on,oq}
14 e 7,12: RC {on,or}

By the reliability strategy lines 13 and 14 are marked (duthtofact thateq
o at line 10 is a minimaDab-consequence). They are not marked by the minimal
abnormality strategy, since the minimal choice sets atl#hare{eq} and{er}. It
is easy to see that there is no way to extend the proof in a wely that lines 13
and 14 are marked according to the minimal abnormality eggsat This shows that
the reliability strategy models a more skeptical reasomngpmparison to the bolder
reasoning type modeled by the minimal abnormality strategy

We have a similar scenario for the example depicted in FigareBy the minimal
abnormality strategy is derivable given the factual knowledge It is not derivable
by the reliability strategy.

Propositions such agsin Figure 2e are commonly dubbed “floating conclusions”.

There is a vivid debate about whether such propositionslgi@accepted? Instead

of trying to have the final word on the discussion | want to paiat that, as the
example shows, the minimal abnormality strategy detachasril conclusions, while
the more skeptical reliability strategy rejects them. &int applications may ask
for different strategies. The credulous character of theimml abnormality strategy
makes it interesting for applications in which “the valuedsdwing conclusions is
high relative to the costs involved if some of those condnsiturn out not to be
correct.” ((Horty, 1994), p. 14). The reliability strategg the other hand is, due to its
more skeptical character, better “when the cost of errestigibid.).

Exampled. Let our knowledge base B&, = {a; ~ a;+1 | 1 < i < n} (see Figure
2a) with factual knowledgéa, }. Note thatl'y ¥p a; ~ a; andTy Fr a1 ~ a;
where2 < j < n. However, our adaptive logics are able to detach alutfe

12. While Ginsberg (Ginsberg, 1994), and Makinson and Schlecht&ifstanet al,, 1991)
argue for the acceptance, Horty (Horty, 2002) argues against it.
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Figure 2: lllustrations and Examples
1 a; ~ as PREM @
Lo : 0
n—1 ap_1~ an PREM 0
n a1 PREM @
n+l as n;RC {ea1}
n+2 as n+1;RC  {ea;,eas}
2n—1 a, 2n—2;RC  {eay,...,ea, 1}
Obviously none of the lines+1, . . ., 2n—1 can be marked by extending the proof.

The fact thaf'y U {a1} FpLpx a;, wherei < n,x € {r,m} andL € {P,R}, while
I'y ¥ a1 ~ a; demonstrates that our handling of MP overcomes certain mesales
of the core logic in terms of the handling of transitive rielas among conditionals.

Examples. Let our factual knowledge be b4, ...,b,_1 and—b,, are derivable from
the knowledge base depicted in Figure 2b by mea®Bp* (wherex € {r,m}).
We obtain e.g. th®ab-formulaeb,, 1 (by [SpeG]) andeb,, (by means of the former
and [Inh]). Note that neb; wherei < n — 1 is derivable as a part of a minimal
Dab-consequence. Hence we can iteratively apply Modus Ponemditonally to

a ~ by andb; ~ b;;1 wWherei < n — 1 in such a way that the corresponding lines
are unmarked. Note that~ b, _; is neither aP-consequence norR-consequence
of the given premises, nor is it derivable by means of RatiGhasure. However, it is
entailed byP ;. 13

The situation is slightly different iDRp*: besideb,,_; andeb,, alsoeb,, 5 V
e—b,_ is Rp-derivable from the premise¥. It is easy to see that due to this_; is
not DRp*-derivable since the only means of derivityg_; from the given premises

13. Note that in case we do not add4 L to our premisesPmin is rather rigorous and also
entailsa ~ L.

14. The reason is as follows. Suppose first that; » —b,—2. In this case by means of
[RM] and sinceb,—1 ~ by, also (bp—1 A bp—2) ~ by. By [RT] and sinceb,_2 ~ bp_1,
bn—2 ~ by. Butthen sincer, a ~ —b,, anda ~ ... ~ by,_o ~ by, by [SpeG],eb,,_2. Now
supposé,,_1 ~ —b,_2. Sinceeb,,_; we gete—b,,_» by [Inh]. Altogether,eb,,_2 V e—b,_».
Note that this argument does not holdip since it makes essentially use of [RM].
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is by detaching it from the conditiond),_» ~ b,,_; on the condition{eb,,_>}. Yet,
due to the minimaDab-consequenceb,,_, \V e—b,,_ any such attempt gets marked
in the proof. However, if we add the premise_, + b,, we get the consequencks
for all i < n and—b,, just as forDPp*. Itis easy to see that in this cael, - is not
anymore part of any minimadbab-consequence.

Similarly, b1, ..., by, c1, ..., ¢, and—d areDPp*-derivable from the knowledge
base depicted in Figure 2c. Analogous to the previous papéigwe need to add
another premise, e.g,,_1  a, in order to get the same consequencedd® p*.
The proofs are simple and left to the reader.

Exampleb. Let us take a look at a variant of the Nixon Diamond (Figurelfydineans
of the logicDPp* (wherex € {r,m}):

1 a~b PREM 0 7 0 1,6; RC {oa}

2 a~c PREM § 128 —e 3,7,RC oq, Ob}

3 b~-e PREM 0 9 ¢ 2,6; RC oa}

4 c~d PREM 0 10 d 4,9; RC e, oc}

5 d~e PREM 0 1211 e 5,10; RC {oa, oC, Od}
6 a PREM 0 12 ebVved 1-6;RU 0

Note that neither is ~~ d derivable by the core properties nor is it in the Rational
Closure, nor is it entailed by Conditional EntailméfitThus, in the given example our
logic handles the transitive relations between defaulttebthan these systems, since
(with both strategies] is derivable following argument ~» ¢ ~ d. Furthermore, as
desired, neithes nor —e is derivable since there are conflicting arguments conegrni
e and-e.

The situation is different iDRp* since by means dRp also the minimaDab-
consequencec V e—c is derivablel® Hence, therd at line 10 is not finally derivable.
However, by adding + —a to the premises als@is a DR p*-consequence of this
premise set.

Example7. We take a look at Figure 1e with factual knowledge ¢}. This example
illustrates a more complex case of specificity.

15. Note thatPmin entailsa ~ d and moreovern ~» L (in case we do not manually add
a + 1 to the premises, see also footnote 13).

16. The reason is as follows. Suppoese c. Suppose (ip ~» —a. Since alsa, a ~ b and
a ~ a (by [ID]) we geteb by [Spe2]. Assumé ~ —c. By [RM], (b A ¢) ~ —a. Since also
a, a ~ aanda ~ (b A c¢) (by [CC],a ~ banda ~ ¢) we havee(b A c) by [Spe2]. By [Inh]
and [CI] alsoec,—a contradiction. Hencé, ~~ —c. By [Inh] e—c. Now suppose (iip 4 —a.
Sinceb ~ —e by [RM] (a A b) ~ —e. Sincea ~» b by [RT] a ~ —e. By the lattera, ~ e c
anda ~» ¢ we havec 4 e due to [Spe2]. By, a ~» —e anda ~~ ¢ ~ d ~ e we haveed due
to [SpeG]. Assumé % —c. Then by [RM](cAd) ~ e and by [RT],c ~+ e,—a contradiction.
Henced ~~ —c and by [Inh],e—c. Altogether we gesc vV e—c.
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1 ahc~=(bAd) PREM 0

2 a~b PREM )

3 cwd PREM 0

4 aAlc PREM 0

5 —(bAd) 1,4;RC o(anc)}
% b 2,4;RC g.a}
7 d 34;RC  {ec}
8 eaVecVelaAc) 1,234, RU 0

9 eaVec 8; RU 1]
10 bvd 6; RU {ea)
11 bvd 7:RU Toc}

Line 9 follows from line 8 in view of [Inh] and [CI]. By the radibility strategy
lines 10 and 11 are marked since bath,andec, are unreliable formulas. Not so by
the minimal abnormality strategy, sinéev d is derivable on both conditiongea}
and{ec} (see Definition 1).

This example is interesting also in another respect. lufesta more complex
type of specificity. While none of the argumerits = (a A ¢) ~ a ~ bandA; =
(a A ¢) ~ ¢ ~ d suffices in its own respect to cause a case of specificity with
(a N ¢) ~ =(b A d), both taken together do. Indeed, if we follow both lines of
argumentA; andA,, we arrive ab andd. However, the conjunctiobA d contradicts
—(bAd). Thus,a A c ~ —(b A d) overrides the joint application of argumerits and
A, (see also the illustration in Figure 1e).

Both, minimal abnormality and reliability strategy, vaig —~(b A d). Again, if
we apply reliability we take a more skeptical route conaggri; andA,, since both
arguments are considered as being unreliable and thunaitument is validated:
we neither derivé, nor d, norb v d. Minimal abnormality however validates one
of the two arguments. Indeed, taken isolated from each jotieétherA; nor A, is
overridden bya A ¢ ~» —(b A d). Thus, the credulous reasoning provided by the
minimal abnormality strategy validatés/ d and—(b A d).

ExampleB. Given the factual knowledgeA s A r and the defaults depicted in Figure
2d we have the minimadDab-consequence(p A s) V er. That shows that neither
nor —q is derivable. This is intuitive as pointed out by Geffner &werl in (Geffneet
al., 1992) since there are no reasons to prefer arguipents) ~~ ¢ overr ~» —q or
vice versa. Note however that the counter-intuitiye\ s A ) ~» ¢ is in the Rational
and Lexicographic Closure, and it is entailed by the maxineumnopy approach’

6. Discussion
In this discussion section | will point out some advantadab® presented logics,
also in comparison with other systems from the literaturerédver | will comment

on some other related and interesting points which were eationed so far.

17. Itis not entailed b¥P i, in case we addp A s A1) 4~ L.
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6.1. Some advantages of the adaptive approach

Adaptive logics offer a very generic framework enablingedesiible MP for con-
ditional logics of normality since they can be applied to aoynditional lower limit
logic as long as it is reflexive, transitive, monotonic anchpact. Depending on the
application the reader is free to use any conditional logioarmality asLLL as
long as it fulfills the mentioned requirements. Since adegdbgics have shown great
unifying power in representing nonmonotonic, defeasibids'®, even conditional
logics that do not fulfill the requirements may be represgg adaptive logics?
By applying techniques of combining adaptive systems taméwork developed in
this paper may be applicable also in such cases. Furthersiangar techniques as
presented here for defeasible MP in the context of defaatawing can be applied to
conditional deontic logics (see (Stral3er, 2010)).

The meta-theory of adaptive logics in standard format isl-veslearched (see
(Batens, 2007; Puttet al, 201X)). Many useful properties have been established
generically. For instance, completeness and soundnessawfaptive logic are guar-
anteed by the completeness and soundness blils, the consequence relation of an
adaptive logic defines a fixed point and is cautious monot@té

Pollock distinguished in (Pollock, 1987) between two typedynamics that char-
acterize defeasible reasoning: one basedymthronic defeasibilitand another one
based ordiachronic defeasibility As | will discuss in the following, adaptive logics
are able to model both of them.

Theinternal dynamic®f defeasible reasoning is caused by diachronic defeasibil
ity. Often achieving a better understanding of the infoioratit hand forces us to
withdraw certain inferences even in cases in which no nearimétion is available.
This is modeled by the dynamic proof theory of adaptive Iegi€or instance, if we
(conditionally) apply MP ta& ~ f andb but at a later moment also derigep ~> —f
andp ~» b from the same premises, we revise the former derivationhdratlaptive
proof the line at which MP has been appliedbte~ f andb is going to be marked
and is hence considered not to be valid. Thus, while our inisigthe given knowl-
edge base —i.e., the premises— grows, we may consider rg\gsime conclusions
drawn before, especially if the knowledge base is of a compégure. Hence, our
treatment of common sense reasoning with factual infoonatin the basis of con-
ditional knowledge bases does not just reach intuitiveltedwut the explication of
the reasoning process itself is an integral part of the ptto@dry. This is an advan-
tage compared to other systems which are able to model tiaféerencing such as
Delgrande’s (Delgrande, 1988), Lamarre’s (Lamarre, 198B)Geffner and Pearl’s
(Geffneret al,, 1992).

Lamarre in (Lamarre, 1993) presents a powerful approactthas semantic selec-
tion procedures on the models of a given conditional base,ledhere the facts valid

18. For the most recent survey see (Batetal., 2009).
19. As has been shown, for instance, for Rational Closure in (S{ra0@9).
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in all the selected models characterize the consequenaé Bist systen?® What is
missing, however, is a syntactical approach correspondititghat mirrors our com-
mon sense reasoning by its proof theory. Delgrande’s syéftgrande, 1988) is
syntactical in nature. The idea here is to iteratively dnttee given factual knowl-
edge by further contingent information in order to form stled maximal contin-
gent extensiong! Special attention in building these extensions is giveraes of
specificity: similar as in the presented approach, the watldand is interpreted as
non-exceptional as possible. Furthermore, in the consbruof the extensions only
relevant information is considered with respect to the Kedge base at hand. What
is derivable by classical logic from these maximal contimgextensions corresponds
to the factual consequences we draw via default reasoningle\Wklgrande’s as-
sumptions concerning the normality of the actual world aisddstriction to relevant
information accord with a natural intuition concerning algf reasoning, the way we
arrive at the inferences by Delgrande’s approach seemarratimatural, i.e., the tech-
nical necessity to first built up all the maximal consisterttéial extensions and then
to infer from them by classical reasoning. This proceduresdwot model our actual
default inferencing in an accurate way. Geffner and Pe@taditional Entailment
has been already mentioned on Section 2. Although the aupvoride a syntactic
check-criterion for conditionally entailed propositiotisey do not offer a derivational
procedure that mirrors our actual reasoning processesasuttie dynamic proofs of
adaptive logics??

As mentioned, another advantage of adaptive logics is Higlity to deal with
the synchronic defeasibility that causes éxéernal dynamicsf reasoning processes.
Often with the introduction of new information we are forcedwithdraw certain
inferences. Again, the markings of the dynamic proofs ate sbmodel cases of
specificity and conflicting arguments which might be causeddw information. In
contrast, in Lamarre’s approach the arrival of new infoioraforces us to re-initiate
the semantic selection procedure, and, similarly, for Eslde’s account we have to
re-construct the maximal contingent extensions. In th@tdaapproach, despite the
fact that new information might force us to withdraw certaanclusions, the proof
dynamics model in an accurate way the fact that we continasoréng facing new
information instead of beginning the reasoning procesmdgam scratch.

20. Asdiscussed in Section 4, adaptive logics also employ semantic seseatidthe models

of the LLL.
21. Delgrande introduces in fact two equivalent proposals in this p@perother one, which

I do not discuss above, is based on forming maximal consistent @snsf the conditional
knowledge base at hand (in contrast to the maximal consistent extemsitive factual knowl-

edge which | discuss here). Note, however, that a similar criticism appliesth approaches.
22. Computing Conditional Entailment is a pretty complex and challenging téfgnce,

the authors only offer a computational approximation in terms of an gssumbased truth
maintenance-like system (see (de Kleer, 1987)).
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6.2. The Drowning Problem

In Examples 4 and 6 it was demonstrated that the presentadieat of MP some-
times outgrows the abilities of the core system in terms afiditively closing~.
However, there are limitations to it. To show this | extencafple 2 by a further
conditional:

Example9. We add to the conditionals of Example 2~ w, wherew stands for
“having wings”. The proof of Example 2 is extended in thedualing way:

9 b~w PREM 0
810 w 5,9;RC {op,ob}

Note that the conditional derivation af is not successful in the sense that it gets
marked. This is due to the fact thais excepted since we hayeandb ~~ —p. Indeed
there is no way to derives from the given premises. This is also due to the fact thatin
P andR neitherp ~ w nor (p A b) ~ w is derivable (neither are they in the Rational
Closure). Note that if one of the latter would be derivablewould be detachable
fromp ~ w andp, or resp.(p A b) ~ w andp A b. Thus, the limitation of the
adaptive treatment of MP concerning excepted propositiin®rs a limitation of the
base logic concerning conditional consequences.

This problem is commonly known as the Drowning Problem: siggpa default
with antecedentl is excepted, then all other defaults with antecedgiatre blocked
from MP as well.

The first question to ask at this point is whether a “solutiae”the drown-
ing problem is at all desirable. Some scholars voice worfsee e.g. (Jeffryet
al., 1994; Wobcke, 1995; Bonevac, 2003; Koons, 2009)). Foaits#t, Koons asserts
that there are good reasons why we should not apply MP to liefaith excepted
antecedents. “Consider the following variant on the pnobldirds fly, Tweety is a
bird that doesn't fly, and birds have strong forelimb musclésre it seems we should
refrain from concluding that Tweety has strong forelimb oles, since there is reason
to doubt that the strength of wing muscles is causally (amg¢d&gorobabilistically) in-
dependent of capacity for flight. Once we know that Tweetynieaceptional bird,
we should refrain from applying other conditionals witveety is a birdas their an-
tecedents, unless we know that these conditionals are endiept of flight, that is,
unless we know that the conditional with the stronger amteot Tweety is a non-
flying bird, is also true.” (see (Koons, 2009), Section 5.7)

Moreover, Lehmann in (Lehmann, 1995) (see the discussi@eation 4) points
out that there are two perspectives on default reasoningh©ane hand there is the
prototypicalreading wheré ~~ f is understood as “Birds typically fly.” On the other
hand, according to theresumptiveeading it is read as “Birds are presumed to fly un-
less there is evidence to the contrary.” The former was mepmn (Reiteet al, 1981)
and Lehmann states that it is the intended reading for RaltiGlosure, whereas the
presumptive reading is intended for the Lexicographic @esAccording to the pro-
totypical reading the Drowning problem should not be solvEdis is due to the fact
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that if there is an exception to some conditional with ardec¢ A then the situation
is not typical with respect tol. However, defaults with antecedeAtonly account
for typical situations (with respect td). Hence, MP should not be applied to any
conditionalA ~~ B according to this view.

6.3. Taking into account negative knowledge

So far we focused on knowledge bases consisting on the ong dfanondi-
tionals and on the other hand of facts, i.e., facts expregsegdropositions. It
is interesting to enable the logic to also deal with knowkedsases including
negative conditionals, i.e., formulas of the fouin-4 B. Note that the framework
proposed in this paper is not able to deal with such knowldagres in the case
that our base system only consists of the core propertieke f@ instance the
simple penguin Example 2 and replace the premise —f by p + f. Note that for
the logicsDPp* (wherex € {r, m}) the unwanted' is derivable for this premise set.

1 p~b PREM § 4 p PREM {
2 plf PREM 0 5 b 14,RU {ep}
3 b~f PREM 0 6 f 3,5;:RU {ep, eb}

Note that there is no way to mark line 6 (in either of the stjetg). However, as
the following fact shows, the situation is different in cdés chosen as base system,
i.e., for lower limit logicRp.

Fact 3. The core propertie§RM], [rMP] and [Inh] imply?3
FAA(A~ B~ C)A(A¥C)) DeB  [Spe]
F(AAN(A~ By~ ...~ B, ~ C)A (A% C)) DeB, [SpeG]
F(AA(A~ By~ ...~ By) A (B 4 D) A
(A~ Cp~ o~ Cpy ~ D) A (By ~ ...~ Cpy)) D oCpy  [PreE]
In DRp* f is not derivable since line 6 is marked by the following esfen of
the proof:
7 &b 1,2,3,4; Spe’ )

7. Conclusion

In this paper an adaptive logic approach to Modus Ponensoiaditional logics
of normality was presented. By adaptively enhancing a gbaese logic we enrich it
by the ability to model actual default inferencing. By meahbenchmark examples
it was demonstrated that the adaptive systems deal withfigtgcand conflicting

23. The proofs can be found in the Appendix.
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arguments in an intuitive way. The two adaptive standaatesies have been shown
to correspond to two different intuitions: a more skepteadl a more credulous one.
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APPENDIX

A. Some proofs

Lemma 1. The core propertiedrMP] and [Inh] entail (A1 AN(Ap ~ oo~ Ay B)) D
(BVeA,).

Proof. DuetoA;, A1 ~ Az and [rMP] we havelz Ve A;. Analogously we getizVe Az Ve A,
and finallyB v eA,, V --- Vv eA;. By iterated applications of [Inh] we gét \V o A,,. O

Proof of Fact 1. By means ofA, A ~ B ~ C and the lemma,j} C' vV ¢B. By means ofA
andA ~ —C, by (rMP)—-C'V e A. SinceA ~ B, by [Inh],eA D eB. Hence, {) -C V eB.
By (1) and ), e B. O

Proof of Fact 2. “[Spel]”™: this is trivial. “[SpeG]": By Lemma 1V eB,, and—C' Vv e A. By
multiple applications of [Inh]s A D eB,,. Hence~C'V eB,,. Thus,eB,,. [Spe2] and [sSpe]
follow immediately with [SpeG] and [CI]. “[PreE]”: By Lemma 1) V eB,, and—D V ¢C,,.
By multiple applications of [Inh]sB,, D ¢C,,. Hence,D Vv ¢C,,. Thus,eC,,. “[Conf]": By
Lemma 1,D; v eB;. Due to— A\ ; D; and by classical logic/; eB;. O

Proof of Fact 3. “[Spe’]": Suppose-eB. Then, due to [SpelB 4 —A. By (RM), (AAB) ~
C. But then by [RT],A ~ C,—a contradiction. “[SpeG’]": Suppose e B,,. Hence, due to
[Inh], — e B; forall i < n and— e A. Hence, due to [Spe’d ~+ B; for all i < n (otherwise,
¢ 3;). But then by [Spe’]s B,,,—a contradiction. “[PreE’]": similar and left to the readerC

B. The semantics

| focused in this paper on the base logless {P,R}. There are many semantics around
for the core properties (see Footnote 2). Paradigmatically | will extendehmantics based on
preferential models (see (Kraes al., 1990)) for our lower limit logics.p. Again there are
various ways to enhance preferential models such as to serve astmafn@presentations of
Lp. | am going to present versions which are technically straightforwardhis appendix |
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will cover the case fol. = P and hence the logi®p. However, forRp the semantics are
defined analogously.

We call interpretations’V — {0,1} which satisfy the classical truth conditions for
A, V, =, D and= classical propositional worldand writel/ for the set of all classical proposi-
tional worlds.

Definition 6. Let < be a partial order on a setandV' C U. We say thatr € V' is minimalin
V iffthere is noy € V, such thaty < x. We shall say that” is smoothiff for all = € V, either
there is ay minimal in V, such thaty < = or z is itself minimal.

Definition 7. A preferential modelM is a triple (S, 1, <) whereS is a set, the elements of
which will be called states,: S — U assigns a classical propositional world to each state and
< is a strict partial order oy’ satisfying the followingsmoothness conditiorior all A € W,

the set of statesl =¢ {s | s € S,s|= A} is smooth, wheré= is defined as; = A (reads
satisfiesA) iff I(s)(A) = 1. M validatesA ~ B, insignsM E A ~ B, iff, for any s
minimal in A, s = B. For the classical connectives is defined as usual:

MEAVBIiff M=AorM =B [S-V]
MpEAABIiff M = AandM = B [S-A]
ME-Aff MEA [S—1]

ME=ADBIf ME=—-AVB [S-D]
MEA=Bif MEADBandM B> A [S=

whereA and B are in the(A, v, D, =, =)-closure of W™ andW™ is the set of all condition-
als.

Let W* be the set of all formulas of the formA. Let P be the(A, V, D, -, =)-closure
of WU W* UW"™. We have two tasks in order to define the semantic®fpr On the one
hand, preferential models have to be generalized in order to allow fantiteling of factual
premises. On the other hand, the new rules [rMP] and [Inh] have tdkiee fato account. We
will realize both requirements by introducing an actual world to the prefeenodels defined
above.

Definition 8. A preferential model)M with an actual worldis defined by(S, I, <, @) where
M’ = (S,1, <) is a preferential model ar@ is an interpretatio® — {0, 1} such that the clas-
sical clauses (where now, B € P) [S-V], [S-A], [S-—], [S-D], and [S=] and the following
rules are valid:

M' = A~ Biff @A~ B) =1 [S-@]
If @A) = @Q(A ~ B) = 1 and@(sA) = 0, then@(B) = 1 [S-rMP]
If @(eA) = @(A ~ B) = 1, then@(eB) = 1 [S-Inh]

We defineM = ¢ iff @(¢) = 1. We denote the corresponding semantic consequence relation
by IFB which is defined in the usual way: IF5 ¢ iff all preferential. models) with an actual
world that verify all members df also verifyp.

Lemma 2. LetT" C P be aPp-consistent premise set. There is a preferentmbdel M with
an actual world for whichV/ =T
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Sketch of the proofLetI” be a maximal consistent (w.rp) extension of". Take any prefer-
ential modelM’ of TN W™, Obviously such a model exists sinceén W™~ is Pp-consistent.
Let @ be defined bya(A4) = 1iff A € . Let M = (M’,@). Obviously @ fulffills the rules
[S-@], [S-rMP], [S-Inh], the classical rules and the core propertie O

Theorem 1. If T Fpp, ¢ thenT IFD .

Sketch of the proofThe proof proceeds via an induction over the derivative steps conggitutin
a proof ofp.

“n = 1" If ¢ is derived by a core rul®, then the antecedents of the rule are valid in all
modelsM = (M’ @) of T" since they are iT and due to the fact that/’ is a preferential
model,p is also valid inM’. By [S-@], ¢ is valid in M. If ¢ = B has been derived by [rMP]
from A, A~ B,and—e A, thenA, A~ B,—e A € I'. By [S-rMP] and [S-@],B is valid in
all models. For [S-Inh] and the classical rules the argument is similar.

“n — n+ 1" Let ¢ be derived by a core rulR. All antecedents of the rule are valid in all
modelsM = (M’, @) of T" and sinceM’ is a preferential model, also the consequeriRds
valid in M’. By [S-@],¢ is valid in M. If ¢ = B has been derived by [rMP] from, A ~~ B,
and—e A, thenl' IFR A, A ~ B,— e A. By [S-rMP], B is valid in all models. For [S-Inh]
and the classical rules the argument is similar. O

Theorem 2. If T IFR ¢ thenT Fpp .

Proof. Supposd” Fpp ¢, thenT' U {—¢} is Pp-consistent. Thus, by Lemma 2, there is a
preferential model with an actual world foF U {—p}. O

So far | have presented the semantics for the adaptive logics based caréhproperties,
i.e., based o. For Rp the semantics are defined analogously. Instead of preferential mod-
els, ranked models are used. Ranked models are preferential nimdedsich < is modular
(see (Lehmanmt al, 1992) for details). The completeness and soundness results are sho
analogously. The easy meta-proofs are left to the reader.
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