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Abstract — Personal data provides important business value, for 
example, in the personalization of services. In addition, companies 
are moving toward new business models, in which products and 
services are offered without charge to users, but in exchange for 
targeted advertising revenue. New privacy regulations require 
organizations to explicitly state their data practices in privacy 
policies, including which data types will be collected. By consenting 
to data collections described in a policy, the user acknowledges 
that he or she is granting the company the authorizations needed 
to access their data. When data practices change, a new version of 
the policy is released. This release can occur a few times a year, 
when requirements are rapidly changing for the collection and 
processing of personal data. Furthermore, the user may change his 
or her privacy consent by opting in or out of the policy. We propose 
a formal framework to support companies and users in their 
understanding of policies evolution under consent regime that 
supports both retroactive and non-retroactive consent and consent 
revocation. Preliminary results include an ontology for policy 
evolution, expressed in Description Logic, that can be used to 
formalize consent and data collection logs and then query for 
which data types can be legally accessed. 

Index Terms — Privacy, consent, policies, evolution, 
formal framework, description logic. 

I. INTRODUCTION 
Consent is a key element in privacy, and it has become a 

critical element under the EU General Data Protection 
Regulation (GDPR). Under GDPR, consent is one of a few legal 
bases available that can be used to process user data (see Article 
6-1(a)) and, in most cases, consent is the only viable basis. 
Consent constitutes legal evidence of user awareness about their 
data being collected, used, and shared by companies. Under the 
GDPR, the user is protected because the demonstration of a valid 
acquisition of the consent is a responsibility of the company, i.e., 
the user does not need to initiate a request to receive this 
protection. To this end, the company must present information 
about how the data will be processed, and then request consent 
from the user before processing the data. Furthermore, the user 
may revoke their consent at a later date, which means the 
company can no longer process data collected after the 
revocation (see Article 7). However, the company may continue 
to process data collected under the previously granted consent, 
if they choose to do so. In addition to privacy policies, consent 
can be obtained in other ways prior to collection, including just-
in-time consent after a user has already begun using the service, 
but prior to taking an action within the service [14]. 

User decisions about granting consent can be driven by the 
perception of trust in a company with respect to their history of 

bad privacy practices. For example, recent disclosures by 
Facebook of leaks of personal data to third-parties [9] can lead 
some users to restrict their privacy preferences, which are 
controls on the accessibility of their data, or to delete their 
account, thus opting out entirely. 

Internally, organizations may make changes to their data 
practices several times a year. Evidence of changes can be 
observed in the revision histories of evolving privacy policies. 
Figure 1 shows the changes to the privacy policy of Waze, a 
popular mobile app for automobile navigation: the y-axis shows 
the number of statements per policy revision, with the policy 
revision dates along the x-axis; exact statement matches appear 
in blue, new statements appear in red, and statements with 
changes to wording appear in orange. Some of these changes are 
due to changes in boilerplate language (e.g., how the company 
or user are referenced), or to data purposes. Under the GDPR, 
changes to data practices and purposes require consent. While 
Waze in particular underwent a number of changes from late 
2012 to mid-2014, there were significant changes from late 2017 
through mid-2018, at which point the GDPR went into effect. 

 
Figure 1. Revision History of the Waze Privacy Policy from 2011-2018 
As a matter of requirements engineering, under the GDRP 

companies must tag their data to know when it was collected and 
when they obtained consent. Because the GDRP requires that 
consent be granular, including that purposes be distinguishable 
(see Recitals 32 and 43), companies should also tag this data 
with purposes for which consent was granted. Notably, 
companies may collect data as a consequence of their system 
design but they may not process the data for a specific purpose 
without consent. At scale, one can imagine that companies who 
are in competitive markets will be looking for new opportunities 
to process user data, leading to changes to their practices. In 
addition, users may either be uncomfortable with new purposes, 
or shift their trust in companies due to improper data handling 
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by the company or the market. To address this problem, we 
propose a formal framework, expressed in description logics 
(DLs), to support users and companies in the understanding of 
consent under evolving policies. The contributions of the paper 
include an ontology for privacy evolution that can be used by 
companies and users to reason about data access under multiple 
consent granting and revocation scenarios. 

II. Challenges 
Description logics (DLs) [4] are the de-facto languages for 

ontologies and the Semantic Web. DLs are a subset of first-order 
logic languages, less expressive, but that guarantee resolvability. 
We chose DL because of its ontology orientation, since we need 
to represent and verify hierarchical relationships between the 
data types used in privacy policies. For example, users can 
provide consent on some broad category of data, such as, 
personal information, or they can provide separate consents on 
narrower categories, such as, e-mail address or phone number. 
These hierarchical relationships can lead to inconsistencies and 
conflicts in deciding if data can be processed [6]. We propose 
the use of DLs to build consistent taxonomies of data types used 
in privacy policies. However, in the formalization of consent 
evolution, DLs have limited expressivity and an open world 
assumption, which introduce specific challenges. 

Description logics have a limited expressivity, that has been 
introduced in favor of decidability [12]. For example, relations 
are binary, only, and cannot be extended to include other 
dimensions, such as temporality. This poses a challenge when 
extending the static policy representations to address evolution. 

The open world assumption means that unknown facts are 
considered neither false nor true. In contrast, a closed world 
assumption, also called negation by failure, considers unknown 
facts as false by default. In DL, if one assumes that “consent 
given” is equivalent to “consent not withdrawn,” without 
explicitly declaring these concepts as equivalent, then one would 
draw incorrect conclusions from the knowledge base. Note that, 
this means that a policy can either be consented to or not, but it 
can also be in an unspecified consent state. It is important to keep 
this in mind also when it is time to query the knowledge base. 
For example, non-consented policies can be queried by looking 
for policies that are not consented, however, if consent is 
unspecified, the policy will be missed in the results of the query. 

Monotonicity is a desirable property for update functions of 
any formalization, because additions to a knowledge base with 
this property do not invalidate prior facts. Monotonic update 
functions are simpler and more efficient, and ensure that the 
existing knowledge base is never changed but only extended 
with new facts. However, consent evolution appears to have a 
non-monotonic behavior. For example, in the case of a withdraw 
event, the update function should change the consent status from 
approved to withdrawn, in a non-monotonic way. To ensure 
monotonicity, we choose a different representation of evolution. 
For consent, we use intervals of time that define the validity of 
consent over time. Consent is not withdrawn if the concept is 
still valid at a specific time, otherwise, it is withdrawn if it was 
valid at some time in the past, but not anymore. 

Representation of time is not supported in DLs. There are 
temporal extensions for DLs [3] that increase expressive and 
computational complexity, which we want to avoid in favor of 
understandability and efficiency. For example, some temporal 
extensions are based on the representation of many time-related 
concepts, relationships, and constraints, such as a specific time 
instant, time interval, the concepts of before, after, meanwhile, 
started before, ended after, etc.. Moreover, the representation of 
temporal concepts, such as the interval of time in which consent 
was granted and then withdrawn, can be approached in different 
ways. A simplification to avoid these challenges is to focus only 
on forward-time or backward-time. However, restricting the 
time representation in consent evolution to either forward- or 
backward-time is too limited, because we aim to support 
retroactive consent approval and retroactive consent withdrawal, 
which require backward- and forward-time, respectively. 

III. Formalization 
This section presents the formal framework on consent 

evolution. The formal framework is specified in description 
logic (DL) and includes key concepts to express policies, data 
types, data collection, consent, users, and time. In the notation 
that we use in this paper, lowercase terms are used for 
individuals and capital letters are used for concepts, where 
individuals belonging to concepts is expressed with the symbol 

, for example , then we use the symbol  to express 
subsumption between concepts, and the symbol  to express 
intersection of concepts. The following sections present the main 
concepts of this framework. 

A. Policies 
A privacy policy is a set of desired authorizations, needed by 

organizations to access and use data about users. Such 
authorizations are granted by each user for his own data. 
Organizations create these policies to cover the purposes for 
which they use data in their business. While policies are static 
and cannot be modified, new versions can be created. In the US, 
privacy policies typically include statements that users will agree 
to new versions of the policy. Under GDPR, users have the right 
to opt-in and thus companies can no longer assume that users are 
covered by the new policy. Changes to a policy occur for several 
reasons, including: (1) to make terminology consistent with legal 
practices; or (2) to describe a new or modified service. In our 
formalization, we focus specifically on changes of kind (2) that 
affect authorizations to access and use data. Each authorization 
specifies a data type and a modality, which we now discuss. 

1) Data types 
Data types, such as, e-mail address, are classes of data used 

in policies to define the scope of an authorization. In the 
taxonomy of data used in a policy, data types can subsume other 
data types, for example, contact information subsumes email 
address and phone number. Parent types in the taxonomy 
represent classes of data that are broader than children types. In 
a policy, broader types are used to allow more flexibility, while 
narrower types of data are used to decrease policy vagueness. 

In description logic, data types are concepts that are 
subsumed by the concept . For an arbitrary data type , 
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this is written as . Instances of data, such as an e-mail 
address or a record in a database, are individuals members of 
some data type, written , for an arbitrary data instance . 

2) Modalities 
Modalities are the data actions that can be authorized. In 

privacy, it is common to refer to three main modalities: 
collection, use, and sharing. In this paper, we focus on use, thus, 
all policies, and the authorizations considered herein, are 
implicitly about use. While not collecting any data can eliminate 
privacy risk from the beginning, several mitigations can be 
adopted to reduce risk in a later phase by limiting the use of data, 
in the case where collection cannot be prevented because of 
software design. Moreover, the third modality, sharing, deserves 
special attention, because it can introduce re-purposing [7]. On 
this argument, we plan to go into more details in future work. 

In our formalization, we represent authorizations with a 
single relationship,  from a policy to a data type. 
Policies are individuals of the class  that authorize data, 
for example, , . 

B. Data collection 
User data is collected by organizations and then used to 

provide or improve the quality of services. Data can be collected 
from users or third parties. Consent-based authorizations must 
account for time of collection, because consent can minimally be 
granted for data collected after the time of consent. On the other 
hand, consent can maximally be granted for data collected after 
and also before the time of consent, which is called retroactively 
as we will discuss later. Thus, depending on the collection time 
and type of consent, some data may not be accessible. 

The collection log is used to maintain a record of compliance 
with user consent. The log is continuously updated each time a 
data element is collected. Each log entry consists of the data 
type, collection time, and the user from whom the data was 
collected. In description logic, the collection log is represented 
by individuals of sub-classes of , for example,  for 

. Collection time is expressed using the relationship 
 and the user of the data is expressed by the 

relationship . For example, 
, , and . 

C. Consent 
Consent approval is the acknowledgement by the user to 

grant an authorization desired by the company as specified in the 
privacy policy. Specifically, by consenting to a policy, the user 
grants the authorizations on his or her data. Consent that only 
authorizes use of data collected in the future is called non-
retroactive consent. Retroactive consent grants authorizations in 
the policy for both newly and previously collected data. 
Retroactivity is important, because it could be the only way for 
organizations to access historical data and to re-purpose this data 
under a new policy. However, it could also be dangerous, 
because data hidden by a user from his or her past could 
suddenly become accessible under a retroactive consent. 

Consent withdrawal is the opposite of consent approval. 
When consent is withdrawn, previously granted authorizations 
in a policy are revoked. Similar to approval, a non-retroactive 
withdrawal means data collected under a previous authorization 

can still be processed, however, the authorizations are no longer 
valid for newly collected data. A non-retroactive withdrawal can 
be dangerous for the user, because data authorized in the past 
will remain accessible in the future. Retroactive withdrawal 
means authorizations are no longer granted for data previously 
or newly collected. Withdrawing consent only revokes 
authorizations granted by the previous approval. Authorizations 
granted through other consents remain untouched. 

It worth mentioning that the right to be forgotten proposed 
in the GDPR is similar to retroactive withdrawal, but with some 
differences. In the case of retroactive withdrawal, access is lost 
to the data, but it may be obtained again though the acquisition 
of a new consent, whereas in the right to be forgotten requires 
that data are deleted and cannot be accessed later, even in the 
event of a new retroactive consent by the user. 

1) Evolving consent 
Consent can be given and withdrawn many times, but each 

pair of events of approval and withdrawal defines an 
independent interval of time in which consent is given. The 
consent log includes all the events of consent approval and 
withdrawal for every user. The consent time intervals are 
observable in the consent log. Each interval is represented by: (i) 
the times of approval and withdrawal, (ii) the user who provides 
the consent, (iii) the policy consented to, (iv) the retroactivity of 
approval and withdrawal. Consent authorizes data access by 
collection time, depending on retroactivity and consent time and 
withdrawal time. 

Figure 2 shows the interactions of four states: non-
retroactive and retroactive consent approval and withdrawal. For 
each state, the horizontal shaded bars show the authorization by 
collection time: the dark shading shows where data collected at 
a specific time is accessible; the light shading shows were data 
is inaccessible. The vertical lines show times where consent is 
approved or withdrawn. Under GDPR, companies are permitted 
to use non-retroactive consent and non-retroactive withdrawal. 

 
Figure 2. Four States of Retroactivity 

In our DL formalization, consented intervals are individuals 
of the class , where the policy on which consent is 
given is specified with the relationship , the user that 
has consented is specified with the relationship , and the 
times in the interval are specified with the relationship . 
Consent times are all the times included in the interval between 
approval and withdrawal. Different classes of consent intervals 
exist, based on retroactivity as follows: 
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-  
-  
-  
-  
The above classes are consented intervals, in which 

 means that the interval starts with a 
non-retroactive consent, while  
means that the interval ends with a retroactive withdrawal. 
Consent cannot be both retroactive and non-retroactive, and the 
same is true for withdraw. Thus, the following axioms are true: 

-  
- 

 

D. Time 
Time is a critical concept in formalizing evolution. When 

consent evolves, it may apply to new or old data. New data is 
when collection time came after consent time, and old data is 
when collection time came before consent time, where before is 
the inverse of the temporal concept after. In our DL 
formalization, times are individuals of the concept . The 
relationships of  and  are used to 
express relative time-order. These relationships are both 
reflexive, transitive, and inverse to one another as follows: 

. For example, we can 
have two times  and , so that ; and we 
can refer to all the times before  with the following 
equivalence class: . 

E. Updating the knowledge base 
In DL, a knowledge base (KB) consists of axioms expressed 

over concepts, relations and individuals. In our work, the KB is 
comprised of the collection log and the consent log. Since these 
grow over time, we must easily update the KB. To do so, we 
provide update functions for each of the main events. The update 
functions are intended to be called following the order in which 
events occur, whereas applying the functions to non-temporally 
ordered events can result in an inconsistent KB. The main events 
for which the KB is updated are: (i) creation of a policy, (ii) data 
collection, (iii) consent approval, (iv) consent withdrawal. A 
description of the main update functions in pseudo-code follows: 

Listing 1: Creation of a new policy 
1 Declare a new individual ; 
2 For each authorization, assert  

relationship from the authorized data type to the policy. 

Listing 2: Creation of a new time 
1 Declare a new individual ; 
2 Assert  with the previous time; 
3 Assert  with all consents not yet withdrawn. 

Listing 3: Data collection 
1 Given the data type  of a collected data, declare a new 

individual ; 
2 Assert  relationship with user of the data; 
3 Assert  relationship with current time. 

Listing 4: Consent approval 

1 Depending on retroactivity, declare an individual either: 
 or ; 

2 Assert  relationship to consented policy; 
3 Assert  relationship with current time; 
4 Assert  relationship with consenting user. 

Listing 5: Consent withdrawal 
1 If retroactive: ; 
2 Else: . 

F. Querying 
The querying system is based on DL expressions, which 

return equivalent classes, sub-classes and individuals in the 
interpretation of a query expression. In our work, the individuals 
in the KB are those contained in the collection and consent logs. 

We now present how to query the KB for authorized data. 
We provide four subqueries, one for each configuration of 
consent retroactivity. The queries return data subsets by 
collection time, e.g., the subquery in which a non-retroactive 
consent is non-retroactively withdrawn, returns data that has 
been collected within the intervals of time delimited by a consent 
and its withdrawal, intervals that we call consented intervals. 

The final query, given a current time t (now) and a consent c 
given by a user u on a policy p, returns the set of data that are: 
(i) authorized in the policy p, (ii) by the user u, (iii) controlled 
by some preference that is opted-in (at time t) as part of consent 
c, and (iv): 

1. (if c is still consented) collected after the approval; 
2. (if consent c has been retroactively given and then non-

retroactively withdrawn) collected before the 
withdrawal; 

3. (if consent c has already been non-retroactively 
withdrawn) collected after the approval but before the 
withdrawal; 

4. (if consent c has been retroactively given and it is still 
consented) independently from collection time. 

Figure 3 shows the classes of data (by collection time) that are 
returned by each of the four sub-queries. 

 
Figure 3. Data Classes Returned by Sub-Queries 

Listing 6 is the DLs expression for the sub-query 2, of data 
from user u1 authorized by consent on policy p1, authorized at 
time t7. 
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Listing 6: Sub-query n.2: user u1, policy p1, at time t7. 
Data and (authorizedByPolicy value p1) and (ofUser value u1) and 
(collectedAtTime some (Time and beforeThen some  
   (Time and ( inverse (includesTime) some  
      (Consent and RetroactivelyGiven and Withdrawed 

 and (givenByUser value u1) and (onPolicy value p1) 
      ) 
   ) ) 
) ) and 
(inverse (activatesData) some  
   (Preference and activeAtTime value t7 and actsOnConsent some  
      (Consent and RetroactivelyGiven and Withdrawed 

and (givenByUser value u1) and (onPolicy value p1) 
      ) ) ) 

In the KB, the collection and consent logs are decoupled, so 
that retroactivity of consenting and withdrawing are evaluated, 
toward collected data, at query-time, which allows for a 
monotonic update of consent and data in the KB. 

IV. Worked example 
This section presents four scenarios of policy and consent 

evolution, using the formalism to support the reader in a better 
understanding of the scenario itself. 

A. Organization expansion 
A bus company is going to introduce a new service, which 

will allow the users to use their smartphone to check the routes 
and the position of the busses in real time using a mobile app. 
This application will help the users to use the company busses 
and, meanwhile, it will allow the company to collect data to 
optimize the bus routes. 

The bus company creates a new privacy policy that describe 
the purposes for using the new user data. The company acquires 
the new consent of the users directly through the app. Users not 
interested in using the app will remain under the old policy. 
However, the company allows users the possibility to deactivate 
access to their position data for statistical analyses with an opt-
able-out preference. 

 
 

 
 

 
 

B. Historical data 
Users of the bus company have used rechargeable smartcards 

for years. The company has been recording all data from the 
smartcard system. Now, they want to use this data to analyze and 
optimize bus routes. To do so, a retroactive consent is acquired 
for the new policy to permit access to historical location data of 
the users and to re-purpose this data for route optimization. 

 
 

C. Opt-able-in privacy preference 
Due to the increased user discomfort from being tracked by 

the app, the bus company changes the policy again. In the new 

policy, the use of location data for routing optimization is by 
default turned off, even if the data is still being collected. The 
user can manually opt-in to the preference to authorize the 
company to use their location data, which includes the data from 
the app and additional data provided by third parties. 

 
 

 
 

 

D. Consent withdrawal 
After a major scandal for data breaches that involve the bus 

company, concerned users begin to retroactively withdraw their 
consent to the bus company policy after every use of the mobile 
app. In order to use the app, users are still asked to consent the 
policy, however. By using a non-retroactive consent, they limit 
the access to only new data. Doing so, the app user experience 
lacks all the data-driven functionalities, such as preferred routes, 
notifications of preferred buses delays, and bus suggestions 
based on user schedule. 

 
 

 

V. Related Work 
Description logics (DLs) are a subset of first order logic, 

intended as a general purpose language for knowledge 
representation, where decidability is valued over expressiveness. 
The components of description logic are: (i) concepts, (ii) their 
relations or properties, and (iii) individuals. When using DL to 
represent an application domain, definitions of concepts and 
properties compose the TBox, while assertions about individuals 
and their concepts and properties compose the ABox. 

A. Temporality in description logic 
Temporal representation is not directly supported by DL. 

However, time and temporal concepts can be modeled. The 
OWL-Time ontology [10] provides concepts related to time 
representation, however it does not specify how to use these 
concepts, nor how to reason over such concepts. In general, 
temporal representation focuses on instants and/or intervals. In a 
point-based representation, relations between instants are 
“before”, “after”, and “equals.” In an interval-based 
representation, relations can get up to the 13 pairwise disjoint 
Allen’s relations [1] showed in Figure 4. 

In the case of numerical representation of time, Allen’s 
relations can be easily inferred. For qualitative representation, 
by assertion of Allen’s relations, inferring non-declared relations 
or checking consistency is an NP-hard problem. 
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Figure 4. Allen’s temporal interval relations 

Apart from missing representation of time, DL formalisms 
also miss constructs to represent the evolution of concepts and 
their properties in time. Because DL only supports binary 
relations, temporality is not easily encoded as a dimension of an 
existing relation. For example, a data collection can be expressed 
as a relation between a data type and a user, however to include 
also the time of collection we would need a ternary relation. 

Many approaches have been proposed to address such 
problems [3]. Versioning has been discussed in [11], which 
proposes to create a copy of the ontology at every change. The 
n-ary relations approach [13] and 4D-fluents [16] are two 
alternative approaches to represent evolution of concepts. N-ary 
suggests representing a temporal ternary relation (object, verb, 
predicate, time) as a concept itself representing the verb, with 
properties to relate it to the object, the predicate, and the time. 
The 4D-fluents approach represents temporal relation as a 4-
dimensional object, which includes time-specific temporal 
versions of the object and the predicate, where the original 
relation is now expressed between the temporal versions of the 
concepts. With respect to the n-ary approach, 4D-fluents suffers 
from proliferation of objects (two additional objects for each 
temporal relation). While n-ary suffers from data redundancy in 
the case of inverse and symmetric properties (e.g., the inverse of 
a relation is added explicitly twice). 

In the representation of consent evolution, collection defines 
a time instant and consent defines an interval between consent 
approval and withdrawal. Our approach is based on the 
representation of non-overlapping time intervals, where data are 
collected within one of these intervals, while a sequence of 
intervals defines a consent. 

B. Privacy preferences and user personalization 
Recently, companies have pursued advanced personalization 

of user experiences to strengthen their relationship with users 
[2,5,15]. Personalization is commonly intended as customized or 
customizable user experiences, based on user’s behavior or 
preferences. Privacy preferences are explicit requests by users 
about how or when their personal data will be used. For example, 
users may want to exclude their browser search history from the 
dataset used by websites to show targeted advertisements. 

The P3P [8] is the reference platform for privacy preferences 
on the web. With P3P, privacy agents are in charge of evaluating 
website privacy policies with respect to user’s privacy 
preferences. However, preferences are never used to modify 
websites privacy settings. 

VI. Conclusion 
We presented a framework for the representation of consent 

under evolving policies to support companies in better 
understanding how policy changes affect their ability to access 
data in a compliant manner, within a consent-based context. This 
work represents an attempt to show the complexity of policy 
evolution and demonstrate the ability of description logic in 
modeling this domain. Future work includes an evaluation using 
a real case study that considers how user consent- and 
preference-choices could be affected by their perception of 
privacy mitigations. Where users may be more concerned about 
not using specific data types for specific purposes, companies 
may want to separate those data types into separate policies to 
avoid having users opting-out entirely. An additional direction 
of research consists of extending the formalization to include an 
access log, which allows one to automatically verify the 
compliance of accesses. We also plan to study repurposing, 
which requires one to include the modality of sharing in the 
formalism. Finally, future work must address the granularity of 
consent, a fundamental requirement of the GDPR, that can be 
supported by privacy preferences. 
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