
Consent verification under evolving privacy policies
Marco Robol1, Travis D. Breaux2, Elda Paja3, Paolo Giorgini1

Information Engineering and Computer Science Department, University of Trento, Trento, Italy1
Institute of Software Research, Carnegie Mellon University, Pittsburgh, USA2

Computer Science Department, IT University of Copenhagen, Copenhagen, Denmark3
{marco.robol,paolo.giorgini}@unitn.it, breaux@cs.cmu.edu, elpa@itu.dk

Abstract — Personal data provides important business value, for
example, in the personalization of services. In addition, companies
are moving toward new business models, in which products and
services are offered without charge to users, but in exchange for
targeted advertising revenue. New privacy regulations require
organizations to explicitly state their data practices in privacy
policies, including which data types will be collected. By consenting
to data collections described in a policy, the user acknowledges
that he or she is granting the company the authorizations needed
to access their data. When data practices change, a new version of
the policy is released. This release can occur a few times a year,
when requirements are rapidly changing for the collection and
processing of personal data. Furthermore, the user may change his
or her privacy consent by opting in or out of the policy. We propose
a formal framework to support companies and users in their
understanding of policies evolution under consent regime that
supports both retroactive and non-retroactive consent and consent
revocation. Preliminary results include an ontology for policy
evolution, expressed in Description Logic, that can be used to
formalize consent and data collection logs and then query for
which data types can be legally accessed.

Index Terms — Privacy, consent, policies, evolution,
formal framework, description logic.

I. INTRODUCTION
Consent is a key element in privacy, and it has become a

critical element under the EU General Data Protection
Regulation (GDPR). Under GDPR, consent is one of a few legal
bases available that can be used to process user data (see Article
6-1(a)) and, in most cases, consent is the only viable basis.
Consent constitutes legal evidence of user awareness about their
data being collected, used, and shared by companies. Under the
GDPR, the user is protected because the demonstration of a valid
acquisition of the consent is a responsibility of the company, i.e.,
the user does not need to initiate a request to receive this
protection. To this end, the company must present information
about how the data will be processed, and then request consent
from the user before processing the data. Furthermore, the user
may revoke their consent at a later date, which means the
company can no longer process data collected after the
revocation (see Article 7). However, the company may continue
to process data collected under the previously granted consent,
if they choose to do so. In addition to privacy policies, consent
can be obtained in other ways prior to collection, including just-
in-time consent after a user has already begun using the service,
but prior to taking an action within the service [14].

User decisions about granting consent can be driven by the
perception of trust in a company with respect to their history of

bad privacy practices. For example, recent disclosures by
Facebook of leaks of personal data to third-parties [9] can lead
some users to restrict their privacy preferences, which are
controls on the accessibility of their data, or to delete their
account, thus opting out entirely.

Internally, organizations may make changes to their data
practices several times a year. Evidence of changes can be
observed in the revision histories of evolving privacy policies.
Figure 1 shows the changes to the privacy policy of Waze, a
popular mobile app for automobile navigation: the y-axis shows
the number of statements per policy revision, with the policy
revision dates along the x-axis; exact statement matches appear
in blue, new statements appear in red, and statements with
changes to wording appear in orange. Some of these changes are
due to changes in boilerplate language (e.g., how the company
or user are referenced), or to data purposes. Under the GDPR,
changes to data practices and purposes require consent. While
Waze in particular underwent a number of changes from late
2012 to mid-2014, there were significant changes from late 2017
through mid-2018, at which point the GDPR went into effect.

Figure 1. Revision History of the Waze Privacy Policy from 2011-2018
As a matter of requirements engineering, under the GDRP

companies must tag their data to know when it was collected and
when they obtained consent. Because the GDRP requires that
consent be granular, including that purposes be distinguishable
(see Recitals 32 and 43), companies should also tag this data
with purposes for which consent was granted. Notably,
companies may collect data as a consequence of their system
design but they may not process the data for a specific purpose
without consent. At scale, one can imagine that companies who
are in competitive markets will be looking for new opportunities
to process user data, leading to changes to their practices. In
addition, users may either be uncomfortable with new purposes,
or shift their trust in companies due to improper data handling

0
50

100
150
200
250
300
350
400

5/2/1
1

5/31/12

11/5
/12

12
/2

9/12

5/30/13

6/15/14

3/10/15

5/25/15

10/1
3/15

7/5/1
7

7/12/17

10/1
0/17

2/20/18

5/2
5/18

N
um

be
r o

f S
en

te
nc

es

Last Revised Date

Changed Added Exact

422

2019 IEEE 27th International Requirements Engineering Conference (RE)

2332-6441/19/$31.00 ©2019 IEEE
DOI 10.1109/RE.2019.00056

by the company or the market. To address this problem, we
propose a formal framework, expressed in description logics
(DLs), to support users and companies in the understanding of
consent under evolving policies. The contributions of the paper
include an ontology for privacy evolution that can be used by
companies and users to reason about data access under multiple
consent granting and revocation scenarios.

II. Challenges
Description logics (DLs) [4] are the de-facto languages for

ontologies and the Semantic Web. DLs are a subset of first-order
logic languages, less expressive, but that guarantee resolvability.
We chose DL because of its ontology orientation, since we need
to represent and verify hierarchical relationships between the
data types used in privacy policies. For example, users can
provide consent on some broad category of data, such as,
personal information, or they can provide separate consents on
narrower categories, such as, e-mail address or phone number.
These hierarchical relationships can lead to inconsistencies and
conflicts in deciding if data can be processed [6]. We propose
the use of DLs to build consistent taxonomies of data types used
in privacy policies. However, in the formalization of consent
evolution, DLs have limited expressivity and an open world
assumption, which introduce specific challenges.

Description logics have a limited expressivity, that has been
introduced in favor of decidability [12]. For example, relations
are binary, only, and cannot be extended to include other
dimensions, such as temporality. This poses a challenge when
extending the static policy representations to address evolution.

The open world assumption means that unknown facts are
considered neither false nor true. In contrast, a closed world
assumption, also called negation by failure, considers unknown
facts as false by default. In DL, if one assumes that “consent
given” is equivalent to “consent not withdrawn,” without
explicitly declaring these concepts as equivalent, then one would
draw incorrect conclusions from the knowledge base. Note that,
this means that a policy can either be consented to or not, but it
can also be in an unspecified consent state. It is important to keep
this in mind also when it is time to query the knowledge base.
For example, non-consented policies can be queried by looking
for policies that are not consented, however, if consent is
unspecified, the policy will be missed in the results of the query.

Monotonicity is a desirable property for update functions of
any formalization, because additions to a knowledge base with
this property do not invalidate prior facts. Monotonic update
functions are simpler and more efficient, and ensure that the
existing knowledge base is never changed but only extended
with new facts. However, consent evolution appears to have a
non-monotonic behavior. For example, in the case of a withdraw
event, the update function should change the consent status from
approved to withdrawn, in a non-monotonic way. To ensure
monotonicity, we choose a different representation of evolution.
For consent, we use intervals of time that define the validity of
consent over time. Consent is not withdrawn if the concept is
still valid at a specific time, otherwise, it is withdrawn if it was
valid at some time in the past, but not anymore.

Representation of time is not supported in DLs. There are
temporal extensions for DLs [3] that increase expressive and
computational complexity, which we want to avoid in favor of
understandability and efficiency. For example, some temporal
extensions are based on the representation of many time-related
concepts, relationships, and constraints, such as a specific time
instant, time interval, the concepts of before, after, meanwhile,
started before, ended after, etc.. Moreover, the representation of
temporal concepts, such as the interval of time in which consent
was granted and then withdrawn, can be approached in different
ways. A simplification to avoid these challenges is to focus only
on forward-time or backward-time. However, restricting the
time representation in consent evolution to either forward- or
backward-time is too limited, because we aim to support
retroactive consent approval and retroactive consent withdrawal,
which require backward- and forward-time, respectively.

III. Formalization
This section presents the formal framework on consent

evolution. The formal framework is specified in description
logic (DL) and includes key concepts to express policies, data
types, data collection, consent, users, and time. In the notation
that we use in this paper, lowercase terms are used for
individuals and capital letters are used for concepts, where
individuals belonging to concepts is expressed with the symbol

, for example , then we use the symbol to express
subsumption between concepts, and the symbol to express
intersection of concepts. The following sections present the main
concepts of this framework.

A. Policies
A privacy policy is a set of desired authorizations, needed by

organizations to access and use data about users. Such
authorizations are granted by each user for his own data.
Organizations create these policies to cover the purposes for
which they use data in their business. While policies are static
and cannot be modified, new versions can be created. In the US,
privacy policies typically include statements that users will agree
to new versions of the policy. Under GDPR, users have the right
to opt-in and thus companies can no longer assume that users are
covered by the new policy. Changes to a policy occur for several
reasons, including: (1) to make terminology consistent with legal
practices; or (2) to describe a new or modified service. In our
formalization, we focus specifically on changes of kind (2) that
affect authorizations to access and use data. Each authorization
specifies a data type and a modality, which we now discuss.

1) Data types
Data types, such as, e-mail address, are classes of data used

in policies to define the scope of an authorization. In the
taxonomy of data used in a policy, data types can subsume other
data types, for example, contact information subsumes email
address and phone number. Parent types in the taxonomy
represent classes of data that are broader than children types. In
a policy, broader types are used to allow more flexibility, while
narrower types of data are used to decrease policy vagueness.

In description logic, data types are concepts that are
subsumed by the concept . For an arbitrary data type ,

423

this is written as . Instances of data, such as an e-mail
address or a record in a database, are individuals members of
some data type, written , for an arbitrary data instance .

2) Modalities
Modalities are the data actions that can be authorized. In

privacy, it is common to refer to three main modalities:
collection, use, and sharing. In this paper, we focus on use, thus,
all policies, and the authorizations considered herein, are
implicitly about use. While not collecting any data can eliminate
privacy risk from the beginning, several mitigations can be
adopted to reduce risk in a later phase by limiting the use of data,
in the case where collection cannot be prevented because of
software design. Moreover, the third modality, sharing, deserves
special attention, because it can introduce re-purposing [7]. On
this argument, we plan to go into more details in future work.

In our formalization, we represent authorizations with a
single relationship, from a policy to a data type.
Policies are individuals of the class that authorize data,
for example, , .

B. Data collection
User data is collected by organizations and then used to

provide or improve the quality of services. Data can be collected
from users or third parties. Consent-based authorizations must
account for time of collection, because consent can minimally be
granted for data collected after the time of consent. On the other
hand, consent can maximally be granted for data collected after
and also before the time of consent, which is called retroactively
as we will discuss later. Thus, depending on the collection time
and type of consent, some data may not be accessible.

The collection log is used to maintain a record of compliance
with user consent. The log is continuously updated each time a
data element is collected. Each log entry consists of the data
type, collection time, and the user from whom the data was
collected. In description logic, the collection log is represented
by individuals of sub-classes of , for example, for

. Collection time is expressed using the relationship
 and the user of the data is expressed by the

relationship . For example,
, , and .

C. Consent
Consent approval is the acknowledgement by the user to

grant an authorization desired by the company as specified in the
privacy policy. Specifically, by consenting to a policy, the user
grants the authorizations on his or her data. Consent that only
authorizes use of data collected in the future is called non-
retroactive consent. Retroactive consent grants authorizations in
the policy for both newly and previously collected data.
Retroactivity is important, because it could be the only way for
organizations to access historical data and to re-purpose this data
under a new policy. However, it could also be dangerous,
because data hidden by a user from his or her past could
suddenly become accessible under a retroactive consent.

Consent withdrawal is the opposite of consent approval.
When consent is withdrawn, previously granted authorizations
in a policy are revoked. Similar to approval, a non-retroactive
withdrawal means data collected under a previous authorization

can still be processed, however, the authorizations are no longer
valid for newly collected data. A non-retroactive withdrawal can
be dangerous for the user, because data authorized in the past
will remain accessible in the future. Retroactive withdrawal
means authorizations are no longer granted for data previously
or newly collected. Withdrawing consent only revokes
authorizations granted by the previous approval. Authorizations
granted through other consents remain untouched.

It worth mentioning that the right to be forgotten proposed
in the GDPR is similar to retroactive withdrawal, but with some
differences. In the case of retroactive withdrawal, access is lost
to the data, but it may be obtained again though the acquisition
of a new consent, whereas in the right to be forgotten requires
that data are deleted and cannot be accessed later, even in the
event of a new retroactive consent by the user.

1) Evolving consent
Consent can be given and withdrawn many times, but each

pair of events of approval and withdrawal defines an
independent interval of time in which consent is given. The
consent log includes all the events of consent approval and
withdrawal for every user. The consent time intervals are
observable in the consent log. Each interval is represented by: (i)
the times of approval and withdrawal, (ii) the user who provides
the consent, (iii) the policy consented to, (iv) the retroactivity of
approval and withdrawal. Consent authorizes data access by
collection time, depending on retroactivity and consent time and
withdrawal time.

Figure 2 shows the interactions of four states: non-
retroactive and retroactive consent approval and withdrawal. For
each state, the horizontal shaded bars show the authorization by
collection time: the dark shading shows where data collected at
a specific time is accessible; the light shading shows were data
is inaccessible. The vertical lines show times where consent is
approved or withdrawn. Under GDPR, companies are permitted
to use non-retroactive consent and non-retroactive withdrawal.

Figure 2. Four States of Retroactivity

In our DL formalization, consented intervals are individuals
of the class , where the policy on which consent is
given is specified with the relationship , the user that
has consented is specified with the relationship , and the
times in the interval are specified with the relationship .
Consent times are all the times included in the interval between
approval and withdrawal. Different classes of consent intervals
exist, based on retroactivity as follows:

424

-
-
-
-
The above classes are consented intervals, in which

 means that the interval starts with a
non-retroactive consent, while
means that the interval ends with a retroactive withdrawal.
Consent cannot be both retroactive and non-retroactive, and the
same is true for withdraw. Thus, the following axioms are true:

-
-

D. Time
Time is a critical concept in formalizing evolution. When

consent evolves, it may apply to new or old data. New data is
when collection time came after consent time, and old data is
when collection time came before consent time, where before is
the inverse of the temporal concept after. In our DL
formalization, times are individuals of the concept . The
relationships of and are used to
express relative time-order. These relationships are both
reflexive, transitive, and inverse to one another as follows:

. For example, we can
have two times and , so that ; and we
can refer to all the times before with the following
equivalence class: .

E. Updating the knowledge base
In DL, a knowledge base (KB) consists of axioms expressed

over concepts, relations and individuals. In our work, the KB is
comprised of the collection log and the consent log. Since these
grow over time, we must easily update the KB. To do so, we
provide update functions for each of the main events. The update
functions are intended to be called following the order in which
events occur, whereas applying the functions to non-temporally
ordered events can result in an inconsistent KB. The main events
for which the KB is updated are: (i) creation of a policy, (ii) data
collection, (iii) consent approval, (iv) consent withdrawal. A
description of the main update functions in pseudo-code follows:

Listing 1: Creation of a new policy
1 Declare a new individual ;
2 For each authorization, assert

relationship from the authorized data type to the policy.

Listing 2: Creation of a new time
1 Declare a new individual ;
2 Assert with the previous time;
3 Assert with all consents not yet withdrawn.

Listing 3: Data collection
1 Given the data type of a collected data, declare a new

individual ;
2 Assert relationship with user of the data;
3 Assert relationship with current time.

Listing 4: Consent approval

1 Depending on retroactivity, declare an individual either:
 or ;

2 Assert relationship to consented policy;
3 Assert relationship with current time;
4 Assert relationship with consenting user.

Listing 5: Consent withdrawal
1 If retroactive: ;
2 Else: .

F. Querying
The querying system is based on DL expressions, which

return equivalent classes, sub-classes and individuals in the
interpretation of a query expression. In our work, the individuals
in the KB are those contained in the collection and consent logs.

We now present how to query the KB for authorized data.
We provide four subqueries, one for each configuration of
consent retroactivity. The queries return data subsets by
collection time, e.g., the subquery in which a non-retroactive
consent is non-retroactively withdrawn, returns data that has
been collected within the intervals of time delimited by a consent
and its withdrawal, intervals that we call consented intervals.

The final query, given a current time t (now) and a consent c
given by a user u on a policy p, returns the set of data that are:
(i) authorized in the policy p, (ii) by the user u, (iii) controlled
by some preference that is opted-in (at time t) as part of consent
c, and (iv):

1. (if c is still consented) collected after the approval;
2. (if consent c has been retroactively given and then non-

retroactively withdrawn) collected before the
withdrawal;

3. (if consent c has already been non-retroactively
withdrawn) collected after the approval but before the
withdrawal;

4. (if consent c has been retroactively given and it is still
consented) independently from collection time.

Figure 3 shows the classes of data (by collection time) that are
returned by each of the four sub-queries.

Figure 3. Data Classes Returned by Sub-Queries

Listing 6 is the DLs expression for the sub-query 2, of data
from user u1 authorized by consent on policy p1, authorized at
time t7.

425

Listing 6: Sub-query n.2: user u1, policy p1, at time t7.
Data and (authorizedByPolicy value p1) and (ofUser value u1) and
(collectedAtTime some (Time and beforeThen some
 (Time and (inverse (includesTime) some
 (Consent and RetroactivelyGiven and Withdrawed

 and (givenByUser value u1) and (onPolicy value p1)
)
))
)) and
(inverse (activatesData) some
 (Preference and activeAtTime value t7 and actsOnConsent some
 (Consent and RetroactivelyGiven and Withdrawed

and (givenByUser value u1) and (onPolicy value p1)
)))

In the KB, the collection and consent logs are decoupled, so
that retroactivity of consenting and withdrawing are evaluated,
toward collected data, at query-time, which allows for a
monotonic update of consent and data in the KB.

IV. Worked example
This section presents four scenarios of policy and consent

evolution, using the formalism to support the reader in a better
understanding of the scenario itself.

A. Organization expansion
A bus company is going to introduce a new service, which

will allow the users to use their smartphone to check the routes
and the position of the busses in real time using a mobile app.
This application will help the users to use the company busses
and, meanwhile, it will allow the company to collect data to
optimize the bus routes.

The bus company creates a new privacy policy that describe
the purposes for using the new user data. The company acquires
the new consent of the users directly through the app. Users not
interested in using the app will remain under the old policy.
However, the company allows users the possibility to deactivate
access to their position data for statistical analyses with an opt-
able-out preference.

B. Historical data
Users of the bus company have used rechargeable smartcards

for years. The company has been recording all data from the
smartcard system. Now, they want to use this data to analyze and
optimize bus routes. To do so, a retroactive consent is acquired
for the new policy to permit access to historical location data of
the users and to re-purpose this data for route optimization.

C. Opt-able-in privacy preference
Due to the increased user discomfort from being tracked by

the app, the bus company changes the policy again. In the new

policy, the use of location data for routing optimization is by
default turned off, even if the data is still being collected. The
user can manually opt-in to the preference to authorize the
company to use their location data, which includes the data from
the app and additional data provided by third parties.

D. Consent withdrawal
After a major scandal for data breaches that involve the bus

company, concerned users begin to retroactively withdraw their
consent to the bus company policy after every use of the mobile
app. In order to use the app, users are still asked to consent the
policy, however. By using a non-retroactive consent, they limit
the access to only new data. Doing so, the app user experience
lacks all the data-driven functionalities, such as preferred routes,
notifications of preferred buses delays, and bus suggestions
based on user schedule.

V. Related Work
Description logics (DLs) are a subset of first order logic,

intended as a general purpose language for knowledge
representation, where decidability is valued over expressiveness.
The components of description logic are: (i) concepts, (ii) their
relations or properties, and (iii) individuals. When using DL to
represent an application domain, definitions of concepts and
properties compose the TBox, while assertions about individuals
and their concepts and properties compose the ABox.

A. Temporality in description logic
Temporal representation is not directly supported by DL.

However, time and temporal concepts can be modeled. The
OWL-Time ontology [10] provides concepts related to time
representation, however it does not specify how to use these
concepts, nor how to reason over such concepts. In general,
temporal representation focuses on instants and/or intervals. In a
point-based representation, relations between instants are
“before”, “after”, and “equals.” In an interval-based
representation, relations can get up to the 13 pairwise disjoint
Allen’s relations [1] showed in Figure 4.

In the case of numerical representation of time, Allen’s
relations can be easily inferred. For qualitative representation,
by assertion of Allen’s relations, inferring non-declared relations
or checking consistency is an NP-hard problem.

426

Figure 4. Allen’s temporal interval relations

Apart from missing representation of time, DL formalisms
also miss constructs to represent the evolution of concepts and
their properties in time. Because DL only supports binary
relations, temporality is not easily encoded as a dimension of an
existing relation. For example, a data collection can be expressed
as a relation between a data type and a user, however to include
also the time of collection we would need a ternary relation.

Many approaches have been proposed to address such
problems [3]. Versioning has been discussed in [11], which
proposes to create a copy of the ontology at every change. The
n-ary relations approach [13] and 4D-fluents [16] are two
alternative approaches to represent evolution of concepts. N-ary
suggests representing a temporal ternary relation (object, verb,
predicate, time) as a concept itself representing the verb, with
properties to relate it to the object, the predicate, and the time.
The 4D-fluents approach represents temporal relation as a 4-
dimensional object, which includes time-specific temporal
versions of the object and the predicate, where the original
relation is now expressed between the temporal versions of the
concepts. With respect to the n-ary approach, 4D-fluents suffers
from proliferation of objects (two additional objects for each
temporal relation). While n-ary suffers from data redundancy in
the case of inverse and symmetric properties (e.g., the inverse of
a relation is added explicitly twice).

In the representation of consent evolution, collection defines
a time instant and consent defines an interval between consent
approval and withdrawal. Our approach is based on the
representation of non-overlapping time intervals, where data are
collected within one of these intervals, while a sequence of
intervals defines a consent.

B. Privacy preferences and user personalization
Recently, companies have pursued advanced personalization

of user experiences to strengthen their relationship with users
[2,5,15]. Personalization is commonly intended as customized or
customizable user experiences, based on user’s behavior or
preferences. Privacy preferences are explicit requests by users
about how or when their personal data will be used. For example,
users may want to exclude their browser search history from the
dataset used by websites to show targeted advertisements.

The P3P [8] is the reference platform for privacy preferences
on the web. With P3P, privacy agents are in charge of evaluating
website privacy policies with respect to user’s privacy
preferences. However, preferences are never used to modify
websites privacy settings.

VI. Conclusion
We presented a framework for the representation of consent

under evolving policies to support companies in better
understanding how policy changes affect their ability to access
data in a compliant manner, within a consent-based context. This
work represents an attempt to show the complexity of policy
evolution and demonstrate the ability of description logic in
modeling this domain. Future work includes an evaluation using
a real case study that considers how user consent- and
preference-choices could be affected by their perception of
privacy mitigations. Where users may be more concerned about
not using specific data types for specific purposes, companies
may want to separate those data types into separate policies to
avoid having users opting-out entirely. An additional direction
of research consists of extending the formalization to include an
access log, which allows one to automatically verify the
compliance of accesses. We also plan to study repurposing,
which requires one to include the modality of sharing in the
formalism. Finally, future work must address the granularity of
consent, a fundamental requirement of the GDPR, that can be
supported by privacy preferences.

REFERENCES
[1] J.F. Allen. “Maintaining knowledge about temporal intervals.”

Comm, of the ACM, 26.11(1983):832–843.
[2] A. Ansari, S. Essegaier, R. Kohli, “Internet recommender

systems,” J. Marketing Research, 37 (2000): 363-375.
[3] A. Artale, E. Franconi. "A survey of temporal extensions of

description logics." Ann. of Math and AI 30.1-4(2000): 171-210.
[4] F. Baader, I. Horrocks, U. Sattler. "Description logics."

Handbook on ontologies. Springer, 2004. 3-28.
[5] M. Berry, G. Linoff, Data mining techniques for marketing, sales

and customer support, Wiley, NY, 1997.
[6] T. D. Breaux, H. Hibshi, A. Rao. “Eddy, a formal language for

specifying and analyzing data flow specifications for conflicting
privacy requirements,” Req’ts Engr. J., 19(3): 281-307, 2014.

[7] T. D. Breaux, D. Smullen, H. Hibshi. “Detecting repurposing and
over-collection in multi-party privacy requirements
specifications.” 23rd Int’l Req’ts Engr. Conf., pp. 166-175, 2015.

[8] Cranor, Lorrie. Web privacy with P3P. O'Reilly, 2002.
[9] C. Cadwalladr, E. Graham-Harrison. "The Cambridge analytica

files." The Guardian 21 (2018): 6-7.
[10] J.R. Hobbs, F. Pan. "Time ontology in OWL." W3C working draft

27 (2006): 133 (https://www.w3.org/TR/owl-time).
[11] M. Klein, D. Fensel. “Ontology versioning on the semantic web.”

Int’l Semantic Web Working Symp. pp. 75–91, 2001.
[12] H.J. Levesque, R.J. Brachman. "Expressiveness and tractability

in knowledge representation and reasoning 1." Computational
intelligence 3.1 (1987): 78-93.

[13] N. Now, A. Rector, P. Hayes, C. Welty. “Defining N-ary
Relations on the Semantic Web.” W3C W’ Group Note, 12, 2006

[14] F. Schaub, R. Balebako, A. L. Durity, L. F. Cranor, “A design
space for effective privacy notices,” Symp. on Usable Privacy and
Security, 2015.

[15] M. Spiliopoulou, “Web usage mining for web site evaluation –
making a site better fit its users,” Comm. of the ACM, 8(43): 127-
134, 2000.

[16] C. Welty, R. Fikes. “A reusable ontology for fluents in OWL.” 4th
Int’l Conf. Formal Ontology in Inf. Sys., pp. 226– 336, 2006.

427

