22,512 research outputs found

    Characterizations of inequality orderings by means of dispersive orderings

    Get PDF
    The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to the ordering of generalized gamma distributions with different parameters

    Characterizations of inequality orderings by means of dispersive orderings

    Get PDF
    The generalized Lorenz order and the absolute Lorenz order are used in economics to compare income distributions in terms of social welfare. In Section 2, we show that these orders are equivalent to two stochastic orders, the concave order and the dilation order, which are used to compare the dispersion of probability distributions. In Section 3, a sufficient condition for the absolute Lorenz order, which is often easy to verify in practice, is presented. This condition is applied in Section 4 to the ordering of generalized gamma distributions with different parameters

    Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control

    Full text link
    This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunov's direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lv system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.Comment: 61 pages, 15 figures, 1 tabl

    Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions

    Get PDF
    Hypothesis tests for dominance in income distributions has received considerable attention in recent literature. See, for example, Barrett and Donald (2003), Davidson and Duclos (2000) and references therein. Such tests are useful for assessing progress towards eliminating poverty and for evaluating the effectiveness of various policy initiatives directed towards welfare improvement. To date the focus in the literature has been on sampling theory tests. Such tests can be set up in various ways, with dominance as the null or alternative hypothesis, and with dominance in either direction (X dominates Y or Y dominates X). The result of a test is expressed as rejection of, or failure to reject, a null hypothesis. In this paper we develop and apply Bayesian methods of inference to problems of Lorenz and stochastic dominance. The result from a comparison of two income distributions is reported in terms of the posterior probabilities for each of the three possible outcomes: (a) X dominates Y, (b) Y dominates X, and (c) neither X nor Y is dominant. Reporting results about uncertain outcomes in terms of probabilities has the advantage of being more informative than a simple reject / do-not-reject outcome. Whether a probability is sufficiently high or low for a policy maker to take a particular action is then a decision for that policy maker. The methodology is applied to data for Canada from the Family Expenditure Survey for the years 1978 and 1986. We assess the likelihood of dominance from one time period to the next. Two alternative assumptions are made about the income distributions –Dagum and Singh-Maddala – and in each case the posterior probability of dominance is given by the proportion of times a relevant parameter inequality is satisfied by the posterior observations generated by Markov chain Monte Carlo.Bayesian, Income Distributions, Lorenz

    Welfare comparisons: sequential procedures for heterogenous populations

    Get PDF
    Some analysts use sequential dominance criteria, and others use equivalence scales in combination with non-sequential dominance tests, to make welfare comparisons of joint distributions of income and needs. In this paper we present a new sequential procedure which copes with situations in which sequential dominance fails. We also demonstrate that the recommendations deriving from the sequential approach are valid for distributions of equivalent income whatever equivalence scale the analyst might adopt. Thus the paper marries together the sequential and equivalizing approaches, seen as alternatives in much previous literature. All results are specified in forms which allow for demographic differences in the populations being compared.

    Order preservation in a generalized version of Krause's opinion dynamics model

    Full text link
    Krause's model of opinion dynamics has recently been the object of several studies, partly because it is one of the simplest multi-agent systems involving position-dependent changing topologies. In this model, agents have an opinion represented by a real number and they update it by averaging those agent opinions distant from their opinion by less than a certain interaction radius. Some results obtained on this model rely on the fact that the opinion orders remain unchanged under iteration, a property that is consistent with the intuition in models with simultaneous updating on a fully connected communication topology. Several variations of this model have been proposed. We show that some natural variations are not order preserving and therefore cause potential problems with the theoretical analysis and the consistence with the intuition. We consider a generic version of Krause's model parameterized by an influence function that encapsulates most of the variations proposed in the literature. We then derive a necessary and sufficient condition on this function for the opinion order to be preserved.Comment: 10 pages, 6 figures, 13 eps file

    Spin squeezing inequalities and entanglement of NN qubit states

    Full text link
    We derive spin squeezing inequalities that generalize the concept of the spin squeezing parameter and provide necessary and sufficient conditions for genuine 2-, or 3- qubit entanglement for symmetric states, and sufficient condition for general states of NN qubits. Our inequalities have a clear physical interpretation as entanglement witnesses, can be relatively easy measured, and are given by complex, but {\it elementary} expressions.Comment: formula (24) corrected, minor changes, final versio

    Reduction of dimension for nonlinear dynamical systems

    Get PDF
    We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination to obtain the reduced system. While analytical, the approach is algorithmic, and is implemented in symbolic software such as {\sc MAPLE} or {\sc SageMath}. In other cases, the reduction cannot be performed strictly in terms of differential operators, and one obtains integro-differential operators, which may still be useful. In either case, one can use the reduced equation to both approximate solutions for the state variables and perform chaos diagnostics more efficiently than could be done for the original higher-dimensional system, as well as to construct Lyapunov functions which help in the large-time study of the state variables. A number of chaotic and hyperchaotic dynamical systems are used as examples in order to motivate the approach.Comment: 16 pages, no figure
    corecore