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Abstract 
Hypothesis tests for dominance in income distributions has received considerable 
attention in recent literature. See, for example, Barrett and Donald (2003), Davidson 
and Duclos (2000) and references therein. Such tests are useful for assessing progress 
towards eliminating poverty and for evaluating the effectiveness of various policy 
initiatives directed towards welfare improvement. To date the focus in the literature 
has been on sampling theory tests. Such tests can be set up in various ways, with 
dominance as the null or alternative hypothesis, and with dominance in either 
direction (X dominates Y or Y dominates X). The result of a test is expressed as 
rejection of, or failure to reject, a null hypothesis. In this paper we develop and apply 
Bayesian methods of inference to problems of Lorenz and stochastic dominance. The 
result from a comparison of two income distributions is reported in terms of the 
posterior probabilities for each of the three possible outcomes: (a) X dominates Y, (b) 
Y dominates X, and (c) neither X nor Y is dominant. Reporting results about uncertain 
outcomes in terms of probabilities has the advantage of being more informative than a 
simple reject / do-not-reject outcome. Whether a probability is sufficiently high or low 
for a policy maker to take a particular action is then a decision for that policy maker.  

The methodology is applied to data for Canada from the Family Expenditure Survey 
for the years 1978 and 1986. We assess the likelihood of dominance from one time 
period to the next. Two alternative assumptions are made about the income 
distributions –Dagum and Singh-Maddala – and in each case the posterior probability 
of dominance is given by the proportion of times a relevant parameter inequality is 
satisfied by the posterior observations generated by Markov chain Monte Carlo.  
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1. Introduction 

Governments, their policy advisors and society in general are concerned with the 

notion of becoming “better off” as we progress through time. Assuming that 

measurement of the state of well-being of an economy can be related to its income 

distribution, the concept of a social welfare function has been used to assess whether 

an income distribution at one point in time is preferred to another at a different point 

in time. Precise specification of a social welfare function requires judgements about 

the relative utility of particular characteristics of income distributions such as mean 

income, the variability of income and the proportion of the population categorized as 

below a poverty line. Because such judgements will rarely be generally accepted, it 

has been useful to consider broad classes of social welfare functions with a few 

restrictive assumptions that have more general acceptance. When comparing two 

income distributions within this context, we say that one income distribution X 

dominates another Y if X is preferred to Y for all members of a particular class of 

social welfare functions. Different classes of social welfare functions with varying 

degrees of restrictive assumptions lead to consideration of alternative dominance 

relationships. Three types of dominance relationships common in the literature, and 

those that we consider in this paper, are Lorenz dominance, generalized Lorenz 

dominance (second order stochastic dominance) and first order stochastic dominance. 

Also, because ordering of income distributions according to dominance criteria is not 

always possible, inequality measures such as the Gini coefficient and Atkinson's 

inequality index, that involve placing more restrictive assumptions on social welfare 

functions, are frequently used to compare different distributions. For details of these 

various concepts, and the relationships between them, see, for example, Lambert 

(1993), Creedy (1996) or Maasoumi (1997). 
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 A comparison of two income distributions, whether it be via a dominance 

relationship or an inequality measure, typically involves a comparison of income-

distribution characteristics from samples of individuals or samples of households 

taken at the two points in time. Because characteristics calculated from samples are 

subject to statistical sampling error, comparing them at different points in time does 

not lead to conclusions that can be made with certainty. Estimates of, for example, 

mean incomes, Gini coefficients and Lorenz curves can point towards one distribution 

being preferred to another, but because estimates are indeed estimates, the possibility 

of incorrect conclusions being drawn always exists. This possibility has led to the 

development of a large body of literature on sampling-theory properties of estimates 

of inequality measures, as well as sampling-theory hypothesis-testing procedures for 

comparing inequality measures and assessing whether one income distribution 

dominates another in some sense. There has also been a limited number of studies 

examining the use of Bayesian inference for such purposes. The literature on 

sampling-theory inference for inequality measures can be accessed through Cowell 

(1999); for an example of Bayesian inference applied to inequality measures, see 

Chotikapanich and Creedy (2004). In this paper we are concerned with Bayesian 

methods for assessing dominance relationships. Although a large effort has been 

directed towards sampling-theory hypothesis tests for this purpose (see, for example, 

Anderson (1996), Barrett and Donald (2003a, 2003b), Bishop and Formby (1999), 

Dardanoni and Forcina (1999), Davidson and Duclos (1997, 2000), Linton, Maasoumi 

and Whang (2003), Maasoumi (1997), Tse and Zhang (2002) and references therein), 

there appears to be little or no work on Bayesian methods for such comparisons.  

 To appreciate the differences between the Bayesian and sampling-theory 

approaches, suppose that we are comparing two income distributions for randomly 
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drawn incomes X and Y, and that we are interested in whether X dominates Y in some 

sense ( ), or vice versa ( ). The results from a Bayesian analysis of this 

problem are reported as posterior probabilities for each possible outcome, namely, the 

probability that X dominates Y, , the probability that Y dominates X, 

, and the probability that neither dominates, 

. Given that probabilities provide a natural framework 

for describing uncertain information, the reporting of dominance probabilities in this 

way would seem to be a useful way of summarizing the results of any income 

distribution comparison. It avoids a number of undesirable characteristics of the 

sampling-theory approach. Specifically, results reported from a sampling-theory, 

hypothesis-testing approach will depend on (a) the choice of null and alternative 

hypotheses (is the null hypothesis an equality or a dominance relation, what happens 

if the null and alternative hypotheses are reversed), (b) whether the test is based on a 

distribution  function or a quantile function, (c) the test statistic that is chosen, (d) 

whether an asymptotic or a bootstrapped distribution is used for the test statistic, and 

(e) the chosen level of significance. The variety of tests that have appeared in the 

literature can be distinguished according to one or more of these features. One does, 

however, need to recognize what some may see as disadvantages of the Bayesian 

approach. In particular, the posterior probabilities for dominance will depend on (a) 

how the income distribution is modelled through the likelihood function and (b) the 

prior information that is placed on unknown parameters.  

YX D≥ XY D≥

)Pr( YX D≥

)Pr( XY D≥

)Pr()Pr(1 XYYX DD ≥−≥−

 In this paper we illustrate how the Bayesian approach can be used to find the 

posterior probability that one income distribution dominates another, and, 

coincidentally, the probability that neither distribution dominates. We consider two 

parametric income distributions, the so-called Singh-Maddala and Dagum 
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distributions and apply them to Canadian income distributions for 1978 and 1986; 

these data were used by Barrett and Donald (2003a, 2003b) to illustrate their 

sampling-theory tests. Adopting a parametric approach is less general than desirable, 

particularly in view of the fact that most sampling-theory tests are nonparametric and, 

as becomes evident, our results are sensitive to the assumed form of the income 

distribution. However, our suggested approach is novel and provides a sound base for 

developing future research into improved techniques for assessing dominance. Future 

directions that are likely to be productive are the application of our proposals to more 

flexible income distributions such as mixtures, and the use of our techniques in 

conjunction with Bayesian nonparametric approaches such as that adopted by 

Hasegawa and Kozumi (2003). Also, the sensitivity of the results to the nature of the 

assumed distribution is a finding in itself. Although we consider specific distributions, 

our analysis is not restricted to within-family comparisons. Our procedures do not 

preclude comparing a Singh-Maddala distribution with a Dagum distribution or 

indeed any other distribution that might be considered. In any study where a large 

number of parametric distributions are considered, our methods could be used to 

compare best-fitting distributions from each time period or, alternatively, one could 

work with model-averaged distributions like those derived by Griffiths, 

Chotikapanich and Rao (2005). 

 In Section 2 we begin by describing the three kinds of dominance considered 

in the paper: Lorenz dominance, generalized Lorenz dominance (second order 

stochastic dominance) and first order stochastic dominance. Although our analysis is 

confined to these dominance relations, it is straightforward to compare any other 

measures of interest such as poverty and inequality indices, as long as such indices 

can be expressed as (analytical or numerical) functions of the parameters of the 
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income distributions. After describing the alternative forms of dominance in general 

terms, we describe the Singh-Maddala and Dagum income distributions and relate the 

dominance conditions to these distributions. In Section 3 we specify prior 

distributions for the mean, mode and Gini coefficient for the income distributions in 

each of the two time periods, transform those prior distributions to prior distributions 

on the parameters of the income distributions, specify the likelihood functions for 

both individual observations and grouped data, and give expressions for the posterior 

distributions for the income distribution parameters. The results from applying the 

methodology to a subset of the Canadian data used by Barrett and Donald (2003a and 

2003b) to illustrate their sampling-theory testing procedures are presented in Section 

4. Before-tax income distributions in 1978 and 1986 are compared. Some concluding 

remarks appear in Section 5. 

2. Income Distributions and Dominance Conditions 

To introduce Lorenz, generalized Lorenz and first order stochastic dominance 

consider an income distribution that is described by density and distribution functions 

( )Xf x and , respectively. Also, assume that mean income ( )XF x ( )X E Xμ = is finite. 

The Lorenz curve that gives the proportion of total income earned by the poorest 

proportion u of the population is given by 

  1

0

1( ) ( )
u

X
X

XL u F −=
μ ∫ t dt 1   0 u≤ ≤   (1) 

We say that an income distribution for X Lorenz dominates (LD) a distribution for Y 

(say), ,LDX Y≥  if and only if 

     for all ( ) ( )X YL u L u≥ 0 u 1≤ ≤     (2) 
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While this definition is the typical one used in the economics literature (see, for 

example, Lambert (1993) and Barrett and Donald (2003b)), the definition used in 

much of the statistics literature follows the opposite convention, with  

being the condition for 

( ) ( )Y XL u L u≥

LDX Y≥ . See, for example, Kleiber and Kotz (2003). Since 

 implies higher welfare for distribution X in the sense that, other thing 

equal, less inequality is preferred to more inequality, we refer to this condition as one 

where X dominates Y. 

( ) ( )X YL u L u≥

 Because Lorenz dominance considers only the degree of inequality and not the 

level of income, and higher levels of income are associated with higher levels of 

welfare, another dominance relation known as generalized Lorenz dominance (GLD) 

is often considered. We say that X generalized-Lorenz dominates Y, written as 

GLDX Y≥  if and only if  

     for all  0( ) ( )X X Y YL u L uμ ≥ μ 1u≤ ≤   (3) 

Given the expression for the Lorenz curve in equation (1), the condition in (3) can 

also be expressed as  

  1 1( ) ( )
u u

X Y
o o

F t dt F t dt− −≥∫ ∫    for all 0 u 1≤ ≤   (4) 

Writing the relation for generalized Lorenz dominance (GLD) in this way 

demonstrates its equivalence to second order stochastic dominance (SSD). See, for 

example, Maasoumi (1997) or Kleiber and Kotz (2003, p.25).  

 A stronger condition for welfare improvement than SSD (GLD) is that of first-

order stochastic dominance (FSD). The distribution for X first-order stochastically 

dominates Y, written ,FSDX Y≥  if and only if  
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     for all  01( ) ( )X YF u F u− −≥ 1 1u≤ ≤   (5) 

In this case the level of income from distribution X is greater than the level of income 

from distribution Y for all population proportions . u

 We now consider the implications of conditions (2), (3) and (5) for the Dagum 

and Singh-Maddala income distributions. These distributions were chosen for 

illustrative purposes because they are popular ones in the literature and their closed-

form distribution and inverse distribution functions make them convenient 

computationally. Many other alternatives could have been chosen. See, for example, 

McDonald (1984) and McDonald and Xu (1995). Less restrictive distributions that 

involve more parameters or mixtures may prove to be more realistic empirical 

representations. The density, distribution, inverse distribution and Lorenz functions 

for the Dagum and Singh-Maddala distributions are of interest. For the Dagum 

distribution we have (see, for example, Kleiber and Kotz (2003, p.212)). 

  
( )

1

1( )
1

ap

D paap

a p xf x
b x b

−

+=
⎡ ⎤+⎣ ⎦

      (6) , , 0a b p >

  ( )( ) 1
pa

DF x x b
−−⎡= +⎣
⎤
⎦        (7) 

  
11 1( ) 1

ap
DF u b u

−− −⎡ ⎤= −⎣ ⎦       (8) 

  ( ) ( )
1

( ) 1 , 1 1D wL u B p a a= + −⎡⎣ ⎤⎦      (9) 

where 1
1

pw u=  and ( , )wB c d  is the incomplete beta integral 

  
1 1

0
1

1 1

0

(1 )
( , )

(1 )

w
c d

w
c d

t t
B c d

t t

− −

− −

−
=

−

∫
∫

dt

dt
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For the Singh-Maddala distribution these functions are given by (Kleiber and Kotz 

(2003, p.198)). 

  
( )

1

1( )
1

a

S qaa

aq xf x
b x b

−

+=
⎡ ⎤+⎣ ⎦

                   (10) , , 0a b q >

  ( )( ) 1 1
qa

SF x x b
−

⎡ ⎤= − +⎣ ⎦                 (11) 

  
11 1( ) (1 ) 1

aq
SF u b u− −⎡ ⎤= − −⎣ ⎦                          (12) 

  ( ) ( )
2

( ) 1 1 , 1S wL u B a q a= + −⎡ ⎤⎣ ⎦                          (13) 

where 1
2 1 (1 ) qw = − − u . To assess generalized Lorenz dominance using the relation in 

(3) the means of each distribution are also required. They are given by 

  ( ) ( )1 1 1
1

( )D

b p a a
a

p
Γ + Γ −

μ = >
Γ

 

and  

  ( ) ( )1 1 1 1
( )S

b a q a
q

q a
Γ + Γ −

μ = >
Γ

 

 Given two distributions, each with known parameter values, one way to assess 

each form of dominance (LD, GLD or FSD) is to compute ( )L u , ( )L uμ  and  

for both distributions for a grid of values for u in the interval (0,1). If the grid contains 

a relatively large number of values, and the dominance inequality being considered is 

satisfied for all those values, then it is reasonable to conclude that the condition is 

satisfied for all u , and hence dominance holds. For each set of parameters, in our 

illustration we use 999 values of u  from 0.001 to 0.999 with, as explained in more 

detailed below, a finer grid in intervals likely to be influential.  

1( )F u−



 10

 When income distribution data are used to estimate the unknown parameters 

of the Dagum and/or Singh-Maddala distributions, these parameters are not known 

with certainty and any conclusion about whether one distribution dominates another 

cannot be made with certainty. In Bayesian inference uncertainty about whether one 

distribution dominates another can be expressed in terms of a probability statement. 

To obtain such a probability statement we begin by generating draws on the 

parameters from their respective posterior distributions. Computing , say, for a 

given  and for every parameter draw, yields draws from the posterior density 

function for . Given draws from the posterior density functions for two 

inverse-distribution functions 

1( )F u−

u

1( )F u−

1( )XF u− and 1( )YF u− , for a fine grid of values for u , an 

estimate of the probability that FSDX Y≥  is given by the proportion of times (or the 

proportion of parameter draws) for which  for all u. Similar 

probability statements can be made for LD and GLD. 

1 1( ) ( )X YF u F u− −≥

 This procedure for finding the posterior probability of dominance can be 

adopted for any income distribution for which we can compute values for the Lorenz 

curve and the inverse distribution function at each population proportion. As 

mentioned, in our application we apply it to the Dagum and Singh-Maddala 

distributions. For some distributions and some dominance relationships, necessary 

and sufficient conditions for dominance have been derived in the form of inequalities 

on the parameters of the distributions. Such inequalities exist for Lorenz dominance 

when comparing two Dagum distributions or two Singh-Maddala distributions. In 

these instances an alternative way of computing the posterior probability of 

dominance is to count the proportion of parameter draws that satisfy the required 

parameter inequalities. Proceeding in this way is much less demanding 
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computationally because it does not involve counting a proportion of parameter draws 

for all population proportions. Although both approaches should yield identical 

results, in our early calculations we discovered they did not. The source of the 

problem turned out to be a dramatic decline in the probability of one Lorenz curve 

exceeding another as the population proportion approached zero. A consequent 

conclusion that we make is that consideration of the entire Lorenz curve rather than 

the parameter inequalities may give a more meaningful picture of the probability of 

dominance because the researcher is able to exclude population proportion values that 

are too small to be relevant. 

 The relevant parameter inequalities for Lorenz dominance for the Dagum and 

Singh-Maddala distributions are as follows. When comparing two Dagum 

distributions with respective parameters  and ( , necessary and 

sufficient conditions for 

( , , )X X Xa b p , , )Y Y Ya b p

LDX Y≥  are (Kleiber, 1996) 

   and      (14) Xa a≥ Y X X Y Ya p a p≥

Similarly, necessary and sufficient conditions for LDX Y≥  when X and Y are Singh-

Maddala distributions with respective parameters  and (  are 

(Wilfling and Kramer, 1993) 

( , , )X X Xa b q , , )Y Y Ya b q

   and      (15) Xa a≥ Y X X Y Ya q a q≥

Violation of (14) or (15) implies the respective Lorenz curves will cross.  

 Necessary and sufficient conditions for GLD and FSD in terms of the 

parameters of the Dagum and Singh-Maddala distributions are not available. 

However, separate sufficient conditions and separate necessary conditions for FSD 

have been derived. Klonner (2000) shows that these conditions are: 
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Dagum sufficient condition: 

 ( ,   and  ) ( )X Y X X Y Y X Y FSDa a a p a p b b X Y≤ ≥ ≥ ⇒ ≥   (16) 

Dagum necessary condition: 

 ( ) (   and )FSD X Y X X Y YX Y a a a p a p≥ ⇒ ≤ ≥    (17) 

Singh-Maddala sufficient condition: 

   (18) ( ,   and  ) ( )X Y X X Y Y X Y FSDa a a q a q b b X Y≥ ≤ ≥ ⇒ ≥

Singh-Maddala necessary condition: 

 ( ) (   and )FSD X Y X X Y YX Y a a a q a q≥ ⇒ ≥ ≤     (19) 

The posterior probabilities that these inequalities hold can be estimated using the 

proportion of posterior draws that satisfy the inequalities. Evaluating these 

probabilities is not as computationally demanding as evaluating the probability of 

dominance. Since the probability of dominance must be less than the probability that 

the necessary condition holds, and greater than the probability that the sufficient 

condition holds, the sufficiency and necessity probabilities provide bounds for the 

dominance probability. The usefulness of these bounds, in terms of the computations 

that they save, will depend on how close they are. 

 Although we focus on Lorenz dominance, generalized Lorenz dominance and 

first order stochastic dominance, there are many other welfare measures that have 

appeared in the literature and to which we could apply the methodology described in 

this paper. For some examples see Lambert (1993), Maasoumi (1997) and Barrett and 

Donald (2000). As long as these measures can be evaluated as functions of the 

parameters of the income distributions, we can estimate the probability that a welfare 

measure from one distribution exceeds its counterpart from another distribution. In 
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addition to overall LD, GLD and FSD, in our example we consider probabilities for 

LD, GLD and FSD for the poorest 10% of the population and the poorest 20% of the 

population. Such measures are important when reduction in poverty is the major 

policy concern. Also, computing the probabilities for them illustrates the flexibility of 

our approach. 

 To implement our proposed methodology we must obtain draws of 

observations from the posterior density functions of the parameters of the 

distributions. These posterior density functions are derived from prior density and 

likelihood functions. Details of these steps are given in the next section. 

3. Priors, Likelihood Functions and Posterior Density Functions 

Posterior probability density functions for the parameters of the two income 

distribution models are obtained by combining prior density functions with the 

likelihood functions as prescribed by Bayes’ theorem. Let θ  be a vector containing 

the unknown parameters of an income distribution. Thus, θ  will be a vector of 3 

parameters,  for the Dagum distribution and  for the Singh-Maddala 

distribution. Let 

( , , )a p b ( , , )ba q

( | ), ( | ) and ( )p x p x pθ θ θ  denote the posterior density, likelihood and 

the prior density functions, respectively. The posterior probability density function is 

obtained as: 

  ( ) ( ) ( )| |p x p x pθ ∝ θ θ        

In this section we first describe the prior density ( )p θ  for parameters of both the 

Dagum and Singh-Maddala distributions, then the likelihood functions are given for 

both grouped and individual sample data. 
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The Prior Specification 

 Conceptualizing prior information on income distribution parameters  is 

likely to be difficult because the parameters of the distributions do not have direct 

economic meanings. To overcome this problem we begin by considering instead 

priors for mean income, modal income and the Gini coefficient. It is far easier to elicit 

prior beliefs and information on quantities of interest such as these, than to find prior 

information on the parameters of the distribution of income. The additional advantage 

of specifying priors in this way is that the same prior information is used for both the 

Dagum and Singh-Maddala distributions. 

θ

 Let  be a 3-dimensional vector containing mean income ( 0, ,m ′δ = μ γ) μ , 

modal income  and the Gini coefficient . We refer to 0m γ δ  as the "economic 

quantities of interest" because its elements are more likely to be of interest than those 

of  and because these are quantities for which some prior information is likely to be 

available. Following Griffiths, Chotikapanich and Rao (2005), independent gamma 

distributions were chosen for  and a beta distribution was chosen for . The 

general form of these priors can be written as 

θ

0 and mμ γ

 ( ) ( ) ( ) ( ) ( )0, ,p p m p p m p0δ = μ γ = μ γ     (20) 

where  

 ( ) 11
( )

c
cp

d c
− −μμ = μ

Γ
de       (21) 

 ( ) 11
( )

mo
o op m m e− βα−

α=
β Γ α

     (22) 

and 
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 ( ) ( ) ( ) 111 1
,

wvp
B v w

−−γ = γ − γ      (23) 

Gamma densities were chosen for and omμ  because they are relatively flexible 

distributions defined over the range (0, ∞ ); by making suitable choices for the prior 

parameters we can accommodate a wide range of prior views about mean and modal 

incomes. Similarly, the beta distribution defined on (0, 1) can represent a variety of 

prior views about the Gini coefficient. Our settings for the prior parameters c, d, α , 

, v and w, and the reasons for them, are discussed in Section 4.  β

 The prior distribution on the parameters ( )p θ  is obtained by transforming the 

prior density on the economic quantities of interest, ( )p δ . That is, 

 ( ) ( )p p ∂δ
θ = δ

∂θ
      (24) 

Griffiths, Chotikapanich and Rao (2005) provide expressions for the economic 

quantities of interest as functions of the income distribution parameters, , as 

well as useful derivatives for computing the Jacobian term 

( )gδ = θ

∂δ ∂θ .  

The Likelihood Functions 

 The likelihood function, ( | )p x θ  depends on the form of the data. For 

individual observations it is defined as the density function of the income distribution. 

That is, if the income distribution follows a Dagum distribution, then  is 

defined by equation (6) and for the Singh-Maddala distribution it is defined by 

equation (10). If the data are grouped as the number of sampled income units in each 

of a set of income classes, the likelihood function is the density function for a 

potential sample of numbers of income units in each of the groups, 

( | )p x θ
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( 1 2, , , Mn n n n )′= … , where M is the number of income classes. Let 1( , )j jz z−  be the 

income class limits, with . The likelihood function is given by the 

multinomial distribution 

1,2, ,j = … M

⎤⎦    (25) ( ) ( ) ( )1
1

| ; ;
M n j

j j
j

p x F z F z −
=

⎡θ ∝ θ − θ⎣∏

where  is the cumulative distribution function for the income distribution. It is 

given by equations (7) and (11) for the Dagum and Singh-Maddala distributions, 

respectively. In our empirical example, we have individual observations and hence 

work with the Singh-Maddala and Dagum density functions. 

(.)F

 In our application we compare dominance probabilities obtained assuming the 

two income distributions being compared are (i) both Dagum, (ii) both Singh-

Maddala, (iii) the first is Dagum and the second is Singh-Maddala, and (iv) the first is 

Singh-Maddala and the second is Dagum. Thus, in each case we are assuming the 

chosen distributions are valid descriptions of the population income distributions. One 

way to relax this assumption within the framework of Bayesian inference is to model 

average the Singh-Maddala and Dagum distributions (and other distributions if more 

are considered) and to consider dominance conditions for the averaged distributions. 

The Posterior Densities 

 Combining the prior  and the likelihood function , the posterior 

densities for the parameters of each income distribution are given by 

( )p θ ( | )p x θ

( ) ( ) ( )

( ) ( )

| |

|

p x p x p

p x p

θ ∝ θ θ

∂δ
= θ δ

∂θ

    (26) 
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The posterior densities  for both the Dagum and Singh-Maddala parameters 

are not sufficiently tractable for derivation of the moments of the elements in each 

( | )p xθ

θ  

or for deriving marginal posterior densities. However, it is straightforward to use a 

Metropolis-Hastings algorithm to draw observations (1) (2) ( ), , , Nθ θ θ…  from each of the 

posterior densities. We used a random-walk Metropolis-Hastings algorithm, similar to 

that employed by Griffiths and Chotikapanich (1997).  

4. Application 

The data used to illustrate the methodology are the pre-tax income data obtained from 

the Canadian Family Expenditure Surveys for the years 1978 and 1986; it was 

provided by Garry Barrett who used it to illustrate various sampling theory tests 

(Barrett and Donald 2003a). The sample sizes are 8526 and 9470 for 1978 and 1986, 

respectively. The sample means and standard deviations are 35,535 and 22,098 for 

1978 and 36,975 and 24,767 for 1986. Histograms of the observations with income 

expressed in thousand dollar units are presented in Figure 1. The means and standard 

deviations provide preliminary evidence about which income distribution might be 

preferred. If per capita income is our only criterion for comparison, then 1986 is 

preferred. The increase in per capita income comes at the expense of an increase in 

the standard deviation, however. Criteria that favour income distributions with smaller 

variation may lead to 1978 as preferable.  

 The first step in our Bayesian approach is to choose prior parameters for the 

prior distributions on the means, modes and Gini coefficients of the populations from 

which these samples were drawn. Our objective is to choose settings that yield priors 

that are relatively noninformative in the sense that they do not conflict with a wide 

range of prior opinions of applied researchers in the income distribution area. Setting 
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values in this way means that our results are dominated by the sample information and 

that we are not open to criticism for employing excessive subjectivity. The same 

priors were used for both 1978 and 1986. The prior parameter settings for the gamma 

distributions for the mean and mode were ( 1.8, 30c d= = ) and ( ), 

respectively. Some prior probability intervals from these settings are  

1.2, 30α = β =

  Pr( 20) 0.19μ ≤ =   0Pr( 20) 0.39m ≤ =  

   Pr(20 60) 0.46≤ μ ≤ = 0Pr(20 60) 0.43m≤ ≤ =  

When viewed in relation to the histograms in Figure 1 and the sample means of 35.5 

and 37.0, these probability intervals show that the priors have a relatively large spread 

and will not conflict with a range of prior views that might be more precise.  

 The parameter settings chosen for the prior beta distribution for the Gini 

coefficient were 1.1v =  and 2w = . Two prior probability intervals from this choice 

are  

    Pr( 0.3) 0.47γ ≤ = Pr(0.1 0.7) 0.74≤ γ ≤ =  

Again, these intervals demonstrate the relatively noninformative nature of our prior. 

The sample Gini coefficients for the two years were 0.336 and 0.356. 

 The techniques described in Sections 2 and 3 were applied, with 35,000 

observations being drawn using a random-walk Metropolis-Hastings algorithm, and 

5,000 of these being discarded as a burn-in. Plots of the observations were taken to 

confirm the convergence of the Markov chain. Posterior means and standard 

deviations for the parameters of the income distributions and the estimated mean 

incomes (in $1000 units), obtained using the expressions for Dμ  and  in Section 2, 

are presented in Table 1, along with the corresponding maximum likelihood estimates 

Sμ
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and their standard errors. The similarity of the Bayesian point estimates to those from 

maximum likelihood estimation confirms that the prior information has been 

relatively mild. Also, the Bayesian posterior means for mean incomes  and D Sμ μ  are 

very close to the sample values. The Singh-Maddala and Dagum income distributions 

obtained by setting the parameters equal to their posterior means are graphed against 

the histograms in Figure 1. They appear to capture the essential characteristics of 

these distributions. 

 If one is interested only in point estimates, and not the probability of 

dominance, we can use the parameter values in Table 1 to assess whether dominance 

occurs at the posterior means of the parameters. Checking the necessary and sufficient 

conditions for LD given in equations (14) and (15), we find that 1978 1986 when 

comparing two Singh-Maddala distributions, but not for the two Dagum distributions. 

In the latter case, however, the estimated Lorenz curves cross only at a population 

proportion of 0.01, with 1978 being dominant for population proportions greater than 

0.01. Comparing the complete 1978 estimated Singh-Maddala Lorenz curve with its 

1986 Dagum counterpart, yields 1978 . A 1978 Dagum versus 1986 Singh-

Maddala comparison does not yield dominance, however, with the Lorenz curves 

crossing at population proportions 0.13 and 0.97. A similar exercise can be carried out 

for GLD and FSD by examining the generalized Lorenz curves and inverse 

distribution functions, respectively, evaluated at the posterior means of the 

parameters. In all of these comparisons the relevant curves crossed at least once, 

indicating that dominance does not occur at these parameter values.  

LD≥

1986LD≥

 Our remaining results are obtained from relevant pairwise comparisons of the 

30,000 draws from each of the four posterior density functions, for the parameters of 
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the Singh-Maddala and Dagum distributions, for the years 1978 and 1986. In each 

case probabilities are estimated as the proportion of draws that satisfies an inequality 

or a dominance relation. We begin by considering the probabilities for the necessary, 

sufficient and necessary and sufficient conditions for first order stochastic dominance 

presented in Table 2. The separate sufficient and separate necessary probabilities are 

obtained using equations (16) to (19); for the necessary and sufficient probabilities the 

complete inverse distribution function in equation (5) is used. 

Table2: First Order Stochastic Dominance 

 86 over 78 78 over 86 

 D vs D S vs S D vs D S vs S 

Sufficient 0.0059 0.0000 0.0000 0.0000 

Necessary and sufficient 0.1851 0.1058 0.0000 0.0000 

Necessary 0.7618 0.1612 0.0000 0.0023 

 

 As expected, in each case the probability that the necessary condition is 

satisfied is greater than or equal to the probability that the necessary and sufficient 

condition is satisfied which in turn is greater than the probability of satisfying the 

sufficient condition. There is some probability that the income distribution in 1986 is 

preferred to that in 1978 in terms of FSD, and zero probability that the converse is 

true. In the case where two Dagum distributions are compared, the computationally-

convenient strategy of looking only at the probability for the necessary condition 

gives a misleading picture of the actual probability of dominance. The fact that we 

have some non-zero probabilities for dominance implies there are some parameter 

draws for which the inverse distribution functions do not cross although, when 

evaluated at the posterior means, the functions do cross. 
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 A more comprehensive comparison involving not only a comparison of like 

functions, and not only FSD, is presented in Table 3 and Figures 2 and 3. First, 

consider Figure 2. The graphs in the FSD, LD and GLD columns were obtained by 

computing the proportion of draws satisfying, respectively, the dominance relations in 

equations (5), (2) and (3), for each of 999 values of u from 0.001 to 0.999. Thus, each 

graph gives the probability of the dominance inequality holding at each population 

proportion u. Since dominance occurs only when an inequality is satisfied for all u, 

each dominance probability in Table 3 will be less than or equal to the corresponding 

minimum value of the “probability graphs” that appear in Figures 2 and 3. To 

illustrate this fact consider the upper left graph in Figure 2 where two Dagum 

distributions are compared to see if 1986 . The minimum point on this graph 

is approximately 0.21 at the point 

1978FSD≥

0.29u = . The probability of dominance, given by 

the proportion of parameter draws for which the relevant inequality is satisfied for all 

u (and given in Table 3) is 0.1851. As a check to see if we were considering a 

sufficiently fine grid of points for u to accurately estimate the probabilities in each 

case we computed proportions for a finer grid of values for u in the region of the 

minimum. 

 The probability graphs in Figures 2 and 3 convey a great deal of information. 

They show the population proportion(s) that have the greatest effect on dominance or 

lack of it, and they show how dominance is likely to change if we restrict our focus to 

a particular segment of the population such as the poorest 10% or 20%. Note that the 

graphs in Figure 3, concerned with dominance of 1978 over 1986, are a mirror image 

of the corresponding comparisons in Figure 2 where dominance of 1986 over 1978 is 

considered. 
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 From the first four columns in Table 3 we find there is some evidence that 

 and 1986 , but no evidence that the converse is true. On the 

other hand, there is also evidence that 1978 , but not the converse. Zero 

probabilities, suggesting no evidence of dominance, correspond to probability curves 

(Figures 2 and 3) that go to zero for some values of the population proportion u. The 

fact that there is some preference for 1986 over 1978 in terms of FSD and GLD, but 

not LD, is because increasing income has been accompanied by increasing inequality. 

1986 1978FSD≥ 1978GLD≥

1986LD≥

 As expected, in Table 3 the probability of GLD is always as least as great as 

that for FSD, reflecting the fact that FSD is a stronger condition. In the Figures, this 

result is conveyed by having GLD curves with minimums greater than or equal to the 

minimums of the FSD curves. 

 In the last eight columns of Table 3 we consider what might be viewed as a 

restricted form of dominance. We examine the probability of one curve exceeding 

another when only the poorest 20% and then only the poorest 10% of the population 

are considered. Considering a much smaller subset of the population leads to quite 

large increases in the probabilities, and the possibility that dominance could occur in 

either direction. For example, in the lowest 10%, Dagum versus Dagum FSD 

comparison, we have ,  and 

. This example illustrates the depth of information 

conveyed by the Figures. They show the effect of considering a restricted form of 

dominance defined over a subset of population proportions, and we can evaluate the 

probability of dominance in either direction as well as the probability that there is no 

dominance. 

Pr(1986 1978) 0.413FSD≥ = Pr(1978 1986) 0.264FSD≥ =

Pr(neither dominates) 0.323=
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 Although the general message about when dominance might occur is a 

consistent one, and consistent with the sampling-theory results in Barrett and Donald 

(2003a, 2003b), some of the probabilities we present are quite sensitive to the 

distributions used to make the comparisons. For example, the four different 

comparisons for 1978  yield probabilities 0.24, 084, 0.00 and 1.00. Insights 

into these differences can be obtained by examining Figure 3 and recalling our 

discussion about the behaviour of the Lorenz curves evaluated at the posterior means. 

Consider the first probability curve in the middle column of Figure 3. Although its 

lowest point is where it appears to cut the vertical axis at a probability of 

approximately 0.47, the probability of dominance that we report in Table 3 is 0.24. 

There is actually a dramatic decline in the probability curve as it approaches zero. 

How we discovered this fact is discussed shortly. For the moment, note that we 

previously found that the two Dagum posterior-mean Lorenz curves crossed at a 

population proportion of 0.01. Thus, there is strong evidence of dominance at most 

population proportions, but the critical population proportion that determines the 

probability of overall dominance is close to zero, before the posterior-mean Lorenz 

curve cross. A similar dramatic fall at zero arises with the second probability curve 

where two Singh-Maddala distributions are compared. The graph suggests a 

dominance probability of approximately 0.95 when the actual probability is 0.84. In 

this case, because the two posterior-mean Lorenz curves do not cross, the dominance 

probability remains high. In the third probability curve in the second column of Figure 

3, the probability of dominance is zero, but, if we restrict the population proportion to 

lie between approximately 0.25 and 0.9, the dominance probability becomes one. 

Outside the range (0.25, 0.9) the probability curve drops sharply at both ends, 

reaching zero at about 0.05 and 0.99. This behaviour can also be explained in terms of 

1986LD≥
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where the posterior-mean Lorenz curves cross, in this case at population proportions 

of 0.13 and 0.97. Finally, in the last case where the probability of dominance is one, 

the posterior-mean Lorenz curves do not cross.  

 It is not surprising that the relative locations of the posterior densities for 

( )L u , , at a few values of u, have a big impact on the probability of 

dominance. Dominance requires an inequality to hold for all values of u. The value of 

u that matters the most will be the one for which the probability of the inequality 

holding is smallest. It is important, therefore, that the density functions chosen to 

represent the income distributions are sufficiently flexible to model the data well over 

the whole income range. Otherwise, unrealistic behaviour at particular population 

proportions could have a large unrealistic effect on the dominance probabilities. The 

sensitivity of our results suggests that at least one of the Dagum or Singh-Maddala 

densities is too restrictive for our data. Kleiber (1996) has pointed out that the Dagum 

density is likely to be better fitting distribution for incomes around zero, while the 

Singh-Maddala density is likely to be preferable for modelling the right-tail of the 

income distribution. In this regard future research that applies our methodology to 

more flexible income distributions, including mixtures, or within a Bayesian 

nonparametric framework, is likely to be productive. In any event, the probability 

curves that we introduced in Figures 2 and 3 are a good device for assessing the 

degree of sensitivity, and the population proportions that contribute most to that 

sensitivity. 

1( ) and  ( )L u F u−μ

 The remaining issue to resolve is the behaviour around zero for the Dagum vs. 

Dagum and Singh-Maddala vs. Singh-Maddala Lorenz dominance probabilities. 

Using the inequalities in equations (14) and (15), we find that 
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 Dagum vs Dagum:    Pr(1978 1986) 0.238LD≥ =

 Singh-Maddala vs Singh-Maddala:  Pr(1978 1986) 0.837LD≥ =

However, in our calculations using a grid of u values from 0.001 to 0.999 these 

probabilities were 0.474 and 0.953, respectively. On further investigation, we 

discovered the discrepancy occurred because we did not (initially) consider values of 

u sufficiently close to zero. The sensitivity of the results to the minimum value of u is 

given in Table 4 for these two cases. The differences are dramatic. These results also 

show that quite different Lorenz dominance probabilities can be obtained if one is 

prepared to ignore a small proportion of the population. Considering only the 

inequalities that are necessary and sufficient, without also considering the complete 

probability curve, can lead to a large loss of information. 

5. Concluding Remarks 

The development of statistical inference for assessing whether income distributions 

have changed over time in what might be considered a desirable way has attracted a 

great deal of attention within the sampling-theory framework.  Hypothesis testing 

procedures have been developed for, among other things, Lorenz dominance, 

generalized Lorenz dominance and first-order stochastic dominance. The purpose of 

this paper was to illustrate how such dominance relationships can be assessed within a 

framework of Bayesian inference. Bayesian inference has the advantage of reporting 

results in terms of probabilities - a natural way to express our uncertainty. Because it 

enables us to give probabilities for dominance in either direction, as well as the 

probability that dominance does not occur, it overcomes the problem of giving 

favourable treatment to what is chosen as the null hypothesis in sampling theory 

inference. We introduced the concept of a probability curve that describes the 
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posterior probability of a dominance inequality being satisfied at every population 

proportion. These curves are useful for examining what population proportions have 

the biggest effect on dominance and for assessing how conclusions change if a 

restricted range of population proportions is considered. The sensitivity of our results 

to the assumed family of income distributions suggests that application of our 

techniques to more flexible families of distributions is likely to be a productive 

avenue for future research. 
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Table 1: ML estimates and standard errors and posterior means  
and standard deviations (based on income in $1000units) 

 
 ML  Bayesian 
 1978 1986  1978 1986 
Dagum      

a 4.3153 
(0.1030) 

3.6071 
(0.0874) 

 4.3176 
(0.1051) 

3.6072 
(0.0879) 

p 0.3566 
(0.0130) 

0.4343 
(0.0173) 

 0.3566 
(0.0132) 

0.4350 
(0.0174) 

b 49.399 
(0.6740) 

47.793 
(0.8742) 

 49.410 
(0.7060) 

47.770 
(0.8747) 

mean 36.056 37.893  36.058 
(0.2507) 

37.897 
(0.2788) 

      

Singh-Maddala    

a 1.8727 
(0.0254) 

1.8327 
(0.0252) 

 1.8663 
(0.0251) 

1.8309 
(0.0254) 

q 6.1431 
(0.7420) 

4.2298 
(0.3831) 

 6.3912 
(0.8116) 

4.2711 
(0.4121) 

b 98.418 
(8.0960) 

82.111 
(5.4296) 

 101.01 
(8.6691) 

82.674 
(5.8103) 

mean 35.571 37.032  35.567 
(0.2363) 

37.040 
(0.2512) 
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Table 3: Probabilities for Lorenz, Generalized Lorenz and First Order Stochastic Dominance 

 
86 over 78               

 Over all dominance  Lowest 20%  Lowest 10% 

 D vs D S vs S D vs S S vs D  D vs D S vs S D vs S S vs D  D vs D S vs S D vs S S vs D 

FSD 0.1851 0.1058 0.0000 0.0000  0.2577 0.1056 0.0000 0.0051  0.4130 0.1096 0.0000 0.0051 

Lorenz 0.0000 0.0000 0.0000 0.0000  0.0043 0.0002 0.0000 0.0534  0.0567 0.0018 0.0000 0.0534 

G Lorenz 0.2735 0.1081 0.0000 0.0138  0.4065 0.1096 0.0000 0.4391  0.5160 0.1145 0.0000 0.4391 

               

               

78 over 86               

 Over all dominance  Lowest 20%  Lowest 10% 

 D vs D S vs S D vs S S vs D  D vs D S vs S D vs S S vs D  D vs D S vs S D vs S S vs D 

FSD 0.0000 0.0000 0.0000 0.0000  0.2643 0.7204 0.0000 0.1041  0.2643 0.8074 0.0000 0.8284 

Lorenz 0.2382 0.8365 0.0000 1.0000  0.3243 0.9014 0.0000 1.0000  0.3243 0.9014 0.0000 1.0000 

G Lorenz 0.0000 0.0000 0.0000 0.0000  0.2632 0.7979 0.0000 0.8352  0.2632 0.8300 0.0000 0.9928 
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Figure 1: Histogram and density functions 
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Figure 2: Probability Curves for Dominance of 86 over 78 
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Figure 3: Probability Curves for Dominance of 78 over 86 
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Table 4: Lorenz Dominance for 1978 over 1986 

Min population proportion  D vs D S vs S 

0.001  0.4744 0.9533 

0.0001  0.4044 0.9336 

0.00001  0.3661 0.9195 

0.000001  0.3417 0.9096 

0.0000001  0.3243 0.9014 

0  0.2382 0.8365 
 


