19 research outputs found

    Trading Plaintext-Awareness for Simulatability to Achieve Chosen Ciphertext Security

    Get PDF
    In PKC 2014, Dachman-Soled showed a construction of a chosen ciphertext (CCA) secure public key encryption (PKE) scheme based on a PKE scheme which simultaneously satisfies a security property called weak simulatability and (standard model) plaintext awareness (sPA1) in the presence of multiple public keys. It is not well-known if plaintext awareness for the multiple keys setting is equivalent to the more familiar notion of that in the single key setting, and it is typically considered that plaintext awareness is a strong security assumption (because to achieve it we have to rely on a knowledge -type assumption). In Dachman-Soled\u27s construction, the underlying PKE scheme needs to be plaintext aware in the presence of 2k+22k+2 public keys. The main result in this work is to show that the strength of plaintext awareness required in the Dachman-Soled construction can be somehow traded with the strength of a simulatability property of other building blocks. Furthermore, we also show that we can separate the assumption that a single PKE scheme needs to be both weakly simulatable and plaintext aware in her construction. Specifically, in this paper we show two new constructions of CCA secure key encapsulation mechanisms (KEMs): Our first scheme is based on a KEM which is chosen plaintext (CPA) secure and plaintext aware only under the 22 keys setting, and a PKE scheme satisfying a slightly stronger simulatability than weak simulatability, called \emph{trapdoor simulatability} (introduced by Choi et al. ASIACRYPT 2009). Our second scheme is based on a KEM which is 11-bounded CCA secure (Cramer et al. ASIACRYPT 2007) and plaintext aware only in the \emph{single} key setting, and a trapdoor simulatable PKE scheme. Our results add new recipes for constructing CCA secure PKE/KEM from general assumptions (that are incomparable to those used by Dachman-Soled), and in particular show interesting trade-offs among building blocks with those used in Dachman-Soled\u27s construction

    Cryptographic Hashing From Strong One-Way Functions

    Get PDF
    Constructing collision-resistant hash families (CRHFs) from one-way functions is a long-standing open problem and source of frustration in theoretical cryptography. In fact, there are strong negative results: black-box separations from one-way functions that are 2(1o(1))n2^{-(1-o(1))n}-secure against polynomial time adversaries (Simon, EUROCRYPT \u2798) and even from indistinguishability obfuscation (Asharov and Segev, FOCS \u2715). In this work, we formulate a mild strengthening of exponentially secure one-way functions, and we construct CRHFs from such functions. Specifically, our security notion requires that every polynomial time algorithm has at most 2nω(log(n))2^{-n - \omega(\log(n))} probability of inverting two independent challenges. More generally, we consider the problem of simultaneously inverting kk functions f1,,fkf_1,\ldots, f_k, which we say constitute a ``one-way product function\u27\u27 (OWPF). We show that sufficiently hard OWPFs yield hash families that are multi-input correlation intractable (Canetti, Goldreich, and Halevi, STOC \u2798) with respect to all sparse (bounded arity) output relations. Additionally assuming indistinguishability obfuscation, we construct hash families that achieve a broader notion of correlation intractability, extending the recent work of Kalai, Rothblum, and Rothblum (CRYPTO \u2717). In particular, these families are sufficient to instantiate the Fiat-Shamir heuristic in the plain model for a natural class of interactive proofs. An interesting consequence of our results is a potential new avenue for bypassing black-box separations. In particular, proving (with necessarily non-black-box techniques) that parallel repetition amplifies the hardness of specific one-way functions -- for example, all one-way permutations -- suffices to directly bypass Simon\u27s impossibility result

    Indistinguishable Proofs of Work or Knowledge

    Get PDF
    We introduce a new class of protocols called Proofs of Work or Knowledge (PoWorKs). In a PoWorK, a prover can convince a verifier that she has either performed work or that she possesses knowledge of a witness to a public statement without the verifier being able to distinguish which of the two has taken place. We formalise PoWorK in terms of three properties, completeness, f -soundness and indistinguishability (where f is a function that determines the tightness of the proof of work aspect) and present a construction that transforms 3-move HVZK protocols into 3-move public-coin PoWorKs. To formalise the work aspect in a PoWorK protocol we define cryptographic puzzles that adhere to certain uniformity conditions, which may also be of independent interest. We instantiate our puzzles in the random oracle (RO) model as well as via constructing “dense” versions of suitably hard one-way functions. We then showcase PoWorK protocols by presenting a number of applications. We first show how non-interactive PoWorKs can be used to reduce spam email by forcing users sending an e-mail to either prove to the mail server they are approved contacts of the recipient or to perform computational work. As opposed to previous approaches that applied proofs of work to this problem, our proposal of using PoWorKs is privacy-preserving as it hides the list of the receiver’s approved contacts from the mail server. Our second application, shows how PoWorK can be used to compose cryptocurrencies that are based on proofs of work (“Bitcoin-like”) with cryptocurrencies that are based on knowledge relations (these include cryptocurrencies that are based on “proof of stake”, and others). The resulting PoWorK-based cryptocurrency inherits the robustness properties of the underlying two systems while PoWorK-indistinguishability ensures a uniform population of miners. Finally, we show that PoWorK protocols imply straight-line quasi-polynomial simulatable arguments of knowledge and based on our construction we obtain an efficient straight-line concurrent 3-move statistically quasi-polynomial simulatable argument of knowledge

    Noise-Tolerant Quantum Tokens for MAC

    Get PDF
    Message Authentication Code or MAC, is a well-studied cryptographic primitive that is used in order to authenticate communication between two parties sharing a secret key. A Tokenized MAC or TMAC is a related cryptographic primitive, introduced by Ben-David & Sattath (QCrypt\u2717) which allows limited signing authority to be delegated to third parties via the use of single-use quantum signing tokens. These tokens can be issued using the secret key, such that each token can be used to sign at most one document. We provide an elementary construction for TMAC based on BB84 states. Our construction can tolerate up to 14% noise, making it the first noise-tolerant TMAC construction. The simplicity of the quantum states required for our construction combined with its noise tolerance, makes it practically more feasible than the previous TMAC construction. The TMAC is existentially unforgeable against adversaries with signing and verification oracles (i.e., analogous to EUF-CMA security for MAC), assuming post-quantum one-way functions exist

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Integrated-Key Cryptographic Hash Functions

    Get PDF
    Cryptographic hash functions have always played a major role in most cryptographic applications. Traditionally, hash functions were designed in the keyless setting, where a hash function accepts a variable-length message and returns a fixed-length fingerprint. Unfortunately, over the years, significant weaknesses were reported on instances of some popular ``keyless" hash functions. This has motivated the research community to start considering the dedicated-key setting, where a hash function is publicly keyed. In this approach, families of hash functions are constructed such that the individual members are indexed by different publicly-known keys. This has, evidently, also allowed for more rigorous security arguments. However, it turns out that converting an existing keyless hash function into a dedicated-key one is usually non-trivial since the underlying keyless compression function of the keyless hash function does not normally accommodate the extra key input. In this thesis we define and formalise a flexible approach to solve this problem. Hash functions adopting our approach are said to be constructed in the integrated-key setting, where keyless hash functions are seamlessly and transparently transformed into keyed variants by introducing an extra component accompanying the (still keyless) compression function to handle the key input separately outside the compression function. We also propose several integrated-key constructions and prove that they are collision resistant, pre-image resistant, 2nd pre-image resistant, indifferentiable from Random Oracle (RO), indistinguishable from Pseudorandom Functions (PRFs) and Unforgeable when instantiated as Message Authentication Codes (MACs) in the private key setting. We further prove that hash functions constructed in the integrated-key setting are indistinguishable from their variants in the conventional dedicated-key setting, which implies that proofs from the dedicated-key setting can be naturally reduced to the integrated-key setting.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Multi Collision Resistant Hash Functions and their Applications

    Get PDF
    Collision resistant hash functions are functions that shrink their input, but for which it is computationally infeasible to find a collision, namely two strings that hash to the same value (although collisions are abundant). In this work we study multi-collision resistant hash functions (MCRH) a natural relaxation of collision resistant hash functions in which it is difficult to find a t-way collision (i.e., t strings that hash to the same value) although finding (t-1)-way collisions could be easy. We show the following: 1. The existence of MCRH follows from the average case hardness of a variant of the Entropy Approximation problem. The goal in the entropy approximation problem (Goldreich, Sahai and Vadhan, CRYPTO \u2799) is to distinguish circuits whose output distribution has high entropy from those having low entropy. 2. MCRH imply the existence of constant-round statistically hiding (and computationally binding) commitment schemes. As a corollary, using a result of Haitner et-al (SICOMP, 2015), we obtain a blackbox separation of MCRH from any one-way permutation

    Oblivious Transfer with constant computational overhead

    Get PDF
    The computational overhead of a cryptographic task is the asymptotic ratio between the computational cost of securely realizing the task and that of realizing the task with no security at all. Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2008) showed that secure two-party computation of Boolean circuits can be realized with constant computational overhead, independent of the desired level of security, assuming the existence of an oblivious transfer (OT) protocol and a local pseudorandom generator (PRG). However, this only applies to the case of semi-honest parties. A central open question in the area is the possibility of a similar result for malicious parties. This question is open even for the simpler task of securely realizing many instances of a constant-size function, such as OT of bits. We settle the question in the affirmative for the case of OT, assuming: (1) a standard OT protocol, (2) a slightly stronger “correlation-robust" variant of a local PRG, and (3) a standard sparse variant of the Learning Parity with Noise (LPN) assumption. An optimized version of our construction requires fewer than 100 bit operations per party per bit-OT. For 128-bit security, this improves over the best previous protocols by 1–2 orders of magnitude. We achieve this by constructing a constant-overhead pseudorandom correlation generator (PCG) for the bit-OT correlation. Such a PCG generates N pseudorandom instances of bit-OT by locally expanding short, correlated seeds. As a result, we get an end-to-end protocol for generating N pseudorandom instances of bit-OT with o(N) communication, O(N) computation, and security that scales sub-exponentially with N. Finally, we present applications of our main result to realizing other secure computation tasks with constant computational overhead. These include protocols for general circuits with a relaxed notion of security against malicious parties, protocols for realizing N instances of natural constant-size functions, and reducing the main open question to a potentially simpler question about fault-tolerant computation

    Primary-Secondary-Resolver Membership Proof Systems

    Get PDF
    We consider Primary-Secondary-Resolver Membership Proof Systems (PSR for short) and show different constructions of that primitive. A PSR system is a 3-party protocol, where we have a primary, which is a trusted party which commits to a set of members and their values, then generates a public and secret keys in order for secondaries (provers with knowledge of both keys) and resolvers (verifiers who only know the public key) to engage in interactive proof sessions regarding elements in the universe and their values. The motivation for such systems is for constructing a secure Domain Name System (DNSSEC) that does not reveal any unnecessary information to its clients. We require our systems to be complete, so honest executions will result in correct conclusions by the resolvers, sound, so malicious secondaries cannot cheat resolvers, and zero-knowledge, so resolvers will not learn additional information about elements they did not query explicitly. Providing proofs of membership is easy, as the primary can simply precompute signatures over all the members of the set. Providing proofs of non-membership, i.e. a denial-of-existence mechanism, is trickier and is the main issue in constructing PSR systems. We provide three different strategies to construct a denial of existence mechanism. The first uses a set of cryptographic keys for all elements of the universe which are not members, which we implement using hierarchical identity based encryption and a tree based signature scheme. The second construction uses cuckoo hashing with a stash, where in order to prove non-membership, a secondary must prove that a search for it will fail, i.e. that it is not in the tables or the stash of the cuckoo hashing scheme. The third uses a verifiable ``random looking\u27\u27 function which the primary evaluates over the set of members, then signs the values lexicographically and secondaries then use those signatures to prove to resolvers that the value of the non-member was not signed by the primary. We implement this function using a weaker variant of verifiable random/unpredictable functions and pseudorandom functions with interactive zero knowledge proofs. For all three constructions we suggest fairly efficient implementations, of order comparable to other public-key operations such as signatures and encryption. The first approach offers perfect ZK and does not reveal the size of the set in question, the second can be implemented based on very solid cryptographic assumptions and uses the unique structure of cuckoo hashing, while the last technique has the potential to be highly efficient, if one could construct an efficient and secure VRF/VUF or if one is willing to live in the random oracle model
    corecore