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Abstract. In PKC 2014, Dachman-Soled showed a construction of a chosen ciphertext (CCA) secure
public key encryption (PKE) scheme based on a PKE scheme which simultaneously satisfies a security
property called weak simulatability and (standard model) plaintext awareness (sPA1) in the presence
of multiple public keys. It is not well-known if plaintext awareness for the multiple keys setting is
equivalent to the more familiar notion of that in the single key setting, and it is typically considered
that plaintext awareness is a strong security assumption (because to achieve it we have to rely on a
“knowledge”-type assumption). In Dachman-Soled’s construction, the underlying PKE scheme needs
to be plaintext aware in the presence of 2k + 2 public keys.
The main result in this work is to show that the strength of plaintext awareness required in the
Dachman-Soled construction can be somehow “traded” with the strength of a “simulatability” property
of other building blocks. Furthermore, we also show that we can “separate” the assumption that a single
PKE scheme needs to be both weakly simulatable and plaintext aware in her construction. Specifically,
in this paper we show two new constructions of CCA secure key encapsulation mechanisms (KEMs):
Our first scheme is based on a KEM which is chosen plaintext (CPA) secure and plaintext aware only
under the 2 keys setting, and a PKE scheme satisfying a “slightly stronger” simulatability than weak
simulatability, called trapdoor simulatability (introduced by Choi et al. ASIACRYPT 2009). Our second
scheme is based on a KEM which is 1-bounded CCA secure (Cramer et al. ASIACRYPT 2007) and
plaintext aware only in the single key setting, and a trapdoor simulatable PKE scheme. Our results add
new recipes for constructing CCA secure PKE/KEM from general assumptions (that are incomparable
to those used by Dachman-Soled), and in particular show interesting trade-offs among building blocks
with those used in Dachman-Soled’s construction.
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1 Introduction

1.1 Background and Motivation

For public key encryption (PKE), security (indistinguishability) against chosen ciphertext attacks
(CCA) [47, 50, 24] is nowadays considered as a de-facto standard security notion required in most
practical situations/applications in which PKE schemes are used. CCA security is quite important
in both practical and theoretical points of view. It implies security against practical attacks (e.g.
Bleichenbacher’s attack [9]) and it also implies very strong and useful security notions, such as
non-malleability [24] and universal composability [11]. Thus, constructing and understanding CCA
secure PKE schemes is one of the central research themes in the area of cryptography. In this
paper, we focus on the constructions of CCA secure PKE schemes and its closely related primi-
tive called key encapsulation mechanism (KEM) from general cryptographic assumptions. There
have been a number of works that show that several different kinds of cryptographic primitives are
sufficient to realize CCA secure PKE/KEM: These include trapdoor permutations [24] (with some
enhanced property [28]), identity-based encryption [13] and a weaker primitive called tag-based
encryption [33], lossy trapdoor function [49] and related primitives [52, 43, 34, 56, 14], PKE schemes
with weaker-than-but-close-to-CCA security [32, 35, 41], positive results on cryptographic obfusca-
tion [54, 39], the combination of a CPA secure PKE scheme and a strong form of hash functions
[40], and very recently, the combination of a sender non-committing encryption scheme and a key-
dependent-message secure symmetric key encryption (SKE) scheme [42]. (We review more works
in Section 1.4.)

In PKC 2014, Dachman-Soled [19] showed a construction of a CCA secure PKE scheme based
on a PKE scheme which simultaneously satisfies a security property called weak simulatability [21,
44] and (standard model) plaintext awareness (sPA1) [6] in the presence of multiple public keys [44],
which is based on the earlier work by Myers, Sergi, and Shelat [44] who showed a construction of a
PKE scheme that achieves security slightly weaker than CCA (the so-called cNM-CCA1 security).
Plaintext awareness was first introduced by Bellare and Rogaway [8] as a useful notion for showing
CCA security of a PKE scheme in the random oracle model [7], and was used in a number of
random-oracle-model constructions (e.g. [8, 25, 26, 48]). Bellare and Palacio [6] defined the standard
model versions of plaintext awareness.1 The plaintext awareness notions were further studied by
subsequent works (e.g. [21]). The most works on plaintext awareness studied the notions for the
single key setting. The extension to the multiple keys setting was first introduced by Myers, Sergi,
and Shelat [44].

We note that it is not well-known or well-studied if plaintext awareness for the multiple keys
setting is equivalent to the more familiar notion of plaintext awareness in the single key setting, and
it is typically considered that plaintext awareness is a strong security assumption (because to achieve
it we have to rely on a “knowledge”-type assumption). In the construction of [19], the underlying
PKE scheme needs to be plaintext aware in the presence of 2k + 2 public keys. Our motivation in
this work is to clarify whether we can weaken the assumption of plaintext awareness in Dachman-
Soled’s construction [19]. As mentioned in [19], a plaintext aware (sPA1) PKE scheme seems almost
like a CCA1 secure PKE scheme [47], but it seems not possible to replace the building block PKE
scheme in [19] with a CCA1 secure scheme to remove the plaintext awareness. It is currently not
known if we can construct a CCA secure PKE scheme only from a CPA secure scheme or even from

1 [6] defined several versions (PA0, PA1, and PA2, with their computational/statistical/perfect variants) for standard
model plaintext awareness. As in the previous works [44, 19], we focus on the statistical PA1 notion in the multiple
keys setting (denoted by “sPA1ℓ”, where ℓ denotes the number of public keys).
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a CCA1 secure scheme. We believe that studying the possibility of weakening the assumption of
plaintext awareness from [19] thus is expected to lead to deepening our knowledge on this topic,
and generally contribute to the long line of research on clarifying the minimal general assumption
that implies CCA secure PKE.

1.2 Our Contributions

Based on the motivation mentioned above, we study the possibility of weakening the requirements
of plaintext awareness used in Dachman-Soled’s construction [19], and come up with new results
that show that the strength of plaintext awareness required in [19] can be somehow “traded” with
the strength of a “simulatability” property of other building blocks. Furthermore, we also show that
we can “separate” the requirement that a single PKE scheme needs to be simultaneously weakly
simulatable and plaintext aware, in her construction.

Specifically, in this paper we show two new constructions of CCA secure KEMs (which are given
in Section 4), based on the assumptions that are incomparable to those used in [19]:

– Our first construction (Section 4.1) is based on a KEM which is chosen plaintext (CPA) secure
and plaintext aware only under the 2 keys setting2, and a PKE scheme satisfying a “slightly
stronger” simulatability than weak simulatability, called “trapdoor simulatability” (introduced
by Choi et al. [15]). Actually, although we write that it is “slightly stronger”, it is formally
incomparable to weak simulatability. For more details, see Section 1.3.

– Our second construction (Section 4.2) is based on a KEM which is 1-bounded CCA secure [16]
and plaintext aware only in the single key setting, and a trapdoor simulatable PKE scheme.
We can in fact slightly weaken the requirement of 1-bounded CCA security to CPA security in
the presence of one “plaintext-checking” query [48, 1]. We will also show that we can construct
a KEM satisfying simultaneously 1-bounded CCA security and plaintext awareness under the
single key setting, based on a KEM satisfying CPA security and plaintext awareness under the
2k keys setting, via the recent result by Dodis and Fiore [22, Appendix C].

One may wonder the meaning of the second construction, because if we use a KEM that is
plaintext aware under O(k) keys setting, there is no merit compared to our first construction.
We are however considering it to be still meaningful in several aspects, and we refer the reader
to Section 4.2 for more discussions regarding the second construction.

Note that from CCA secure KEMs, we can immediately obtain full-fledged PKE schemes by using
CCA secure SKE [17].

We emphasize that we do not require plaintext awareness and the trapdoor simulatability
property to be satisfied by a single building block. This “separation” of the requirements should
be contrasted with Dachman-Soled’s construction [19], the building block PKE scheme of which
is required to satisfy plaintext awareness and the weak simulatability property simultaneously.
We also again emphasize that the assumptions on which both of our constructions are based,
are incomparable to those used in [19]. Thus, our results add new recipes for constructing CCA
secure PKE/KEM from general assumptions (and thus the assumptions that we use could be new
targets that are worth pursuing), and also show interesting trade-offs regarding assumptions with
Dachman-Soled’s construction.

2 Plaintext awareness for KEMs is defined analogously to that for PKE. See Section 2.1.



1.3 Technical Overview

Assumptions on the Building Blocks. Trapdoor simulatable PKE (TSPKE) [15] is the key building
block for our constructions. TSPKE is a weaker (relaxed) version of simulatable PKE that was
originally formalized by Damg̊ard and Nielsen [20]. Simulatable PKE admits “oblivious sampling”
of both public keys and ciphertexts (i.e. sampling them without knowing the randomness or plain-
text) in such a way that honestly generated public keys and ciphertexts can be later convincingly
explained that they were generated obliviously. These properties are realized by requiring that the
key generation algorithm and the encryption algorithm have their own “oblivious sampling” algo-
rithm and its corresponding “inverting” algorithm (where the inverting algorithm corresponds to
the algorithm that “explains” that an honestly generated public key (or a ciphertext) is sampled
obliviously). The difference between TSPKE and simulatable PKE is whether we allow the “invert-
ing” algorithm to take the randomness (and the plaintext) used by the ordinary algorithms (key
generation and encryption algorithms) as input. TSPKE allows to take these inputs, while ordi-
nary simulatable PKE does not, which makes the security property of TSPKE weaker but easier to
achieve. For our purpose, we only need even a simplified version of TSPKE than the formalization
in [15]: we only require a pair (pk, c) of public key/ciphertext (or, a “transcript”) can be obliviously
sampled, but not each of pk and c can be so (which is the formalization in [15]). It was shown
[20, 15] that we can realize TSPKE from a number of standard cryptographic assumptions, such as
the computational and decisional Diffie-Hellman assumptions, RSA, Factoring, and lattice based
assumptions. (For more details, see Section 2.2.)

On the other hand, a weakly simulatable PKE scheme (used in the constructions in [44, 19])
considers oblivious sampling only for the encryption algorithm. However, the definition of weakly
simulatable PKE used in [44, 19] does not allow the inverting algorithms to take the randomness
and the plaintext used by the ordinary encryption algorithm. Therefore, strictly speaking, the
“strength” of these primitives as “general cryptographic assumptions” are actually incomparable.
Nonetheless, the reason why we still think that weakly simulatable PKE could be viewed as a weaker
primitive, is that it does not require the key generation algorithm to be obliviously samplable. In
fact, this difference is very important for our work. It is this simple difference between TSPKE
and weakly simulatable PKE that enables us to weaken the plaintext awareness required in [19],
from plaintext awareness in the presence of O(k) keys in [19] into that under only O(1) keys in our
constructions.

Ideas for the Constructions. Other than employing TSPKE instead of weakly simulatable PKE, the
ideas for our constructions and their security analyses are similar to those in [19]. In particular, the
construction of [19] and our constructions are based on the Dolev-Dwork-Naor (DDN) construction
[24], but we do not require a non-interactive zero-knowledge proof to ensure the validity of a
ciphertext. Instead, the approach of the “double-layered” construction of Myers and Shelat [45]
(and its simplifications [32, 38, 41] and variants [39, 40, 42]) is employed, in which a ciphertext
consists of the “inner”-layer and “outer”-layer, and the randomness used for generating an outer
ciphertext is somehow embedded into an inner ciphertext, so that in the decryption, the validity of
the outer ciphertext can be checked by “re-encryption” using the randomness recovered from the
inner ciphertext. (In our constructions, the inner-layer encryption is done by a KEM.) In fact, we
do a simplification to [19] by removing a one-time signature scheme in [19], by using a commitment
scheme, based on the ideas employed in the recent constructions [39, 40, 42].

Recently, Matsuda and Hanaoka [40] introduced the notion of puncturable tag-based encryption
(PTBE) which abstracts and formalizes the “core” structure of the DDN construction [24]. We



define the trapdoor simulatability property for PTBE (and call the primitive trapdoor simulatable
PTBE ) in Section 3, and use this primitive as an “intermediate” building block in our constructions.
(This primitive could have other applications than constructing CCA secure PKE, and may be of
independent interest.) There, we also show how to construct a trapdoor simulatable PTBE scheme
from a TSPKE scheme. This construction is exactly the same as the construction of a PTBE
scheme from a CPA secure PKE scheme used in [40], which is in turn based on the original DDN
construction.

Ideas for the Security Proofs. We briefly recall the construction and the security proof in [19],
and explain the difference in our proofs and that in [19]. As mentioned above, the construction
of [19] is double-layered, where the outer encryption is like the “DDN-lite” construction (i.e. the
DDN construction without a non-interactive zero-knowledge proof), and the inner encryption is
a multiple-encryption by two PKE schemes. Both the inner and outer encryption schemes use
the same building block, with independently generated public keys: 2k keys for the outer-layer
encryption (that does DDN-lite-encryption) and 2 keys for the inner-layer encryption (that does
multiple-encryption by two encryptions). Roughly speaking, in the security proof, [19] constructs
a CPA adversary (reduction algorithm) for the inner-layer encryption, from a CCA adversary A
against the entire construction. The reduction algorithm of course has to somehow answer A’s
decryption queries, and this is the place where plaintext awareness comes into play. Plaintext
awareness in the ℓ keys setting (sPA1ℓ security) ensures that for any algorithm C (called “ciphertext
creator”) that receives a set of public keys (pki)i∈{1,...,ℓ} and a randomness rC as input and makes
decryption queries, there exists an extractor E that also receives (pki)i∈{1,...,ℓ} and rC as input,
and can “extract” the plaintext from a ciphertext queried by C. (In our actual security proofs, we
denote the “ciphertext creator” by “A′”, but for the explanation here we continue to use C for
clarity.) The idea in the proof in [19] is to use an extractor guaranteed by plaintext awareness to
answer the CCA adversary A’s decryption queries. The problem that arises here is: how do we
design the algorithm C with which the extractor E is considered? Since the extractor E needs to
be given the randomness rC used by C, if we naively design C, the reduction algorithm cannot
use the extractor E while embedding its instances (the public key and the challenge ciphertext)
in the reduction algorithm’s CPA security experiment into A’s view. The approach in [19] is to
consider a modified version of the CCA security experiment in which all component ciphertexts
(i.e. ciphertexts for the outer-layer encryption) are generated obliviously using some randomness r
(which can be performed due to the weak simulatability property of the underlying PKE scheme),
and view this modified experiment as a ciphertext creator C that takes as input ℓ = 2k + 2 public
keys (for both inner-/outer-layer encryptions) and a randomness rC consisting of the randomness
rA used by A and the randomness r used for oblivious generation of the component ciphertexts in
A’s challenge ciphertext. (rC actually also contains some additional randomness used for generating
the remaining parts of A’s challenge ciphertext, but we ignore it here for simplicity.) Designing the
algorithm C in this way, the extractor E corresponding to C can be used to answer A’s decryption
queries while the reduction algorithm (attacking the CPA security of the inner-layer encryption)
can perform the reduction.

Our main idea for weakening the requirement of plaintext awareness for the building blocks,
from 2k + 2 keys in [19] to O(1) keys, is due to the observation that by relying on the trapdoor
simulatability property for the outer-layer encryption, we can “push” the public keys for the outer-
layer encryption, into the “randomness” rC for the ciphertext creator C (with which the extractor E
is considered), by generating the public keys regarding the outer-layer encryption also obliviously. In
order to make this idea work, we thus consider a different design strategy for the ciphertext creator



C. This also enables us to “separate” the requirement that a single building block PKE scheme
needs to be simultaneously plaintext aware and simulatable, because we need the simulatability
only for the outer-layer encryption.

Actually, like the security proof of the construction in [19], we need to deal with a “bad” decryp-
tion query, which is a ciphertext such that its actual decryption result (by the normal decryption
algorithm with a secret key) differs from the decryption result obtained by using the extractor E .
(Such a decryption query makes the simulation of the decryption oracle by the reduction algo-
rithm fail.) Our first construction uses the clever trick of Dachman-Soled [19] of using two CPA
secure PKE schemes (that each encrypts a “share” of 2-out-of-2 secret sharing) and their plaintext
awareness under 2 keys setting. (As mentioned earlier, in fact, we use a KEM instead of a PKE
scheme for the inner encryption.) Dachman-Soled’s approach enables us to use the CPA security
and the ability of “detecting” bad queries at the same time. Our second construction is a simplifi-
cation of our first construction, where we employ a “single” KEM for the inner layer, as opposed to
multiple-encryption by two KEMs in our first construction. To detect “bad” decryption queries by
an adversary, we employ the ideas and techniques from [45, 32, 38, 41] of using “1-bounded CCA” se-
curity [16]. (As mentioned earlier, in fact, CPA security in the presence of one “plaintext-checking”
query [48, 1] is sufficient for our purpose.) For more details on these, see Section 4.

1.4 Related Work

The notion of CCA security for PKE was formalized by Naor and Yung [47] and Rackoff and Simon
[50]. Since the introduction of the notion, CCA secure PKE schemes have been studied in a number
of papers, and thus we only briefly review constructions from general cryptographic assumptions.
Dolev, Dwork, and Naor [24] showed the first construction of a CCA secure PKE scheme, from a
CPA secure scheme and a NIZK proof system, based on the construction by Naor and Yung [47]
that achieves weaker non-adaptive CCA (CCA1) security. These NIZK-based constructions were
further improved in [53, 55, 36]. Canetti, Halevi, and Katz [13] showed how to transform an identity-
based encryption scheme into a CCA secure PKE scheme. Kiltz [33] showed that the transform
of [13] is applicable to a weaker primitive of tag-based encryption (TBE). Peikert and Waters
[49] showed how to construct a CCA secure PKE scheme from a lossy trapdoor function (TDF).
Subsequent works showed that TDFs with weaker security/functionality properties are sufficient for
obtaining CCA secure PKE schemes [52, 43, 34, 56, 14]. Hemenway and Ostrovsky [30] showed how
to construct a CCA secure scheme in several ways from homomorphic encryption that has some
appropriate properties, and the same authors [31] showed that one can construct a CCA secure
PKE scheme from a lossy encryption scheme [5] if it can encrypt a plaintext longer than the length
of randomness consumed by the encryption algorithm. Myers and Shelat [45] showed that a CCA
secure PKE scheme for 1-bit messages can be turned into one with an arbitrarily large plaintext
space. Hohenberger, Lewko, and Waters [32] showed that CCA secure PKE can be constructed from
a PKE with a weaker security notion called detectable CCA security, from which we can obtain a
1-bit-to-multi-bit transformation for CCA security in a simpler manner than [45]. The simplicity
and efficiency of [45] were further improved by Matsuda and Hanaoka [38, 41]. Lin and Tessaro
[35] showed how to amplify weak CCA security into strong (ordinary) CCA secure one. Matsuda
and Hanaoka [39] showed how to construct a CCA secure PKE scheme by using a CPA secure
PKE scheme and point obfuscation [10, 37], and the same authors [40] showed a CCA secure PKE
scheme from a CPA secure PKE scheme and a family of hash functions satisfying the very strong
security notion called universal computational extractors (UCE) [3]. The same authors [42] recently
also showed that a CCA secure PKE scheme can be built from the combination of a sender non-



committing encryption scheme and a key-dependent-message secure SKE scheme. More recently,
Hajiabadi and Kapron [29] showed how to construct a CCA secure PKE scheme, from a 1-bit PKE
scheme that satisfies circular security and has the structural property called reproducibility.

As has been stated several times, Dachman-Soled [19] showed how to construct a CCA secure
PKE scheme from a PKE scheme which simultaneously satisfies weak simulatability [44] and the
(standard model) plaintext awareness under the multiple keys setting, which is built based on
the result by Myers, Sergi, and Shelat [44] who showed a PKE scheme satisfying the so-called
cNM-CCA1 security, from the same building blocks as [19]. Sahai and Waters [54] showed (among
other cryptographic primitives) how CCA secure PKE and KEMs can be constructed using an
indistinguishability obfuscation [2, 27].

1.5 Paper Organization

In Section 2 and Appendix A, we review basic notation and definitions of cryptographic primitives
that are used in this paper. In Section 3, we introduce the notion of trapdoor simulatable PTBE,
which is an extension of PTBE introduced in [40], and works as one of building blocks of our pro-
posed KEMs in the next section. Finally, in Section 4, we show our main results: two constructions
of KEMs that show a trade-off between “simulatability” property and “plaintext awareness” in
Dachman-Soled’s construction [19].

2 Preliminaries

In this section, we review the basic notation, and the definitions for plaintext awareness (sPA1ℓ se-
curity) [6, 44, 19] of a KEM, trapdoor simulatability properties of a PKE scheme and a commitment
scheme, and the syntax of a puncturable tag-based encryption (PTBE) scheme, which are central
to the results in this paper. The definitions for standard cryptographic primitives with standard
security definitions that are not reviewed in this section are given in Appendix A, which include
PKE, KEMs, universal one-way hash functions (UOWHFs), and signatures.

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N, we define [n] := {1, . . . , n}.
“x← y” denotes that x is chosen uniformly at random from y if y is a finite set, x is output from
y if y is a function or an algorithm, or y is assigned to x otherwise. If x and y are strings, then

“|x|” denotes the bit-length of x, “x∥y” denotes the concatenation x and y, and “(x
?
= y)” is

the operation which returns 1 if x = y and 0 otherwise. “(P)PTA” stands for a (probabilistic)
polynomial time algorithm. For a finite set S, “|S|” denotes its size. If A is a probabilistic algorithm
,then “y ← A(x; r)” denotes that A computes y as output by taking x as input and using r as
randomness, and we just write “y ← A(x)” if we do not need to make the randomness used by A
explicit. If furthermore O is a function or an algorithm, then “AO” means that A has oracle access
to O. A function ϵ(k) : N→ [0, 1] is said to be negligible if for all positive polynomials p(k) and all
sufficiently large k ∈ N, we have ϵ(k) < 1/p(k). Throughout this paper, we use the character “k”
to denote a security parameter.

2.1 Plaintext Awareness for Multiple Keys Setup (sPA1ℓ Security)

Here, we review the definition of (statistical) plaintext awareness for multiple key setup [44, 19].
Unlike these previous works, we define it for a KEM, rather than a PKE scheme, but we can define
plaintext awareness for a KEM in essentially the same way as that for a PKE scheme.



Let Γ = (KKG,Encap,Decap) be a KEM (where we review the definition of a KEM in Ap-
pendix A.2), and ℓ = ℓ(k) > 0 be a polynomial. Let A be an algorithm (called a “ciphertext
creator”) that takes a set of public keys (pki)i∈[ℓ] as input, and makes decapsulation queries of the
form (j ∈ [ℓ], c) which is supposed to be answered with K = Decap(skj , c). For this A, we consider
the corresponding “(plaintext) extractor” E : It is a stateful algorithm that initially takes a set of
public keys (pki)i∈[ℓ] and the randomness rA consumed by A, and expects to receive “decapsulation”
queries of the form q = (j ∈ [ℓ], c); Upon a query, it tries to extract a session-key K corresponding
to c so that K = Decap(skj , c), where skj is the secret key corresponding to pkj . After E extracts
a session-key, it may update its internal state to prepare for the next call. Informally, a KEM Γ is
said to be sPA1ℓ secure if for all PPTA ciphertext creators A, there exists a corresponding PPTA
extractor E that can work as A’s decapsulation oracle in the experiment above.

More formally, forA that makesQ = Q(k) decapsulation queries, E , and ℓ, consider the following
experiment ExptsPA1Γ,A,E,ℓ(k):

ExptsPA1Γ,A,E,ℓ(k) : [ ∀i ∈ [ℓ] : (pki, ski)← KKG(1k); rA ← {0, 1}∗; stE ← ((pki)i∈[ℓ], rA);

Run AE(stE ,·)((pki)i∈[ℓ]; rA) until it terminates;

If ∃i ∈ [Q] : Decap(skji , ci) ̸= Ki then return 1 else return 0.],

where (ji, ci) represents A’s i-th decapsulation query (which A expects to be decapsulated as a
ciphertext under pkji), and Ki represents the answer (i.e. “decapsulation result” of ci) computed
by the algorithm E . In the experiment, E is the (possibly stateful) extractor which initially takes
stE = ((pki)i∈[ℓ], rA) as input, and works like A’s decapsulation oracle, as explained above.

Definition 1. Let ℓ = ℓ(k) > 0 be a polynomial. We say that a KEM Γ is sPA1ℓ secure if for all
PPTAs (ciphertext creator) A, there exists a stateful PPTA (extractor) E such that AdvsPA1Γ,A,E,ℓ(k) :=

Pr[ExptsPA1Γ,A,E,ℓ(k) = 1] is negligible.

If ℓ = 1, then sPA1ℓ security is equivalent to statistical PA1 security defined by Bellare and
Palacio [6]. By definition, trivially, sPA1x implies sPA1y for x > y. However, to the best of our
knowledge, whether there is an implication (or separation) for the opposite direction, is not known.

2.2 (Simplified) Trapdoor Simulatable Public Key Encryption

A trapdoor simulatable PKE (TSPKE) [15] is a relaxed version of simulatable PKE [20]. Simu-
latable PKE admits “oblivious sampling” of both public keys and ciphertexts (i.e. sampling them
without knowing the randomness or plaintext) in such a way that honestly generated public keys
and ciphertexts can be later convincingly explained that they were generated obliviously.3 These
properties are realized by requiring that the key generation algorithm and the encryption algorithm
have their own “oblivious sampling” algorithm and its corresponding “inverting” algorithm (where
the inverting algorithm corresponds to the algorithm that explains that an honest generated public
key (or a ciphertext) is sampled obviously). The difference between TSPKE and simulatable PKE,
is whether we allow for the “inverting” algorithm to take the randomness (and the plaintext) used
by the ordinary algorithms PKG and Enc as input. Since the “inverting” algorithm in TSPKE is
allowed to see more information than that in simulatable PKE, the former primitive is strictly
weaker (and easier to construct) than the latter.

3 (Trapdoor) simulatable PKE scheme was introduced as a building block for constructing non-committing encryp-
tion [12].



ExptTSPKE-RealΠ,A (k) :

(m, st)← A1(1
k)

rg, re ← {0, 1}∗
(pk, sk)← PKG(1k; rg)
c← Enc(pk,m; re)
r̂ ← rSampΠ(rg, re,m)
b′ ← A2(st, pk, c, r̂)
Return b′.

ExptTSPKE-SimT ,A (k) :

(m, st)← A1(1
k)

r̂ ← {0, 1}∗
(pk, c)← oSampΠ(1k; r̂)
b′ ← A2(st, pk, c, r̂)
Return b′.

ExptTSPTBE-RealT ,A (k) :

(tag∗,m, st)← A1(1
k)

rg, re ← {0, 1}∗
(pk, sk)← TKG(1k; rg)
c← TEnc(pk, tag∗,m; re)

ŝktag∗ ← Punc(sk, tag∗)
r̂ ← rSampT (rg, re, tag

∗,m)

b′ ← A2(st, pk, c, ŝktag∗ , r̂)
Return b′.

ExptTSPTBE-SimT ,A (k) :

(tag∗,m, st)← A1(1
k)

r̂ ← {0, 1}∗

(pk, c, ŝktag∗)← oSampT (tag
∗; r̂)

b′ ← A2(st, pk, c, ŝktag∗ , r̂)
Return b′.

Fig. 1. Security experiments for defining security of TSPKE (upper-left and upper-right) and those for defining
security of TSPTBE (bottom-left and bottom-right)

For our purpose, we only need even a simplified version of TSPKE of [15]: we only require a pair
(pk, c) of public key/ciphertext (or, “transcript) can be obliviously sampled [15], but not each of pk
and c can be so. A TSPKE scheme with such a simplified syntax may not be useful for constructing
non-committing encryption (as done in [20, 15]), but sufficient for our purpose in this paper.

Definition 2. We say that a PKE scheme4 Π = (PKG,Enc,Dec) is trapdoor simulatable (and
say that Π is a trapdoor simulatable PKE (TSPKE) scheme) if Π has two additional PPTAs
(oSampΠ , rSampΠ) with the following properties:

– oSampΠ is the oblivious-sampling algorithm which takes 1k as input, and outputs an “obliviously
generated” public key/ciphertext pair (pk, c).

– rSampΠ is the inverting algorithm (corresponding to oSampΠ) that takes randomness rg and
re, and a plaintext m (which are supposed to be used as (pk, sk) ← PKG(1k; rg) and c ←
Enc(pk,m; re)) as input, and outputs a string r̂ (that looks like a randomness used by oSampΠ).

– (Trapdoor Simulatability) For all PPTAs A = (A1,A2), the advantage AdvTSPKEΠ,A (k) :=

|Pr[ExptTSPKE-RealΠ,A (k) = 1]− Pr[ExptTSPKE-SimΠ,A (k) = 1]| is negligible, where the experiments

ExptTSPKE-RealΠ,A (k) and ExptTSPKE-SimΠ,A (k) are defined as in Fig. 1 (upper-left and upper-right, re-
spectively).

Concrete Instantiations of TSPKE. Since our definition of TSPKE is a simplified (and hence
weaker) version of the definition by Choi et al. [15], and TSPKE is a weaker primitive than a
simulatable PKE scheme in the sense of Damg̊ard and Nielsen [20], we can use any of (trapdoor)
simulatable PKE schemes shown in these works. In particular, we can construct a TSPKE scheme
from most of the standard cryptographic assumptions such as the computational and decisional
Diffie-Hellman, RSA, factoring, and learning-with-errors assumptions [20, 15]. (For example, the
ElGamal encryption, Damg̊ard’s ElGamal encryption, and Cramer-Shoup-Lite encryption schemes
can be shown to be a TSPKE scheme if they are implemented in a simulatable group [21].) In
terms of “general” cryptographic assumptions, Damg̊ard and Nielsen [20] showed that a simulatable

4 The syntax of PKE is reviewed in Appendix A.1.



PKE scheme can be constructed from a family of trapdoor permutations with the simulatability
property, in which the key generation and the domain-sampling algorithms have the oblivious
sampling property (which is defined analogously to simulatable PKE). Hence, we can also construct
a TSPKE from it.

2.3 Trapdoor Simulatable Commitment Schemes

Let C = (CKG,Com) be a commitment scheme. (We review the syntax of a commitment scheme
and its “target-binding” property in Appendix A.3.)

We define the trapdoor simulatability property of a commitment scheme C, which is defined
in exactly the same way as the trapdoor simulatability of a PKE scheme. Namely, we require
that there be the oblivious sampling algorithm oSampC (for sampling a key/commitment pair
(ck, c)) and the corresponding inverting algorithm rSampC , whose interfaces are exactly the same
as oSampΠ and rSampΠ of a TSPKE scheme, respectively. We say that a commitment scheme C is
trapdoor simulatable (and say that C is a trapdoor simulatable commitment scheme) if for all PPTA
adversaries A, the advantage AdvTSComC,A (k) := |Pr[ExptTSCom-RealC,A (k) = 1]−Pr[ExptTSCom-SimC,A (k) = 1]| is
negligible, where the experiments ExptTSCom-RealC,A (k) and ExptTSCom-SimC,A (k) are defined in exactly the

same way as ExptTSPKE-RealΠ,A (k) and ExptTSPKE-SimC,A (k) for a TSPKE scheme, respectively (and thus we
do not write down them).

We can achieve a commitment scheme which satisfies target-binding, trapdoor simulatability,
and the requirement of the size of commitments (namely we require the size of commitments to be
k-bit for k-bit security), only from a TSPKE scheme and a UOWHF, just by hashing a ciphertext
of the TSPKE scheme by the UOWHF. We review this construction in Appendix B.

2.4 Puncturable Tag-Based Encryption

Here, we recall the syntax of puncturable tag-based encryption (PTBE), which was introduced
by Matsuda and Hanaoka [40] as an abstraction of the “core” structure of the Dolev-Dwork-Naor
(DDN) construction [24]. Similarly to [40], we use PTBE as an intermediate building block to
reduce the description complexity of our proposed constructions in Section 4.

Intuitively, a PTBE scheme is a TBE scheme that has a mechanism for generating a “punctured”
secret key ŝktag∗ , according to a “punctured point” tag tag∗. The punctured secret key can be used
to decrypt all “honestly generated” ciphertexts that are generated under tags that are different
from tag∗, while the punctured secret key is useless for decrypting ciphertexts generated under
tag∗.

Formally, a PTBE scheme consists of the five PPTAs (TKG,TEnc,TDec,Punc, T̂Dec) among
which the latter three algorithms are deterministic, with the following interface:

Key Generation: Encryption: Decryption:

(pk, sk)← TKG(1k) c← TEnc(pk, tag,m) m (or ⊥)← TDec(sk, tag, c)

Puncturing: Punctured Decryption:

ŝktag∗ ← Punc(sk, tag∗) m (or ⊥)← T̂Dec(ŝktag∗ , tag, c)

where (pk, sk) is a public/secret key pair, c is a ciphertext of a plaintext m under pk and a tag

tag ∈ {0, 1}k, and ŝktag∗ is a “punctured” secret key corresponding to a tag tag∗ ∈ {0, 1}k.
We require for all k ∈ N, all tags tag∗, tag ∈ {0, 1}k such that tag∗ ̸= tag, all (pk, sk) output

from TKG(1k), all plaintexts m, and all ciphertexts c output from TEnc(pk, tag,m), it holds that



TDec(sk, tag, c) = T̂Dec(Punc(sk, tag∗), tag, c) = m. (Note that correctness is guaranteed only for
ciphertexts c generated from TEnc(pk, tag, ·).)

In [40], the security notion called “extended CPA security” was defined as a security notion
of PTBE. In our proposed KEMs, we need a stronger security property for PTBE, which is an
analogue of TSPKE, and we will introduce it in the next section.

3 Trapdoor Simulatable PTBE

In this section, we define trapdoor simulatability of a PTBE scheme, in the same way as that of
a PKE scheme and a commitment scheme. However, for the oblivious sampling algorithm, we let
it take a “punctured point” tag tag∗ as input, and require that it output the punctured secret key
ŝktag∗ (corresponding to tag∗) in addition to a public key/ciphertext pair (pk, c).

Formally, we define a trapdoor simulatable PTBE (TSPTBE) as follows:

Definition 3. We say that a PTBE scheme T = (TKG,TEnc,TDec,Punc, T̂Dec) is trapdoor simu-
latable (and say that T is a trapdoor simulatable PTBE (TSPTBE) scheme) if T has two additional
PPTAs (oSampT , rSampT ) with the following properties:

– oSampT is the oblivious sampling algorithm which takes a “punctured point” tag tag∗ as input,
and outputs an “obliviously generated” public key/ciphertext pair (pk, c) and a punctured secret

key ŝktag∗.
– rSampT is the inverting algorithm (corresponding to oSampT ) that takes 1k, randomness rg

and re, a “punctured point” tag tag∗, and a plaintext m (which are supposed to be used as
(pk, sk) ← TKG(1k; rg) and c ← TEnc(pk, tag∗,m; re)) as input, and outputs a string r̂ (that
looks like a randomness used by oSampT ).

– (Trapdoor Simulatability) For all PPTAs A = (A1,A2), the advantage AdvTSPTBET ,A (k) :=

|Pr[ExptTSPTBE-RealT ,A (k) = 1] − Pr[ExptTSPTBE-SimT ,A (k) = 1]| is negligible, where the experiments

ExptTSPTBE-RealT ,A (k) and ExptTSPTBE-SimT ,A (k) are defined as in Fig. 1 (bottom-left and bottom-right,
respectively).

On the Existence of TSPTBE. Though it might look complicated, we can construct a TSPTBE
scheme from a TSPKE scheme, by a Dolev-Dwork-Naor-style approach [24]. The construction is
exactly the same as the construction of a PTBE scheme from any CPA secure PKE shown in [40],
which is the “core” structure of the DDN construction, namely, the DDN construction without a
NIZK proof and without its one-time signature. We show the following lemma in Appendix C.1.

Lemma 1. If a TSPKE scheme exists, then so does a TSPTBE scheme.

Useful fact. For the security proofs of our constructions in Section 4, we will use the fact that the
straightforward concatenation of a “transcript” of a trapdoor simulatable commitment and that of
a TSPTBE scheme, also admits the trapdoor simulatable property.

Specifically, for a TSPTBE scheme T = (TKG,TEnc,TDec,Punc, T̂Dec, oSampT , rSampT ) and a
trapdoor simulatable commitment scheme C = (CKG,Com, oSampC , rSampC) such that the plaintext
space of T and that of C are identical, and for an adversary A = (A1,A2), consider the following
“real” experiment ExptTS-Real[C,T ],A (k) and the “simulated” experiment ExptTS-Sim[C,T ],A(k) as described in
Fig. 2 (left and right, respectively). Then, we can prove the following lemma, whose proof is almost
straightforward due to the trapdoor simulatability property of C and T , and is given in Appendix C.2
for self-containment.



ExptTS-Real[C,T ],A(k) :

(m, st)← A1(1
k)

rg, r
′
g, rc, rt ← {0, 1}∗

ck ← CKG(1k; rg)
tag∗ ← Com(ck,m; rc)
r̂c ← rSampC(rg, rc,m)

(pk, sk)← TKG(1k; r′g)
c∗ ← TEnc(ck, tag∗,m; re)

ŝktag∗ ← Punc(sk, tag∗)
r̂t ← rSampT (r′g, rt, tag

∗,m)

b′ ← A2(st, ck, tag
∗, pk, c∗, ŝktag∗ , r̂c, r̂t)

Return b′.

ExptTS-Sim[C,T ],A(k) :

(m, st)← A1(1
k)

r̂c, r̂t ← {0, 1}∗
(ck, tag∗)← oSampC(1

k; r̂c)

(pk, c∗, ŝktag∗)← oSampT (tag
∗; r̂t)

b′ ← A2(st, ck, tag
∗, pk, c∗, ŝktag∗ , r̂c, r̂t)

Return b′.

Fig. 2. Security experiments for defining the trapdoor simulatability of the concatenation of a “transcript” of a
trapdoor simulatable commitment scheme and that of a TSPTBE scheme.

Lemma 2. Assume that the commitment scheme C and the PTBE scheme T are both trapdoor
simulatable. Then, for all PPTAs A, AdvTS[C,T ],A(k) := |Pr[Expt

TS-Real
[C,T ],A (k) = 1]−Pr[ExptTS-Sim[C,T ],A(k) =

1]| is negligible.

4 Proposed KEMs

In this section, we show our main results: two KEMs that show the “trade-off” between the strength
of (standard model) plaintext awareness and the simulatability property with those of the construc-
tion by Dachman-Soled [19].

In Section 4.1, we show our first construction, which is CCA secure based on a KEM satisfying CPA
security and sPA12 security, and a TSPKE scheme. In Section 4.2, we show our second construction
which is CCA secure based on a KEM satisfying 1-CCA security and sPA11 security, and a TSPKE
scheme.

4.1 First Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is n = n(k) and whose

session-key space is {0, 1}3k for k-bit security. 5 Let T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE
scheme and C = (CKG,Com) be a commitment scheme. We require the plaintext space of TEnc and
the message space of Com to be {0, 1}2n, and the randomness space of TEnc and that of Com to be
{0, 1}k for k-bit security. 6 Then, our first proposed KEM Γ = (KKG,Encap,Decap) is constructed
as in Fig. 3.

Alternative Decapsulation Algorithm. Similarly to the constructions in [38–40], to show the CCA

security of the proposed KEM Γ , it is useful to consider the following alternative decapsulation
algorithm AltDecap. For a k-bit string tag∗ ∈ {0, 1}k and a key pair (PK,SK) output by KKG(1k),
where PK = (pkin0, pkin1, pk, ck) and SK = (skin0, skin1, sk, PK), we define an “alternative”

secret key ŜKtag∗ associated with tag∗ ∈ {0, 1}k by ŜKtag∗ = (skin0, skin1, tag
∗, ŝktag∗ , PK), where

5 Note that the session-key space of a KEM can be adjusted “for free” by applying a pseudorandom generator to a
session-key. Such a construction preserves CPA and sPA1ℓ security.

6 The requirements of the randomness space of TEnc and Com are without loss of generality, because we can
adjust them using a pseudorandom generator. (The trapdoor simulatability property is preserved even if we use a
pseudorandom generator.)



KKG(1k) :
(pkin0, skin0)← KKGin(1

k)

(pkin1, skin1)← KKGin(1
k)

(pk, sk)← TKG(1k)
ck ← CKG(1k)
PK ← (pkin0, pkin1, pk, ck)
SK ← (skin0, skin1, sk, PK)
Return (PK,SK).

Encap(PK) :
(pkin0, pkin1, pk, ck)← PK
(cin0, α0)← Encapin(pkin0)
(cin1, α1)← Encapin(pkin1)
α← α0 ⊕ α1

Parse α as (rc, rt,K) ∈ ({0, 1}k)3
tag← Com(ck, (cin0∥cin1); rc)
c← TEnc(pk, tag, (cin0∥cin1); rt)
C ← (tag, c).
Return (C,K).

Decap(SK,C) :
(skin0, skin1, sk, PK)← SK
(pkin0, pkin1, pk, ck)← PK
(tag, c)← C
(cin0∥cin1)← TDec(sk, tag, c)
If TDec has returned ⊥ then return ⊥.
α0 ← Decapin(skin0, cin0)
α1 ← Decapin(skin1, cin1)
If α0 = ⊥ or α1 = ⊥ then return ⊥.
α← α0 ⊕ α1

Parse α as (rc, rt,K) ∈ ({0, 1}k)3
If Com(ck, (cin0∥cin1); rc) = tag

and TEnc(pk, tag, (cin0∥cin1); rt) = c
then return K else return ⊥.

Fig. 3. The first proposed construction: the KEM Γ based on a KEM Γin, a commitment scheme C, and a PTBE
scheme T .

ŝktag∗ = Punc(sk, tag∗). AltDecap takes an “alternative” secret key ŜKtag∗ defined as above and a
ciphertext C = (tag, c) as input, and runs as follows:

AltDecap(ŜKtag∗ , C): First check if tag∗ = tag, and return ⊥ if this is the case. Otherwise, run

in exactly the same way as Decap(SK,C), except that “(cin0∥cin1) ← T̂Dec(ŝktag∗ , tag, c)” is
executed in the fourth step, instead of “(cin0∥cin1)← TDec(sk, tag, c).”

Regarding AltDecap, the following lemma is easy to see due to the correctness of the underlying
PTBE scheme T and the validity check of c by re-encryption performed at the last step.

Lemma 3. Let tag∗ ∈ {0, 1}k be a string and let (PK,SK) be a key pair output by KKG(1k).

Furthermore, let ŜKtag∗ be an alternative secret key as defined above. Then, for any ciphertext
C = (tag, c) (which could be outside the range of Encap(PK)) satisfying tag ̸= tag∗, it holds that

Decap(SK,C) = AltDecap(ŜKtag∗ , C).

Proof of Lemma 3. Let tag∗ ∈ {0, 1}k, PK, SK = (skin0, skin1, sk, PK), and ŜKtag∗ = (skin0,

skin1, tag
∗, ŝktag∗ , PK) be as stated in the lemma. Fix arbitrarily a ciphertext C = (tag, c) (which

could be outside the range of Encap(PK)) satisfying tag ̸= tag∗. For notational convenience, let

(cin0∥cin1) = TDec(sk, tag, c) and (c′in0∥c′in1) = TDec(ŝktag∗ , tag, c). Consider the following two
cases that cover all possibilities:

Case (cin0∥cin1) = (c′in0∥c′in1): In this case, both Decap and AltDecap proceed identically after
their fourth step, and thus the outputs from both algorithms agree.

Case (cin0∥cin1) ̸= (c′in0∥c′in1): In this case, both Decap and AltDecap return ⊥. To see this, recall
that the last step of Decap and that of AltDecap both check whether the second component c
of C = (tag, c) is an output of TEnc(pk, tag, ·; ·). However, the correctness of the PTBE scheme
T implies that for all tags tag ̸= tag∗ and all ciphertexts c produced from TEnc(pk, tag, ·; ·),
it holds that TDec(sk, tag, c) = TDec(ŝktag∗ , tag, c). Thus, that (cin0∥cin1) ̸= (c′in0∥c′in1) occurs
implies that c is not in the range of TEnc(pk, tag, ·; ·). That is, there exists no randomness r such
that TEnc(pk, tag, (cin0∥cin1); r) = c or TEnc(pk, tag, (c′in0∥c′in1); r) = c, and thus both Decap



and AltDecap return ⊥ at their last step at the latest. Actually, Decap could return ⊥ earlier
if (cin0∥cin1) = ⊥, Decapin(skin0, cin0) = ⊥, or Decapin(skin1, cin1) = ⊥, and the situation is
similar for AltDecap. However, in any case the output of these algorithms is ⊥.

We have seen that Decap(SK,C) = AltDecap(ŜKtag∗ , C) holds for all ciphertexts C = (tag, c)
satisfying tag ̸= tag∗, which proves the lemma. ⊓⊔ (Lemma 3)

CCA Security. The security of Γ is guaranteed by the following theorem.

Theorem 1. Assume that the KEM Γin is CPA secure and sPA12 secure, the commitment scheme C
is target-binding and trapdoor simulatable, and the PTBE scheme T is trapdoor simulatable. Then,
the KEM Γ constructed as in Fig. 3 is CCA secure.

Note that as mentioned in Section 2.3, a commitment scheme with trapdoor simulatability and
target-binding can be constructed from any TSPKE scheme, and thus the above theorem shows
that we can indeed construct a CCA secure KEM (and thus CCA secure PKE) from the combination
of a KEM satisfying CPA and sPA12 security and a TSPKE scheme.

We have provided ideas for the security proof in Section 1.3, and thus we directly proceed to
the proof.

Proof of Theorem 1. Let A be any PPTA adversary that attacks the CCA security of the KEM
Γ . Our security proof is via the sequence of games argument. To describe the games, we will need
an extractor E corresponding to some “ciphertext creator” A′ that is guaranteed to exist by the
sPA12 security of Γin. Specifically, consider the following A′ (that internally runs A) that runs in
the experiment ExptsPA1Γin,A′,E,2(k), with a corresponding extractor E :

A′E(stE ,·)(pk1, pk2; rA′ = (rA, r̂c, r̂t,K
∗)): A′ firstly sets pkin0 ← pk1 and pkin1 ← pk2 (which im-

plicitly sets skin0 ← sk1 and skin1 ← sk2, where sk1 (resp. sk2) is the secret key corre-

sponding to pk1 (resp. pk2)), and runs (ck, tag∗) ← oSampC(1
k; r̂c) and (pk, c∗, ŝktag∗) ←

oSampT (tag
∗; r̂t). Then A′ sets PK ← (pkin0, pkin1, pk, ck) and C∗ ← (tag∗, c∗), and then

runs A(PK,C∗,K∗; rA).

When A submits a decapsulation query C, A′ responds to it as if it runs AltDecap(ŜKtag∗ , C),
where the oracle calls (to the extractor E) of the form (1, cin0) and (2, cin1) are used as substitutes
for Decapin(skin0, cin0) and Decapin(skin1, cin1), respectively. More precisely, A′ answers A’s
decapsulation query C = (tag, c) as follows:
1. If tag = tag∗, then return ⊥ to A.
2. Run (cin0∥cin1)← T̂Dec(ŝktag∗ , tag, c), and return ⊥ to A if T̂Dec has returned ⊥.
3. Submit queries (1, cin0) and (2, cin1) to the extractor E(stE , ·) and receive the answers α0 and

α1, respectively. (Here, the answers α0 and α1 are expected to be α0 = Decapin(skin0, cin0)
and α1 = Decapin(skin1, cin1), respectively, and the extractor E may update its state upon
each call.)

4. If α0 = ⊥ or α1 = ⊥, then return ⊥ to A.
5. Let α← α0 ⊕ α1 and parse α as (rc, rt,K) ∈ ({0, 1}k)3.
6. If Com(ck, (cin0∥cin1); rc) = tag and TEnc(pk, (cin0∥cin1); rt) = c, then return K, otherwise

return ⊥, to A.
When A terminates, A′ also terminates.

The above completes the description of the algorithm A′. The randomness rA′ consumed by A′ is of
the form (rA, r̂c, r̂t,K

∗), where rA, r̂c, and r̂t are the randomness used by A, oSampC , and oSampT ,



respectively, and K∗ is a k-bit string. The corresponding extractor E thus receives (pk1, pk2) and
rA′ as its initial state stE . Note that since Γin is assumed to be sPA12 secure and A′ is a PPTA,
AdvsPA1Γin,A′,E,2(k) is negligible for this extractor E , which will be used later in the proof. (Looking
ahead, we will design the sequence of games so that A’s view in the case A is internally run by A′
and A′ is run in ExptsPA1Γin,A′,E,2(k), is identical to A’s view in Game 6.)

For convenience, we refer to the procedure of using the extractor E as substitutes for Decapin(skin0,
·) and Decapin(skin1, ·), as AltDecap′E . Here, AltDecap

′
E is a stateful procedure that initially takes

tag∗, ŝktag∗ , and an initial state stE of E (i.e. stE = ((pkin0, pkin1), rA′)) as input, and expects to
receive a ciphertext C = (tag, c) as an input. If it receives a ciphertext C = (tag, c), it calculates

the decapsulation result K (or ⊥) as A′ does for A, using ŝktag∗ and the extractor E , where E ’s
internal state could be updated upon each execution.

Now, using the adversary A and the extractor E , consider the following sequence of games:
(Here, the values with asterisk (*) represent those related to the challenge ciphertext for A.)

Game 1: This is the experiment ExptCCAΓ,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c) satisfying tag = tag∗

are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered with AltDecap(ŜKtag∗ ,

C), where ŜKtag∗ is the alternative secret key corresponding to (PK,SK) and tag∗. Further-
more, we pick a random bit γ ∈ {0, 1} uniformly at random just before executing A, which will
be used to define the events in this game and the subsequent games. (γ does not appear in A’s
view in this and all subsequent games, and thus does not affect its behavior at all.)

Game 4: In this game, we use AltDecap′E (defined as above) as A’s decapsulation oracle, where
the initial state of E (used internally by AltDecap′E) is prepared using the “inverting algorithms”
rSampC of C and rSampT of T . Moreover, we also change the ordering of the steps so that they
do not affect A’s view.
More precisely, this game is defined as follows:

Game 4:

(pkin0, skin0)← KKGin(1
k);

(pkin1, skin1)← KKGin(1
k);

(c∗in0, α
∗
0)← Encapin(pkin0);

(c∗in1, α
∗
1)← Encapin(pkin1);

α∗ ← (α∗
0 ⊕ α∗

1);

Parse α∗ as (r∗c , r
∗
t ,K

∗
1 ) ∈ ({0, 1}k)3;

(Continue to the center column ↗)

rg ← {0, 1}∗;
ck ← CKG(1k; rg);
tag∗ ← Com(ck, (c∗in0∥c∗in1); r∗c );
r̂c ← rSampC(rg, r

∗
c , (c

∗
in0∥c∗in1));

r′g ← {0, 1}∗;
(pk, sk)← TKG(1k; r′g);

ŝktag∗ ← Punc(sk, tag∗);
c∗ ← TEnc(pk, tag∗, (c∗in0∥c∗in1); r∗t );
r̂t ← rSampT (r

′
g, r

∗
t , tag

∗, (c∗in0∥c∗in1));
(Continue to the right column ↗)

PK ← (pkin0, pkin1, pk, ck);
C∗ ← (tag∗, c∗);
K∗

0 ← {0, 1}k;
b← {0, 1};
rA ← {0, 1}∗;
rA′ ← (rA, r̂c, r̂t,K

∗
1 );

stE ← ((pkin0, pkin1), rA′);
γ ← {0, 1};
b′ ← AO(PK,C∗,K∗

b ; rA)

where the decapsulation oracle O that A has access in Game 4 is AltDecap′E (which initially

receives tag∗, ŝktag∗ , stE = (pkin0, pkin1, rA′) as input). Note that the extractor E used internally
by AltDecap′E may update its state stE upon each execution.

Game 5: Same as Game 4, except that r∗c , r
∗
t ,K

∗
1 ∈ {0, 1}k are picked uniformly at random,

independently of α∗ = α∗0 ⊕ α∗1. That is, the steps “α∗ ← α∗0 ⊕ α∗1; Parse α∗ as (r∗c , r
∗
t ,K

∗
1 ) ∈

({0, 1}k)3” in Game 4 are replaced with the step “r∗c , r
∗
t ,K

∗
1 ← {0, 1}k,” and we do not use α∗

anymore.
Game 6: Same as Game 5, except that the key/commitment pair (ck, tag∗) and the key/ciphertext

pair (pk, c∗) and a punctured secret key ŝktag∗ are sampled obliviously, and correspondingly the
randomness r̂c and r̂t used for oblivious sampling are used in rA′ .



More precisely, the steps “rg, r
∗
c ← {0, 1}∗; ck ← CKG(1k; rg); tag

∗ ← Com(ck, (c∗in0∥c∗in1); r∗c );
r̂c ← rSampC(rg, r

∗
c , (c

∗
in0∥c∗in1))” in Game 5 are replaced with the steps “r̂c ← {0, 1}∗; (ck, tag∗)

← oSampC(1
k; r̂c)”.

Furthermore, the steps “r′g, r
∗
t ← {0, 1}k; (pk, sk)← TKG(1k; r′g); c

∗ ← TEnc(pk, tag∗, (c∗in0∥c∗in1);
r∗t ); r̂t ← rSampT (r

′
g, r
∗
t , tag

∗, (c∗in0∥c∗in1))” in Game 5 are replaced with the steps “r̂t ← {0, 1}∗;
(pk, ŝktag∗ , c

∗)← oSampT (tag
∗; r̂t)”.

The above completes the description of the games.
For i ∈ [5], let Succi denote the event that A succeeds in guessing the challenge bit (i.e. b′ = b

occurs) in Game i. Furthermore, for i ∈ {3, . . . , 6}, we define the following bad events in Game i:

Badi: A submits a decapsulation query C = (tag, c) satisfying the following conditions simultane-

ously: (1) tag ̸= tag∗, (2) T̂Dec(ŝktag∗ , tag, c) = (cin0∥cin1) ̸= ⊥, and (3) Decapin(skin0, cin0) ̸=
E(stE , (1, cin0)) or Decapin(skin1, cin1) ̸= E(stE , (2, cin1)).

Bad
(σ)
i : (where σ ∈ {0, 1}) A submits a decapsulation query C = (tag, c) that satisfies the same con-
ditions as Badi, except that the condition (3) is replaced with the condition: Decapin(skinσ, cinσ)
̸= E(stE , (σ + 1, cinσ)).

Bad∗i : A submits a decapsulation query C = (tag, c) that satisfies the same conditions as Badi,
except that the condition (3) is replaced with the condition: Decapin(skinγ , cinγ) ̸= E(stE , (γ +
1, cinγ)) (where γ is the random bit chosen just before executing A).

Note that for all i ∈ {3, . . . , 6}, the events Bad
(0)
i , Bad

(1)
i , and Bad∗i all imply the event Badi, and

thus we have Pr[Bad
(0)
i ],Pr[Bad

(1)
i ],Pr[Bad∗i ] ≤ Pr[Badi].

By the definitions of the games and events, we have

AdvCCAΓ,A(k) = 2 ·
∣∣∣Pr[Succ1]− 1

2

∣∣∣
≤ 2 ·

( ∑
i∈[4]

∣∣∣Pr[Succi]− Pr[Succi+1]
∣∣∣+ ∣∣∣Pr[Succ5]− 1

2

∣∣∣ ). (1)

In the following, we will upperbound each term that appears in the right hand side of the above
inequality.

Claim 1 There exists a PPTA Bb such that AdvTBindC,Bb (k) ≥ |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 1. For i ∈ {1, 2}, let NoBindi be the event that in Game i, A submits at least
one decapsulation query C = (tag, c) satisfying tag = tag∗ and Decap(SK,C) ̸= ⊥. Recall that
A’s query C must satisfy C ̸= C∗ = (tag∗, c∗), and thus tag = tag∗ implies c ̸= c∗. The difference
between Game 1 and Game 2 is how A’s decapsulation query C = (tag, c) satisfying tag = tag∗ is
answered. Hence, these games proceed identically unless NoBind1 or NoBind2 occurs in the corre-
sponding games, and thus we have∣∣∣Pr[Succ1]− Pr[Succ2]

∣∣∣ ≤ Pr[NoBind1] = Pr[NoBind2]. (2)

Thus, it is sufficient to upperbound Pr[NoBind2].
Observe that for a decapsulation query C = (tag∗, c) satisfying the condition of NoBind2,

it is guaranteed that TDec(sk, tag, c) = (cin0∥cin1) ̸= (c∗in0∥c∗in1). Indeed, if TDec(sk, tag, c) =
(c∗in0∥c∗in1) and Decap(SK,C) ̸= ⊥, then by the validity check of c in Decap, we have c∗ = c, which is



because c must satisfy TEnc(pk, tag∗, (c∗in0∥c∗in1); r∗t ) = c where r∗t is the (k+1)-to-2k-th bits of α∗ =
(α∗0⊕α∗1) = (Decapin(skin0, c

∗
in0)⊕Decapin(skin1, c

∗
in1)). However, TEnc(pk, tag∗, (c∗in0∥c∗in1); r∗t ) =

c∗ also holds due to how c∗ is generated, and thus contradicting the condition c ̸= c∗ implied by
NoBind2.

We use the above fact to show how to construct a PPTA adversary Bb that attacks the target-
binding property of the commitment scheme C with advantage AdvTBindC,Bb (k) = Pr[NoBind2]. The
description of Bb = (Bb1,Bb2) is as follows:

Bb1(1k): Bb1 first runs (pkin0, skin0) ← KKGin(1
k), (pkin1, skin1) ← KKGin(1

k), (c∗in0, α
∗
0) ←

Encapin(pkin0), and (c∗in1, α
∗
1)← Encapin(pkin1). Bb1 then sets α∗ ← (α∗0⊕α∗1), and parses α∗ as

(r∗c , r
∗
t , α
∗) ∈ ({0, 1}k)3. Finally, Bb1 setsM ← (c∗in0∥c∗in1),R← r∗c , and stB ← (Bb1’s entire view),

and terminates with output (M,R, stB).
Bb2(stB, ck): Bb2 first runs (pk, sk)← TKG(1k), and then sets PK ← (pkin0, pkin1, pk, ck) and SK
← (skin0, skin1, sk, PK). Bb2 next runs tag∗ ← Com(ck, (c∗in0∥c∗in1); r∗c ) and c∗ ← TEnc(pk, tag∗,
(c∗in0∥c∗in1); r∗t ), sets C∗ ← (tag∗, c∗), and also chooses K∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at
random. Then, Bb2 runs A, where the decapsulation queries from A are answered as Game 2
does, which is possible because Bb2 possesses SK.
When A terminates, Bb2 checks if A has made a decapsulation query C = (tag, c) satisfy-
ing the conditions of NoBind2, namely, tag = tag∗, c ̸= c∗, TDec(sk, tag, c) = (cin0∥cin1) /∈
{(c∗in0∥c∗in1),⊥}, Decapin(skin0, cin0) = α0 ̸= ⊥, Decapin(skin1, cin1) = α1 ̸= ⊥, (α0 ⊕ α1) =
(rc∥rt∥K) ∈ {0, 1}3k, and Com(ck, (cin0∥cin1); rc) = tag∗, and TEnc(pk, tag, (cin0∥cin1); rt) = c.
(Actually, the last condition is redundant for Bb2’s purpose.) If such a query is found, then Bb2
terminates with output M ′ = (cin0∥cin1) and R′ = rc. Otherwise, Bb2 gives up and aborts.

The above completes the description of Bb. It is easy to see that Bb does a perfect simulation of
Game 2 for A, and whenever A makes a query that causes the event NoBind2, Bb2 can find such
a query by using SK and output a pair (M ′, R′) = ((cin0∥cin1), rc) satisfying Com(ck,M ;R) =
Com(ck,M ′;R′) = tag∗ and M ̸= M ′, violating the target-binding property of the commit-
ment scheme C. Therefore, we have AdvTBindC,Bb (k) = Pr[NoBind2]. Then, by Equation (2), we have

AdvTBindC,Bb (k) ≥ |Pr[Succ1]− Pr[Succ2]|, as required. ⊓⊔ (Claim 1)

Claim 2 Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. It is sufficient to show that the behavior of the oracle given to A in Game 2 and
that in Game 3 are identical. Let C = (tag, c) be a decapsulation query that A makes. If tag = tag∗,

then the query is answered with ⊥ in Game 2 by definition, while the oracle AltDecap(ŜKtag∗ , C)
that is given access to A in Game 3 also returns ⊥ by definition. Otherwise (i.e. tag ̸= tag∗), by

Lemma 3, the result of Decap(SK,C) and that of AltDecap(ŜKtag∗ , C) always agree. This completes
the proof. ⊓⊔ (Claim 2)

Claim 3 There exist PPTAs Bg and Bd such that∣∣∣Pr[Succ3]− Pr[Succ4]
∣∣∣ ≤ 2 ·

(
AdvCPAΓin,Bg(k) + AdvTS[C,T ],Bd(k) + AdvsPA1Γin,A′,E,2(k)

)
.

We postpone the proof of this claim to the end of the proof of Theorem 1.



Claim 4 There exists a PPTA B′g such that AdvCPAΓin,B′g(k) = |Pr[Succ4]− Pr[Succ5]|.

Proof of Claim 2. Using A and E as building blocks, we show how to construct a PPTA CPA

adversary B′g with the claimed advantage. The description of B′g is as follows:

B′g(pk′, c′∗, α′∗β ): (where β ∈ {0, 1} is B′g’s challenge bit in its CPA experiment) B′g sets pkin0 ← pk′,

c∗in0 ← c′∗, and α∗0 ← α′∗β . Next, B′g generates (pkin1, skin1) ← KKGin(1
k) and (c∗in1, α

∗
1) ←

Encapin(pkin1), sets α
∗ ← (α∗0 ⊕ α∗1), and parses α∗ as (r∗c , r

∗
t ,K

∗
1 ) ∈ ({0, 1}k)3. Then, B′g picks

rg, r
′
g ← {0, 1}∗ uniformly at random, and runs ck ← CKG(1k; rg), tag

∗ ← Com(ck, (c∗in0∥c∗in1); r∗c ),
r̂c ← rSampC(rg, r

∗
c , (c

∗
in0∥c∗in1)), (pk, sk)← TKG(1k; r′g), ŝktag∗ ← Punc(sk, tag∗), c∗ ← TEnc(pk,

tag∗, (c∗in0∥c∗in1); r∗t ), and r̂t ← rSampT (r
′
g, r
∗
t , tag

∗, (c∗in0∥c∗in1)). Then B′g picks rA ∈ {0, 1}∗,
K∗0 ∈ {0, 1}k, and b ∈ {0, 1} all uniformly at random, and sets PK ← (pkin0, pkin1, pk, ck),
C∗ ← (tag∗, c∗), rA′ ← (rA, r̂c, r̂t,K

∗
b ), and stE ← (pkin0, pkin1, rA′). Finally, B′g runs A(PK,

C∗,K∗b ; rA).
B′g answers A’s decapsulation queries as AltDecap′E does, where the initial state of AltDecap′E
is tag∗, ŝktag∗ , and stE . (Note that stE is used by E , and may be updated upon each call of
AltDecap′E .)

When A terminates with output b′, B′g sets β′ ← (b′
?
= b), and terminates with output β′.

The above completes the description of B′g. B′g’s CPA advantage can be calculated as follows:

AdvCPAΓin,B′g(k) = 2 ·
∣∣∣Pr[β′ = β]− 1

2

∣∣∣ = ∣∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]
∣∣∣

=
∣∣∣Pr[b′ = b|β = 1]− Pr[b′ = b|β = 0]

∣∣∣.
Consider the case when β = 1. It is easy to see that in this case, B′g simulates Game 4 perfectly

for A. Specifically, the real session-key α′∗β = α′∗1 (corresponding to c∗in0 = c′∗) is used as α∗0,
and thus α∗ = (α∗0 ⊕ α∗1) = (r∗c∥r∗t ∥K∗1 ) is generated exactly as that in Game 4. All other values
are distributed identically to those in Game 4. Furthermore, B′g uses AltDecap′E for answering
A’s decapsulation queries, where the initial state of AltDecap′E (and thus the initial state of E) is
appropriately generated as those in Game 4. Under this situation, the probability that A succeeds
in guessing b (i.e. b′ = b occurs) is exactly the same as the probability that A does so in Game 4,
i.e. Pr[b′ = b|β = 1] = Pr[Succ4].

On the other hand, when β = 0, then B′g simulates Game 5 perfectly for A. Specifically, in
this case, a uniformly random value α′∗β = α′∗0 is used as α∗0. Therefore, α

∗ = (α∗0 ⊕ α∗1) is also a
uniformly random 3k-bit string, and thus each of r∗c , r

∗
t , and K∗1 is a uniformly random k-bit string,

which is exactly how these values are chosen in Game 5. Since this is the only change from the case
of β = 1, with a similar argument to the above, we have Pr[b′ = b|β = 0] = Pr[Succ5].

In summary, we have AdvCPAΓin,B′g(k) = |Pr[Succ4]− Pr[Succ5]|, as required. ⊓⊔ (Claim 4)

Claim 5 Pr[Succ5] = 1/2.

Proof of Claim 5. This is obvious because in Game 5, the real session-key K∗1 is made independent
of the challenge ciphertext C∗. Since both K∗1 and K∗0 are now uniformly random, the view of A
does not contain any information on b. This means that the probability that A succeeds in guessing
the challenge bit is exactly 1/2. ⊓⊔ (Claim 5)



Claims 1 to 5 and Equation (1) guarantee that there exist PPTAs Bb, Bg, Bd, and B′g such that

AdvCCAΓ,A(k) ≤ 2 · AdvTBindC,Bb (k) + 4 · AdvCPAΓin,Bg(k) + 4 · AdvTS[C,T ],Bd(k) + 4 · AdvsPA1Γin,A′,E,2(k)

+ 2 · AdvCPAΓin,B′g(k),

which, due to our assumptions on the building blocks and Lemma 2, implies that AdvCCAΓ,A(k) is
negligible. Recall that the choice of the PPTA CCA adversary A was arbitrarily, and thus for any
PPTA CCA adversary A we can show a negligible upperbound for AdvCCAΓ,A(k) as above.

In order to finish the proof of Theorem 1, it remains to prove Claim 3.

Proof of Claim 3. Note that the difference between Game 3 and Game 4 is how a query C = (tag, c)
satisfying the conditions of Bad3 (or Bad4) is answered, and Game 3 and Game 4 proceed identically
unless Bad3 or Bad4 occurs in the corresponding games. This means that we have∣∣∣Pr[Succ3]− Pr[Succ4]

∣∣∣ ≤ Pr[Bad3] = Pr[Bad4]. (3)

We claim the following:

Subclaim 1 Pr[Bad4] ≤ 2 · Pr[Bad∗4].

Proof of Subclaim 1. The argument here is essentially the same as the one used in the proof of
Claim 4.13 in [18].

Note that the event Bad4, Bad
(0)
4 , Bad

(1)
4 , and Bad∗4 are triggered once A makes a query C =

(tag, c) satisfying the conditions that cause these events. Moreover, by definition, if any of the latter
three events occurs, then Bad4 occurs. Furthermore, the bit γ is information-theoretically hidden
from A’s view in Game 4. This means that the probability of Bad∗4 occurring is identical to the
probability of the event (in Game 4) that is triggered when (1) A first makes a query satisfying the
conditions of Bad4, (2) γ is picked “on-the-fly” at this point, and then (3) Decapin(skinγ , cinγ) ̸=
E(stE , (γ + 1, cinγ)) holds. The probability of this event occurring is Prγ←{0,1}[Bad4 ∧ Bad

(γ)
4 ] =

Prγ←{0,1}[Bad
(γ)
4 ] (where the probability is also over Game 4 except the choice of γ). This can be

further estimated as follows:

Pr
γ←{0,1}

[Bad
(γ)
4 ] =

1

2

(
Pr[Bad

(0)
4 ] + Pr[Bad

(1)
4 ]

)
≥ 1

2
Pr[Bad

(0)
4 ∨ Bad

(1)
4 ] =

1

2
Pr[Bad4],

where we used Pr[Bad
(0)
4 ∨ Bad

(1)
4 ] = Pr[Bad4], which is by definition.

In summary, we have Pr[Bad∗4] ≥ 1
2 Pr[Bad4], as required. ⊓⊔ (Subclaim 1)

Using Subclaim 1, we can further estimate Pr[Bad4] as follows:

Pr[Bad4] ≤ 2 · Pr[Bad∗4]

≤ 2 ·
(∣∣∣Pr[Bad∗4]− Pr[Bad∗5]

∣∣∣+ Pr[Bad∗5]
)

≤ 2 ·
(∣∣∣Pr[Bad∗4]− Pr[Bad∗5]

∣∣∣+ Pr[Bad5]
)

≤ 2 ·
(∣∣∣Pr[Bad∗4]− Pr[Bad∗5]

∣∣∣+ ∣∣∣Pr[Bad5]− Pr[Bad6]
∣∣∣+ Pr[Bad6]

)
, (4)

where we used Pr[Bad∗5] ≤ Pr[Bad5] in the third inequality, which is again by definition. It remains
to upperbound the right hand side of the above inequality.



Subclaim 2 There exists a PPTA Bg such that AdvCPAΓin,Bg(k) = |Pr[Bad
∗
4]− Pr[Bad∗5]|.

Proof of Subclaim 2. Using A and E as building blocks, we show how to construct a PPTA CPA

adversary Bg with the claimed advantage. The description of Bg is as follows:

Bg(pk′, c′∗, α′∗β ): (where β ∈ {0, 1} is Bg’s challenge bit in its CPA experiment) Bg picks γ ∈ {0, 1}
uniformly at random, then sets pkin(1−γ) ← pk′, c∗

in(1−γ) ← c′∗, and α∗1−γ ← α′∗β . Next, Bg
generates (pkinγ , skinγ) ← KKGin(1

k) and (c∗inγ , α
∗
γ) ← Encapin(pkinγ), sets α∗ ← (α∗0 ⊕ α∗1),

and parses α∗ as (r∗c , r
∗
t ,K

∗
1 ) ∈ ({0, 1}k)3. Then, Bg prepares K∗1 ,K

∗
0 ∈ {0, 1}k, b ∈ {0, 1},

PK = (pkin0, pkin1, pk, c), C
∗ = (tag∗, c∗), ŝktag∗ , and stE = (pkin0, pkin1, rA′ = (rA, r̂c, r̂t,

K∗b )), exactly as B′g in the proof of Claim 4 does. Finally, Bg runs A(PK,C∗,K∗b ; rA) until it
terminates, where Bg answers A’s queries in exactly the same way as B′g does.
When A terminates, Bg checks whether A has submitted a decapsulation query C = (tag, c) that

satisfies the conditions of Bad∗4 (i.e. (1) tag ̸= tag∗, (2) T̂Dec(ŝktag∗ , tag, c) = (cin0∥cin1) ̸= ⊥,
and (3) Decapin(skinγ , cinγ) ̸= E(stE , cinγ) hold), which can be checked by using skinγ . If such
a query is found, the Bg sets β′ ← 1, otherwise sets β′ ← 0, and terminates with output β′.

The above completes the description of Bg. Let Bad∗B be the event that A submits a decapsulation
query that satisfies the conditions (1), (2), and (3) of Bad∗4, in the experiment simulated by Bg. Note
that Bg outputs β′ = 1 only when Bad∗B occurs. Therefore, Bg’s CPA advantage can be calculated
as follows:

AdvCPAΓin,Bg(k) = 2 ·
∣∣∣Pr[β′ = β]− 1

2

∣∣∣ = ∣∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]
∣∣∣

=
∣∣∣Pr[Bad∗B|β = 1]− Pr[Bad∗B|β = 0]

∣∣∣.
With essentially the same arguments as in the proof of Claim 4, we can see that Bg does a

perfect simulation of Game 4 for A if β = 1, and does a perfect simulation of Game 5 for A if
β = 0. In particular, the only difference from the proof of Claim 4 is in which of the positions
(pkin0, c

∗
in0, α

∗
0) or (pkin1, c

∗
in1, α

∗
1) Bg embeds Bg’s instance of the CPA experiment. In the proof of

Claim 4, the reduction algorithm B′g embeds its challenge into (pkin0, c
∗
in0, α

∗
0), while in the current

proof, the reduction algorithm Bg embeds its challenge into (pkin(1−γ), c
∗
in(1−γ), α

∗
1−γ) for a random

γ ∈ {0, 1}. It is easy to see that even after this change, if β = 1, then the view of A is identical to
that in Game 4, and if β = 0, then the view of A is identical to that in Game 5.

Under the situation, the probability that Bad∗B occurs in the experiment simulated by Bg in
case β = 1 (resp. β = 0) is identical to the probability that Bad∗4 (resp. Bad∗5) occurs in Game 4
(resp. Game 5), namely, we have Pr[Bad∗B|β = 1] = Pr[Bad∗4] and Pr[Bad∗B|β = 0] = Pr[Bad∗5].

In summary, we have AdvCPAΓin,Bg(k) = |Pr[Bad
∗
4]− Pr[Bad∗5]|, as required. ⊓⊔ (Subclaim 2)

Subclaim 3 There exists a PPTA Bd such that AdvTS[C,T ],Bd(k) = |Pr[Bad5]− Pr[Bad6]|.

Proof of Subclaim 3. Using A and E as building blocks, we show how to construct a PPTA B
that has the claimed advantage in distinguishing the distributions considered in Lemma 2. The
description of Bd = (Bd1,Bd2) as follows:

Bd1(1k): Bd1 first runs (pkin0, skin0) ← KKGin(1
k), (pkin1, skin1) ← KKGin(1

k), (c∗in0, α
∗
0) ←

Encapin(pkin0), and (c∗in1, α
∗
1) ← Encapin(pkin1). Then, Bd1 sets M ← (c∗in0∥c∗in1) and stB ←

(Bd1’s entire view), and terminates with output (M, stB).



Bd2(stB, ck, tag∗, pk, c∗, ŝktag∗ , r̂c, r̂t): Bd2 sets PK ← (pkin0, pkin1, pk, ck) and C∗ ← (tag∗, c∗),
picks K∗ ∈ {0, 1}∗ and rA ∈ {0, 1}∗ uniformly at random, and then sets rA′ ← (rA, r̂c, r̂t,K

∗)
and stE ← (pkin0, pkin1, rA′). (Recall that K∗0 and K∗1 in Games 5 and 6 are distributed iden-
tically, and thus it is sufficient to choose just a single value K∗ and pretend as if K∗ is K∗b .)
Then Bd2 runs A(PK,C∗,K∗; rA).

Bd2 answers A’s queries as Game 5 does, which is possible because Bd2 possesses ŝktag∗ and stE ,
and thus Bd2 can run AltDecap′E (which internally runs the extractor E(stE , ·)).
When A terminates, Bd2 checks whether A has submitted a query that satisfies the conditions
of Bad5, which can be checked by using skin0 and skin1 that Bd2 possesses. If such a query is
found, then Bd2 outputs 1, otherwise outputs 0, and terminates.

The above completes the description of Bd. Let BadB be the event that A submits a decapsu-
lation query C = (tag, c) that satisfies the conditions of Bad5 in the experiment simulated by

Bd (i.e. the query satisfying (1) tag ̸= tag∗, (2) T̂Dec(ŝktag∗ , tag, c) = (cin0∥cin1) ̸= ⊥, and (3)
Decapin(skin0, cin0) ̸= E(stE , cin0) or Decapin(skin1, cin1) ̸= E(stE , cin1)). Note that Bd submits 1
only when BadB occurs. Therefore, Bd’s advantage AdvTS[C,T ],Bd(k) can be calculated as follows:

AdvTS[C,T ],Bd(k) =
∣∣∣Pr[ExptTS-Real[C,T ],Bd(k) = 1]− Pr[ExptTS-Sim[C,T ],Bd(k) = 1]

∣∣∣
=

∣∣∣Pr[ExptTS-Real[C,T ],Bd : BadB]− Pr[ExptTS-Sim[C,T ],Bd(k) : BadB]
∣∣∣.

Consider the case when Bd is run in the “real” experiment ExptTS-Real[C,T ],Bd(k). It is easy to see

that in this case, Bd simulates Game 5 perfectly for A. Specifically, ck, pk, tag∗, c∗, and ŝktag∗

are generated from CKG, TKG, Com, TEnc, and Punc, respectively, in such a way that tag∗ is a
commitment of (c∗in0∥c∗in1) and c∗ is an encryption of (c∗in0∥c∗in1) under the tag tag∗. Furthermore,
r̂c and r̂t are generated from rSampC and rSampT , respectively, which is how they are generated
in Game 5. Under the situation, the probability that A submits a decapsulation query that causes
the event BadB is exactly the same as the probability that A does so in Game 5. That is, we have
Pr[ExptTS-Real[C,T ],Bd(k) : BadB] = Pr[Bad5].

On the other hand, consider the case when Bd is run in the “simulated” experiment ExptTS-Sim[C,T ],Bd(k).

In this case, Bd simulates Game 6 perfectly for A. Specifically, (ck, tag∗) and (pk, c∗, ŝktag∗) are
generated by oSampC(1

k; r̂c) and oSampT (tag
∗; r̂t) with uniformly chosen randomness r̂c and r̂t,

respectively, and this is exactly how these values are generated in Game 6. Since this is the only
change from the above case, with a similar argument we have Pr[ExptTS-Sim[C,T ],Bd(k) : BadB] = Pr[Bad6].

In summary, we have AdvTS[C,T ],Bd(k) = |Pr[Bad5]− Pr[Bad6]|, as required. ⊓⊔ (Subclaim 3)

Subclaim 4 AdvsPA1Γin,A′,E,2(k) = Pr[Bad6].

Proof of Subclaim 4. Note that the view of A in Game 6 is exactly the same as the view of A
when it is internally run by A′ in the situation where A′ is run in the experiment ExptsPA1Γin,A′,E,2(k)
with the extractor E . Therefore, the probability that A submits a query that causes the event Bad6
in Game 6, is exactly the same as the probability that A′ submits a query to E that makes the
experiment ExptsPA1Γin,A′,E,2(k) outputs 1 (i.e. A′ submits a query of the form (j + 1, cinj) such that
Decapin(skinj , cinj) ̸= E(stE , (j + 1, cinj)) for some j ∈ {0, 1}). ⊓⊔ (Subclaim 4)

Equations (3), (4), and Subclaims 2 to 4 imply Claim 3. ⊓⊔ (Claim 3)

This concludes the proof of Theorem 1. ⊓⊔ (Theorem 1)



KKG(1k) :
(pkin, skin)← KKGin(1

k)

(pk, sk)← TKG(1k)
ck ← CKG(1k)
PK ← (pkin, pk, ck)
SK ← (skin, sk, PK)
Return (PK,SK).

Encap(PK) :
(pkin, pk, ck)← PK
(cin, α)← Encapin(pkin)
Parse α as (rc, rt,K) ∈ ({0, 1}k)3
tag← Com(ck, cin; rc)
c← TEnc(pk, tag, cin; rt)
C ← (tag, c).
Return (C,K).

Decap(SK,C) :
(skin, sk, PK)← SK
(pkin, pk, ck)← PK
(tag, c)← C
cin ← TDec(sk, tag, c)
If cin = ⊥ then return ⊥.
α← Decapin(skin, cin)
If α = ⊥ then return ⊥.
Parse α as (rc, rt,K) ∈ ({0, 1}k)3
If Com(ck, cin; rc) = tag

and TEnc(pk, tag, cin; rt) = c
then return K else return ⊥

Fig. 4. The second proposed construction: the KEM Γ based on a KEM Γin, a commitment scheme C, and a PTBE
scheme T .

4.2 Second Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is n = n(k) and whose

session-key space is {0, 1}3k for k-bit security. Let T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE
scheme and C = (CKG,Com) be a commitment scheme. We require the plaintext space of TEnc and
the message space of Com to be {0, 1}n, and the randomness space of TEnc and that of Com to be
{0, 1}k for k-bit security. Then, our second proposed KEM Γ = (KKG,Encap,Decap) is constructed
as in Fig. 4.

The security of Γ is guaranteed by the following theorem.

Theorem 2. Assume that the KEM Γin is 1-CCA secure and sPA11 secure, the commitment scheme
C is target-binding and trapdoor simulatable, and the PTBE scheme T is trapdoor simulatable. Then,
the KEM Γ constructed as in Fig. 4 is CCA secure.

The proof of this theorem proceeds very similarly to the proof of Theorem 1, and thus we only
explain the difference here, and will show the formal proof in Appendix C.3.

Recall that in the proof Theorem 1, the “bad” queries (for which the extractor fails to extract
correct decapsulation results) are dealt with due to the property of “multiple encryption” of two
instances of the KEM Γin with public keys (pkin0, pkin1). In particular, the reduction algorithm
in the proof of Subclaim 2 that attacks the CPA security of the underlying KEM Γin, uses one of
secret keys skinγ (corresponding to pkinγ) to detect whether the bad event occurs, while embedding
its CPA instance regarding Γin into the other position, i.e. into (pkin(1−γ), cin(1−γ)). This strategy
works thanks to the argument regarding the probabilities given in the proof of Subclaim 1 (which is
in turn based on the proof of [18, Claim 4.13]). However, for this argument to work, it seems to us
that we inherently have to rely on the sPA12 security of Γin, in order for the reduction algorithms
(especially, the reduction algorithms attacking the CPA of Γin) to simulate the decapsulation oracle
for an adversary A.

The simple idea employed in our second construction is to change the mechanism of detecting
the bad queries by relying on the 1-CCA security of Γin, so that a reduction algorithm can check
(by its access to the decapsulation oracle) whether A has submitted a bad decapsulation query.
This allows us to use Γin only in the “single” key setting, leading to only requiring it to be sPA11
secure. By employing this idea, a security analysis similar to the recent constructions [45, 32, 38,



41] works, and for the other parts of the security proof (other than the analysis regarding dealing
with the bad decapsulation queries) are essentially the same as those in the proof of Theorem 1.
For more details, see Appendix C.3.

On the Merits of the Second Construction. Since we need to use a KEM which simultaneously
satisfies 1-CCA and sPA11 security for our second construction, a natural question would be whether
we can construct such a scheme. We note that we can achieve such a KEM from a CPA secure PKE
(or a KEM) which is also sPA12k secure. Specifically, Dodis and Fiore [22, Appendix C] showed how
to construct a 1-CCA secure PKE scheme from the combination of a CPA secure PKE scheme and
a one-time secure signature scheme (in which 2k independently generated public keys are arranged
as in the “DDN-lite” construction, but a message is encoded and encrypted in a k-out-of-k fashion,
rather than encrypting the same message under k public keys as done in [24]). We note that we
can slightly optimize their construction by using a CPA secure KEM instead of a PKE scheme, and
provide its security proof in Appendix D.

However, if we implement a 1-CCA and sPA11 secure KEM from a CPA and sPA12k secure KEM,
there is no merit compared to our first construction (that only requires a CPA and sPA12 secure
KEM), both in terms of the assumptions and the efficiency. So far, we do not know a better way
to construct a 1-CCA and sPA11 secure scheme than the approach that relies on [22, Appendix C].
We would like to however emphasize that the point of our second construction is that it may in the
future be possible to come up with a direct construction of a KEM (or a PKE scheme) satisfying
the requirements for the second construction, from assumptions weaker than those required in our
first construction or the combination of our second construction and the Dodis-Fiore construction.
We believe that such a possibility of the existence of better constructions can be a raison d’etre of
our second construction. In particular, we actually do not need the “full” power of 1-CCA security,
but a (seemingly) much weaker security notion such that CPA security holds in the presence of one
“plaintext-checking” query [48, 1]. More specifically, a plaintext-checking query (for a KEM it could
be called a session-key-checking query, but we stick to the terminology in [48]) is a query of the

form (c,K), and its reply is the one-bit (Decap(sk, c)
?
= K). This could be a hint for the next step.

We would also like to note that even if using the result based on [22], we still achieve the
property of “separating” the requirement that a single PKE scheme (or a KEM) needs to satisfy
“plaintext awareness” and a “simulatability property” simultaneously in [19]. This is another merit
of our second construction.

Acknowledgement. The authors would like to thank the members of the study group “Shin-
Akarui-Angou-Benkyou-Kai,” and the anonymous reviewers for their helpful comments and sug-
gestions.
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A Standard Cryptographic Primitives

A.1 Public Key Encryption

A public key encryption (PKE) scheme Π consists of the three PPTAs (PKG,Enc,Dec) with the
following interface:

Key Generation: Encryption: Decryption:

(pk, sk)← PKG(1k) c← Enc(pk,m) m (or ⊥)← Dec(sk, c)



where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a ciphertext of
a plaintext m under pk. We say that a PKE scheme satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from PKG(1k), and all plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Since we do not directly use the ordinary security notions for PKE in this paper, we do not in-
troduce them. In Section 2.2, we review the (simplified version of) trapdoor simulatability property
[15] of a PKE scheme.

A.2 Key Encapsulation Mechanisms

A key encapsulation mechanism (KEM) Γ consists of the three PPTAs (KKG,Encap,Decap) with
the following interface:

Key Generation: Encapsulation: Decapsulation:

(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or ⊥)← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair that defines a session-
key space K, and c is a ciphertext of a session-key K ∈ K under pk. We say that a KEM satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from KKG(1k) and all ciphertext/session-key
pairs (c,K) output from Encap(pk), it holds that Decap(sk, c) = K.

CPA/1-CCA/CCA Security. For a KEM Γ = (KKG,Encap,Decap) and an adversary A, we define the
CCA experiment ExptCCAΓ,A(k) as follows:

ExptCCAΓ,A(k) : [ (pk, sk)← KKG(1k); (c∗,K∗1 )← Encap(pk); K∗0 ← {0, 1}k; b← {0, 1}

b′ ← ADecap(sk,·)(pk, c∗,K∗b ); Return (b′
?
= b) ],

in the experiment, A is not allowed to submit c∗ to the oracle. We define the 1-CCA experiment
Expt1-CCAΓ,A (k) in the same way as the CCA experiment, except that A is allowed to submit a query

c ̸= c∗ only once. Furthermore, we define the CPA experiment ExptCPAΓ,A(k) is also defined similarly
to the CCA experiment, except that A is not allowed to submit any query.

Definition 4. Let ATK ∈ {CPA, 1-CCA, CCA}. We say that a KEM Γ is ATK secure if for all PPTAs
A, the advantage AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1]− 1/2| is negligible.

Smoothness. For a KEM Γ = (KKG,Encap,Decap), consider the following quantity, called smooth-
ness [4] of Γ :

SmthΓ (k) := E
(pk,sk)←KKG(1k)

[
max

c′∈{0,1}∗
Pr

(c,K)←Encap(pk)
[c = c′]

]
.

Bellare, Hofheinz, and Kiltz [4] showed the following:7

Lemma 4. If a KEM Γ is CPA secure, then SmthΓ (k) is negligible.

7 Precisely speaking, [4] only showed that if a KEM Γ is CCA secure, then SmthΓ (k) is negligible. However, it is easy
to see that their proof carries over to the CPA case.



A.3 Commitment

Here we review the definition of a commitment scheme. We only define a non-interactive commit-
ment scheme that has a setup procedure, which is sufficient for our purpose in this paper.

Formally, a commitment scheme C consists of the following two PPTAs (CKG,Com) with the
following interface:

Key Generation: Commitment Generation:

ck ← CKG(1k) c← Com(ck,m)

where ck is a commitment key, and c is a commitment of the message m under ck.
As a (non-standard) requirement, we require the size of a commitment to be k-bit for k-bit

security, no matter how long a committed message is.8 For the binding property, we require a
slightly weaker variant than the ordinary notion, called target-binding, which was also used in [40].

Definition 5. We say that a commitment scheme C is target-binding9 if for all PPTAs A =
(A1,A2), the advantage AdvTBindC,A (k) := Pr[ExptTBindC,A (k) = 1] is negligible, where the experiment

ExptTBindC,A (k) is defined as follows:

ExptTBindC,A (k) : [ (m, r, st)← A1(1
k); ck ← CKG(1k); (m′, r′)← A2(st, ck);

Return 1 iff Com(ck,m′; r′) = Com(ck,m; r) ∧m′ ̸= m. ].

Since we do not directly use the hiding property, we do not introduce its formal definition.
In Section 2.3, we define the trapdoor simulatability property for a commitment scheme, which is
defined in essentially the same way as a TSPKE scheme.

A.4 Universal One-Way Hash Functions

Here, we recall the definition of a universal one-way hash function (UOWHF) [46].

Definition 6. We say that a pair of PPTAs H = (HKG,H) is a universal one-way hash function
(UOWHF) if the following two properties are satisfied:

(Syntax) On input 1k, HKG outputs a hash-key κ. For any hash-key κ output from HKG(1k), H
defines an (efficiently computable) function of the form Hκ : {0, 1}∗ → {0, 1}k.

(Universal One-wayness) For all PPTAs A = (A1,A2), the advantage Adv
UOW
H,A(k) := Pr[ExptUOWH,A(k)

= 1] is negligible, where the experiment ExptUOWH,A(k) is defined as follows:

ExptUOWH,A(k) : [ (m, st)← A1(1
k); κ← HKG(1k); m′ ← A2(st, κ);

Return 1 iff Hκ(m
′) = Hκ(m) ∧m′ ̸= m ].

We can construct a UOWHF from any one-way function [46, 51], and thus for example it exists
if a CPA secure PKE scheme exists.

8 This requirement (together with the following binding property and the “trapdoor simulatability property”) can
be easily realized if we are given a TSPKE scheme. For more details, see Appendix B.

9 Note that the target-binding property is slightly weaker than the ordinary binding notion in the sense that an
adversary has to choose its first message before seeing a key ck. The relation between the ordinary binding and
target-binding is similar to the relation between collision resistance and target collision resistance of a hash function
family. The target-binding was also used in [40].



A.5 Signature

A signature scheme Σ consists of the three PPTAs (SKG, Sign,SVer) with the following interface:

Key Generation: Signing: Verification:

(vk, sigk)← SKG(1k) σ ← Sign(sigk,m) ⊤ or ⊥ ← SVer(sk, c)

where SVer is a deterministic algorithm, (vk, sigk) is a verification/signing key pair, and σ is a
signature on a message m under vk. ⊤ (resp. ⊥) is the symbol indicating that σ is a valid (resp.
invalid) signature. We say that a signature scheme satisfies correctness if for all k ∈ N, all keys
(vk, sigk) output from PKG(1k), and all messages m, it holds that SVer(vk,m, Sign(sigk,m)) = ⊤.

Strong One-time Unforgeability. We say that a signature scheme Σ = (SKG, Sign, SVer) is strongly
unforgeable under one-time chosen message attacks (SOT secure, for short), if for all PPTAs A =
(A1,A2), the advantage AdvSOTΣ,A(k) := Pr[ExptSOTΣ,A(k) = 1] is negligible, where the experiment

ExptSOTΣ,A(k) is defined as follows:

ExptSOTΣ,A(k) : [ (vk, sigk)← SKG(1k); (m, st)← A1(vk); σ ← Sign(sigk,m); (m′, σ′)← A2(st, σ);

Return 1 iff SVer(vk,m′, σ′) = ⊤ ∧ (m′, σ′) ̸= (m,σ). ].

We can construct a SOT secure signature scheme from any one-way function [46, 51], and thus
for example it exists if a CPA secure PKE scheme exists.

B Concrete Constructions of Trapdoor Simulatable Commitment Schemes

Here, we show that we can construct a commitment scheme satisfying target-binding, trapdoor
simulatability, and the requirement of size of commitments (k-bit for k-bit security) from a TSPKE
scheme and a UOWHF. Since a UOWHF can be constructed from any one-way function [46, 51]
which is in turn implied by a TSPKE scheme, we can achieve a commitment scheme satisfying all
our requirements only from a TSPKE scheme.

Specifically, let Π = (PKG,Enc,Dec, oSampΠ , rSampΠ) be a TSPKE scheme, and H = (HKG,H)
be a UOWHF. Then we construct a trapdoor simulatable commitment scheme C = (CKG,Com,
oSampC , rSampC) as in Fig. 5. It is straightforward to see that the trapdoor simulatability property
of the commitment scheme C follows from that of the underlying TSPKE scheme Π, because a
commitment is just a hash value of an encryption of a message. (In the randomness r̂c used by
oSampC , the randomness for HKG is also included.) Furthermore, the target-binding property of
C follows from the security of the UOWHF H. Specifically, recall that a PKE scheme can be
considered as a perfectly binding commitment scheme (because there are no two distinct messages
whose encryptions collide due to the correctness). Therefore, the security of the underlying UOWHF
guarantees that a “target” collision pair of ciphertexts, and hence (m,m′), is hard to find.

C Postponed Proofs

C.1 Proof of Lemma 1: A Concrete TSPTBE Scheme

Let Π = (PKG,Enc,Dec, oSampΠ , rSampΠ) be a TSPKE scheme. Then, we construct a TSPTBE

scheme T = (TKG,TEnc,TDec,Punc, T̂DecoSampT , rSampT ) as in Fig. 6.



CKG(1k; r′g = (rh, rg)) :

κ← HKG(1k; rh)
(pk, sk)← PKG(1k; rg)
Return ck ← (κ, pk).

Com(ck,m; rc) :
(κ, pk)← ck
c← Enc(pk,m; rc)
Return c′ ← Hκ(c).

oSampC(1
k; r̂c = (rh, r̂e)) :

κ← HKG(1k; rh)
(pk, c)← oSampΠ(1k; r̂e)
ck ← (κ, pk)
c′ ← Hκ(c)
Return (ck, c′).

rSampC(r
′
g = (rh, rg), rc,m) :

r̂e ← rSampΠ(rg, rc,m)
r̂c ← (rh, r̂e)
Return r̂c.

Fig. 5. A concrete example of a trapdoor simulatable commitment scheme C based on a TSPKE scheme Π and a
UOWHF H.

In the punctured decryption algorithm T̂Dec, the index ℓ ∈ [k] computed at the sixth step
can always be found because tag ̸= tag∗ is guaranteed at the point. Under this index ℓ ∈ [k], it
holds that tℓ = 1 − t∗ℓ . Since each component ci in a ciphertext encrypts the same plaintext, the
correctness of T is straightforward to see.

Now, we show that for any PPTA adversary A that attacks the trapdoor simulatability property
of the PTBE scheme T (in the sense of Definition 3), there exists a PPTA adversary Bp that attacks
the trapdoor simulatability property of the underlying PKE scheme Π such that

AdvTSPTBET ,A (k) = k · AdvTSPKEΠ,Bp (k), (5)

which by the trapdoor simulatability property of Π, implies that T is trapdoor simulatable as well.
Let A = (A1,A2) be any PPTA adversary that attacks the trapdoor simulatability property of

T . Consider the following sequence of games:

Game 0: This is the real experiment ExptTSPTBE-RealT ,A (k). To define the subsequent games, we change
the ordering of the steps in such a way that the view of A is not changed at all, as follows:

Game 0:

(tag∗,m, st)← A1(1
k);

View tag∗ as (t∗1, . . . , t
∗
k) ∈ {0, 1}k;

∀i ∈ [k] :
r′g,i, re,i ← {0, 1}∗;
(pk

(t∗i )
i , sk

(t∗i )
i )← PKG(1k; r′g,i);

ci ← Enc(pk
(t∗i )
i ,m; re,i);

r̂i ← rSampΠ(r′g,i, re,i,m);
(Continue to the right column ↗)

∀i ∈ [k] :
rg,i ← {0, 1}∗;
(pk

(1−t∗i )
i , sk

(1−t∗i )
i )← PKG(1k; rg,i);

pk ← (pk
(j)
i )i∈[k],j∈{0,1};

c← (ci)i∈[k];

ŝktag∗ ← (tag∗, (sk
(1−t∗i )
i )i∈[k]);

R̂← ((r̂i)i∈[k], (rg,i)i∈[k]);

b′ ← A(pk, c, ŝktag∗ , R̂)

Game n: (where n ∈ [k]) In this game, the first-to-n-th public key/ciphertext pair (pk
(t∗i )
i , ci)i∈[n]

are generated by the oblivious sampling algorithm oSampΠ(1k; r̂i) where r̂i is a uniformly ran-
dom value.
More precisely, this game is defined as follows:

Game n: (where n ∈ [k])

(tag∗,m, st)← A1(1
k);

View tag∗ as (t∗1, . . . , t
∗
k) ∈ {0, 1}k;

∀i ∈ [n] :
r̂i ← {0, 1}∗;
(pk

(t∗i )
i , ci)← oSampΠ(1k; r̂i);

∀i ∈ {n+ 1, . . . , k} :
r′g,i, re,i ← {0, 1}∗;
(pk

(t∗i )
i , sk

(t∗i )
i )← PKG(1k; r′g,i);

ci ← Enc(pk
(t∗i )
i ,m; re,i);

r̂i ← rSampΠ(r′g,i, re,i,m);
(Continue to the right column ↗)

∀i ∈ [k] :
rg,i ← {0, 1}∗;
(pk

(1−t∗i )
i , sk

(1−t∗i )
i )← PKG(1k; rg,i);

pk ← (pk
(j)
i )i∈[k],j∈{0,1};

c← (ci)i∈[k];

ŝktag∗ ← (tag∗, (sk
(1−t∗i )
i )i∈[k]);

R̂← ((r̂i)i∈[k], (rg,i)i∈[k]);

b′ ← A(pk, c, ŝktag∗ , R̂)



TKG(1k;Rg) :

(r
(j)
g,i )i∈[k],j∈{0,1} ← Rg

∀(i, j) ∈ [k]× {0, 1} :
(pk

(j)
i , sk

(j)
i )← PKG(1k; r

(j)
g,i )

pk ← (pk
(j)
i )i∈[k],j∈{0,1}

sk ← (sk
(j)
i )i∈[k],j∈{0,1}

Return (pk, sk).

TEnc(pk, tag,m;Rt) :
(re,i)i∈[k] ← Rt

(pk
(j)
i )i∈[k],j∈{0,1} ← pk

View tag as (t1, . . . , tk) ∈ {0, 1}k.
∀i ∈ [k] : ci ← Enc(pk

(ti)
i ,m; re,i)

Return c← (ci)i∈[k].

TDec(sk, tag, c) :

(sk
(j)
i )i∈[k],j∈{0,1} ← sk

(ci)i∈[k] ← c
Let t1 be the first bit of tag.

Return m← Dec(sk
(t1)
1 , c1).

Punc(sk, tag∗)

(sk
(j)
i )i∈[k],j∈{0,1} ← sk

View tag∗ as (t∗1, . . . , t
∗
k) ∈ {0, 1}k.

ŝktag∗ ← (tag∗, (sk
(1−t∗i )
i )i∈[k])

Return ŝktag∗ .

T̂Dec(ŝktag∗ , tag, c) :

(tag∗, (sk
(1−t∗i )
i )i∈[k])← ŝktag∗

If tag = tag∗ then return ⊥.
(ci)i∈[k] ← c

View tag as (t1, . . . , tk) ∈ {0, 1}k.
View tag∗ as (t∗1, . . . , t

∗
k) ∈ {0, 1}k.

ℓ← min{i ∈ [k] | ti ̸= t∗i }
Return m← Dec(sk

(1−t∗ℓ )
ℓ , cℓ).

oSampT (tag∗; R̂)

((r̂i)i∈[k], (rg,i)i∈[k])← R̂

View tag∗ as (t∗1, . . . , t
∗
k) ∈ {0, 1}k.

∀i ∈ [k] :

(pk
(t∗i )
i , ci)← oSampΠ(1k; r̂i)

(pk
(1−t∗i )
i , sk

(1−t∗i )
i )← PKG(1k; rg,i)

pk ← (pk
(j)
i )i∈[k],j∈{0,1}

c← (ci)i∈[k]

ŝktag∗ ← (tag∗, (sk
(1−t∗i )
i )i∈[k])

Return (pk, c, ŝktag∗).

rSampT (Rg, Rt, tag
∗,m) :

(r
(j)
g,i )i∈[k],j∈{0,1} ← Rg

(re,i)i∈[k] ← Rt

View tag∗ as (t∗1, . . . , t
∗
k) ∈ {0, 1}k.

∀i ∈ [k] :

r̂i ← rSampΠ(r
(t∗i )
i , re,i,m)

rg,i ← r
(1−t∗i )
g,i

R̂← ((r̂i)i∈[k], (rg,i)i∈[k])

Return R̂.

Fig. 6. A concrete instantiation of a TSPTBE scheme T based on a TSPKE scheme Π.

Note that in Game k, every public key/ciphertext pair (pk
(t∗i )
i , ci) is generated by the oblivious

sampling algorithm oSampΠ , thus Game k is exactly the simulated experiment ExptTSPTBE-SimT ,A (k).

For each i ∈ {0, . . . , k}, let Xi be the event that in Game i, A2 outputs 1 (i.e. b′ = 1 occurs).
Then, by definition of the games and events, A’s advantage in attacking the trapdoor simulatability
property can be calculated as follows:

AdvTSPTBET ,A (k) =
∣∣∣Pr[ExptTSPTBE-RealT ,A (k) = 1]− Pr[ExptTSPTBE-SimT ,A (k) = 1]

∣∣∣
=

∣∣∣Pr[X0]− Pr[Xk]
∣∣∣

=
∣∣∣∑
n∈[k]

(Pr[Xn−1]− Pr[Xn])
∣∣∣. (6)

Now, consider the following PPTA adversary Bp = (Bp1,Bp2) that, using A as a building block,
attacks the trapdoor simulatability property of the underlying PKE scheme Π:

Bp1(1k) : Bp1 first runs (tag∗,m, st)← A1(1
k), sets stB ← (Bp1’s entire view), and terminates with

output (m, stB).

Bp2(stB, pk′, c′, r̂′) : Bp2 first picks u ∈ [k] uniformly at random. Now, if u ≥ 2, then for each
i ∈ [u−1], Bp2 picks r̂i ∈ {0, 1}∗ uniformly at random, and runs (pki, ci)← oSampΠ(1k; r̂i). Bp2



sets pk
(t∗u)
u ← pk′, cu ← c′, and r̂u ← r̂′. Furthermore, if u ≤ k−1, then for each i ∈ {u+1, . . . , k},

Bp2 picks r′g,i, re,i ∈ {0, 1}∗ uniformly at random, and runs (pk
(t∗i )
i , sk

(t∗i )
i ) ← PKG(1k; r′g,i),

ci ← Enc(pk
(t∗i )
i ,m; re,i), and r̂i ← rSampΠ(r′g,i, re,i,m). Next, for i ∈ [k], Bp2 picks rg,i ∈

{0, 1}∗ uniformly at random, and runs (pk
(1−t∗i )
i , sk

(1−t∗i )
i )← PKG(1k; rg,i). Then, Bp2 sets pk ←

(pk
(j)
i )i∈[k],j∈{0,1}, c ← (ci)i∈[k], ŝktag∗ ← (tag∗, (sk

(1−t∗i )
i )i∈[k]), and R̂ ← ((r̂i)i∈[k], (rg,i)i∈[k]).

Finally, Bp2 runs b′ ← A2(st, pk, c, ŝktag∗ , R̂), and terminates with output b′.

The above completes the description of Bp. For notational convenience, let us write ExptTS-Real and
ExptTS-Sim to mean ExptTSPKE-RealΠ,Bp (k) and ExptTSPKE-SimΠ,Bp (k), respectively. Bp’s advantage in attacking
the trapdoor simulatability property of the underlying PKE scheme Π can be calculated as follows:

AdvTSPKEΠ,Bp (k) =
∣∣∣Pr[ExptTSPKE-RealΠ,Bp (k) = 1]− Pr[ExptTSPKE-SimΠ,Bp (k) = 1]

∣∣∣
=

∣∣∣Pr[ExptTS-Real : b′ = 1]− Pr[ExptTS-Sim : b′ = 1]
∣∣∣

=
∣∣∣∑
n∈[k]

(
Pr[ExptTS-Real : b′ = 1 ∧ u = n]− Pr[ExptTS-Sim : b′ = 1 ∧ u = n]

)∣∣∣
=

∣∣∣∑
n∈[k]

(
Pr[ExptTS-Real : b′ = 1|u = n] · Pr[ExptTS-Real : u = n]

− Pr[ExptTS-Sim : b′ = 1|u = n] · Pr[ExptTS-Sim : u = n]
)∣∣∣. (7)

Note that Bp1 chooses the index u ∈ [k] uniformly at random, independently of Bp’s experiment,
and thus for every n ∈ [k], we have Pr[ExptTS-Real : u = n] = Pr[ExptTS-Sim : u = n] = 1/k.

Furthermore, for each n ∈ [k], if Bp is run in ExptTS-Real and u = n holds, then Bp generates the

first-to-(n−1)-th public key/ciphertext pair (pk
(t∗i )
i , ci)i∈[n−1] obliviously, which is exactly how they

are generated in Game n−1. All other values are also distributed as those in Game n−1, and thus Bp
does a perfect simulation of Game n− 1 for A. This means that we have Pr[ExptTS-Real : b′ = 1|u =
n] = Pr[Xn−1]. On the other hand, if Bp is run in ExptTS-Sim and u = n holds, then Bp generates

the first-to-n-th public key/ciphertext pair (pk
(t∗i )
i , ci)i∈[n] obliviously, which is exactly how they are

generated in Game n. Since this is the only change from the above, we have Pr[ExptTS-Sim : b′ =
1|u = n] = Pr[Xn].

Using the above facts in Equation (7) together with Equation (6), it is guaranteed that there
exists a PPTA adversary Bp satisfying Equation (5), as required. ⊓⊔ (Lemma 1)

C.2 Proof of Lemma 2: Useful Fact

Let A = (A1,A2) be any PPTA A that runs in the “real” experiment ExptTS-Real[C,T ],A (k) or the “simu-

lated” experiment ExptTS-Sim[C,T ],A(k). We will show that for such A, there exist PPTAs Bc and Bt such
that

AdvTS[C,T ],A(k) ≤ AdvTSComC,Bc (k) + AdvTSPTBET ,Bt (k). (8)

The proof is by a simple hybrid argument. Specifically, consider the following sequence of games:

Game 1: This is the experiment ExptTS-Real[C,T ],A (k).
Game 2: Same as Game 1, except that r̂c is chosen uniformly at random, and the key/commitment

pair (ck, tag∗) is generated by the oblivious sampling algorithm oSampC(1
k; r̂c).



Game 3: This is the experiment ExptTS-Sim[C,T ],A(k).

For i ∈ [3], let Xi be the event that A2 outputs 1 in Game i. Then, by the definition of the event
and the triangle inequality, we have

AdvTS[C,T ],A(k) =
∣∣∣Pr[X1]− Pr[X3]

∣∣∣ ≤∑
i∈[2]

∣∣∣Pr[Xi]− Pr[Xi+1]
∣∣∣. (9)

We will upperbound each term in the right hand side of the above inequality.

Claim 6 There exists a PPTA Bc such that AdvTSComC,Bc (k) = |Pr[X1]− Pr[X2]|.

Proof of Claim 6. Consider the following PPTA adversary Bc = (Bc1,Bc2) against the trapdoor
simulatability of C:

Bc1(1k) : Bc1 first runs (m, st) ← A1(1
k), sets stB ← (Bc1’s entire view), and finally terminates

with output (m, stB).
Bc2(stB, ck, tag∗, r̂c) : Bc2 picks r′g, rt ∈ {0, 1}∗ uniformly at random, then runs (pk, sk)← TKG(1k;

r′g), c
∗ ← TEnc(pk, tag∗,m; rt), ŝktag∗ ← Punc(sk, tag∗), and r̂t ← rSampT (r

′
g, rt, tag

∗,m). Then

Bc2 runs b′ ← A2(st, ck, tag
∗, pk, c∗, ŝktag∗ , r̂c, r̂t), and terminates with output b′.

The above completes the description of Bc.
It is easy to see that Bc perfectly simulates Game 1 for A if Bc is run in ExptTSCom-RealC,Bc (k),

and perfectly simulates Game 2 if Bc is run in ExptTSCom-SimC,Bc (k). Specifically, in the former case, ck
and tag∗ are honestly generated by CKG and Com, and r̂c is generated by the inverting algorithm
rSampC . Since Bc uses A2’s output as it is, we have Pr[Expt

TSCom-Real
C,Bc (k) = 1] = Pr[X1]. On the other

hand, in the latter case, r̂c is now uniformly random and ck and tag∗ are generated by the oblivious
sampling algorithm oSampC . With a similar argument to the above, we have Pr[ExptTSCom-SimC,Bc (k) =
1] = Pr[X2].

Using these, Bc’s advantage in attacking the trapdoor simulatability property of the commitment
scheme C is calculated as follows:

AdvTSComC,Bc (k) =
∣∣∣Pr[ExptTSCom-RealC,Bc (k) = 1]− Pr[ExptTSCom-SimC,Bc (k) = 1]

∣∣∣
=

∣∣∣Pr[X1]− Pr[X2]
∣∣∣,

as required. ⊓⊔ (Claim 6)

Claim 7 There exists a PPTA Bt such that AdvTSPTBET ,Bt (k) = |Pr[X2]− Pr[X3]|.

Proof of Claim 7. Consider the following PPTA adversary Bt = (Bt1,Bt2) against the trapdoor
simulatability property of T :

Bt1(1k) : Bt1 first picks r̂c ∈ {0, 1}∗ uniformly at random, and runs (ck, tag∗) ← oSampC(1
k; r̂c)

and (m, st) ← A1(1
k). Then Bt1 sets stB ← (Bt1’s entire view), and terminates with output

(tag∗,m, stB).

Bt2(stB, pk, c∗, ŝktag∗ , r̂t) : Bt2 runs b′ ← A2(st, ck, tag
∗, pk, c∗, ŝktag∗ , r̂c, r̂t), and terminates with

output b′.



The above completes the description of Bt.
It is easy to see that Bt perfectly simulates Game 2 for A if Bt is run in ExptTSPTBE-RealT ,Bt (k), and

perfectly simulates Game 3 if Bt is run in ExptTSPTBE-SimT ,Bt (k). Specifically, in the former case, pk, c∗,

and ŝktag∗ are honestly generated by TKG, TEnc, and Punc, respectively, and r̂t is generated by
the inverting algorithm rSampT . Since Bt uses A2’s output as it is, we have Pr[Expt

TSPTBE-Real
T ,Bt (k) =

1] = Pr[X2]. On the other hand, in the latter case, r̂t is now uniformly random, and pk, c, and

ŝktag∗ are generated by the oblivious sampling algorithm oSampT (using tag∗ as input). With a
similar argument to the above, we have Pr[ExptTSPTBE-SimT ,Bt (k) = 1] = Pr[X3].

Using these, Bt’s advantage in attacking the trapdoor simulatability property of the PTBE
scheme T is calculated as follows:

AdvTSPTBET ,Bt (k) =
∣∣∣Pr[ExptTSPTBE-RealT ,Bt (k) = 1]− Pr[ExptTSPTBE-SimT ,Bt (k) = 1]

∣∣∣
=

∣∣∣Pr[X2]− Pr[X3]
∣∣∣,

as required. ⊓⊔ (Claim 7)

Claims 6 and 7, and Equation (9) guarantee that there exist PPTAs Bc and Bt satisfying
Equation (8), as required. ⊓⊔ (Lemma 2)

C.3 Proof of Theorem 2: The CCA Security of the Second Construction Γ

The structure of the proof is very similar to the proof of Theorem 1. Thus, we recommend the
reader first read it.

As in the case of the first construction, We first introduce the alternative decapsulation algorithm
for Γ , and then proceed to its security proof.

Alternative Decapsulation Algorithm. Like our first construction Γ , we can similarly define the
alternative decapsulation algorithm AltDecap for Γ . For a k-bit string tag∗ ∈ {0, 1}k and a key pair
(PK,SK) output by KKG(1k), where PK = (pkin, pk, ck) and SK = (skin, sk, PK), we define an

“alternative” secret key ŜKtag∗ associated with tag∗ ∈ {0, 1}k by ŜKtag∗ = (skin, tag
∗, ŝktag∗ , PK),

where ŝktag∗ = Punc(sk, tag∗). AltDecap takes an “alternative” secret key ŜKtag∗ defined as above
and a ciphertext C = (tag, c) as input, and runs as follows:

AltDecap(ŜKtag∗ , C): First check if tag∗ = tag, and return ⊥ if this is the case. Otherwise, run in

exactly the same way as Decap(SK,C), except that “cin ← T̂Dec(ŝktag∗ , tag, c)” is executed in
the fourth step, instead of “cin ← TDec(sk, tag, c).”

As in the case of the first construction, we can show the following lemma. Since the proof is
essentially the same as the proof of Lemma 3, we omit the proof.

Lemma 5. Let tag∗ ∈ {0, 1}k be a string and let (PK,SK) be a key pair output by KKG(1k).

Furthermore, let ŜKtag∗ be an alternative secret key as defined above. Then, for any ciphertext
C = (tag, c) (which could be outside the range of Encap(PK)) satisfying tag ̸= tag∗, it holds that

Decap(SK,C) = AltDecap(ŜKtag∗ , C).

Proof of Theorem 2. Let A be any PPTA adversary that attacks the KEM Γ in the sense of CCA
security, and makes in total Q decapsulation queries. (Since A is a PPTA, Q is some polynomial.) As



in the proof of Theorem 1, the security proof is done via the sequence of games argument. To describe
the games, we will need an extractor E corresponding to the following ciphertext creator A′ that
is guaranteed to exist by the sPA11 security of Γin. Specifically, consider the following algorithm
A′ (that internally runs A) that runs in the experiment ExptsPA1Γin,A′,E,1(k), with a corresponding
extractor E :

A′E(stE ,·)(pk′; rA′ = (rA, r̂c, r̂t,K
∗)): A′ firstly sets pkin ← pk′ (which implicitly sets skin ← sk′,

where sk′ is the secret key corresponding to pk′), and runs (ck, tag∗)← oSampC(1
k; r̂c), (pk, c

∗,

ŝktag∗) ← oSampT (tag
∗; r̂t). Then A′ sets PK ← (pkin, pk, ck) and C∗ ← (tag∗, c∗), and then

runs A(PK,C∗,K∗; rA).

When A submits a decapsulation query C, A′ responds to it as if it runs AltDecap(ŜKtag∗ , C)
where the oracle call of E with the input ciphertext cin is used as a substitute for Decapin(skin,
cin).

10 More precisely, A′ answers A’s decapsulation query C = (tag, c) as follows:

1. If tag = tag∗, then return ⊥ to A.
2. Run cin ← T̂Dec(ŝktag∗ , tag, c), and return ⊥ to A if T̂Dec has returned ⊥.
3. Submit a query cin to the extractor E(stE , ·) and receive the answer α. (Here, the answer

α is expected to be α = Decapin(skin, cin), and the extractor E may update its state upon
each call.)

4. If α = ⊥, then return ⊥ to A.
5. Parse α as (rc, rt,K) ∈ ({0, 1}k)3.
6. If Com(ck, cin; rc) = tag and TEnc(pk, cin; rt) = c, then return K, otherwise return ⊥, to A.
When A terminates, A′ also terminates.

The above completes the description of the algorithm A′. The randomness rA′ consumed by A′
is of the form (rA, r̂c, r̂t,K

∗), where rA, r̂c, and r̂t are the randomness used by A, oSampC , and
oSampT , respectively, and K∗ is a k-bit string. The corresponding extractor E thus receives pk′ and
rA′ as its initial state stE . Note that since Γin is assumed to be sPA11 secure and A′ is a PPTA,
AdvsPA1Γin,A′,E,1(k) is negligible for this extractor E , which will be used later in the proof. (Looking
ahead, we will design the sequence of games so that A’s view in the case A is internally run by A′
and A′ is run in ExptsPA1Γin,A′,E,1(k), is identical to A’s view in Game 6.)

For convenience, we refer to the procedure of using the extractor E as a substitute for Decapin(skin,
·), as AltDecap

′
E . Here, AltDecap

′
E is a stateful procedure that initially takes tag∗, ŝktag∗ , and an

initial state of E (i.e. stE = (pkin, rA′)) as input, and expects to receive a ciphertext C = (tag, c)
as an input. If it receives a ciphertext C = (tag, c), it calculates the decapsulation result K (or ⊥)
as A′ does for A, using ŝktag∗ and the extractor E , where E ’s internal state could be updated upon
each call.

Now, using the adversary A and the extractor E , consider the following sequence of games:
(Here, the values with asterisk (*) represent those related to the challenge ciphertext for A.)

Game 1: This is the experiment ExptCCA
Γ ,A(k) itself.

Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c) satisfying tag = tag∗

are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered with AltDecap(ŜKtag∗ ,

C), where ŜKtag∗ is the alternative secret key corresponding to (PK,SK) and tag∗.

10 Since in this proof we only treat an extractor that works in the single key setting, we will denote a query to E by
c, instead of (1, c), for notational convenience.



Game 4: In this game, we use AltDecap
′
E (defined as above) as A’s decapsulation oracle, where

the initial state of E (used internally by AltDecap
′
E) is prepared using the “inverting algorithms”

rSampC of C and rSampT of T . We also change the ordering of the steps so that they do not
affect A’s view.
More precisely, this game is defined as follows (here, we are displaying the description of Game 4
so that it is easy to compare the difference with Game 4 used in the proof of Theorem 1):

Game 4:

(pkin, skin)← KKGin(1
k);

(c∗in, α
∗)← Encapin(pkin);

Parse α∗ as (r∗c , r
∗
t ,K

∗
1 ) ∈ ({0, 1}k)3;

(Continue to the center column ↗)

rg ← {0, 1}∗;
ck ← CKG(1k; rg);
tag∗ ← Com(ck, c∗in; r

∗
c );

r̂c ← rSampC(rg, r
∗
c , c

∗
in);

r′g ← {0, 1}∗;
(pk, sk)← TKG(1k; r′g);

ŝktag∗ ← Punc(sk, tag∗);
c∗ ← TEnc(pk, tag∗, c∗in; r

∗
t );

r̂t ← rSampT (r
′
g, r

∗
t , tag

∗, c∗in);
(Continue to the right column ↗)

PK ← (pkin, pk, ck);
C∗ ← (tag∗, c∗);
K∗

0 ← {0, 1}k;
b← {0, 1};
rA ← {0, 1}∗;
rA′ ← (rA, r̂c, r̂t,K

∗
1 );

stE ← (pkin, rA′);
b′ ← AO(PK,C∗,K∗

b ; rA)

where the decapsulation oracle O that A has access in Game 4 is AltDecap
′
E (which initially

receives tag∗, ŝktag∗ , stE = (pkin, rA′) as input). Note that the extractor E used internally by

AltDecap
′
E may update its state stE upon each execution.

Game 5: Same as Game 4, except that r∗c , r
∗
t ,K

∗
1 ∈ {0, 1}k are picked uniformly at random, inde-

pendently of α∗ and c∗in. That is, the steps “(c
∗
in, α

∗)← Encapin(pkin); Parse α
∗ as (r∗c , r

∗
t ,K

∗
1 ) ∈

({0, 1}k)3” in Game 4 are replaced with the steps “(c∗in, α
∗) ← Encapin(pkin); r

∗
c , r
∗
t ,K

∗
1 ←

{0, 1}k,” and we do not use α∗ anymore.

Game 6: Same as Game 5, except that the key/commitment pair (ck, tag∗) and the key/ciphertext

pair (pk, c∗) and the punctured secret key ŝktag∗ are sampled obliviously, and correspondingly
the randomness r̂c and r̂t used for oblivious sampling are used in rA′ .

More precisely, the steps “rg, r
∗
c ← {0, 1}∗; ck ← CKG(1k; rg); tag

∗ ← Com(ck, c∗in; r
∗
c ); r̂c ←

rSampC(rg, r
∗
c , c
∗
in)” in Game 5 are replaced with the steps “r̂c ← {0, 1}∗; (ck, tag∗)← oSampC(1

k;
r̂c)”.

Furthermore, the steps “r′g, r
∗
t ← {0, 1}k; (pk, sk) ← TKG(1k; r′g); c

∗ ← TEnc(pk, tag∗, c∗in; r
∗
t );

r̂t ← rSampT (r
′
g, r
∗
t , tag

∗, c∗in)” in Game 5 are replaced with the steps “r̂t ← {0, 1}∗; (pk, ŝktag∗ ,
c∗)← oSampT (tag

∗; r̂t)”.

The above completes the description of the games.

For i ∈ [6], let Succi denote the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game i. Furthermore, for i ∈ {3, . . . , 6}, we define the following bad events in Game i:

Badi: A submits a decapsulation query C = (tag, c) satisfying the following conditions simultane-

ously: (1) tag ̸= tag∗, (2) T̂Dec(ŝktag∗ , tag, c) = cin ̸= ⊥, and (3) cin = c∗in or Decapin(skin, cin) ̸=
E(stE , cin).

Bad
(j)
i : (where j ∈ [Q]) A’s j-th query Cj = (tagj , cj) satisfies the conditions of Badi. Namely,

it satisfies: (1) tagj ̸= tag∗, (2) T̂Dec(ŝktag∗ , tagj , cj) = cinj ̸= ⊥, and (3) cinj = c∗in or
Decapin(skin, cinj) ̸= E(stE , cinj).

By the definitions of the games and events, we can show the following:



Claim 8 A’s CCA advantage AdvCCA
Γ ,A(k) can be upperbounded as follows:

AdvCCA
Γ ,A(k) ≤ 2 ·

∑
i∈[2]

∣∣∣Pr[Succi]− Pr[Succi+1]
∣∣∣+ 2 ·

∣∣∣Pr[Succ4]− Pr[Succ5]
∣∣∣+ 2 ·

∣∣∣Pr[Succ5]− 1

2

∣∣∣
+ 2 ·

∑
i∈{4,5}

∣∣∣∑
j∈[Q]

(
Pr[Bad

(j)
i ]− Pr[Bad

(j)
i+1]

)∣∣∣+ 2 ·
∑
j∈[Q]

Pr[Bad
(j)
6 ]. (10)

Proof of Claim 8. By the definitions of the games and events and the triangle inequality, we have:

AdvCCA
Γ ,A(k) = 2 ·

∣∣∣Pr[Succ1]− 1

2

∣∣∣ ≤ 2 ·
∑
i∈[4]

∣∣∣Pr[Succi]− Pr[Succi+1]
∣∣∣+ 2 ·

∣∣∣Pr[Succ5]− 1

2

∣∣∣.
Furthermore, notice that Game 3 and Game 4 proceed identically unless A submits a decapsulation
query that causes the event Bad3 (or Bad4), and thus these games proceed identically unless Bad3
or Bad4 occurs in the corresponding games. Thus, we have:∣∣∣Pr[Succ3]− Pr[Succ4]

∣∣∣ ≤ Pr[Bad3] = Pr[Bad4].

Then, further applying the triangle inequality and the union bound, we have

Pr[Bad4] = Pr[
∨

j∈[Q]

Bad
(j)
4 ] ≤

∑
j∈[Q]

Pr[Bad
(j)
4 ]

≤
∑

i∈{4,5}

∣∣∣∑
j∈[Q]

(
Pr[Bad

(j)
i ]− Pr[Bad

(j)
i+1]

)∣∣∣+ ∑
j∈[Q]

Pr[Bad
(j)
6 ].

Combining all the inequalities yields Equation (10). ⊓⊔ (Claim 8)

In the following, we upperbound each term that appears in Equation (10).

Claim 9 There exists a PPTA Bb such that AdvTBindC,Bb (k) ≥ |Pr[Succ1]− Pr[Succ2]|.

Claim 10 Pr[Succ2] = Pr[Succ3].

Claim 11 There exists a PPTA B′g such that AdvCPAΓin,B′g(k) = |Pr[Succ4]− Pr[Succ5]|.

Claim 12 Pr[Succ5] = 1/2.

The proofs of Claims 9, 10, 11, and 12 are essentially the same as the proofs of Claims 1, 2, 4, and
5, respectively, and thus omitted.

Claim 13 There exists a PPTA Bg such that Adv1-CCAΓin,Bg(k) = (1/Q)·|
∑

j∈[Q](Pr[Bad
(j)
4 ]−Pr[Bad(j)5 ])|.

Proof of Claim 13. Using A and E as building blocks, we show how to construct a PPTA 1-CCA
adversary Bg against the underlying KEM Γin with the claimed advantage. The description of Bg
is as follows:



BOg (pk′, c′∗, α′∗β ): (where β ∈ {0, 1} is Bg’s challenge bit in its 1-CCA experiment, and O is Bg’s
decapsulation oracle) Bg sets pkin ← pk′, c∗in ← c′∗, and α∗ ← α′∗β , and parses α∗ as (r∗c , r

∗
t ,K

∗
1 ) ∈

({0, 1}k)3. Next, Bg picks rg, r
′
g ∈ {0, 1}∗ uniformly at random, and runs ck ← CKG(1k; rg),

tag∗ ← Com(ck, c∗in; r
∗
c ), r̂c ← rSampC(rg, r

∗
c , c
∗
in), (pk, sk) ← TKG(1k; r′g), c

∗ ← TEnc(pk, tag∗,

c∗in; r
∗
t ), ŝktag∗ ← Punc(sk, tag∗), and r̂t ← rSampT (r

′
g, r
∗
t , tag

∗, c∗in). Then Bg picks rA ∈ {0, 1}∗,
K∗0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random, and then sets PK ← (pkin, pk, ck), C

∗ ←
(tag∗, c∗), rA′ ← (rA, r̂c, r̂t,K

∗
b ), and stE ← (pkin, rA′), and runs A(PK,C∗,K∗b ; rA).

Bg answersA’s decapsulation queries as AltDecap
′
E does, where its initial state is tag

∗, ŝktag∗ , and

stE . (Note that E used internally by AltDecap
′
E may update its state stE upon each execution.)

When A terminates, Bg picks u ∈ [Q] uniformly at random, and checks if A’s u-th query Cu =
(tagu, cu) satisfies the conditions of the event Bad4. Namely, Bg checks whether (1) tagu ̸= tag∗,

(2) T̂Dec(ŝktag∗ , tagu, cu) = cinu ̸= ⊥ and (3) cinu = c∗in or Decapin(skin, cinu) ̸= E(stE , cinu),
where the condition (3) can be checked by using Bg’s decapsulation oracle.11 (Here, if cinu = c∗in,
then Bg need not use the decapsulation oracle.) If the u-th query satisfies the above, then Bg
sets β′ ← 1, otherwise sets β′ ← 0, and terminates with output β′.

The above completes the description of Bg. Note that Bg never submits the prohibited query c∗in. For

j ∈ [Q], let Bad
(j)
B be the event that A submits a decapsulation query that satisfies the conditions

(1), (2), and (3) of Bad
(j)
4 , in the experiment simulated by B′g. It is easy to see that Bg simulates

Game 4 perfectly for A if β = 1, and simulates Game 5 perfectly for A if β = 0. Furthermore,
note that the choice of u ∈ [Q] is independent of A’s behavior and the challenge bit of Bg. These
imply that for every j ∈ [Q] and σ ∈ {0, 1}, we have Pr[Bad(u)|u = j ∧ β = σ] = Pr[Bad

(j)
5−σ] and

Pr[u = j|β = σ] = Pr[u = j] = 1/Q. Since Bg outputs β′ = 1 only when Bad
(u)
B occurs, for both

σ ∈ {0, 1}, we have

Pr[β′ = 1|β = σ] = Pr[Bad
(u)
B |β = σ]

=
∑
j∈[Q]

Pr[Bad
(u)
B |u = j ∧ β = σ] · Pr[u = j|β = σ]

=
1

Q
·
∑
j∈[Q]

Pr[Bad
(j)
5−σ].

Using this, we can calculate Bg’s 1-CCA advantage as follows:

Adv1-CCAΓin,Bg(k) = 2 ·
∣∣∣Pr[β′ = β]− 1

2

∣∣∣ = ∣∣∣Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]
∣∣∣

=
1

Q
·
∣∣∣∑
j∈[Q]

(
Pr[Bad

(j)
4 ]− Pr[Bad

(j)
5 ]

)∣∣∣,
as required. ⊓⊔ (Claim 13)

Claim 14 There exists a PPTA Bd such that AdvTS[C,T ],Bd(k) = (1/Q)·|
∑

j∈[Q](Pr[Bad
(j)
5 ]−Pr[Bad(j)6 ])|.

11 As mentioned in Section 4.2, the step (3) can be done by a “plaintext-checking” query by submitting a pair

(cinu, αu) to the plaintext-checking oracle (which tells the one-bit (Decapin(skin, cinu)
?
= αu)), where αu is the

decapsulation result of cinu that was computed by using the extractor E .



Proof of Claim 14. Using A and E as building blocks, we show how to construct a PPTA B that has
the claimed advantage in distinguishing the distributions considered in Lemma 2. The description
of Bd = (Bd1,Bd2) as follows:

Bd1(1k): Bd1 runs (pkin, skin)← KKGin(1
k) and (c∗in, α

∗)← Encapin(pkin). Then Bd1 sets M ← c∗in
and stB ← (Bd1’s entire view), and terminates with output (M, stB).

Bd2(stB, ck, tag∗, pk, c∗, ŝktag∗ , r̂c, r̂t): Bd2 sets PK ← (pkin, pk, ck), C
∗ ← (tag∗, c∗), picks K∗ ∈

{0, 1}k and rA ∈ {0, 1}∗ uniformly at random, and sets rA′ ← (rA, r̂c, r̂t,K
∗) and stE ←

(pkin, rA′). (Recall that K∗0 and K∗1 in Games 5 and 6 are distributed identically, and thus it is
sufficient to choose just a single value K∗ and pretend as if K∗ is K∗b .) Then Bd2 runs A(PK,
C∗,K∗; rA).

Bd2 answers A’s queries as Game 5 does, which is possible because Bd2 possesses ŝktag∗ and stE ,

and thus Bd2 can run AltDecap
′
E (which internally runs the extractor E(stE , ·)).

When A terminates, Bd2 picks u ∈ [Q] uniformly at random, and checks whether A’s u-th
decapsulation query Cu = (tagu, cu) satisfies the conditions of Bad5, namely, (1) tagu ̸= tag∗,

(2) T̂Dec(ŝktag∗ , tagu, cu) = cinu ̸= ⊥, and (3) cinu = c∗in or Decapin(skin, cinu) ̸= E(stE , cinu),
which can be checked by using skin that Bd2 possesses. If the u-th query satisfies the above,
then Bd2 outputs 1, otherwise outputs 0, and terminates.

The above completes the description of Bd. For j ∈ [Q], let Bad
(j)
B be the event that A’s j-th decap-

sulation query Cj = (tagj , cj) satisfies the conditions of Bad
(j)
5 in the experiment simulated by Bd.

Note that Bd submits 1 only when Bad
(u)
B occurs. Furthermore, the choice of u is independent of A’s

behavior and whether Bd is in ExptTS-Real[C,T ],Bd(k) or Expt
TS-Sim
[C,T ],Bd(k). These imply that for every j ∈ [Q],

we have Pr[ExptTS-Real[C,T ],Bd : Bad
(u)
B |u = j] = Pr[ExptTS-Real[C,T ],Bd : Bad

(j)
B ], Pr[ExptTS-Sim[C,T ],Bd : Bad

(u)
B |u = j] =

Pr[ExptTS-Sim[C,T ],Bd : Bad
(j)
B ], and Pr[ExptTS-Real[C,T ],Bd : u = j] = Pr[ExptTS-Sim[C,T ],Bd : u = j] = 1/Q. Therefore,

Bd’s advantage AdvTS[C,T ],Bd(k) (regarding distinguishing ExptTS-Real[C,T ],Bd(k) and ExptTS-Sim[C,T ],Bd(k)) can be
calculated as follows:

AdvTS[C,T ],Bd(k) =
∣∣∣Pr[ExptTS-Real[C,T ],Bd(k) = 1]− Pr[ExptTS-Sim[C,T ],Bd(k) = 1]

∣∣∣
=

∣∣∣Pr[ExptTS-Real[C,T ],Bd : Bad
(u)
B ]− Pr[ExptTS-Sim[C,T ],Bd(k) : Bad

(u)
B ]

∣∣∣
=

∣∣∣∑
j∈[Q]

Pr[ExptTS-Real[C,T ],Bd : Bad
(u)
B |u = j] · Pr[ExptTS-Real[C,T ],Bd : u = j]

−
∑
j∈[Q]

Pr[ExptTS-Sim[C,T ],Bd(k) : Bad
(u)
B |u = j] · Pr[ExptTS-Sim[C,T ],Bd : u = j]

∣∣∣
=

1

Q
·
∣∣∣∑
j∈[Q]

(
Pr[ExptTS-Real[C,T ],Bd : Bad

(j)
B ]− Pr[ExptTS-Sim[C,T ],Bd(k) : Bad

(j)
B ]

)∣∣∣.
Consider the case when Bd is run in the “real” experiment ExptTS-Real[C,T ],Bd(k). It is easy to see that in

this case, Bd simulates Game 5 perfectly for A. Specifically, ck, pk, tag∗, c∗, and ŝktag∗ are generated
from CKG, TKG, Com, TEnc, and Punc, respectively, in such a way that tag∗ is a commitment of
c∗in and c∗ is an encryption of c∗in under the tag tag∗. Furthermore, r̂c and r̂t are generated from
rSampC and rSampT , respectively, which is exactly how they are generated in Game 5. Under the

situation, the probability that A’s j-th query satisfies the conditions of the event Bad
(j)
B in the



experiment simulated by Bd is exactly the same as the probability that A’s j-th query satisfies

those in Game 5. Namely, for every j ∈ [Q], we have Pr[ExptTS-Real[C,T ],Bd(k) : Bad
(j)
B ] = Pr[Bad

(j)
5 ].

On the other hand, consider the case when Bd is run in the “simulated” experiment ExptTS-Sim[C,T ],Bd(k).

In this case, Bd simulates Game 6 perfectly for A. Specifically, (ck, tag∗) and (pk, c∗, ŝktag∗) are
generated by oSampC(1

k; r̂c) and oSampT (tag
∗; r̂t) with uniformly chosen randomness r̂c and r̂t,

respectively, and this is exactly how these values are generated in Game 6. Since this is the only
change from the above case, with a similar argument to the above, for every j ∈ [Q] we have

Pr[ExptTS-Sim[C,T ],Bd(k) : Bad
(j)
B ] = Pr[Bad

(j)
6 ].

In summary, we have AdvTS[C,T ],Bd(k) = (1/Q) · |
∑

j∈[Q](Pr[Bad
(j)
5 ] − Pr[Bad

(j)
6 ])|, as required.
⊓⊔ (Claim 14)

Claim 15 For every j ∈ [Q], we have Pr[Bad
(j)
6 ] ≤ AdvsPA1Γin,A′,E,1(k) + SmthΓin(k).

Proof of Claim 15. Note that the view of A in Game 6 is exactly the same as the view of A when
it is internally run by A′ in the situation where A′ is run in the experiment ExptsPA1Γin,A′,E,1(k) with
the extractor E .

Now, we classify A’s decapsulation query C = (tag, c) satisfying the conditions of Bad6 into the
following two types:

– (Type 1): tag ̸= tag∗, T̂Dec(ŝktag∗ , tag, c) = cin ̸= ⊥, and cin = c∗in.

– (Type 2): tag ̸= tag∗, T̂Dec(ŝktag∗ , tag, c) = cin ̸= ⊥, cin ̸= c∗in, and Decapin(skin, cin) ̸=
E(stE , cin)

Note that in Game 6, A’s view does not contain any information of c∗in and thus c∗in is information-
theoretically hidden from A. Under this situation, the event that A submits a query of Type 1
corresponds to the event that A succeeds in guessing an “unseen” ciphertext c∗in. However, for
every j ∈ [Q], the probability that A’s j-th query is of Type 1 can be upperbounded by the
“smoothness” SmthΓin(k) [4] of the KEM Γin (which is negligible if Γin satisfies CPA or stronger
security, see Lemma 4 in Appendix A.2).

Furthermore, the probability that A submits a query of Type 2 is upperbounded by the prob-
ability that A′ submits a query to E that makes the experiment ExptsPA1Γin,A′,E,1(k) outputs 1 (i.e.
A′ submits a query cin such that Decapin(skin, cin) ̸= E(stE , cin)). Hence, for every j ∈ [Q], the
probability that A’s j-th query is of Type 2 is upperbounded by AdvsPA1Γin,A′,E,1(k).

In summary, for every j ∈ [Q], the probability that A’s j-th query satisfies the conditions of
Bad6 is upperbounded by AdvsPA1Γin,A′,E,1(k) + SmthΓin(k), as required. ⊓⊔ (Claim 15)

Claims 8 to 15 and Equation (10) guarantee that there exist PPTAs Bb, Bg, Bd, and B′g such
that

AdvCCA
Γ ,A(k) ≤ 2 · AdvTBindC,Bb (k) + 2 · AdvCPAΓin,B′g(k) + 2Q · Adv1-CCAΓin,Bg + 2Q · AdvTS[C,T ],Bd(k)

+ 2Q · AdvsPA1Γin,A′,E,1(k) + 2Q · SmthΓin(k),

which, due to our assumptions on the building blocks and Lemmas 2 and 4 (where the latter is
stated in Appendix A.2), implies that AdvCCA

Γ ,A(k) is negligible. Recall that the choice of the PPTA

CCA adversary A was arbitrarily, and thus for any PPTA CCA adversary A we can show a negligible
upperbound for AdvCCA

Γ ,A(k) as above. Hence, the KEM Γ is CCA secure. ⊓⊔ (Theorem 2)



KKGDF(1
k) :

∀(i, j) ∈ [k]× {0, 1} :
(pk

(j)
i , sk

(j)
i )← KKG(1k)

κ← HKG(1k)

pk ← ((pk
(j)
i )i∈[k],j∈{0,1}, κ)

sk ← ((sk
(j)
i )i∈[k],j∈{0,1}, κ)

Return (pk, sk).

EncapDF(pk) :

((pk
(j)
i )i∈[k],j∈{0,1}, κ)← pk

(vk, sigk)← SKG(1k)
h← Hκ(vk)

View h as (h1∥ . . . ∥hk) ∈ {0, 1}k.
∀i ∈ [k] : (ci,Ki)← Encap(pk

(hi)
i )

σ ← Sign(sigk, (ci)i∈[k])
c← (vk, (ci)i∈[k], σ)
K ←

⊕
i∈[k] Ki

Return (c,K).

DecapDF(sk, c) :

((sk
(j)
i )i∈[k],j∈{0,1}, κ)← sk

(vk, (ci)i∈[k], σ)← c
If SVer(vk, (ci)i∈[k], σ) = ⊥ then return ⊥.
h← Hκ(vk)

View h as (h1∥ . . . ∥hk) ∈ {0, 1}k.
∀i ∈ [k] : Ki ← Decap(sk(hi), ci)
If ∃i ∈ [k] : Ki = ⊥ then return ⊥.
Return K ←

⊕
i∈[k] Ki.

Fig. 7. A KEM variant of the Dodis-Fiore construction ΓDF.

D A KEM Variant of the Dodis-Fiore Construction

Here, we recall the KEM-variant of the Dodis-Fiore construction [22, Appendix C]. The original
construction in [22] constructs a PKE scheme from a building block PKE scheme and a one-time
signature scheme. Here, we construct a KEM by replacing the building block PKE scheme with a
KEM. The reasons for considering such a KEM-variant are that (1) it is sufficient for our second
construction, and (2) using a KEM as a building block can in general result in smaller ciphertext
size.

Formally, the construction is as follows. Let Γ = (KKG,Encap,Decap) be a KEM, H = (HKG,H)
be a UOWHF, and Σ = (SKG, Sign, SVer) be a signature scheme. Then, we construct the KEM-
analogue of the Dodis-Fiore construction, denoted by ΓDF = (KKGDF,EncapDF,DecapDF), as in Fig. 7.

Security of ΓDF. From the description, it is straightforward to see the following:

Theorem 3. If the underlying KEM Γ is sPA12k secure, then the KEM ΓDF is sPA11 secure.

Furthermore, regarding 1-CCA security, the following can be established:

Theorem 4. If the underlying KEM is CPA secure, the signature scheme is SOT secure, and H is
a UOWHF, then the KEM ΓDF is 1-CCA secure.

Since we did not find a proof (for the original Dodis-Fiore construction) in [22], we provide it here.

Proof of Theorem 4. Let A be any PPTA adversary that attacks the 1-CCA security of the KEM
ΓDF. Consider the following sequence of games (where the values with asterisk (*) denote those
related to the challenge ciphertext c∗ = (vk∗, (c∗i )i∈[k], σ

∗)):

Game 1: This is the experiment Expt1-CCAΓDF,A(k) itself.

Game 2: Same as Game 1, except that if A’s decapsulation query c = (vk, (ci)i∈[k], σ) satisfies
vk = vk∗, then it is answered with ⊥.

Game 3: Same as Game 2, except that if A’s decapsulation query c = (vk, (ci)i∈[k], , σ) satisfies
vk ̸= vk∗ and h = Hκ(vk) = Hκ(vk

∗) = h∗, then it is answered with ⊥. (Thus, a decapsulation
query satisfying h = Hκ(vk) = Hκ(vk

∗) = h∗ is answered with ⊥.)

For i ∈ [3], let Succi be the probability that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game i. Then, using the triangle inequality, A’s 1-CCA advantage can be estimated as



follows:

Adv1-CCAΓDF,A(k) = 2 ·
∣∣∣Pr[Succ1]− 1

2

∣∣∣
≤ 2 ·

∑
i∈[2]

∣∣∣Pr[Succi]− Pr[Succi+1]
∣∣∣+ 2 ·

∣∣∣Pr[Succ3]− 1

2

∣∣∣. (11)

Hence, it remains to show that each term in the right hand side is negligible.
Firstly, note that Game 1 and Game 2 proceed identically unless A’s query c = (vk, (ci)i∈[k], σ)

satisfies vk = vk∗ and DecapDF(sk, c) ̸= ⊥ (which in particular implies SVer(vk, (ci)i∈[k], σ) = ⊤) in
Game 1 or Game 2. Therefore, |Pr[Succ1]−Pr[Succ2]| is upperbounded by the probability that A’s
query satisfies the conditions in Game 1. However, by the rule of the 1-CCA security experiment, A’s
query c must be different from c∗, and thus vk = vk∗ implies ((ci)i∈[k], σ) ̸= ((c∗i )i∈[k], σ

∗). but all
of these conditions together are exactly those of violating the SOT security of Σ, and hence such a
query is hard to find by assumption. (We omit the details of this step because it is straightforward.)
Hence, |Pr[Succ1]− Pr[Succ2]| is negligible.

Secondly, note that Game 2 and Game 3 proceed identically unless A’s query c = (vk, (ci)i∈[k], σ)
satisfies vk ̸= vk∗, Hκ(vk) = Hκ(vk

∗), and DecapDF(sk, c) ̸= ⊥. Therefore, |Pr[Succ2]−Pr[Succ3]| is
upperbounded by the probability that A’s query satisfies these conditions. However, these are the
exactly the conditions of violating the security of the UOWHF H, and hence such a query is hard
to find by assumption. (We also omit the details on this step, because this is again straightforward.)
Hence, |Pr[Succ2]− Pr[Succ3]| is negligible.

Finally, by the CPA security of the underlying KEM Γ , we can show that |Pr[Succ3]−1/2| is neg-
ligible. For simplicity, in the following we assume that A’s decapsulation query c = (vk, (ci)i∈[k], σ)
always satisfies SVer(vk, (ci)i∈[k], σ) = ⊤ and h = Hκ(vk) ̸= Hκ(vk

∗) = h∗. 12

Now, using A as a building block, we show how to construct a CPA adversary B against the
underlying KEM Γ . The description of B is as follows:

B(pk′, c′∗,K ′β) : (where β ∈ {0, 1} is B’s challenge bit) B first picks u ∈ [k] uniformly at random.

B then runs κ ← HKG(1k), (vk∗, sigk∗) ← SKG(1k), and h∗ = (h∗1∥ . . . ∥h∗k) ← Hκ(vk
∗). Then,

B generates each key pair (pk
(j)
i , sk

(j)
i ), except for (pk

(h∗
u)

u , sk
(h∗

u)
u ), by running KKG(1k) 2k − 1

times, and also generates each ciphertext/session-key pair (c∗i ,K
∗
i ), except for (c∗u,K

∗
u), by

executing (c∗i ,K
∗
i ) ← Encap(pk

(h∗
i )

i ) for every i ∈ [k]\{u}. Next, B sets pk
(h∗

u)
u ← pk′ and

c∗u ← c′∗, and generates σ∗ ← Sign(sigk∗, (c∗i )i∈[k]) and K∗ ← K ′β ⊕
⊕

i∈[k]\{ℓ}Ki. Then, B sets

pk ← ((pk
(j)
i )i∈[k],j∈{0,1}, κ) and c∗ ← (vk∗, (c∗i )i∈[k], σ

∗), and runs A(pk, c∗,K∗).
For A’s decapsulation query c = (vk, (ci)i∈[k], σ) (for which we have already assumed that
SVer(vk, (ci)i∈[k], σ) = ⊤ and h = Hκ(vk) ̸= h∗), B checks if u is the smallest integer in the set
{i ∈ [k] | hi ̸= h∗i }. If this is not the case, then B gives up, outputs a random bit β′ ∈ {0, 1},
and terminates. Otherwise, B possesses all secret keys (sk

(hi)
i )i∈[k] needed to decrypt each ci,

13 and thus using them B computes the decapsulation result of c exactly as DecapDF does, and
returns the result K (or ⊥) to A.
When A terminates with output bit b′, B also terminates with output this b′.

12 This assumption can be easily removed by considering a “wrapper” algorithm A′ for A that runs in exactly the
same way as A but if A’s decapsulation query does not satisfy the above, A′ instead makes a dummy decapsulation
query satisfying them, and A′ returns ⊥ to A. The 1-CCA advantage of A′ is exactly the same as that of A.

13 This is because the only missing secret key that B does not possesses is sk
(h∗

u)
u , but hu ̸= h∗

u guarantees that sk
(h∗

u)
u

is not needed to decrypt cu.



The above completes the description of B. Note that we have assumed that h ̸= h∗, and thus there
must exist at least one position j ∈ [k] such that hj ̸= h∗j . Let us denote by GoodB the event that
u is the smallest integer in the set {i ∈ [k]|hi ̸= h∗i }. Since u is chosen uniformly at random, and
its information is information-theoretically hidden from A’s view during the experiment simulated
by B, the probability that GoodB occurs is exactly 1/k. Furthermore, if GoodB occurs, B simulates
Game 3 perfectly for A so that A’s challenge bit is that of B’s. In particular, if β = 1, then K∗

is the XOR of all the correctly generated session-keys Ki, while if β = 0, then K∗ is a uniformly
distributed random string due to the addition of K ′∗0 which is also a uniformly random string. Since
B uses A’s output as it is, we have Pr[β′ = β ∧ GoodB] = Pr[GoodB] ·Pr[Succ3] = (1/k) · Pr[Succ3].
Furthermore, if GoodB does not occur, B uses a random bit for β′, which means that Pr[β′ =
β ∧ GoodB] = (1/2) · Pr[GoodB] = (k − 1)/2k.

In summary, B’s CPA advantage is calculated as follows:

AdvCPAΓ,B(k) = 2 ·
∣∣∣Pr[β′ = β]− 1

2

∣∣∣
= 2 ·

∣∣∣Pr[β′ = β ∧ GoodB] + Pr[β′ = β ∧ GoodB]−
1

2

∣∣∣
= 2 ·

∣∣∣1
k
· Pr[Succ3] +

k − 1

2k
− 1

2

∣∣∣
=

2

k
·
∣∣∣Pr[Succ3]− 1

2

∣∣∣.
This gives us |Pr[Succ3]− 1/2| = (k/2) · AdvCPAΓ,B(k). Since Γ is assumed to be CPA secure, the right
hand side is negligible, and thus so is |Pr[Succ3]− 1/2|.

We have seen that the right hand side of Equation (11) is negligible, and hence so is Adv1-CCAΓDF,A(k).
Since the choice of A was arbitrarily, we can show that the 1-CCA advantage is negligible for any
PPTA 1-CCA adversary A. This means that ΓDF is 1-CCA secure. ⊓⊔ (Theorem 4)


