
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Hash3: Proofs, Analysis and Implementation
Report on ECRYPT II Event on Hash Functions

Gauravaram, Praveen

Publication date:
2009

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Gauravaram, P. (2009). Hash3: Proofs, Analysis and Implementation: Report on ECRYPT II Event on Hash
Functions.  (MAT REPORT; No. 2009-03).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13725053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/hash3-proofs-analysis-and-implementation(132d6509-a4cc-4931-acb6-f024304b2745).html


Report regarding the winter school on

Hash3: Proofs, Analysis and Implementation

Praveen Gauravaram

Department of Mathematics,

Technical University of Denmark

Building S303, Matematiktorvet

Kgs.Lyngby, Denmark-2800

Email: p.gauravaram@mat.dtu.dk

December 3, 2009



Abstract

This report outlines the talks presented at the winter school on Hash3: Proofs,
Analysis, and Implementation [9]. In general, speakers may not write everything
what they talk on the slides. So, this report also outlines such findings following
the understanding of the author of this report. The author of this report would
like to disclaim that any mistakes in this report are solely due to author of this
report as not all of the technical details are verified with the speakers. The
findings presented in this report are solely due to the author’s understanding
of the talks at the winter school. For many of the talks, the author of this
report has spent some time in understanding some technical details (using prior
knowledge and (re)visiting the literature) and explained that in this report. Of
course, not all the details are covered while exploring the literature.



0.1 First day: 16/11/2009

0.1.1 Perspective on hash functions

Bart discussed overall state of art of hash functions with an emphasis on the
history and the current state of art of hash functions. The idea of one-way
hash functions was known in 1873 itself due to Jevons who proposed a kind
of one-way hash function which easily multiplies two prime numbers whereas
it is difficult to factor. This was noted in [15]. Hash functions were known as
modification detection codes (MDCs) in 70s and 80s due to IBM. In Belgium,
the banking system in 80s used a 128-bit hash function for information authen-
tication wherein the hash value transferred with a courier on the magnetic strip
is verified via a phone after the recipient obtains the hash value. This ensures
that the courier person has not modified the message. Prior to 1990, cryptology
was in hardware and moved to software in 90s. Hash functions have become
Swiss army knife of cryptography as we expect many properties from them and
due to their diverse applications.

Most of the hash functions in the late 70s and 80s are based on DES (e.g., Ra-
bin’78, Davies-Meyer and Matyas-Meyer-Oseas). During that time, people did
not think outside the box and apart from few researchers like Lai and Massey,
research in the new block cipher proposals was not considered. For crypto-
graphic algorithms, if we aim for two out of cost, performance and security, we
actually end up sacrificing the third one. The first time ever the initial value
(IV) was mentioned in a hash function was for MDC-2. Rivest was the first one
who coined the term “strengthening” (Need to be verified.). A new reference
for [Dean’s’99] second preimage attack on hash functions based on fixed points
is [Dean-Felten-Hu’99] (This reference reflects the submission to Crypto 1999
conference but the paper was not accepted for the publication).

In the last few years, we have seen several researchers claiming a real collision
on SHA-1 (e.g., Wang et al in 263, Mendel et al in 262, McDonald et al. in 252)
without any publication of their result. All these researchers have made NIST
to win on its claim that SHA-1 is fine for the collision resistance applications
such as digital signatures till 2010 [16] which was made 3 years before the start
of SHA-3 competition. Researchers should share their ideas to really come up
with a collision on SHA-1.

There is a need for light weight hash functions. In Belgium, public keys are
generated in smart cards. The need for hash functions was highlighted in mid
80s itself at Eurocrypt 1986 in a 2-page paper “On the need for hash functions”.

0.1.2 Definitions: Relations and Preservation

Tom discussed about the need for the formalising definitions of hash functions
and discussed about some of them following his FSE 2004 paper with Rog-
away [18]. Tom also gave a detailed explanation regarding the collision resis-
tance preservation for Damg̊ard’s hash function [6]. Note that in hash function
padding, a bit 1 is needed when we do length encoding of the message blocks.
It is not needed when we do length encoding of the bits. eSec is already known
as TCR and UOWHF and aSec (which refers to concrete hash functions like
SHA-1) is completely new. In Slide 37, Coll → Pre, when the compression func-
tion is not doing much compression. eSec hash functions are sufficient for the
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domain extension of signatures. We can’t define choosing uniformly at random
from {0, 1}∗. His slides are quite self-explanatory.

0.1.3 Rebound Cryptanalysis

The fundamental idea of attack is discussed. The idea makes use of the known
4-round differential on the wide-trail design to exploit the available degrees of
freedom in the AES based/derived hash functions in order to mount collision
attacks (may be semi-free start and free-start). The easily understood example is
a 4-round collision attack on the Whirlpool hash function [14]. This attack with
further improvements has been extensively applied to the compression function
of Whirlpool and LANE compression functions that are going to appear in
Asiacrypt 2009.

In most of the applications of this idea, the average complexity for the can-
didate found (the possible exact value) for the inbound phase is either low or
close to 1. The interesting point to note here is that no one has applied this
method to attack AXR based designs like SHA-1. In principle, the idea of re-
bound attack works on these designs as well. The research problem is about
how to find good differential paths, what are the good paths and how many
rounds can be covered with an average complexity of 1.

0.1.4 Security Proofs: Possibilities

This talk is mostly related to the paper on “Blockcipher-Based Hashing Re-
visited” by Martijn Stam at FSE 2009. Martijn discussed about generalizing
Black, Rogaway and Shrimpton analysis of twelve provably collision and (sec-
ond) preimage resistant compression functions of PGV. Preneel pointed out
there are actually only two schemes (I think one is Matyas-Meyer-Oseas (MMO)
and the other is Miyaguchi-Preneel) and all others are derived from them.

0.2 Second day: 17/11/2009

0.2.1 Software Benchmarking

Daniel explained the reasons for Rijndael block cipher to win the AES com-
petition over Serpent. The main reason for Serpent to lose in the competition
is its software speed and Serpent is generally is the slowest of the AES final-
ists. An overview of the reasons that might contribute to the speed of the hash
functions in software are given. The reasons include hash function parameters
(for example, speed varies depending on the hash value size), number of cores
used for hashing, CPU (that’s why we use a standard way of measuring speed
in clock cycles), length of the message we want to hash (hashing is faster for
short messages than for the long ones), implementation, compiler and compiler
options. The other interesting note is that the main goal of the benchmark re-
ports is to accurately predict the speed that the user will see. Benchmarking of
cryptographic algorithms in software during NESSIE, ECRYPT I and ECRYPT
II process and hash functions in the SHA-3 competition was discussed.
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0.2.2 Herding and Generic Collision Attacks

Elena presented the applications of the generic multicollision attack of Joux [10].
They include building multicollisions for the cascaded hash functions, expand-
able messages to mount long message second preimages [7, 12], building dia-
mond structure [12] to mount herding [11] and long message second priemage
attacks [1] on the Merkle-Damg̊ard hash functions and their variants like Dither-
ing hash functions.

0.2.3 Cryptanalysis of Stream-based Hashes

Thomas gave a brief comparison of block based (e.g.SHA family) and stream
based hash functions based on some observations. For block-based hashes, the
bit-rate r ≥ c where c is the capacity of the hash function. For stream based
hashes, r < c. For block based designs, finding a differential differential path
is not that hard but using degrees of freedom is hard and this opposite for the
stream based hashes.

In the stream based hashes (whose internal function is in general permuta-
tion), the increase in the factor c

r
gives less control to the attacker and increasing

the number of rounds R leads to less good differential paths. In these hash func-
tions, after message is processed, there are some blank rounds followed by the
output transformation. The output transformation is either just truncation of
the internal state to build hash function as in Grindahl, CubeHash or extract
the chunks from the blank rounds to build the hash value as in RadioGatun,
Lux and Keccak.

The generic attacks on some of these structures include meet-in-the-middle
and slide attacks. Note that slide attacks on these structures (Grindahl and Lux
with chosen salt) presented in literature do not seem to be useful to find collisions
but can distinguish hash function from a random oracle and secret key can be
recovered in some MAC settings. Linear differential paths for CubeHash 1/36
and truncated differential paths for CubeHash 2/36 and Grindahl are presented.

0.2.4 Security Proofs: Impossibilities

Martijn discussed about the impossibility results in the hash function proofs.
They include the impossibility of designing rate-1 hash functions based on block
ciphers following the paper by [3], security/efficiency trade-offs for the permu-
tation based hash functions [19] and [21]. Some attack based designs are also
discussed. They include Combining Compression Functions and Block Cipher-
Based Hash Functions [17] and Security Analysis of Constructions Combining
FIL Random Oracles [20].

0.3 Third day: 18/11/2009

0.3.1 Hashing and The Intel AES Instructions Set

Shay presented a study on the impact of the new AES instruction set (AES-NI)
(to appear on the Westmere processors in 2010) on the performance of the AES
based (those that use AES as it is) and AES inspired (those that use AES with
some modifications) hash functions in the SHA-3 competition. Performance of
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the candidates using AES-NI is measured using a novel software technique based
on the publicly available information on the Nehalem processor.

In the AES-NI, there are 4 instructions to perform AES encryption and
decryption and 2 instructions for the key expansion. AES-NI can be directly
used for the AES based hash functions such as ECHO, LANE, VORTEX and
SHAvite-3 and all these directly benefit in the improved performance (For exam-
ple, without AES-NI, speed of Vortex is 46.3 cycles/byte whereas with AES-NI it
raises to 4.4 cycles/byte). AES inspired schemes like Grøstl, Fugue and Twister
are unlikely to benefit from the AES-NI as it can be used only for the S-box.
Only 256-bit versions of Cheetah and Lux might benefit from AES-NI. NIST
used this study in its evaluation of SHA-3 candidates.

0.3.2 Analysis Techniques for AXR and MD4-like con-
structions

Christophe presented techniques for collision attacks in AXR and MD4-like hash
functions. He presented a high-level overview of the dedicated collision attack
on hash functions. The goal in the collision attack on the compression function
(resp. hash function) is to find a pair of distinct message blocks (resp. messages)
which minimize the differences of the internal values. That is, the hamming
distance between the internal values of the messages should be as minimum as
possible and hopefully close to zero. This problem is similar to constructing
a pair of codewords with a short hamming distance for a given linear code.
The solution is to use a probabilistic algorithm by Leo [13] and Canteaut and
Chabaud [5] or its cyclic variant. These algorithms can be applied to hash
functions by linearizing the hash function (replace non-linear components with
xor operations). When the structure is linear, it is easy to to keep track of all
solution which satisfy the restrictions that are imposed during the low-weight
search. An illustration on SHA-1 was explained. The other approach is the
non-linear approach.

0.3.3 Survey of Dedicated Preimage Attacks

Christian presented a brief survey of the known techniques to mount preimage
attack on a compression function (which leads to a pseudo preimage for an
MD hash function) and how to extend it to the full hash function. Of all the
techniques used to find preimages for the compression functions, meet-in-the-
middle strategy has become quite effective and several MD4 like compression
functions were shown to be vulnerable against this method in the last couple of
years.

0.4 Fourth day: 19/11/2009

0.4.1 Hardware Benchmarking

The hardware benchmarking is influenced by the factors of speed or throughput
(Gbits/sec), area (gate or transistor count and memory), power or energy con-
sumption (for cooling an transmission) and security (side channel resistance).
The power required for the HW circuit is directly related to the heat consumed.
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Wastage of power can be reduced by reducing the power consumed by the HW
processor and the idea is to use multi-core designs. Benchmarking results in
hardware depend on ASIC, FPGA, Hardware API, Bandwidth, gap between
application and architecture and Transformations.

Hardware design is a translation from the specification into Register Transfer
Level (RTL, e.g, VHDL, Verilog). The definition of one gate refers to 4 transistor
NAND gates. Gate count refers to the number of gates needed to implement
a microprocessor design. Benchmarking on FPGA is cheaper than AISC (tools
are almost free at least in the universities).

For hash function implementation in hardware, integration of hash module
is necessary. Three types of hardware reportings were mentioned in SHA-3 zoo
for hash functions without interface. For example, it is important to measure
how much it costs to talk from HW to SW and back to HW.

0.4.2 Indifferentiability and Related Proof Techniques

Hash functions indifferentiable from Random oracles can be instiantiated in the
protocols that are proven secure in the Random oracle model. This notion is
good because of the composition. The cost of replacing a random oracle with
an indifferentiable hash function provides an upper bound of indifferentiability.
Hence, we just have to prove whether a particular hash function construction
is indifferentiable without the need to prove the cost involved in replacing a
random oracle with an indifferentiable hash function.

Some important points to note here are: In the slides in the Figure related
to composition, the Environment watches the interaction of various parties and
distinguisher runs the environment. When we prove indifferentiability of a hash
scheme, we must present an efficient simulator. Alternatively, proving indifferen-
tiability means showing an efficient simulator. Simulator works by maintaining
a tree structure which starts with the IV of the hash function. It develops the
tree when it gets queries. Whenever a query does not have a response in the
tree, the simulator returns a random value to the distinguisher. The simulator
queries the random oracle when required. This necessity depends whether the
distinguisher is querying the last block which depends on the structure of the
message block (for example, composition of the padding bits) and also on the
ideal component to which it queries. For example, the function g in NMAC
and a special padding method for the last block in PFMD determines the last
message block query. So, when the simulator gets such queries for the first time
and establishes a connection to the current block with the previous message
blocks in the tree, it extracts the message from its tree and queries RO with
that message. By doing so, the simulator maintains its consistency with the
Random Oracle.

The popular Merkle-Damg̊ard construction fails to be indifferentiable from a
random oracle due to the length extension attack (for a hash function, knowing
the hash value and length of the message, we can compute the new hash value).
For this hash function, if we try to present a simulator in order to prove its
indifferentiability, the simulator needs to invert the random oracle. An easy
fix to MD is the NMAC construction where the output of the MD is processed
using another independent function g. This construction is indifferentiable from
a random oracle.

The recent research [8] has identified a property of hash functions called
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preimage awareness (PrA) which is similar to the plaintext awareness [2] and
extractability for perfectly one-way functions [4] that are used in cryptographic
protocols. If an attacker can announce a range point y of a hash function and
subsequently produce a preimage M of y then the attacker almost certainly
“knew” the preimage M when it announced y. This “knowledge of preimage”
can be efficiently “extracted”. Extractor is a deterministic function whose job
is to extract the knowledge. The MD construction is preimage-aware preserving
and by combining it with a fixed input-length random oracle (FIL-RO) g, one
can obtain a variable input length random oracle (VIL-RO). Note that if we find
a collision in the preimage-aware hash function, we can break PrA property.
There are no proofs yet that show that when an FIL-RO compression function
in a PrA construction is also used as the external function g, the hash function
is indifferentiable from a Random Oracle.
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