3,265 research outputs found

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers

    Perceptions of Scratch Programming among Secondary School Students in KwaZulu-Natal, South Africa

    Get PDF
    Scratch programming was designed with the aim of helping students to develop their logical thinking skills as well as enhancing their problem-solving capabilities, without having the technical distractions associated with more advanced programming languages such as Java. This study, guided by the technology acceptance model (TAM), focused on exploring the associations between perceived usefulness, perceived ease of use, attitude towards use, and behavioural intention to use the Scratch programming language, with the aim of identifying how Scratch programming was perceived by a group of South African students in Grades 10 and 11 at two high schools. Results indicated, among other things, that Grade 10 students perceived Scratch to be easy to use and useful, and Grade 11 students found it to be easy to use but useful only in learning introductory programming concepts. These and other findings suggest that while Scratch helps students understand logic and problem-solving, it does not assist sufficiently in preparing them for using a higher-level programming language such as Java. The article concludes with recommendations for South African education policymakers, including proposals that a bridging programming language be introduced between Scratch and Java, and that Scratch be introduced much earlier than in Grade 10.CA201

    ScratchMaths: evaluation report and executive summary

    Get PDF
    Since 2014, computing has been part of the primary curriculum. ‘Scratch’ is frequently used by schools, and the EEF funded this trial to test whether the platform could be used to improve pupils’ computational thinking skills, and whether this in turn could have a positive impact on Key Stage 2 maths attainment. Good computational thinking skills mean pupils can use problem solving methods that involve expressing problems and their solutions in ways that a computer could execute – for example, recognising patterns. Previous research has shown that pupils with better computational thinking skills do better in maths. The study found a positive impact on computational thinking skills at the end of Year 5 – particularly for pupils who have ever been eligible for free school meals. However, there was no evidence of an impact on Key Stage 2 maths attainment when pupils were tested at the end of Year 6. Many of the schools in the trial did not fully implement ScratchMaths, particularly in Year 6, where teachers expressed concerns about the pressure of Key Stage 2 SATs. But there was no evidence that schools which did implement the programme had better maths results. Schools may be interested in ScratchMaths as an affordable way to cover aspects of the primary computing curriculum in maths lessons without any adverse effect on core maths outcomes. This trial, however, did not provide evidence that ScratchMaths is an effective way to improve maths outcomes

    Designing a Programming Game to Improve Children’s Procedural Abstraction Skills in Scratch

    Get PDF
    © The Author(s) 2020. The recent shift in compulsory education from ICT-focused computing curricula to informatics, digital literacy and computer science, has resulted in children being taught computing using block-based programming tools such as Scratch, with teaching that is often limited by school resources and teacher expertise. Even without these limitations, Scratch users often produce code with ‘code smells’ such as duplicate blocks and long scripts which impact how they understand and debug projects. These code smells can be removed using procedural abstraction, an important concept in computer science rarely taught to this age group. This article describes the design of a novel educational block-based programming game, Pirate Plunder, which concentrates on how procedural abstraction is introduced and reinforced. The article then reports an extended evaluation to measure the game’s efficacy with children aged 10 and 11, finding that children who played the game were then able to use procedural abstraction in Scratch. The article then uses game analytics to explore why the game was effective and gives three recommendations for educational game design based on this research: using learning trajectories and restrictive success conditions to introduce complex content, increasing learner investment through customisable avatars and suggestions for improving the evaluations of educational games

    Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course

    Get PDF
    The purpose of this study was to define the competencies, programming languages, and assessments for an introductory computer science course at a small private liberal arts university. Three research questions were addressed that involved identifying the competencies, programming languages, and assessments that academic and industry experts in California’s Central Valley felt most important and appropriate for an introduction to computer science course. The Delphi methodology was used to collect data from the two groups of experts with various backgrounds related to computing. The goal was to find consensus among the individual groups to best define aspects that would best comprise an introductory CS0 course for majors and non-majors. The output would be valuable information to be considered by curriculum designers who are developing a new program in software engineering at the institution. The process outlined would also be useful to curriculum designers in other fields and geographic regions who attempt to address their local education needs. Four rounds of surveys were conducted. The groups of experts were combined in the first round to rate the items in the straw models determined from the literature and add additional components when necessary. The academic and industry groupings were separated for the remainder of the study so that a curriculum designer could determine not only the items deemed most important, but also their relative importance among the two distinct groups. The experts selected items in each of the three categories in the second round to reduce the possibilities for subsequent rounds. The groups were then asked to rank the items in each of the three categories for the third round. A fourth round was held as consensus was not reached by either of the groups for any of the categories as determined by Kendall’s W. The academic experts reached consensus on a list of ranked competencies in the final round and showed a high degree of agreement on lists of ranked programming languages and assessments. Kendall’s W, values, however, were just short of the required 0.7 threshold for consensus on these final two items. The industry experts did not reach consensus and showed low agreement on their recommendations for competencies, programming languages, and assessments

    Computer Science at Community Colleges: Attitudes and Trends

    Get PDF
    This study aimed to understand the identity and attitude of students enrolled in computer science (CS) or programming-related course at community colleges nationwide. This study quantitatively evaluation data for estimating the relationships between students’ identity and attitudes toward computer science with prior programming experience and other demographic factors. I distributed the survey to community college faculty of computer science programs nationwide. Questions for this study were adapted from the Computing Attitude Survey developed by Weibe, Williams, Yang, & Miller (2003). Using two robust quantitative statistical methodologies, I investigated the correlations and predictability of previous programming experience, gender, race, and age with participants\u27 attitudes toward computer science. This study drew its inspiration from prior works of Dorn and Tew (2015) and Chen, Haduong, Brennan, Sonnert, and Sadler (2018), whose studies looked at previous experiences in programming with a favorable attitude toward computer science. The primary independent variable was a students’ prior programming experience. Under evaluation, the dependent variables were students\u27 programming experience and demographic characteristics such as race, gender, and age. This investigation showed a significant association between programming experience and attitude toward computer science. Among the demographic variables evaluated, students\u27 racial identity was the only factor found highly correlated with attitudes toward computer science. Future work will consider the association between participants\u27 accumulated college credit hours and specific programming language effects on computer science attitudes

    Exploring the use of game making across the school curriculum

    Get PDF
    Computer games as part of education is a well-established topic for research, suggesting that creating games is linked to a range of cognitive and behavioural outcomes. Creating games in all subject disciplines is becoming increasingly possible due to the increasingly higher status of computing in schools across Europe and the prevalence of visual programming languages such as Scratch and Pocket Code. The use of games within education is not new; in a systematic review of 129 papers [1] found that playing games impacts across a range of areas including engagement, cognitive ability and, most commonly, knowledge acquisition and content understanding. However, while research has thus far examined game play and game based learning in education there is limited work focussing on the process of game creation as a method of classroom teaching. This is a prospect which is increasingly possible with the introduction of visual programming languages such as Scratch [2] and Pocket Code. It is suggested that playful learning through computer games could stimulate students’ intrinsic motivation ([3] and that knowledge creation can emerge through the construction of artefacts in a playful learning environment via the co-creation of games [4]. The research presented in this paper is from a pilot study examining the impact of game making in traditional primary and secondary school classrooms (5-18 years) in the United Kingdom (UK). The research, funded by Horizon 2020, is part of a wider European project; No-one Left Behind. In the UK the project has introduced game making into disciplines such as Religious Education, Science and History. Data indicates that although not all students found this a positive experience, computational thinking skills have increased, and students, disaffected with their learning, have re-engaged with learning, increasing their persistence and resulting in a deeper understanding of subject knowledge. In addition initial results suggest that game making has the potential to increase engagement with classroom learning and lead to increased learner satisfaction within lessons. Non-computing teachers have gained in confidence in developing game creation in their subject discipline, increasing their awareness of computational thinking. Barriers identified include teacher familiarity with programming as a means to teach non-STEM subject knowledge, a potential to decrease knowledge acquisition during the process of familiarisation with the teaching tool and a need for software developers to consider design for children with SEND. The project is changing the learning environment and emerging pedagogy has been identified which will be shared in this paper. As a result of the study lesson resources have been created for teachers to use across disciplines which are now available via the project URL; these will be shared in this paper

    QuickStart Primary Handbook:A CPD toolkit for primary teachers

    Get PDF
    • …
    corecore