
Open Universiteit
www.ou.nl

MASTER'S THESIS

An Exploratory Study of the Learning Progression of Scratch Users

Zeevaarders, A (Ad)

Award date:
2020

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 09. Sep. 2021

https://research.ou.nl/en/studentTheses/e3382742-1e16-424c-8d01-de69f0f00e50

An Exploratory Study of
the Learning Progression of
Scratch Users

Ad Zeevaarders

St
ud

en
t:

 D
at

e:

 Ju
ly

 2
02

0

AN EXPLORATORY STUDY OF THE LEARNING
PROGRESSION OF SCRATCH USERS

by

Ad Zeevaarders

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Day Month DD, YYYY at HH:00 PM.

Student number: 852047990
Course code: IMA0002
Thesis committee: dr. Bastiaan Heeren (chairman), Open University

dr. ir. Fenia Aivaloglou (supervisor), Open University

ACKNOWLEDGEMENTS

I wish to acknowledge the love and undying support given to me by my family, especially
by my mother, my sister and my brother throughout my studies and this graduation thesis.
They were and still remain a constant source of motivation. Without their support, I would
never have been where I am today.

I also wish to express my sincere appreciation for the coaching, guidance and help I re-
ceived from my supervisor, Professor Fenia Aivaloglou. Her motivational capabilities were
outstanding and her expertise allowed me to really grow as an academic individual. I have
learned so much from her, and I am truly grateful for that opportunity.

i

CONTENTS

Acknowledgements i

1 Introduction 1

2 Background and related work 4
2.1 Relevant Scratch Concepts. 4
2.2 Computational Thinking . 6
2.3 Related Work . 6
2.4 Measuring comprehension . 6
2.5 Static analysis of Scratch projects . 8
2.6 Learning progressions . 10

3 Methods 13
3.1 Dataset . 13

3.1.1 Scraping . 13
3.1.2 Parsing and Filtering . 14

3.2 Concepts Evaluation . 14
3.3 Progression Analysis . 15
3.4 Identifying Dropped Out Users . 16

4 Results 18
4.1 RQ1: Progression of programming concept usage. 18
4.2 RQ2: Computational Thinking rubric evaluations. 22
4.3 RQ3: Concepts practiced by dropped-out users 29

5 Discussion 31
5.1 Data and Software . 32
5.2 Threats to validity . 32

6 Conclusion 34

Bibliography i

Appendix A iv

ii

SUMMARY
Block-based programming languages are taking the central stage in early programming ed-
ucation. Scratch is one of the most popular block-based languages, taught at schools and
practiced independently. However, do Scratch users get better at programming over time?
What areas do they progress in? What do they achieve before moving on? This study aims at
uncovering the learning progression of Scratch users on the concepts of loops, conditional
expressions, procedures and variables. We constructed a large dataset of over 112 thousand
authors and their 1 million projects in order to analyze the development of programming
and computational thinking concepts during their time spent on the platform. To collect
the dataset, we built a webscraper and parser called Zemi, which we used for download-
ing and subsequently parsing author and project data into a relational database. Projects
are parsed by decomposing the scripts they contain. A script is a sequence of command
blocks. The Scratch blocks used in each script are recorded along with possible parameters
as part of the block command. We then used the modification dates of projects to chrono-
logically order the projects within each user’s repository to allow for progression analysis.
In our analysis, we first investigate the development of programming concepts by looking
at block usage statistics. Second, we score and analyze the dataset using a computational
thinking rubric. Last, we investigate the learning goals achieved by dropped-out authors.

Our results show that, while the users progress in Scratch, there is a positive trend in
the use of all concepts that were examined, including the use of variables and conditions.
Within the least utilized concepts, even after the 20th project of Scratch users, are func-
tions, conditional loops and logic operations. Forever loops were grasped best by users, with
over half of authors using them at their first project. Cloning functionality is almost twice
as prevalent among users than defining functions though they share similar mechanics.
Examining the users who have left the Scratch platform after creating at least the mean
amount of nine projects, we measured utilization rates of over 85% percent across all con-
cepts except functions and conditionals; here half had left without ever utilizing functions
and a third left without ever utilizing conditional loops.

We recommend future research to investigate learning trajectories to see in which or-
der concepts are attained. Another recommendation is investigating learning progression
through variables not included in this study, such as those pertaining to code quality and
code smells. Last, we recommend investigating the cause of the low use of logic operations,
conditional loops and functions to see whether they stem from their inherent learning dif-
ficulty or if it is the result of how the Scratch platform was designed.

iii

1
INTRODUCTION

Computational thinking (CT) is a problem-solving process which involves breaking down
a problem, finding and generalizing patterns within it and designing a fitting algorithm to
solve it. It has been established that the CT concepts and skills involved in program devel-
opment are applicable to any domain where problem-solving is required and this makes
it an active topic in literature and education. With computer science and computational
thinking (CT) becoming increasingly mandatory in primary and secondary school curric-
ula, there is a need to improve and seek new ways of teaching this subject. One way in
which this has been done is by the adoption of introductory programming languages (IPLs),
which are programming environments that provide a low entry barrier for potential learn-
ers. IPLs often serve the role of stepping stones towards more advanced programming lan-
guages, by supporting users in learning the basic concepts and constructs of computer
programming. A subset of these IPLs are block-based. A block-based language uses visual
blocks as its syntax to compose program functionality. Examples of block-based languages
are Blockly, Alice and Scratch.

Quantitative and qualitative studies on the use of IPLs have been carried out to find
out how kids learn (Funke et al. [2017]; Hermans and Aivaloglou [2017]), how they code
(Aivaloglou and Hermans [2016]) what the quality of their development artifacts is (Boe
et al. [2013]; Moreno-León et al. [2015]; Robles et al. [2017]), and what they struggle with
(Grover and Basu [2017]; Mladenovic et al. [2018]; Swidan et al. [2018]). While there has
been extensive work performed in the area of measuring programming comprehension
and its implications to pedagogy (Boe et al. [2013]; Khairuddin and Hashim [2008]; Moreno-
León et al. [2015]; Sorva [2012]), there are not as many studies aimed at analyzing the ac-
tual learning progression of young individuals participating in block-based programming
environments. Studies that do study learning progressions in block-based environments
often explain progression by comparing performance differences in age groups or school
grades (Hermans and Aivaloglou [2017]; Seiter and Foreman [2013]; Šerbec et al. [2018]). In
other cases, experimental courses or questionnaires are used to track short-term learning
(de Souza et al. [2019]; Funke et al. [2017]; Mladenovic et al. [2018]; Troiano et al. [2019]) or
to measure existing knowledge in small groups of learners (Grover and Basu [2017]; Swidan
et al. [2018]). Abstract measures of proficiency, such as vocabulary breadth and depth,
which are not directly related to specific CT concepts, have also been used to infer learning
progression (Matias et al. [2016]; Scaffidi and Chambers [2012]; Yang et al. [2015]) and have

1

even sparked debate over the measured progression of Scratch users and the necessity of
a large sample size (Matias et al. [2016]; Scaffidi and Chambers [2012]). However, we are
aware of no study so far that has quantitatively analyzed the actual learning progression of
the individuals participating in the informal programming community at large, exploring
it from the start of their learning trajectory to investigate which specific CT concepts and
skills are improved upon through the experience they gain on the platform.

The goal of this thesis is to quantitatively explore the learning progress of young in-
dividuals programming with Scratch, with the purpose of finding out how and in which
areas they progress as they participate in this informal programming community. Because
Scratch was specifically designed for children between the ages of 8 and 16 as a first in-
troduction to computer programming, we are also interested in exploring which aspects
they have shown signs of learning before leaving the Scratch platform to move to more ad-
vanced programming environments. We are interested in exploring users’ learning pro-
gression in specific programming concepts that have been found to be hard for young
learners, like variables, expressions, loops and functions (Aivaloglou and Hermans [2016];
de Souza et al. [2019]; Grover and Basu [2017]; Hermans and Aivaloglou [2017]; Mladen-
ovic et al. [2018]; Seiter and Foreman [2013]; Swidan et al. [2018]), as well as in quantifying
the related demonstrated CT skills like abstraction & problem decomposition, flow control,
logical thinking and data representation. We aim to apply an automated approach for an-
alyzing a large body of scraped project portfolios in order to answer the following research
questions:

RQ1 How do Scratch users progress in the use of elementary programming concepts such
as variables, procedures, conditional expressions and loops?

RQ2 What is the learning progression of CT concepts in Scratch users, such as abstraction,
data representation, flow control and logical thinking?

RQ3 Which CT concepts were practiced by users that have left the Scratch platform?

To answer our research questions, we scraped and analyzed the public Scratch project
repositories belonging to 112 thousand authors and statically analyzed the 1 million projects
authored by them for the use of different programming and computational thinking con-
cepts. We then analyzed the resulting learning progress of the users who created the projects
and visualized it. The contributions of this thesis are the following:

1. An open-sourced set of software tools for scraping the Scratch website for authors
and their project repositories, including parsing logic for the two latest major Scratch
versions,

2. A public dataset of 1 million projects created by 112 thousand authors, parsed and
labelled with the results of the automated analysis1,

3. An analysis of the repositories in the dataset in terms of learning progression in pro-
gramming and computational thinking concepts.

The rest of this thesis is structured as follows: In section 2, we discuss the background
and related work pertaining to our study. Next, in section 3, we present the methods we

2

used to answer our research questions. In section 4 we present the results of our pro-
gression analysis. In section 5, we discuss our findings, compare them to prior works and
identify the limitations and threats to validity of our conducted study. We also offer some
perspectives on possible future work. Finally, section 6 presents our most important con-
clusions.

1The dataset and scraping software can be found here: https://bit.ly/34p9dJ9

3

2
BACKGROUND AND RELATED WORK

2.1. RELEVANT SCRATCH CONCEPTS
Scratch is a visual programming environment aimed at providing an easily approachable
introductory programming experience to users. Scratch can be used as a stand-alone desk-
top client or as a browser client through the Scratch website. In Scratch, a project is called
a sketch and programming syntax is represented by visual blocks. An example of a sketch
is shown in Figure 2.1. Running the sketch by clicking the green flag starts execution (the
output is shown in Figure 2.2) because of the top-most event block in Figure 2.1; this block
is a hat block, which serve as event hooks. Blocks come in a variety of shapes and each
block belongs to a category. Block categories group blocks that are similar in functional-
ity, such as Looks, Motion and Operators. Block connectors serve as visual guides showing
which blocks can be composed in sequence. Some blocks can be embedded within other
blocks. The if/then block in Figure 2.1 has an operator block embedded into it as the condi-
tion to evaluate. This operator block itself has a variable embedded within it as part of the
expression. A connected sequence of blocks, initiated by a hat block, forms a script. In Fig-
ure 2.1, two scripts can be seen, one of which is a user-defined procedure called askQues-
tion. It spawns an input field and captures the entered string in a variable. Scratch uses
sprites and stages as visual components. Sprites are akin to actors and have many visual
properties, which can be manipulated to animate it, change its position or make it change
size. Stages form the visual backdrop of the program. Scripts are defined within sprites
and stages and run in that scope, but can communicate by broadcasting and receiving. All
these features combined allow for complex behavior such as parallel execution of scripts
or visual effects, showing that Scratch supports advanced programming constructs as well.
The projects that users create are stored as packages either locally on disk or in the Scratch
cloud. Project code and metadata is converted to JSON structures, while media, like sprites,
accompanying the project are saved in separate files. The file format differs between ver-
sions of Scratch, with the most recent format being .sb3, coinciding with the release of
Scratch 3.0, the current major Scratch version.

4

Figure 2.1: Example Scratch program highlighting several different syntax elements, including custom proce-
dures.

Figure 2.2: Output of Scratch program composed in Figure 2.1.

5

2.2. COMPUTATIONAL THINKING
Computational thinking is a broad term used in education to describe the cognitive skills
and processes associated with problem solving involving areas such as problem decompo-
sition, pattern recognition, abstraction and algorithms. It is an essential set of competen-
cies for developing computer applications, but its strength lies in its applicability to any
discipline that involves solving complex problems. This latter point is what has warranted
its place in early education today. The actual skills, abilities and concepts involved in com-
putational thinking are a subject of debate, as there exist many definitions. Google for Ed-
ucation 1 lists abstraction, algorithm design, automation, data analysis, data collection,
data representation, decomposition, parallelization, pattern generalization, pattern recog-
nition and simulation as the concepts belonging to CT. Brennan and Resnick [2012] define
the CT concepts as sequences, loops, events, parallelism, conditionals, operators and data.
The goal of computational thinking is that through the development of these concepts, a
student attains a better set of tools to tackle open-ended and ill-structured problems in a
variety of domains. CT has a presence in many national curricula, for example, in K-12
Computer Science in the US and in KS1-3 in the UK. Its classroom adoption furthered the
need for CT assessment tools and though these have been receiving attention in literature,
there is no clear consensus on CT assessment methodologies (Alves et al. [2019]).

2.3. RELATED WORK
A number of studies have been carried out on the acquisition of computational thinking
skills and the understanding of programming concepts by novice programmers in block-
based environments. Specific programming concepts have received attention because they
have been found to be hard for young learners, whereas inaccurate mental models, unfa-
miliarity of syntax and misconceptions are within the learning difficulties they commonly
experience (Qian and Lehman [2017]).

2.4. MEASURING COMPREHENSION
Grover and Basu [2017] investigated misconceptions regarding loops, variables and boolean
logic by creating a set of assessment items (questions in a questionnaire) that can tell whether
an individual holds a misconception or not. First, they investigated which learning goals
related to variables, expressions and loops were used for middle school computer science
classes, specifically grades 6 to 8. An example of a learning goal is the statement "Students
will learn how variables change within loops". Then, a set of focal knowledges, skills and
abilities (FKSA) were created that are aligned to these learning goals. An example of an
FKSA is "The ability to describe what a given loop is doing". Next, the authors construct
a ‘conceptual assessment framework’, which is a questionnaire with each question target-
ing some FKSA specificied in the previous step. The assessment items included questions
aimed at interpreting Scratch programs, where Scratch code blocks are shown and students
are asked to interpret it, similar to Swidan et al. [2018], but also broader questions aimed
at measuring general algorithmic thinking and problem solving (Grover and Basu [2017]),
such as a question showing logical expressions where possible answers are the results of
evaluating that expression. The conceptual assessment framework was then instantiated

1https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview

6

as a pencil-paper test in middle schools among 100 6th, 7th and 8th grade students. Not
only were these students asked to fill in the questionnaires, but teachers were also asked
how well they thought their students would do on each question and how well the learn-
ing goals pertaining to each question were covered in the classroom. The responses were
coded according to a rubric. The results show that students harbor a set of misconcep-
tions related to loops, variables and boolean logic. Students thought that actions within a
loop are each repeated separately, instead of once for each iteration of the loop. Regarding
variables, students thought variables were letters that symbolized some unknown number,
akin to what is taught in introductory mathematics. Next to this, students took issue with
the length of variable names and how a variable changed when placed in a loop. Loops
were also misinterpreted as producing the exact same output every iteration. Regarding
operators, students often misinterpreted the OR operator as an XOR operator, due to its
use in natural language: “Red or blue" implies one color, but not both.

Swidan et al. [2018] also investigated the holding of misconceptions among younger
children by conducting a multiple-choice questionnaire. Each question in this question-
naire tested the understanding of some programming concept in order to elicit holding of
misconceptions. The programming concepts investigated in this study are those that have
been proven to be difficult for learners: variables, loops and conditional statements. Exam-
ples of misconceptions regarding these concepts are “A variable can hold multiple values
at a time" and “Loops terminate as soon as the condition changes to false". Questions are
instantiated as images of a Scratch program and the subject is asked what happens when
it is executed. Answers were designed to indicate whether a subject holds the correct un-
derstanding of a concept, holds a misconception, or fails to correctly interpret the question
in the first place. The results show that the most common misconceptions among respon-
dents are the sequentiality of code execution, variables being able to hold multiple values
at a time and the effect input calls have on execution. One other notable misconception
chilren had was that adjacent code (next to a loop, not in it) is executed while the loop is
executing. The least common misconceptions among respondents were related to loops
and conditions. Here, the low misconception rate was not caused by a profound under-
standing of loops and conditions, but due to respondents selecting answers that were sim-
ply wrong, not related to the holding of a misconception. Further qualitative analysis of
misconceptions yielded interesting results: Given a sequential program summing two vari-
ables, children often focused on the mathematical operations involved instead of on the
sequence of operations. When analyzing the effect age has on the holding of misconcep-
tions, the authors conclude that older children answer more questions correctly. This does
not mean younger children hold more misconceptions; it means they gave wrong answers
that were not indicative of having a misconception. Participants were also asked if they had
any prior programming experience and the results show that knowing Scratch and other
languages increases the tendency to understand the concept correctly, while users know-
ing other languages (and not Scratch) were found to have a bigger tendency in holding a
misconception. Subjects knowing only Scratch correlate with giving wrong answers that
do not directly exhibit the holding of a misconception. Swidan et al. [2018] further note
that holding a misconception is not binary, as some participants struggled with contradict-
ing thoughts when filling in the rationale for their answer.

In a study by Fields et al. [2014], the use of programming concepts was examined in
relation to the level of participation, the gender, and the account age of 5,000 Scratch pro-

7

grammers. Aivaloglou and Hermans [2016] transform a collection of over 250 thousand
Scratch projects into a statistical dataset by importing them into a relational database and
querying the records. This enabled the authors to conduct metrics-based analysis, where
metrics like cyclomatic complexity and number of variables were extracted to find out the
size and complexity characteristics of Scratch programs. In summary, Aivaloglou & Her-
mans studied the following: In order to find out the size and complexity characteristics of
Scratch programs, the size of projects based on the number of blocks and the cyclomatic
complexity of projects are investigated. To find out which coding abstractions or program-
ming concepts are commonly used by Scratch users, usage of procedures, variables, loops,
conditional statements, user interactivity and synchronozation were investigated. To find
out how common code smells are in Scratch programs, the authors analyze projects for
dead code, duplicate code, large scripts and large sprites. The authors found that that 78%
of scripts within Scratch projects contain no decision points and that most projects are
relatively small, with 75% of the projects analyzed containing at most 5 sprites, 12 scripts
and 76 blocks. Use of procedures is underrepresented, as only 8% of the scraped projects
utilized them. Dead code and code clones both affect a quarter of the scraped projects.
Together with the low procedure use, it seems procedures as a form of abstraction are very
underrepresented in the general Scratch population. Even though 77% of the projects con-
tained loops, only 14% of those were conditional. Last, the study by Aivaloglou and Her-
mans [2016] is one of few that utilizes software engineering metrics relating to code quality,
namely the McCabe cyclomatic complexity index.

2.5. STATIC ANALYSIS OF SCRATCH PROJECTS
Several works have statically analyzed Scratch projects for indications of learning of spe-
cific programming concepts. One of the first was that of Maloney et al. [2008], who an-
alyzed 536 Scratch projects for blocks that relate to various programming concepts, and
found that within the least utilized ones are boolean operators and variables. Tool sup-
port for the static analysis of Scratch programs has also been proposed; The Hairball tool,
developed by Boe et al. [2013], is a generic, Python-based automated analysis system for
Scratch to improve classroom assessment and grading of Scratch projects, which is often
performed manually. It serves a dual role in that students can use it for formative assess-
ment and teachers can use it to support summative assessment. Hairball’s architecture is
centered on plugins. This way, new types of static analysis can be created as plugins by
deriving from the Hairball base class. The authors developed four initial plugins with the
goal to discover to what extent a program exhibits competence in an area of programming.
These plugins label projects as correct, (semantically) incorrect or incomplete according
to their analysis of the programming concept they embody. The first plugin evaluates if
the initial state of a Scratch program is correctly set. For example, running the program
in Figure 2.1 does not reset the rotation of the sprite when the script starts, causing it to
keep rotating 15 degrees. The second plugin evaluates the synchronization between say
and sound blocks, which detects if the blocks for playing a sound and having a sprite say
something are sequenced correctly. The third plugin can determine if broadcast and re-
ceive blocks are matched properly, so that no signal lacks a receiver and vice versa. The last
plugin evaluates if complex animation is properly implemented, due to this involving many
different concepts such as loops, motion, timing and repetition. The plugins developed for
Hairball do not actively score projects based on some computational thinking concept, but

8

Figure 2.3: Dr. Scratch web interface output after uploading a project to analyze

look for correctness in specific patterns relating to programming concepts. Since Hairball
can only detect (in)correct instances using a 4-point correctness scale, it cannot judge the
quality of an implementation other than reporting it is completely correct. Moreover, Boe
et al. [2013] note that, since Scratch projects often require ears and eyes to appreciate fully
due to their audiovisual nature, an automated approach can only go so far.

Another static analysis tool is Dr. Scratch, a web application developed in a study by
Moreno-León et al. [2015] which can, when given a Scratch project URL, analyse the de-
velopment of computational thinking concepts and detect bad programming structures
within the project source code. The output panel after having uploaded a Scratch project
is shown in Figure 2.3. The authors see it as an improvement upon Hairball in that it does
not require teachers, who wish to use it to analyze student projects in the classroom, to
write the Python scripts necessary to create an assessment in Hairball. After analyzing a
program, Dr. Scratch awards scores on different computational thinking concepts. The
computational thinking concepts explored by Dr. Scratch are abstraction, logical think-
ing, synchronization, parallelism, flow control, user interactivity and data representation.
For each of these concepts, the authors define three levels of proficiency: basic, developing
and master that are awarded based on the presence of specific programming blocks. The
scores for the individual computational thinking concepts are aggregated into a final grade
expressed as either basic, experienced and master. Next to this, Dr. Scratch also presents
tips on how to maximize a project’s score (which might improve an author’s computational
thinking skill) for some particular concept like parallelism. Much like a modern compiler,

9

it can also show details of the uploaded project that can help a user eliminate mistakes or
bad habits, such as dead or duplicated code.

2.6. LEARNING PROGRESSIONS
More related to our work on the learning progressions of Scratch users is the work by Scaf-
fidi and Chambers [2012], who explored the effectiveness of Scratch in teaching elementary
programming skills. For this, the authors used several models that each attempt to model
some aspect of (computational) skill and adapted them not only to fit Scratch as a context,
but to arrive at quantitative measures that facilitate the use of statistical tests. To collect
data, the authors use a custom scraper that randomly scraped a set of 250 users. For each of
these users, the scraper collected the first project and a random set of projects after the first
one. In total, 1791 projects were collected. The projects are analyzed in terms of breadth
(number of different block categories used), depth (number of blocks from a specific cat-
egory used) and finesse, three measures of technical programming skill originally derived
by Huff et al. [1992]. It is found that the average depth and breadth decreases over time. In
other words, Scratch users use less different blocks from less categories over time in their
projects. A replication study by Matias et al. [2016], using a full dataset of Scratch projects
until 2012, challenged the results by Scaffidi & Chambers, showing that the average breadth
and depth increased over time and attributing the results by Scaffidi et al. to poor sample
size and data collection methods. Scaffidi et al. also inspect the social and engagement
aspects of programming with Scratch with what they call the Onion Model, a taxonomy of
software developers that assigns a level of engagement and social skill in software develop-
ment, originally developed to analyze contributors in open-source systems (Ye and Kishida
[2003]). The taxonomy contains 8 levels of participation, ranging from passive users and
readers, to active developers and core members. To adapt it to a Scratch-specific context,
classification rules were created that can assign a level to a Scratch user based on their
project metadata. An example of the rules within this classifier is the following: “If a user
created more than 25 non-empty Scratch galleries, then they are a Project Leader." The
results show that a third of subjects were passive users that only created a handful of ani-
mations. About half of the subjects were peripheral users that had created more projects
than passive users, but did not participate in galleries. A fifth of the subjects were active
users that had contributed to different galleries. Lastly, only three ’Project Leaders’ were
identified, which was in line with previous results. The authors also conclude that remix-
ing is relatively rare in the Scratch community. Scaffidi and Chambers [2012] also attempt
to measure if Scratch users become more efficient at writing code. More specifically, they
look for increases in programming speed as a programmer’s experience increases. The au-
thors analyze the project save histories, which are included with Scratch project files. Each
save records the date and time of the save and the time between saves is summed to arrive
at a total time spent on a single Scratch animation. This total time spent is divided by the
number of Scratch primitives uses in the project and yields an estimated time spent per
primitive. The results show that users spent about 21 minutes more every month on their
projects, but did not become more efficient in using primitives over time. After manually
analyzing the scraped projects, the authors concluded that there was overall less function-
ality in later projects.

Related to learning progression, Seiter and Foreman [2013] proposed a model for as-
sessing the development of computational thinking in Scratch users. This rubric-based

10

model assesses computational thinking in primary grade students and was tested on a
hand-picked sample of 150 Scratch projects. First, a student’s work is coded with evidence
variables. Evidence variables are categories of Scratch components directly observable in
code. An example of this is the looks category, which expresses the manipulation of sprites
and the things they say. A student utilizing only say or think blocks will receive a ’basic’
score in this category, while manipulating the color or size of a sprite is awarded with a ’pro-
ficient’ score. The scores for each of the evidence variables of a project are then mapped
onto Scratch-specific design patterns, these are: Animate Looks, Animate Motion, Conver-
sate, Collide, User Interaction and Maintaining Score. These design patterns are then re-
lated to a set of computational thinking concepts. Utilizing this model, called the PECT
model, the authors are able to assess computational thinking knowledge on different levels
of granularity. The computational thinking concepts investigated by the model are Proce-
dures and Algorithms, Problem Decomposition, Parallelization, Abstraction and Data Rep-
resentation. Seiter et al. note that while their model uses concepts related to computa-
tional thinking abstractions, it does not measure process skills like debugging and testing,
as these cannot be found or measured using only program source code. The computational
thinking concepts use the presence of design patterns as evidence of understanding of the
concepts. The study then attempted to model learning progressions of students by com-
paring the results of the applied rubric across grades 1 to 6. This was possible since the
data was originally collected through teacher galleries and a conscious effort was made to
select projects from different grades. The authors found that the Conversate, Animate Looks
and Animate Motion were uniformly used across grades, while Collision and Maintaining
Score were underrepresented until grades 5 and 6. Maintaining Score was especially under-
represented and this was attributed to the pattern requiring an understanding of variable
creation and assignment, which are related to the Data Representation concept. Around
grades 3 and 4, students begin to understand and use the Animation pattern more uni-
formly and this result is roughly the same for the Animate Looks pattern. In summary, de-
sign patterns requiring understanding of parallelization, conditionals and, especially, vari-
ables were under-represented by all grades apart from grades 5 and 6.

Yang et al. [2015] modelled learning trajectories as the cumulative vocabulary use of
a Scratch user over time, without focusing on the development of specific computational
thinking concepts. The authors make the assumption that attaining a wider Scratch vocab-
ulary over time is indicative of learning. After generating vocabulary growth trajectories,
the different trajectories are clustered to find similar learning patterns. The authors fur-
ther state that Scratch blocks should not be treated equally in the sense that rarely used
blocks represent more advanced programming knowledge. To this end, weights were as-
signed to all different Scratch blocks by using the inverse document frequency. The quality
of the assumption that infrequently used blocks are a learning indicator can be argued, as
the highest weights were given to blocks like setwhirlto, which ìs the parameterized ver-
sion of setting an effect on a sprite. The whirl effect is actually one among many options
when choosing to set a visual effect in Scratch. Other visual effects include pixelate and
mosaic effects, and we believe the assigned weights would be more representative if mea-
sured by the usage of the set effect block itself, instead of its specific parameters like whirl.
Among the heavier weights is also jokeoftheday, an experimental Scratch block, which we
believe is not more indicative of Scratch programming comprehension than, for example,
the abs block, which returns the absolute value of an integer and received a weight 5 times

11

lower than jokeoftheday. To generate the actual learning trajectories, the first 50 projects
of users were put in sequence and analyzed for cumulative vocabulary use. These trajec-
tories varied widely from one another and so the different trajectories were clustered using
K-means++, leading to four clusters: A, B, C and D. Users in cluster D showed the highest
initial vocabulary knowledge, broadest vocabulary use and overall the fastest learning tra-
jectory. Users in cluster A had the lowest initial vocabulary (only two different blocks used
in first project compared to 17 in cluster D) and progressed the slowest. Clusters B and
C were in between A and D. The authors note that they did not include age or gender in
the analysis, and a possible interpretation for the difference in clusters could be that they
represent age groups. For each user in the clusters, the 100 most frequent words used in
project descriptions and comments were extracted. Cluster D had the highest amount of
unique words and contained the most words indicative of game design and programming.
The word ’poor’ was used very frequently in cluster A and the authors note this might in-
dicate users in that cluster are aware of the poor quality of their work. By analyzing the
block use of the different clusters, it was identified that users in Cluster D used rarer blocks
across the board and that users from cluster A use common blocks more often, even more
so than users in cluster D. The authors conclude by noting that the different clusters can
be seen as different canonical learning patterns each associated with a certain Scratch sub-
population. Finally, the authors put forth a proposal for a system that recommends pro-
gramming blocks and entire projects to users in the identified clusters, so that their learn-
ing trajectory can be aligned to the trajectory patterns of similar, but more advanced users
within their cluster.

de Souza et al. [2019] investigated the evolution of computational thinking in young
individuals learning programming using project source code that was generated during
several 12-week game building workshops. The workshop activities were centered around
game development, targeting a different game with increasing complexity each week. The
games targeted the use of specific Scratch concepts, such as animation and collision, de-
fined by a teaching rubric. Project data was imported into a database, including used
blocks and their categories, dead code and cyclomatic complexity metrics. By describing
the games created in the workshop with self-organizing maps, they can be analyzed for use
of different blocks, block categories, dead code and similarity. Notably, the maps show the
different ways kids created a solution. For instance, it is found that some subjects used
Forever and some used Repeat/Repeat Until blocks to solve the same problem, indicat-
ing subtle differences in understanding. The results show that most dead code pertained
to the Looks, Control, Sensing and Operator block categories. High cyclomatic complex-
ity was often caused due to subjects copying sprites (and their scripts containing decision
points) instead of having the same sprite change costumes. The blocks most used in the
workshop were Forever, If & If/Else Repeat/Times/Until, Stop, Wait and Wait Until blocks.

12

3
METHODS

To answer our research questions, we created a scraper and parser tool called Zemi, which
we used to scrape the Scratch website for authors and their complete repository of public
projects. We then parsed these into a relational database. Then, using an automated learn-
ing comprehension rubric, we assigned comprehension scores to the collected projects
based on static analysis of the project source code. We quantitatively analyzed our dataset
of repositories for signs of improvement over time on programming and CT concepts. Fi-
nally, we analyzed the repositories in our dataset of users that had left Scratch, to examine
what they learned during their stay. The process is described in more detail in the following
paragraphs.

3.1. DATASET
We obtained data on the authors and their project repositories by scraping the Scratch plat-
form. In order to conduct our progression analysis, we collected a large dataset of authors
and their project repositories.1 We obtained this data scraping the Scratch platform by
querying its public API2 for authors and projects, which we then parsed into a relational
database for further analysis. The scraping and parsing is done by Zemi3, which is able
to scrape author & project metadata and project source code and parse the results into an
attached MySQL database.

3.1.1. SCRAPING
To collect complete project repositories of users, random scraping of projects is infeasi-
ble. Therefore, Zemi starts by scraping an initial set of random front-page authors from
the Scratch API. Then, those authors’ friends and followers are recursively scraped. Each
author’s data is then parsed into a relational database to form the set of authors whose
repositories will be scraped. Next, Zemi scrapes project metadata for each author’s project.
Project metadata includes the project name, view count, remix details and creation and
modification dates. This metadata is subsequently used to download the actual source
code through the API, which is then stored as files on disk. To collect our dataset, Zemi

1https://drive.google.com/open?id=1UCPQQkXTmn7ADaJtOuTFQ0CNuwcqNOcE
2https://github.com/LLK/scratch-rest-api/wiki
3https://github.com/ospani/zemitoolkit

13

started scraping on the 1st of September 2019, until the 27th of October, 2019, and scraped
195,767 authors and 7,109,821 projects.

3.1.2. PARSING AND FILTERING
Zemi parses projects by decomposing its JSON representation. Projects are first split into
scripts, which symbolize any connected sequence of blocks. Next, the scripts are split into
blocks. Each block’s command and order within the script is recorded, along with its pa-
rameters. Nested blocks, such as if-blocks or expressions, are unwound and flattened using
a nesting depth specifier.

Scratch uses three different formats (.sb1, .sb2 and .sb3) to save projects. These formats
correspond to Scratch’s major software versions. The sb2 and sb3 formats are both plain
but different JSON structures, and constitute the majority of the projects on Scratch. To
handle these different formats, separate parsing logic was written. The sb1 format is binary,
and could therefore not be parsed. Since the project metadata does not specify the project
format, it can only be identified at parsing time by reading the project source code file. Each
project format uses its own set of block opcodes. For example, the opcode for appending an
item to a list is ‘append:toList:’ in sb2 projects, but is called ’data_addtolist’ in sb3 projects.
To ensure uniform analysis of both sb2 and sb3 projects, Zemi uses a block mapping that
specifies for each sb2 opcode its equivalent sb3 opcode.

The filters that were subsequently applied to the dataset were both on the scraped au-
thors and on their projects:

1. Authors that were found to have sb1 projects or projects that we had failed to parse,
which amounted to 582,143 projects in total, were excluded from the dataset and
from further analysis. This filter was applied because the order in which projects were
developed by the authors is important for our learning progression analysis, and we
therefore need complete author repositories, for which we can analyze all included
projects.

2. For the remaining authors, the filter that was subsequently applied to their projects
was that of empty projects and remixed projects, which were excluded from further
analysis. This filter was applied because it is not possible to determine what an
remixer’s own contribution is relative to the original project, especially since origi-
nal projects can evolve after they have been remixed, and version information is not
provided by the Scratch platform.

3. After excluding remixes, we further filtered out authors whose repositories consisted
solely of remixes.

The filtering process resulted in the dataset that was used for the analysis, consisting of
the repositories of 112,208 authors, containing a total of 1,019,310 self-created, non-empty
projects. The source code of these projects was then parsed, resulting in approximately 172
million blocks divided over 21 million scripts, which were stored in a relational database.

3.2. CONCEPTS EVALUATION
To find out which programming concepts were utilized and possibly improved upon by
authors, we investigated the usage of procedure definitions and calls, If & If/Else blocks,
Repeat Until & Repeat Times blocks, Forever blocks and variables.

14

Targeted concept Dr. Scratch concept Basic (Level 1) Developing (Level 2) Proficiency (Level 3)
Loops Flow Control Sequence of blocks Repeat, forever Repeat until
Expressions Logical Thinking If If-else Logic operations
Variables Data Representation Modifiers of sprite properties Operations on variables Operations on lists

Functions
Abstraction &
Problem decomposition

More than one script and more
than one sprite

Definition of blocks Use of clones

Table 3.1: Targeted concepts projected onto Dr. Scratch concepts, including its scoring rubric

To arrive at quantitative measures of the use of computational thinking concepts for
our collected dataset, we required an automated comprehension scoring model. There
has been little consensus on how to best assess computational thinking (Grover and Pea
[2013]) because of the lack of consistent scoring criteria and the multitude of CT definitions
available (Alves et al. [2019]). Instead of synthesizing yet another comprehension model or
assessment framework, we opted to review those already existing and used successfully in
literature. To guide this review, we specified the set of criteria a model should meet to be
used in our study’s context:

1. Assesses selected concepts

2. Is automated or able to be automated

3. Assigns quantitative comprehension measures

4. Is compatible with Scratch blocks

We reviewed relevant models (Boe et al. [2013]; Funke et al. [2017]; Moreno-León et al.
[2015]; Seiter and Foreman [2013]; Von Wangenheim et al. [2018]) from the mapping study
on CT comprehension models by Alves et al. [2019] and chose Dr. Scratch’s rubric as the
comprehension model, as it directly satisfied all our criteria. Dr. Scratch (Moreno-León
et al. [2015]) is a web application where learners can upload a Scratch project and have it
evaluated for different CT concepts and software metrics. Figure 2.3 shows a part of the Dr.
Scratch web interface after having uploaded a project to score. The tool uses a rubric to
assign one of four levels (None, Basic, Developing, Proficiency) to each CT concept based
on static analysis of the source code. We used the Dr. Scratch rubric to score our col-
lected projects on Abstraction and Problem Decomposition, Parallelism, Logical thinking
and Data Representation by translating its conditions for each of the proficiency levels to
SQL queries and running them against our dataset of projects. For example, for a project to
receive a ‘Basic’ score in Logical Thinking, it has to contain an if-block. The corresponding
SQL query checks if any blocks with the if-block opcode are in the project’s collection of
blocks. The mapping of our concepts to those used by Dr. Scratch, and the relevant con-
ditions for each proficiency level, are shown in Table 3.1. We scored the projects for each
concept by evaluating the conditions for the highest level first. If those conditions are sat-
isfied, then the score is returned. If not, then the requirements for the next highest level are
evaluated.

3.3. PROGRESSION ANALYSIS
To track an individual’s programming progression, a model that is able to analyze learn-
ing progressions is preferable. However, from our related work survey, we did not find any

15

Figure 3.1: Repository sizes in number of projects of analyzed repositories

methods or frameworks that describe how to generate such trajectories in our study’s con-
text. Studies that do analyze the progression of different concepts do this by differentiating
between grades or age groups (Hermans and Aivaloglou [2017]; Seiter and Foreman [2013];
Šerbec et al. [2018]). These latter two variables are data we cannot obtain by scraping the
Scratch website. Therefore, to explore for signs of improvement over time, we chose to
order the projects within each author’s repository by their Modified date. This makes it
possible to follow progression from the first to last project edited. We did not use the Cre-
ated date to sort projects due to the possibility of authors coming back to older projects
and editing them. We then performed a statistical analysis, using a combination of SQL
queries and R scripts to generate the information and visualizations necessary to answer
our research questions. We further compared the first 3 with the last 3 projects of the au-
thors who had at least 6 projects in their portfolios to gain further insight in their learning
progression.

3.4. IDENTIFYING DROPPED OUT USERS

We defined a dropped out user by calculating the difference in days between subsequent
project modification dates for all the projects in all repositories we scraped. At the 95th

percentile the difference in days is 41. We then took the latest project modification date
in our dataset (27th of October, 2019) and subtracted 41 days from it. This date (16th of
September, 2019) was used as the cutoff date for inactivity. An author that has no project
with a modified date after that cutoff date is considered a dropout. In total, we analyzed

16

87,461 dropped-out author repositories containing 864,287 projects. For those authors, we
performed two types of analyses:

1. Progression analysis, following the process of Section 2.5;

2. Analysis of the concepts they never used during their time on Scratch. To do that, we
analyzed all the projects of each dropout, including dropouts that had less projects.
We separately examined users who left with more than 9 projects, where 9 is the mean
repository size in our analyzed sample of authors, as shown in Figure 3.1.

17

4
RESULTS

4.1. RQ1: PROGRESSION OF PROGRAMMING CONCEPT USAGE
In the analysis below, we visualized information for the first ten projects of each author,
including authors with less than 10 projects. The mean repository size in our sample was
9.08, as shown in Figure 3.1 and we chose 10 projects as any more would inhibit visualiza-
tion. Furthermore, after 10 projects the number of projects started decreasing to negligible
levels. The graphs up until the 20th project are shown in Appendix A. For each of our tar-
geted concepts, we defined the set of Scratch blocks that corresponded to it and plotted the
proportions for the first 10 projects in each author’s repository. For our analysis, reposito-
ries containing less than 10 projects were included as well. In total, we analyzed 112,208
unique author repositories containing 1,019,310 projects. The number of projects in each
repository up until the 10th project is 589,273. The resulting visualizations are discussed in
the following paragraphs.

Figure 4.1 shows the distribution of conditional expression usage in the form of If and
If/Else blocks. These blocks were referenced in 42.6% of authors’ first projects, and show a
slight upward trend towards 49.7% at the 10th project. This proportion remains stagnant
even at the 20th project, where the proportion is 49.9% out of all 12876 20th projects.

For functions, shown in Figure 4.2,we searched for projects that contained scripts that
were function definitions. Of the first projects, only 7.58% contained procedures, though
this increased to 12.5% at the 10th project, towards 14.5% at the 20th project.

Regarding loops, we analyzed the Forever (Figure 4.3), Repeat Times (Figure 4.4) and
Repeat Until (Figure 4.5) usage.

Forever loops were encountered in 64.3% of authors’ first projects, showing a slight up-
ward trend towards 72% at the 10th project, increasing to 74.2% at the 20th project.

Repeat Times loops were encountered in 35.6% of the first projects, also showing a slight
upward trend towards 42.4% at the 10th project. The progression slope is continued, to-
wards 45.6% at the 20 th project.

Repeat Until loops, which require a conditional expression as a parameter, were en-
countered in just 14.5% of authors’ first projects, again showing a slight upward trend to
20% at the 10th project. After the 10th project, the progression slope becomes flatter with
the proportion increasing to 22.6% at the 20th project.

Figure 4.6 shows the distribution of variable usage. User-created variables were used
in 34.2% of authors’ first projects and showed a slight upward trend from there, remaining

18

Figure 4.1: Distribution of If/If-Else usage

Figure 4.2: Distribution of function declarations

19

Figure 4.3: Distribution of Forever usage

Figure 4.4: Distribution of Repeat Times usage

20

Figure 4.5: Distribution of Repeat Until usage

Figure 4.6: Distribution of variable usage

21

Figure 4.7: Combined CT concept scores across first, median and last projects in each repository of at least
size 3. The diamonds show the average.

stagnant at 43% around the 10th project and afterwards, being used in 44.4% of the 12876
20th projects.

4.2. RQ2: COMPUTATIONAL THINKING RUBRIC EVALUATIONS
For each of the targeted computational thinking concepts, we visualized the distribution of
scores assigned by the Dr. Scratch rubric of Table 3.1. Moreover, we compared the scores
of the first and last two, three and five projects of each author with four, six or ten or more
projects respectively and visualized them in Figures 4.8 to 4.10. We added multiple figures
because analyzing higher numbers of first and last projects results in overall less reposi-
tories analyzed, since less repositories will have the required size. For example, there are
63595 repositories with a size of at least 2, but only 48404 repositories with a size of 4. The
results are discussed in the following paragraphs. Additionally, Figure 4.7 shows the distri-
bution of the combined scores for the four concepts at the first, median and last projects of
authors with at least three projects in their repository. Here, we observe increasing scores as
users create more projects. Notably, the distribution of the second quarter nearly doubles
in size between the median and last project.

The concept of flow control (Figure 4.11) was utilized the most. Here, 62.1% of users
achieved a level of at least 2 in their first project, meaning they utilized repeat times and
repeat forever blocks. A small upward trend is visible for level 3, which is the utilization

22

Figure 4.8: Average CT concept scores of first 2 (left/red bars) and last 2 projects (right/blue bars) in author
repositories

23

Figure 4.9: Average CT concept scores of first 3 (left/red bars) and last 3 projects (right/blue bars) in author
repositories

24

Figure 4.10: Average CT concept scores of first 5 (left/red bars) and last 5 projects (right/blue bars) in author
repositories

25

Figure 4.11: Distribution of flow control scores

of Repeat Until blocks. The usage of If/If-Else blocks is also presented in Figure 4.1. Level
1, which is the easiest score to attain as it requires at least one sequence of blocks, shows
a downward trend. In Figures 4.8 to 4.10, the distribution of average flow control scores
attains a more negative skew, showing a shift towards higher scores.

For logical thinking (Figure 4.12), an upward trend is visible for level 3, which is defined
as use of logic operations. Here use of AND, OR and NOT blocks is seen to increase from
16.1% to 24.1%. For level 2, which is the use of If/Else blocks, the proportions increase
slightly, by 1.31% over 10 projects. Level 1, which is the use for If blocks, sees a slight de-
crease of 2.1%. The amount of projects that did not utilize any logical thinking concepts
also decreased slightly. The average logical thinking scores of the first and last projects of
each repository are shown in Figures 4.8 to 4.10. Here, a fairly large drop in projects with
level 0 is observed and the distribution of last projects shifts towards higher scores.

For data representation (Figure 4.13), an upward trend for level 3, which is the of lists,
is observed. Level 2, the use of variables, shows a slight upward trend as well. Level 1, the
modification of sprite properties, decreases slightly, starting at 21.4% at the first project,
towards 20.8% at the 10thproject. The projects that did not utilize data representation con-
cepts decreased by 8.4% over 10 projects. The average Data Representation scores of the
first and last projects in Figures 4.8 to 4.10 show a general increase in scores. Here, the
drop in projects that received a score of 0 could imply gradual adoption of variables and
list usage.

Last, the abstraction concept (Figure 4.14) shows an upward trend for level 3, which is
the use of clones. For level 2, the definition of procedures, a slight upward trend is observed
as well. Figure 4.2 shows the individual scores for level 2. Level 1, which requires a project
to have more than one script and more than one sprite, shows a slight downward trend due
to adoption of higher levels, as the proportion of users who did not utilize any abstraction
concepts remained stagnant, even up until the 20th project. The average abstraction scores
of the first and last projects are shown Figures 4.8 to 4.10. Here, a proportional decrease in
average scores up until level 1 is observed.

26

Figure 4.12: Distribution of logical thinking scores

Figure 4.13: Distribution of data representation scores

Table 4.1: Summary of programming concept usage for first 10 projects of dropped-out users

Population 87461 81147 67359 57043 49340 42943 37841 33558 29958 26862
Project 1 2 3 4 5 6 7 8 9 10

If/If-Else
T: 41%
F: 59%

44.4%
55.6%

45.6%
54.4%

46.5%
53.5%

46.9%
53.1%

47.5%
52.5%

47.9%
52.1%

48.4%
51.6%

48.3%
51.7%

48.8%
51.2%

Functions
T: 7.26%
F: 92.7%

8.38%
91.6%

8.96%
91%

9.65%
90.4%

10.2%
89.8%

10.5%
89.5%

10.9%
89.1%

11.3%
88.7%

11.4%
88.6%

12%
88%

Forever
T: 64%
F: 36%

65.8%
34.2%

67.2%
32.8%

68.1%
31.9%

68.9%
31.1%

69.6%
30.4%

70.4%
29.6%

70.7%
29.3%

71%
29%

71.7%
28.3%

Repeat Times
T: 35.2%
F: 64.8%

36.2%
63.8%

36.9%
63.1%

37.4%
62.6%

38.5%
61.5%

38.7%
61.3%

39.7%
60.3%

40.1%
59.9%

40.3%
59.7%

41.5%
58.5%

Repeat Until
T: 13.6%
F: 86.4%

15.2%
84.8%

16.1%
83.9%

16.7%
83.3%

17.6%
82.4%

17.9%
82.1%

18.3%
81.7%

18.9%
81.1%

18.9%
81.1%

19.3%
80.7%

Variables
T: 32.7%
F: 67.3%

36.2%
63.8%

38%
62%

39.2%
60.8%

39.5%
60.5%

40.6%
59.4%

41.3%
58.7%

41.7%
58.3%

41.7%
58.8%

41.9%
58.1%

27

Figure 4.14: Distribution of abstraction & problem decomposition scores

Table 4.2: Summary of CT concept usage for first 10 projects of dropped-out users

Population 87461 81147 67359 57043 49340 42943 37841 33558 29958 26862
Abstraction 1 2 3 4 5 6 7 8 9 10
0 32.6% 31% 30.8% 30.5% 30.4% 29.9% 30.2% 30.2% 30.3% 29.9%
1 52% 51.4% 50.5% 49.8% 49.1% 48.8% 47.8% 47% 46.8% 46.6%
2 4.33% 4.83% 5.16% 5.48% 5.82% 6.06% 6.2% 6.58% 6.42% 6.87%
3 11% 12.8% 13.6% 14.2% 14.8% 15.2% 15.8% 16.2% 16.4% 16.8%
Flow Control 1 2 3 4 5 6 7 8 9 10
0 1.88% 1.69% 1.71% 1.69% 1.63% 1.7% 1.71% 1.73% 1.58% 1.71%
1 22.2% 21% 20.1% 19.6% 18.9% 18.4% 17.6% 17.5% 17.1% 16.6%
2 62.5% 62.3% 62.4% 62.2% 62.1% 62.3% 62.6% 62.2% 62.7% 62.7%
3 13.4% 15% 15.8% 16.5% 17.4% 17.6% 18% 18.6% 18.6% 19%
Data Representation 1 2 3 4 5 6 7 8 9 10
0 45.8% 43.5% 42.2% 40.9% 40.3% 39.2% 38.7% 38% 37.8% 37.1%
1 21.7% 20.4% 20.1% 20% 20.2% 20.2% 20.2% 20.5% 21.1% 21.1%
2 23.8% 25.8% 26.7% 27.2% 27.2% 27.8% 27.8% 28.1% 27.6% 27.6%
3 8.72% 10.3% 11.1% 11.9% 12.2% 12.7% 13.3% 13.5% 13.5% 14.2%
Logical Thinking 1 2 3 4 5 6 7 8 9 10
0 58.6% 55.2% 53.9% 52.9% 52.4% 51.9% 51.6% 51.1% 51.2% 50.6%
1 19.6% 19.9% 19.7% 19.4% 19.3% 18.9% 18.6% 18.4% 17.9% 17.9%
2 6.65% 7.01% 7.38% 7.71% 7.6% 7.79% 7.88% 8.07% 7.93% 8.22%
3 15.2% 17.9% 19% 19.9% 20.7% 21.3% 21.9% 22.5% 23.0% 23.3%

28

4.3. RQ3: CONCEPTS PRACTICED BY DROPPED-OUT USERS
The results of the programming concepts and CT concepts analysis for dropped-out users
are presented in Tables 4.1 and 4.2 respectively. As with the full repositories, we analyzed
the first ten projects of each dropout, including dropouts that had less projects, totalling
513,512 out of 864,287 projects by 87,461 dropouts. Next to this, we analyzed the proportion
of dropped-out users with a repository size of 9, equal to or above our sample mean (See
Figure 3.1), which is 29,958 authors with 647,249 projects. We call these complete dropouts
in our analysis below. A summary of the statistics presented below is shown in Table 4.3.

Regarding if/if-else statements, there is a small progression in usage in the first 10 projects.
The amount of dropouts that never utilized them is 20,780, or 23.76% of the total dropped-
out authors. Notably, the number of complete dropouts that never utilized these is 2,530,
or only 8.44% of complete dropouts, signifying that 91.56% of Scratch users who created at
least 9 projects had used an if/if-else statement at least once.

Regarding function definitions, the usage proportion of 7.26% nearly doubled over 10
projects, towards 12% at the 10th project. The amount of dropouts that never defined a
function is 59,858, or 68.44% of all dropped-out authors. This number is lower for complete
dropouts. Here, 13,838 authors, or 46.19% of complete dropouts, never defined functions.
This means 53.81% of users that created at least 9 projects defined a function at least once
during their stay.

Regarding forever loops, the usage increases slightly over the first 10 projects, from 64%
to 71.7% at the 10th project.The amount of dropouts that never utilized a Forever loop is
8,392, or 9.59%. The amount of complete dropouts that never used these is 307, or 1.025%
of complete dropouts. This means 98.975% of dropouts with a repository containing at
least 9 projects used a forever loop at least once.

Regarding repeat times loops, usage grows from 35.2% at the first, to 41.5% at the 10th

project. The amount of dropouts never using them is 22,524, or 25.75%. This number is
lower for complete dropouts, where it is 1,698, or 5.67% of the complete dropouts, meaning
94.33% of dropped-out authors with a repository of at least 9 projects used this kind of loop
at least once before leaving.

For repeat until loops, an increase of 5.7% over the first 10 projects is seen, towards
19.3% at the 10th project. The amount of dropouts that never used them is 48,263, or
55.18%. The proportion is smaller for complete dropouts, where only 9,982 or 33.32% never
used them.

Use of variables saw a notable increase of 3.5% between the first and second project,
then increasing slightly towards 41.9% near the 10th project. The total amount of users
never utilizing them is 26,538, or 30.34% of the dropped-out authors. Notably, only 3,555
or 11.87% of complete dropouts never used variables.

29

Table 4.3: Summary of programming concept usage results for dropped-out users, and dropped-out users
which created at least the mean size of 9 projects (called complete dropouts)

Concept
Number (percentage) of dropouts

not utilizing concept
Number (percentage) of complete

dropouts not utilizing concept
If/If-Else 20,780 (23.76%) 2,530 (8.44%)
Functions 59,858 (68.44%) 13,838 (46.19%)
Forever loops 8,392 (8.59%) 307 (1.025%)
Repeat times 22,524 (25.75%) 1,698 (5,67%)
Repeat until 48,263 (55.18%) 9,982 (33.32%)
Variables 26,538 (30.34%) 3,555 (11.87%)

30

5
DISCUSSION

Overall, our findings indicate that Scratch users progress in the use of several CT concepts
like abstraction & problem decomposition, flow control, logical thinking and data repre-
sentation as they create more projects. Repeat forever blocks were among the most popular
in our sample. Their high frequency of use might imply that this block and its use is easily
understood, but it could also be attributed to the fact that it is required for the execution of
several types of Scratch programs.

Our analysis of the learning progression was made from three viewpoints: that of el-
ementary programming concepts, using a rubric that evaluates computational thinking
levels, and through the concepts practiced by dropped-out users. Working with this ap-
proach, the benefits that we find are twofold. First, it captures that not all programming
concepts should or need to be employed in every project to convey that a user is advanced.
Focusing solely on the progression as evaluated by the use of programming concepts or the
rubric can be misleading, because it does not give a full image of the learning progression.
For example, examining the use of variables throughout the first 20 projects of users we
found a positive trend from 34.2% in the first projects to 44.4% of the 20th projects, which
is also in line with the findings of Aivaloglou and Hermans [2016], where variable usage
was found in 31.51% of Scratch projects. This view alone would be misleading, because it
could be interpreted as an under-utilization of variables from users even after creating 20
projects. However, when examined from the last viewpoint, that of the concepts practiced
by dropped-out users, we find only 30% having never used them and, more importantly,
that the majority (88.13%) of the users who have left Scratch after ‘seriously’ using it (creat-
ing at least the mean amount of nine projects) have used variables at least once, indicating
that users do practice the concept of variables while using Scratch.

The second benefit from adopting this approach is that it enabled us to better capture
progression and the lack of it. For example, the under-utilization of logic operations was
not brought up when examining the elementary concepts, since logic operations can be
used in conditional expressions, loops, and other expressions, but as an element in the
logical thinking dimension of the computational concepts rubric. It is also observed here
that the high If/If-Else block usage contrasts with the low conditional loop usage, since
both require a conditional expression. This could be attributed to lack of understanding of
how the conditional expression operates with loops.

The under-utilization of functions was evident across all viewpoints, with their use re-
maining as low as in 14.5% of 20th projects, with almost half of the users who have left

31

the Scratch platform after creating at least nine projects never having created a function.
Low function usage was also reported in existing work in the Scratch repository (Aivaloglou
and Hermans [2016]), where only 7.7% of 233,491 projects were found to utilize them, as
well as by Troiano et al. [2019], who observed little progression in abstraction concepts be-
yond level 1 in their analysis of the Dr. Scratch scores of 317 projects created in 8th grade,
where only 18 projects used functions. Our analysis confirms those findings in a large set
of users and their learning progressions. This very essential programming concept is there-
fore rarely practiced, which can be attributed both to limitations imposed by the Scratch
environment, like the local scope of procedures, and to the difficulty for internalizing cer-
tain computational thinking concepts before a certain age (Seiter and Foreman [2013]).

5.1. DATA AND SOFTWARE
In terms of the produced dataset, we believe that it can be useful beyond the purposes of
our study, especially because it contains entire user repositories instead of random projects.
To the best of our knowledge, no other study has conducted an integrated scraping and
parsing effort on this scale. Next to this, no study so far seems to have acknowledged or
addressed the differences in the Scratch project versions. Many measures can be derived
from our constructed dataset: cyclomatic complexity, length of scripts, and other metrics
related to code quality can be easily calculated from the relational database structure. Vo-
cabulary breadth and depth, as used in Scaffidi and Chambers [2012] can also be directly
derived. Many more variables exist within our dataset, which can be used to further analyze
Scratch users and the projects they create, such as the use of sprites and stages, procedure
arguments, the used parameters for blocks and more. Analysis activities are further sup-
ported by the version-agnostic structuring of our dataset, as we used a translation table
for all block commands. For each Scratch block, the translation table contains the sb2 and
sb3 representation for that command, making it possible to compare projects of different
versions, for example. More importantly, it can be extended to possibly fit future Scratch
version as well.

To support the replicability of our findings we have open-sourced every program and
script we used, including the SQL queries used for scoring the projects, the queries to de-
termine block usage and the filtration queries. Additionally, Zemi itself is completely open-
source and available on GitHub. Next to this, we also offer all of our analysis scripts, from
exporting the SQL data, to importing it in R, calculating the metrics and creating the visu-
alizations presented in this thesis. We are confident that our study is reproducible to the
fullest extent possible.

5.2. THREATS TO VALIDITY
The dataset that was constructed and used for the analysis contains all projects that the
scraped users had made public, but not their private projects. There is no way of knowing
about the private contents of user’s repositories. In our analysis, this might have influenced
repository size and dropout calculation, as well as the ordering of the projects, as public
projects alone do not capture the full extent of an author’s activity. The exclusion of remixes
might have influenced the same aspects. However, including remixes would have skewed
our analysis results, since remixed projects should not be considered authored projects and
it is not possible to distinguish with the available information a remixer’s own contribution

32

relative to the original project.
Regarding the ordering of projects, we used the latest modification date of projects to

order them chronologically. Another option would be use the project creation dates. How-
ever, since users can go back and edit their projects at any time, that might not capture
the true chronology of a user’s activity. Regarding our sample of authors, we might have
captured only a local sample of Scratch authors due to our scraping method: by scraping
friends and followers, and their friends and followers and so on, we might collected only
authors that have some relationship towards each other.

Another threat pertains to the measured rubric levels. We applied the rubric scoring
procedure top-down, meaning that the conditions for obtaining the highest level of pro-
ficiency are evaluated first. If the conditions are satisfied, then that proficiency level is
assigned. For example, a project using clones, but no custom procedures will receive an
Abstraction score of 3, even if the levels below it were never attained.

33

6
CONCLUSION

In this thesis we presented a quantitative study on a large body of scraped Scratch reposi-
tories. Starting with a webscraper that scrapes authors and projects from the Scratch web-
site, we collected a large dataset of authors and their entire project repositories. Each au-
thor’s entire repository was scraped to enable chronological analysis of projects within it,
where we used the Modified date of projects to see in what order they were worked on.
Each project was parsed by recording the blocks used in it in a relational database. Because
Scratch projects have different versions, we maintained a translation table to handle all ver-
sion’s blocks uniformly. Authors whose repository contained unparseable or sb1-versioned
projects were excluded from the analysis, as well as all empty and remixed projects. This
resulted in a set of 112,208 repositories containing 1,019,310 projects. By analyzing the
projects within these repositories, using a combination of SQL queries and R scripts, for
use of loops, expressions, variable and function concepts, both individually and using a CT
rubric, we explored their author’s progression. Across the board, the results show an in-
crease in concept utilization and CT scores for active and dropped-out users alike. In the
following paragraphs, we answer each of our research questions.

RQ1: How do Scratch users progress in the use of elementary programming concepts
such as variables, procedures, conditional expressions and loops? We observe a pro-
gression towards higher scores in the first ten projects of all the public projects analyzed.
Logic operations, conditional loops and functions are used very little. The progression is
most profound at the start of a user’s project repository. In the first three projects, au-
thors saw the highest growth in variables and if/if-else statement utilization. Notably, even
though the use of functions was underrepresented, its utilization still nearly doubled over
the first ten public projects.

RQ2: What is the learning progression of CT concepts in Scratch users, such as abstrac-
tion,data representation, flow control and logical thinking? Authors slowly progress in
the utilization of all CT concepts. Authors attained the highest scores on the flow control
concept, due to level 1 requiring a sequence of blocks and level 2 requiring repeat forever
and repeat times blocks, which were grasped better by authors in general. Related to the
abstraction & problem decomposition concept, we observe that cloning (level 3) is over-
all more prevalent than use or definition of functions (level 2), though their mechanics in

34

the Scratch editor are similar. Notably, the proportion of users with a score of 0 remains
stagnant, showing little progression. The data representation concept showed the most
uniform distribution of scores, with variable and list utilization increasing. Notably, virtu-
ally no progression was measured for level 1 (modification of sprite variables) even though
the proportion of projects with score 0 decreased. This could be the result of a different
type of learning trajectory, where modification of sprite properties is not the next logical
step in progressing the data representation concept.

RQ3: Which CT concepts were practiced by users that have left the Scratch platform?
All concepts were improved upon by dropped-out users and at a faster rate than regular
users. Authors that left Scratch with a repository size of at least the mean size of 9 projects
(complete dropouts) utilize all concepts the most compared to all dropped-out users. For
complete dropouts, utilization rates for If/If-Else, Forever loops, Repeat times loops are all
above 85%. Slightly less than half of those authors never used functions, and a third never
utilized repeat until loops. Conditionals like repeat until loops are still underutilized, with
just 45% of dropped-out users using them, the use of If/If-Else blocks, which also require a
conditional, was quite high, with only a quarter of those dropouts having never used them.
Though the concept utilization rates by dropouts are lower than that of complete dropouts,
they are notably higher than the rates for the complete population, especially in the area of
function definitions, repeat times and repeat until statements.

35

BIBLIOGRAPHY

Efthimia Aivaloglou and Felienne Hermans. How kids code and how we know: An ex-
ploratory study on the scratch repository. In Proceedings of the 2016 ACM Conference
on International Computing Education Research, pages 53–61. ACM, 2016. 1, 2, 8, 31, 32

Nathalia Da Cruz Alves, Christiane Gresse Von Wangenheim, and Jean CR Hauck. Ap-
proaches to assess computational thinking competences based on code analysis in k-12
education: A systematic mapping study. Informatics in Education, 18(1):17, 2019. 6, 15

Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and Diana Franklin.
Hairball: Lint-inspired static analysis of scratch projects. In Proceeding of the 44th ACM
technical symposium on Computer science education, pages 215–220. ACM, 2013. 1, 8, 9,
15

Karen Brennan and Mitchel Resnick. New frameworks for studying and assessing the de-
velopment of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association, Vancouver, Canada, volume 1, page 25, 2012.
6

Alexandra A de Souza, Thiago S Barcelos, Roberto Munoz, Rodolfo Villarroel, and Leandro A
Silva. Data mining framework to analyze the evolution of computational thinking skills
in game building workshops. IEEE Access, 2019. 1, 2, 12

Deborah A. Fields, Michael Giang, and Yasmin Kafai. Programming in the wild: Trends in
youth computational participation in the online scratch community. In Proceedings of
the 9th Workshop in Primary and Secondary Computing Education, pages 2–11. ACM,
2014. ISBN 978-1-4503-3250-7. 7

Alexandra Funke, Katharina Geldreich, and Peter Hubwieser. Analysis of scratch projects of
an introductory programming course for primary school students. In 2017 IEEE global
engineering education conference (EDUCON), pages 1229–1236. IEEE, 2017. 1, 15

Shuchi Grover and Satabdi Basu. Measuring student learning in introductory block-based
programming: Examining misconceptions of loops, variables, and boolean logic. In Pro-
ceedings of the 2017 ACM SIGCSE technical symposium on computer science education,
pages 267–272. ACM, 2017. 1, 2, 6

Shuchi Grover and Roy Pea. Computational thinking in k–12 a review of the state of the
field. Educational Researcher, 42:38–43, 02 2013. doi: 10.3102/0013189X12463051. 15

Felienne Hermans and Efthimia Aivaloglou. Teaching software engineering principles to
K-12 students: a MOOC on Scratch. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering Education and Training Track (ICSE-SEET),
pages 13–22. IEEE, 2017. 1, 2, 16

i

Sid L. Huff, Malcolm C. Munro, and Barbara Marcolin. Modelling and measuring end user
sophistication. In Proceedings of the 1992 ACM SIGCPR Conference on Computer Person-
nel Research, SIGCPR ’92, pages 1–10, New York, NY, USA, 1992. ACM. ISBN 0-89791-500-
3. doi: 10.1145/144001.144011. URL http://doi.acm.org/10.1145/144001.144011.
10

Nurul Naslia Khairuddin and Khairuddin Hashim. Application of Bloom’s taxonomy in soft-
ware engineering assessments. In Proceedings of the 8th WSEAS International Conference
on Applied Computer Science, pages 66–69, 2008. 1

John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk. Program-
ming by choice: Urban youth learning programming with scratch. In Proceedings of the
39th SIGCSE Technical Symposium on Computer Science Education, pages 367–371. ACM,
2008. ISBN 978-1-59593-799-5. 8

J Nathan Matias, Sayamindu Dasgupta, and Benjamin Mako Hill. Skill progression in
scratch revisited. In Proceedings of the 2016 CHI conference on human factors in com-
puting systems, pages 1486–1490. ACM, 2016. 1, 2, 10

Monika Mladenovic, Ivica Boljat, and Žana Žanko. Comparing loops misconceptions in
block-based and text-based programming languages at the k-12 level. Education and
Information Technologies, 23:1483–1500, 07 2018. doi: 10.1007/s10639-017-9673-3. 1, 2

Jesús Moreno-León, Gregorio Robles, et al. Dr. scratch: a web tool to automatically evaluate
scratch projects. In WiPSCE, pages 132–133, 2015. 1, 9, 15

Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in intro-
ductory programming: A literature review. ACM Trans. Comput. Educ., 18(1), October
2017. doi: 10.1145/3077618. URL https://doi.org/10.1145/3077618. 6

Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Hermans. Soft-
ware clones in scratch projects: On the presence of copy-and-paste in computational
thinking learning. In 2017 IEEE 11th International Workshop on Software Clones (IWSC),
pages 1–7. IEEE, 2017. 1

Christopher Scaffidi and Christopher Chambers. Skill progression demonstrated by users
in the scratch animation environment. International Journal of Human-Computer Inter-
action, 28(6):383–398, 2012. 1, 2, 10, 32

Linda Seiter and Brendan Foreman. Modeling the learning progressions of computational
thinking of primary grade studentsf. In Proceedings of the ninth annual international
ACM conference on International computing education research, pages 59–66. ACM, 2013.
1, 2, 10, 15, 16, 32

Irena Nančovska Šerbec, Špela Cerar, and Alenka Žerovnik. Developing computational
thinking through games in scratch. Education and Research in the Information Society,
pages 21–30, 2018. 1, 16

Juha Sorva. Visual program simulation in introductory programming education. G4 mono-
grafiaväitöskirja, Aalto University School of Science, 2012. URL http://urn.fi/URN:
ISBN:978-952-60-4626-6. 1

ii

http://doi.acm.org/10.1145/144001.144011
https://doi.org/10.1145/3077618
http://urn.fi/URN:ISBN:978-952-60-4626-6
http://urn.fi/URN:ISBN:978-952-60-4626-6

Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. Programming misconceptions
for school students. In Proceedings of the 2018 ACM Conference on International Com-
puting Education Research, pages 151–159. ACM, 2018. 1, 2, 6, 7

Giovanni Maria Troiano, Sam Snodgrass, Erinç Argımak, Gregorio Robles, Gillian Smith,
Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper Harteveld. Is my game
ok dr. scratch? exploring programming and computational thinking development via
metrics in student-designed serious games for stem. In Proceedings of the 18th ACM
International Conference on Interaction Design and Children, pages 208–219, 2019. 1, 32

Christiane Gresse Von Wangenheim, Jean CR Hauck, Matheus Faustino Demetrio, Rafael
Pelle, Nathalia da Cruz Alves, Heliziane Barbosa, and Luiz Felipe Azevedo. Codemaster–
automatic assessment and grading of app inventor and snap! programs. Informatics in
Education, 17(1):117–150, 2018. 15

Seungwon Yang, Carlotta Domeniconi, Matt Revelle, Mack Sweeney, Ben U Gelman, Chris
Beckley, and Aditya Johri. Uncovering trajectories of informal learning in large online
communities of creators. In Proceedings of the Second (2015) ACM Conference on Learn-
ing@ Scale, pages 131–140. ACM, 2015. 1, 11

Yunwen Ye and Kouichi Kishida. Toward an understanding of the motivation of open source
software developers. In Proceedings of the 25th international conference on software en-
gineering, pages 419–429. IEEE Computer Society, 2003. 10

iii

APPENDIX A

iv

Figure 1: Distribution of data representation scores across first 20 projects

Figure 2: Distribution of abstraction & problem decomposition scores across first 20 projects

v

Figure 3: Distribution of logical thinking scores across first 20 projects

Figure 4: Distribution of flow control scores across first 20 projects

vi

Figure 5: Caption

Figure 6: Caption

vii

Figure 7: Caption

Figure 8: Caption

viii

Figure 9: Caption

Figure 10: Caption

ix

	Acknowledgements
	Introduction
	Background and related work
	Relevant Scratch Concepts
	Computational Thinking
	Related Work
	Measuring comprehension
	Static analysis of Scratch projects
	Learning progressions

	Methods
	Dataset
	Scraping
	Parsing and Filtering

	Concepts Evaluation
	Progression Analysis
	Identifying Dropped Out Users

	Results
	RQ1: Progression of programming concept usage
	RQ2: Computational Thinking rubric evaluations
	RQ3: Concepts practiced by dropped-out users

	Discussion
	Data and Software
	Threats to validity

	Conclusion
	Bibliography
	Appendix A

