123 research outputs found

    High-speed turbo-TCM-coded orthogonal frequency-division multiplexing ultra-wideband systems

    Get PDF
    One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM) system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution. Copyright (C) 2006 Yanxia Wang et al

    Bit-Interleaved Coded Modulation

    Get PDF

    5G無線通信における誤り訂正符号化方式の評価に関する研究

    Get PDF
    早大学位記番号:新8267早稲田大

    IST-2000-30148 I-METRA: D3.1 Design, analysis and selection of suitable algorithms

    Get PDF
    This deliverable contains a description of the space-time coding algorithms to be simulated within the I-METRA project. Different families of algorithms have been selected and described in this document with the objective of evaluating their performance. One of the main objectives of the I-METRA project is to impact into the current standardisation efforts related to the introduction of Multiple Input Multiple Output (MIMO) configurations into the High Speed Downlink and Uplink Packet Access concepts of UMTS (HSDPA and HSUPA). This required a review of the current specifications for these systems and the analysis of the impact of the potential incorporation of the selected MIMO schemes.Preprin

    Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Get PDF
    Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.National Science Foundatio

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Smart Grid communications in high traffic environments

    Get PDF
    The establishment of a previously non-existent data class known as the Smart Grid will pose many difficulties on current and future communication infrastructure. It is imperative that the Smart Grid (SG), as the reactionary and monitory arm of the Power Grid (PG), be able to communicate effectively between grid controllers and individual User Equipment (UE). By doing so, the successful implementation of SG applications can occur, including support for higher capacities of Renewable Energy Resources. As the SG matures, the number of UEs required is expected to rise increasing the traffic in an already burdened communications network. This thesis aims to optimally allocate radio resources such that the SG Quality of Service (QoS) requirements are satisfied with minimal effect on pre-existing traffic. To address this resource allocation problem, a Lotka-Volterra (LV) based resource allocation and scheduler was developed due to its ability to easily adapt to the dynamics of a telecommunications environment. Unlike previous resource allocation algorithms, the LV scheme allocated resources to each class as a function of its growth rate. By doing so, the QoS requirements of the SG were satisfied, with minimal effect on pre-existing traffic. Class queue latencies were reduced by intelligent scheduling of periodic traffic and forward allocation of resources. This thesis concludes that the SG will have a large effect on the telecommunications environment if not successfully controlled and monitored. This effect can be minimized by utilizing the proposed LV based resource allocation and scheduler system. Furthermore, it was shown that the allocation of periodic SG radio channels was optimized by continual updates of the LV model. This ensured the QoS requirements of the SG are achieved and provided enhanced performance. Successful integration of SG UEs in a wireless network can pave the way for increased capacity of Renewable and Intermittent Energy Resources operating on the PG

    Advanced receivers and waveforms for UAV/Aircraft aeronautical communications

    Get PDF
    Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances
    corecore