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Abstract

The principle of coding in the signal space follows directly from Shan-
non’s analysis of waveform Gaussian channels subject to an input con-
straint. The early design of communication systems focused separately
on modulation, namely signal design and detection, and error correct-
ing codes, which deal with errors introduced at the demodulator of
the underlying waveform channel. The correct perspective of signal-
space coding, although never out of sight of information theorists, was
brought back into the focus of coding theorists and system design-
ers by Imai’s and Ungerböck’s pioneering work on coded modulation.
More recently, powerful families of binary codes with a good tradeoff
between performance and decoding complexity have been (re-) discov-
ered. Bit-Interleaved Coded Modulation (BICM) is a pragmatic ap-
proach combining the best out of both worlds: it takes advantage of
the signal-space coding perspective, whilst allowing for the use of pow-
erful families of binary codes with virtually any modulation format.



BICM avoids the need for the complicated and somewhat less flexi-
ble design typical of coded modulation. As a matter of fact, most of
today’s systems that achieve high spectral efficiency such as DSL, Wire-
less LANs, WiMax and evolutions thereof, as well as systems based on
low spectral efficiency orthogonal modulation, feature BICM, making
BICM the de-facto general coding technique for waveform channels.
The theoretical characterization of BICM is at the basis of efficient cod-
ing design techniques and also of improved BICM decoders, e.g., those
based on the belief propagation iterative algorithm and approximations
thereof. In this monograph, we review the theoretical foundations of
BICM under the unified framework of error exponents for mismatched
decoding. This framework allows an accurate analysis without any par-
ticular assumptions on the length of the interleaver or independence
between the multiple bits in a symbol. We further consider the sensi-
tivity of the BICM capacity with respect to the signal-to-noise ratio
(SNR), and obtain a wideband regime (or low-SNR regime) character-
ization. We review efficient tools for the error probability analysis of
BICM that go beyond the standard approach of considering infinite in-
terleaving and take into consideration the dependency of the coded bit
observations introduced by the modulation. We also present bounds
that improve upon the union bound in the region beyond the cutoff
rate, and are essential to characterize the performance of modern ran-
domlike codes used in concatenation with BICM. Finally, we turn our
attention to BICM with iterative decoding, we review extrinsic infor-
mation transfer charts, the area theorem and code design via curve
fitting. We conclude with an overview of some applications of BICM
beyond the classical coherent Gaussian channel.
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Introduction

Since Shannon’s landmark 1948 paper [105], approaching the capacity
of the Additive White Gaussian Noise (AWGN) channel has been one
of the more relevant topics in information theory and coding theory.
Shannon’s promise that rates up to the channel capacity can be reliably
transmitted over the channel comes together with the design challenge
of effectively constructing coding schemes achieving these rates with
limited encoding and decoding complexity.

The complex baseband equivalent model of a bandlimited AWGN
channel is given by

yk =
√

snr xk + zk, (1.1)

where yk, xk, zk are complex random variables and snr denotes the
Signal-to-Noise Ratio (SNR), defined as the signal power over the noise
power. The capacity C (in nats per channel use) of the AWGN channel
with signal-to-noise ratio snr is given by the well-known

C = log(1 + snr). (1.2)

The coding theorem shows the existence of sufficiently long codes
achieving error probability not larger than any ε > 0, as long as the
coding rate is not larger than C. The standard achievability proof of
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2 Introduction

(1.2) considers a random coding ensemble generated with i.i.d. compo-
nents according to a Gaussian probability distribution.

Using a Gaussian code is impractical, as decoding would require an
exhaustive search over the whole codebook for the most likely candi-
date. Instead, typical signaling constellations like Phase-Shift Keying
(PSK) or Quadrature-Amplitude Modulation (QAM) are formed by a
finite number of points in the complex plane. In order to keep the mod-
ulator simple, the set of elementary waveforms that the modulator can
generate is a finite set, preferably with small cardinality. A practical
way of constructing codes for the Gaussian channel consists of fixing
the modulator signal set, and then considering codewords obtained as
sequences over the fixed modulator signal set, or alphabet. These coded
modulation schemes are designed for the equivalent channel resulting
from the concatenation of the modulator with the underlying waveform
channel. The design aims at endowing the coding scheme with just
enough structure such that efficient encoding and decoding is possible
while, at the same time, having a sufficiently large space of possible
codes so that good codes can be found.

Driven by Massey’s consideration on coding and modulation as a
single entity [79], Ungerböck in 1982 proposed Trellis-Coded Modula-
tion (TCM), based on the combination of trellis codes and discrete sig-
nal constellations through set partitioning [130] (see also [15]). TCM
enables the use of the efficient Viterbi algorithm for optimal decod-
ing [138] (see also [35]). An alternative scheme is multilevel coded
modulation (MLC), proposed by Imai and Hirakawa in 1977 [56] (see
also [140]). MLC uses several binary codes, each protecting a single bit
of the binary label of modulation symbols. At the receiver, instead of
optimal joint decoding of all the component binary codes, a suboptimal
multi-stage decoding, alternatively termed successive interference can-
cellation, achieves good performance with limited complexity. Although
not necessarily optimal in terms of minimizing the error probability, the
multi-stage decoder achieves the channel capacity [140].

The discovery of turbo codes [11] and the re-discovery of low-density
parity-check (LDPC) codes [38, 69] with their corresponding iterative
decoding algorithms marked a new era in Coding Theory. These modern
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codes [96] approach the capacity of binary-input channels with low
complexity. The analysis of iterative decoding also led to new methods
for their efficient design [96]. At this point, a natural development of
coded modulation would have been the extension of these powerful
codes to non-binary alphabets. However, iterative decoding of binary
codes is by far simpler.

In contrast to Ungerböck’s findings, Zehavi proposed bit-interleaved
coded modulation (BICM) as a pragmatic approach to coded modula-
tion. BICM separates the actual coding from the modulation through
an interleaving permutation [142]. In order to limit the loss of infor-
mation arising in this separated approach, soft information about the
coded bits is propagated from the demodulator to the decoder in the
form of bit-wise a posteriori probabilities or log-likelihood ratios. Ze-
havi illustrated the performance advantages of separating coding and
modulation. Later, Caire et al. provided in [29] a comprehensive analy-
sis of BICM in terms of information rates and error probability, show-
ing that in fact the loss incurred by the BICM interface may be very
small. Furthermore, this loss can essentially be recovered by using iter-
ative decoding. Building upon this principle, Li and Ritcey [64] and
ten Brink [122] proposed iterative demodulation for BICM, and il-
lustrated significant performance gains with respect to classical non-
iterative BICM decoding [29, 142] when certain binary mappings and
convolutional codes are employed. However, BICM designs based on
convolutional codes and iterative decoding cannot approach the coded
modulation capacity, unless the number of states grows large [139].
Improved constructions based on iterative decoding and on the use of
powerful families of modern codes can, however, approach the channel
capacity for a particular signal constellation [120,121,127].

Since its introduction, BICM has been regarded as a pragmatic yet
powerful scheme to achieve high data rates with general signal constel-
lations. Nowadays, BICM is employed in a wide range of practical com-
munications systems, such as DVB-S2, Wireless LANs, DSL, WiMax,
the future generation of high data rate cellular systems (the so-called
4th generation). BICM has become the de-facto standard for coding
over the Gaussian channel in modern systems.



4 Introduction

In this monograph, we provide a comprehensive study of BICM. In
particular, we review its information theoretic foundations, and review
its capacity, cutoff rate and error exponents. Our treatment also cov-
ers the wideband regime. We further examine the error probability of
BICM, and we focus on the union bound and improved bounds to the
error probability. We then turn our attention to iterative decoding of
BICM; we also review the underlying design techniques and introduce
improved BICM schemes in a unified framework. Finally, we describe
a number of applications of BICM not explicitly covered in our treat-
ment. In particular, we consider the application of BICM to orthogonal
modulation with non-coherent detection, to the block-fading channel,
to the multiple-antenna channel as well as to less common channels
such as the exponential-noise or discrete-time Poisson channels.



2

Channel Model and Code Ensembles

This chapter provides the reference background for the remainder of
the monograph, as we review the basics of coded modulation schemes
and their design options. We also introduce the notation and describe
the Gaussian channel model used throughout this monograph. Chap-
ter 6 briefly describes different channels and modulations not explicitly
covered by the Gaussian channel model.

2.1 Channel Model: Encoding and Decoding

Consider a memoryless channel with input xk and output yk, respec-
tively drawn from the alphabets X and Y. Let N denote the number
of channel uses, i. e. k = 1, . . . , N . A block codeM⊆ XN of length N
is a set of |M| vectors x = (x1, . . . , xN ) ∈ XN , called codewords. The
channel output is denoted by y

∆= (y1, . . . , yN ), with yk ∈ Y.
We consider memoryless channels, for which the channel transition

probability PY |X(y|x) admits the decomposition

PY |X(y|x) =
N∏

k=1

PY |X(yk|xk), (2.1)

5



6 Channel Model and Code Ensembles

With no loss of generality, we limit our attention to continuous output
and identify PY |X(y|x) as a probability density function. We denote
by X,Y the underlying random variables. Similarly, the corresponding
random vectors are

X
∆= (X1, . . . , XN ) and Y

∆= (Y1, . . . , YN ), (2.2)

respectively drawn from the sets XN and YN .
At the transmitter, a message m drawn with uniform probability

from a message set is mapped onto a codeword xm, according to the
encoding schemes described in Sections 2.2 and 2.3. We denote this
encoding function by φ, i. e. φ(m) = xm. Often, and unless strictly
necessary, we drop the subindex m in the codeword xm and simply
write x. Whenever |X | <∞, we respectively denote the cardinality of
X and the number of bits required to index a symbol by M and m,

M
∆= |X |, m

∆= log2M. (2.3)

The decoder outputs an estimate of the message m̂ according to a
given codeword decoding metric, denoted by q(x,y), so that

m̂ = ϕ(y) = arg max
m∈{1,...,|M|}

q(xm,y). (2.4)

The decoding metrics considered in this work are given as products of
symbol decoding metrics q(x, y), for x ∈ X and y ∈ Y, namely

q(x,y) =
N∏

k=1

q(xk, yk). (2.5)

For equally likely codewords, this decoder finds the most likely code-
word as long as the metric q(x, y) is a bijective (thus strictly increas-
ing) function of the transition probability PY |X(y|x) of the memory-
less channel. Instead, if the decoding metric q(x, y) is not a bijective
function of the channel transition probability, we have a mismatched
decoder [41, 59,84].

2.1.1 Gaussian Channel Model

A particularly interesting, yet simple, case is that of complex-plane
signal sets (X ⊂ C, Y = C) in AWGN with fully-interleaved fading,

yk = hk

√
snr xk + zk, k = 1, . . . , N (2.6)
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where hk are fading coefficients with unit variance, zk are the zero-
mean, unit-variance, circularly symmetric complex Gaussian samples,
and snr is the signal-to-noise ratio (SNR). In Appendix 2.A we relate
this discrete-time model to an underlying continuous-time model with
additive white Gaussian noise. We denote the fading and noise random
variables by H and Z, with respective probability density functions
PH(h) and PZ(z). Examples of input set X are unit energy PSK or
QAM signal sets.1

With perfect channel state information (coherent detection), the
channel coefficient hk is part of the output, i. e. it is given to the re-
ceiver. From the decoder viewpoint, the channel transition probability
is decomposed as PY,H|X(y, h|x) = PY |X,H(y|x, h)PH(h), with

PY |X,H(y|x, h) =
1
π

e−|y−h
√

snr x|2 . (2.7)

Under this assumption, the phase of the fading coefficient becomes ir-
relevant and we can assume that the fading coefficients are real-valued.
In our simulations, we will consider Nakagami-mf fading, with density

PH(h) =
2mmf

f h2mf−1

Γ(mf )
e−mf h2

. (2.8)

Here Γ(x) is Euler’s Gamma function, Γ(x) =
∫∞
0 tx−1e−t dt, and mf >

0. In this fading model, we recover the AWGN (h = 1) with mf → +∞,
the Rayleigh fading by letting mf = 1 and the Rician fading with
parameter K by setting mf = (K + 1)2/(2K + 1).

Other cases are possible. For example, hk may be unknown to the
receiver (non-coherent detection), or only partially known, i. e. the re-
ceiver knows ĥk such that (H, Ĥ) are jointly distributed random vari-
ables. In this case, (2.7) generalizes to

P
Y |X, bH(y|x, ĥ) = E

[
1
π

e−|y−H
√

snr x|2
∣∣∣Ĥ = ĥ

]
(2.9)

1 We consider only one-dimensional complex signal constellations X ⊂ C, such as QAM or
PSK signal sets (alternatively referred to as two-dimensional signal constellations in the

real domain). The generalization to “multidimensional” signal constellations X ⊂ CN′
,

for N ′ > 1, follows immediately, as briefly reviewed in Chapter 6.
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Encoder Decoder
m m̂

φ ϕ

Channel
xm

y

PY |X(y|xm)

Fig. 2.1 Channel model with encoding and decoding functions.

The classical non-coherent channel where h = ejθ, with θ denoting a
uniformly distributed random phase, is a special case of (2.9) [16,95].

For simplicity of notation, we shall denote the channel transition
probability simply as PY |X(y|x), where the possible conditioning with
respect to h or any other related channel state information ĥ, is im-
plicitly understood and will be clear from the context.

2.2 Coded Modulation

In a coded modulation (CM) scheme, the elements xk ∈ X of the code-
word xm are in general non-binary. At the receiver, a maximum metric
decoder ϕ (as in Eq. (2.4)) generates an estimate of the transmitted
message, ϕ(y) = m̂. The block diagram of a coded modulation scheme
is illustrated in Figure 2.1.

The rate R of this scheme in bits per channel use is given by R =
K
N , where K ∆= log2 |M| denotes the number of bits per information
message. We define the average probability of a message error as

Pe
∆=

1
|M|

|M|∑
m=1

Pe(m) (2.10)

where Pe(m) is the conditional error probability when message m was
transmitted. We also define the probability of bit error as

Pb
∆=

1
K|M|

K∑
k=1

|M|∑
m=1

Pe(k,m) (2.11)

where Pe(k,m) ∆= Pr{k-th bit in error | message m was transmitted} is
the conditional bit error probability when message m was transmitted.
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Binary 
Encoder

Interleaving

Permutation

Binary 
Labeling

C

c

π µ

m

φ

c̃ xm

Fig. 2.2 BICM encoder model.

2.3 Bit-Interleaved Coded Modulation

2.3.1 BICM Encoder and Decoders

In a bit-interleaved coded modulation scheme, the encoder is restricted
to be the serial concatenation of a binary code C of length n ∆= mN and
rate r = log2 |C|

n = R
m , a bit interleaver, and a binary labeling function

µ : {0, 1}m → X which maps blocks of m bits to signal constellation
symbols. The codewords of C are denoted by c. The block diagram of
the BICM encoding function is shown in Figure 2.2.

We denote the inverse mapping function for labeling position j as
bj : X → {0, 1}, that is, bj(x) is the j-th bit of symbol x. Accordingly,
we now define the sets

X j
b

∆= {x ∈ X : bj(x) = b} (2.12)

as the set of signal constellation points x whose binary label has value
b ∈ {0, 1} in its j-th position. More generally, we define the sets
X ji1

,...,jiv

bi1
,...,biv

as the sets of constellation points having the v binary labels
bi1 , . . . , biv in positions ji1 , . . . , jiv ,

X ji1
,...,jiv

bi1
,...,biv

∆= {x ∈ X : bji1
(x) = bi1 , . . . , bjiv

(x) = biv}. (2.13)

For future reference, we define the random variables B,Xj
b as a ran-

dom variables taking values on {0, 1} or X j
b with uniform probability,

respectively. The bit b̄ = b ⊕ 1 denotes the binary complement of b.
The above sets prove key to analyze the BICM system performance.
For reference, Figure 2.3 depicts the sets X 1

b and X 4
b for a 16-QAM

signal constellation with the Gray labeling described in Section 2.3.3.
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Q

I

1110 1010 0010 0110

1111 1011 0011 0111

1101 1001 0001 0101

1100 1000 0000 0100

(a) X 1
0 and X 1

1 .

Q

I

1110 1010 0010 0110

1111 1011 0011 0111

1101 1001 0001 0101

1100 1000 0000 0100

(b) X 4
0 and X 4

1 .

Fig. 2.3 Binary labeling sets X 1
b and X 4

b for 16-QAM with Gray mapping. Thin dots cor-
respond to points in X i

0 while thick dots correspond to points in X i
1.

The classical BICM decoder proposed by Zehavi [142] treats each
of the m bits in a symbol as independent and uses a symbol decod-
ing metric proportional to the product of the a posteriori marginals
PBj |Y (b|y). More specifically, we have the (mismatched) symbol metric

q(x, y) =
m∏

j=1

qj
(
bj(x), y

)
, (2.14)

where the j-th bit decoding metric qj(b, y) is given by

qj
(
bj(x) = b, y

)
=
∑

x′∈X j
b

PY |X(y|x′). (2.15)

We will refer to this metric as BICM Maximum A Posteriori (MAP)
metric. This metric is proportional to the transition probability of the
output y given the bit b at position j, which we denote for later use by
Pj(y|b),

Pj(y|b)
∆= PY |Bj

(y|b) =
1∣∣X j
b

∣∣ ∑
x′∈X j

b

PY |X(y|x′). (2.16)

In practice, due to complexity limitations, one might be interested
in the following lower-complexity version of (2.15),

qj(b, y) = max
x∈X j

b

PY |X(y|x). (2.17)
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Binary 

Encoder

C

m
c

Channel

   m

.

.

.

Channel
j

Channel

 1 
.

.

.

Ξ1

Ξj

Ξm

Fig. 2.4 Parallel channel model of BICM.

In the log-domain this is known as the max-log approximation. Either
of the symbol metrics corresponding to Eq. (2.14) or Eq. (2.17) are
mismatched and do not perform maximum likelihood decoding. Sum-
marizing, the decoder of C uses a metric of the form given in Eq. (2.5)
and outputs a binary codeword ĉ according to

ĉ = arg max
c∈C

N∏
k=1

m∏
j=1

qj
(
bj(xk), yn

)
. (2.18)

2.3.2 BICM Classical Model

The m probabilities Pj(y|b) were used by Caire et al. [29] as starting
point to define an equivalent BICM channel model. This equivalent
BICM channel is the set of m parallel channels having bit bj(xk) as
input and the bit log-metric (log-likelihood) ratio for the k-th symbol

Ξm(k−1)+j = log
qj
(
bj(xk) = 1, y

)
qj
(
bj(xk) = 0, y

) (2.19)

as output, for j = 1, . . . ,m and k = 1, . . . , N . We define the log-metric
ratio vectors for each label bit as Ξj = (Ξj , . . . ,Ξm(k−1)+j) for j =
1, . . . ,m. This channel model is schematically depicted in Figure 2.4.

With infinite-length interleaving, the m parallel channels were as-
sumed to be independent in [29,140], or in other words, the correlations
among the different subchannels are neglected. We will see later that
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this “classical” representation of BICM as a set of parallel channels
gives a good model, even though it can sometimes be optimistic. The
alternative model which uses the symbol mismatched decoding metric
achieves a higher accuracy at a comparable modeling complexity.

2.3.3 Labeling Rules

As evidenced in the results of [29], the choice of binary labeling is criti-
cal to the performance of BICM. For the decoder presented in previous
sections, it was conjectured [29] that binary reflected Gray mapping
was optimum, in the sense of having the largest BICM capacity. This
conjecture was supported by some numerical evidence, and was further
refined in [2, 109] to possibly hold only for moderate-to-large values of
SNR. Indeed, Stierstorfer and Fischer [110] have shown that a different
labeling —strictly regular set partitioning— is significantly better for
small values of SNR. A detailed discussion on the different merits of
the various forms of Gray labeling can be found in [2].

Throughout the monograph, we use for our simulations the labeling
rules depicted in Figure 2.5, namely binary reflected Gray labeling [95]
and set partitioning labeling [130]. Recall that the binary reflected Gray
mapping for m bits may be generated recursively from the mapping for
m− 1 bits by prefixing a binary 0 to the mapping for m− 1 bits, then
prefixing a binary 1 to the reflected (i. e. listed in reverse order) map-
ping for m− 1 bits. For QAM modulations, the symbol mapping is the
Cartesian product of Gray mappings over the in-phase and quadrature
components. For PSK modulations, the mapping table is wrapped so
that the first and last symbols are contiguous.

2.A Continuous- and Discrete-Time Gaussian Channels

We follow closely the review paper by Forney and Ungerböck [36]. In
the linear Gaussian channel, the input x(t), additive Gaussian noise
component z(t), and output y(t) are related as

y(t) =
∫
h(t; τ)x(τ − t) dτ + z(t), (2.20)
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Fig. 2.5 Binary labeling rules (Gray, set partitioning) for QPSK, 8-PSK and 16-QAM.

where h(t; τ) is a (possibly time-varying) channel impulse response.
Since all functions are real, their Fourier transforms are Hermitian and
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we need consider only the positive-frequency components.
We constrain the signal x(t) to have power P and a frequency con-

tent concentrated in an interval (fmin, fmax), with the bandwidth W

given by W = fmax − fmin. Additive noise is assumed white in the
frequency band of interest, i. e. noise has a flat power spectral density
N0 (one-sided). If the channel impulse response is constant with unit
energy in (fmin, fmax), we define the signal-to-noise ratio snr as

snr =
P

N0W
. (2.21)

In this case, it is also possible to represent the received signal by its
projections onto an orthonormal set,

yk = xk + zk, (2.22)

where there are only WT effective discrete-time components when the
transmission time lasts T seconds (T � 1) [39]. The signal components
xk have average energy Es, which is related to the power constraint as
P = EsW . The quantities zk are circularly-symmetric complex Gaus-
sian random variables of variance σ2

Z = N0. We thus have snr = Es/σ
2
Z .

Observe that we recover the model in Eq. (2.6) (with hk = 1) by divid-
ing all quantities in Eq. (2.22) by σZ and incorporating this coefficient
in the definition of the channel variables.

Another channel of interest we use in the monograph is the
frequency-nonselective, or flat fading channel. Its channel response
h(t; τ) is such that Eq. (2.20) becomes

y(t) = h(t)x(t) + z(t). (2.23)

The channel makes the signal x(t) fade following a coefficient h(t).
Under the additional assumption that the coefficient varies quickly, we
recover a channel model similar to Eq. (2.6),

yk = hkxk + zk. (2.24)

With the appropriate normalization by σZ we obtain the model in
Eq. (2.6). Throughout the monograph, we use the Nakagami-mf fading
model in Eq. (2.8), whereby coefficients are statistically independent
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from one another for different values of k. The squared fading coefficient
g = |h|2 has density

PG(g) =
m

mf

f gmf−1

Γ(mf )
e−mf g. (2.25)



3

Information-Theoretic Foundations

In this chapter, we review the information-theoretic foundations of
BICM. As suggested in the previous chapter, BICM can be viewed as
a coded modulation scheme with a mismatched decoding metric. We
study the achievable information rates of coded modulation systems
with a generic decoding metric [41, 59, 84] and determine the so-called
generalized mutual information. We also provide a general coding the-
orem based on Gallager’s analysis of the error probability by means of
the random coding error exponent [39], thus giving an achievable rate
and a lower bound to the random coding error exponent.

We compare these results (in particular, the mutual information,
the cutoff rate and the overall error exponent) with those derived from
the classical BICM channel model as a set of independent parallel chan-
nels [29,140]. Whereas the BICM mutual information coincides for both
models, the error exponent of the mismatched-decoding model is always
upper bounded by that of coded modulation, a condition which is not
verified in the independent parallel-channel model mentioned in Sec-
tion 2.3. We complement our analysis with a derivation of the error
exponents of other variants of coded modulation, namely multi-level
coding with successive decoding [140] and with independent decoding

16
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of all the levels. As is well known, the mutual information attained by
multi-level constructions can be made equal to that of coded modula-
tion. However, this equality is attained at a non negligible cost in error
exponent, as we will see later.

For Gaussian channels with binary reflected Gray labeling, the mu-
tual information and the random coding error exponent of BICM are
close to those of coded modulation for medium-to-large signal-to-noise
ratios. For low signal-to-noise ratios —or low spectral efficiency— we
give a simple analytic expression for the loss in mutual information or
received power compared to coded modulation. We determine the min-
imum energy per bit necessary for reliable communication when BICM
is used. For QAM constellations with binary reflected Gray labeling,
this energy is at most 1.25 dB from optimum transmission methods.
BICM is therefore a suboptimal, yet simple transmission method valid
for a large range of signal-to-noise ratios. We also give a simple ex-
pression for the first derivative of the BICM mutual information with
respect to the signal-to-noise ratio, in terms of Minimum Mean-Equare
Error (MMSE) for estimating the input of the channel from its output,
and we relate this to the findings of [51,67].

3.1 Coded Modulation

3.1.1 Channel Capacity

A coding rate1 R is said achievable if, for all ε > 0 and all sufficiently
large N there exists codes of length N with rate not smaller than R

(i. e. with at least deRNe messages) and error probability Pe < ε [31].
The capacity C is the supremum of all achievable rates. For memoryless
channels, Shannon’s theorem yields the capacity formula:

Theorem 3.1 (Shannon 1948). The channel capacity C is given by

C = sup
PX(·)

I(X;Y ), (3.1)

where I(X;Y ) denotes the mutual information of between X and Y ,

1 Capacities and information rates will be expressed using a generic logarithm, typically the
natural logarithm. However, all charts in this monograph are expressed in bits.



18 Information-Theoretic Foundations

defined

I(X;Y ) = E
[
log

PY |X(Y |X)
PY (Y )

]
. (3.2)

For the maximum-likelihood decoders considered in Section 2.12

Gallager studied the average error probability of randomly generated
codes [39, Chapter 5]. Specifically, he proved that the error probability
decreases exponentially with the block length according to a parameter
called the reliability function. Denoting the error probability attained
by a coded modulation scheme M of length N and rate R by Pe(M),
we define the reliability function E(R) as

E(R) ∆= lim
N→∞

− 1
N

log inf
M
Pe(M), (3.3)

where the optimization is carried out over all possible coded modu-
lation schemes M. Since the reliability function is often not known
exactly [39], upper and lower bounds to it are given instead. We are
specially interested in a lower bound, known as the random coding error
exponent, which gives an accurate characterization of the average error
performance of the ensemble of random codes for sufficiently high rates.
Furthermore, this lower bound is known to be tight for rates above a
certain threshold, known as the critical rate [39, Chapter 5].

When the only constraint to the system is E[|X|2] ≤ 1, then the
channel capacity of the AWGN channel described in (2.6) (letting H =
1 with probability 1) is given by [31,39,105]

C = log (1 + snr) . (3.4)

In this case, the capacity given by (3.4) is achieved by Gaussian code-
books [105], i. e. randomly generated codebooks with components inde-
pendently drawn according to a Gaussian distribution, X ∼ NC(0, 1).

From a practical point of view, it is often more convenient to con-
struct codewords as sequences of points from a signal constellation X
of finite cardinality, such as PSK or QAM [95], with a uniform input

2 Decoders with a symbol decoding metric q(x, y) that is a bijective (increasing) function
of the channel transition probability PY |X(y|x).
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distribution, PX(x) = 1
2m for all x ∈ X . While a uniform distribution

is only optimal for large snr, it is simpler to implement and usually
leads to more manageable analytical expressions. In general, the prob-
ability distribution PX(x) that maximizes the mutual information for a
given signal constellation depends on snr and on the specific constella-
tion geometry. Optimization of this distribution has been termed in the
literature as signal constellation shaping (see for example [34, 36] and
references therein). Unless otherwise stated, we will always consider the
uniform distribution throughout this monograph.

For a uniform input distribution, we refer to the corresponding mu-
tual information between channel input X and output Y as the coded
modulation capacity, and denote it by Ccm

X or Icm(X;Y ), that is

Ccm
X = Icm(X;Y ) ∆= E

[
log

PY |X(Y |X)
1

2m

∑
x′∈X PY |X(Y |x′)

]
. (3.5)

Observe that the finite nature of these signal sets implies that they can
only convey a finite number of bits per channel use, i. e. Ccm

X ≤ m bits.
Figure 3.1 shows the coded modulation capacity for multiple signal

constellations in the AWGN channel, as a function of snr.

3.1.2 Error Probability with Random Codes

Following in the footsteps of Gallager [39, Chapter 5], this section pro-
vides an achievability theorem for a general decoding metric q(x, y)
using random coding arguments. The final result, concerning the error
probability, can be found in Reference [59].

We consider an ensemble of randomly generated codebooks, for
which the entries of the codewords x are i. i. d. realizations of a ran-
dom variable X with probability distribution PX(x) over the set X , i.
e. PX(x) =

∏N
k=1 PX(xk). We denote by P̄e(m) the average error prob-

ability over the code ensemble when message m is transmitted and by
P̄e the error probability averaged over the message choices. Therefore,

P̄e =
1
|M|

|M|∑
m=1

P̄e(m). (3.6)

The symmetry of the code construction makes P̄e(m) independent of
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Fig. 3.1 Coded modulation capacity in bits per channel use for multiple signal constella-
tions with uniform inputs in the AWGN channel. For reference, the channel capacity with
Gaussian inputs (3.4) is shown in thick lines.

the index m, and hence P̄e = P̄e(m) for any m ∈M. Averaged over the
random code ensemble, we have that

P̄e(m) =
∑
xm

PX(xm)
∫

y
PY |X(y|xm) Pr {ϕ(y) 6= m|xm,y}dy, (3.7)

where Pr {ϕ(y) 6= m|xm,y} is the probability that, for a channel output
y, the decoder ϕ selects a codeword other than the transmitted xm.

The decoder ϕ, as defined in (2.4), chooses the codeword xbm with
largest metric q(xbm,y). The pairwise error probability Pr{ϕ(y) =
m′|xm,y} of wrongly selecting message m′ when message m has been
transmitted and sequence y has been received is given by

Pr{ϕ(y) = m′|xm,y} =
∑

xm′ : q(xm′ ,y)≥ q(xm,y)

PX(xm′). (3.8)

Using the union bound over all possible codewords, and for all 0 ≤
ρ ≤ 1, the probability Pr {ϕ(y) 6= m|xm,y} can be bounded by [39, p.
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136]

Pr {ϕ(y) 6= m|xm,y} ≤ Pr

 ⋃
m′ 6=m

{ϕ(y) = m′|xm,y}

 (3.9)

≤

∑
m′ 6=m

Pr{ϕ(y) = m′|xm,y}

ρ

. (3.10)

Since q(xm′ ,y) ≥ q(xm,y) and the sum over all xm′ upper bounds
the sum over the set {xm′ : q(xm′ ,y) ≥ q(xm,y)}, for any s > 0, the
pairwise error probability in Eq. (3.8) can bounded by

Pr{ϕ(y) = m′|xm,y} ≤
∑
xm′

PX(xm′)
(
q(xm′ ,y)
q(xm,y)

)s

. (3.11)

As m′ is a dummy variable, for any s > 0 and 0 ≤ ρ ≤ 1 it holds that

Pr {ϕ(y) 6= m|xm,y} ≤

(|M| − 1
) ∑

xm′

PX(xm′)
(
q(xm′ ,y)
q(xm,y)

)s
ρ

.

(3.12)
Therefore, Eq. (3.7) can be written as

P̄e ≤
(
|M| − 1

)ρ E

∑
xm′

PX(xm′)
(
q(xm′ ,Y )
q(Xm,Y )

)s
ρ . (3.13)

For memoryless channels, we have a per-letter characterization [39]

P̄e ≤ (|M| − 1
)ρ (E

[(∑
x′

PX(x′)
(
q(x′, Y )
q(X,Y )

)s
)ρ])N

. (3.14)

Hence, for any input distribution PX(x), 0 ≤ ρ ≤ 1 and s > 0,

P̄e ≤ e−N(Eq
0(ρ,s)−ρR) (3.15)

where

Eq
0(ρ, s)

∆= − log E

[(∑
x′

PX(x′)
(
q(x′, Y )
q(X,Y )

)s
)ρ]

(3.16)
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is the generalized Gallager function. The expectation is carried out
according to the joint distribution PX,Y (x, y) = PY |X(y|x)PX(x).

We define the mismatched random coding exponent as

Eq
r (R) ∆= max

0≤ρ≤1
max
s>0

(
Eq

0(ρ, s)− ρR
)
. (3.17)

This procedure also yields a lower bound on the reliability function,
E(R) ≥ Eq

r (R). Further improvements are possible by optimizing over
the input distribution PX(x).

According to (3.15), the average error probability P̄e goes to zero if
Eq

0(ρ, s) > ρR for a given s. In particular, as ρ vanishes, rates below

lim
ρ→0

Eq
0(ρ, s)
ρ

(3.18)

are achievable. Using that Eq
0(ρ, s) = 0 for ρ = 0, and in analogy to the

mutual information I(X;Y ), we define the quantity Igmi
s (X;Y ) as

Igmi
s (X;Y ) ∆=

∂Eq
0(ρ, s)
∂ρ

∣∣∣∣
ρ=0

= lim
ρ→0

Eq
0(ρ, s)
ρ

(3.19)

= −E

[
log
∑
x′

PX(x′)
(
q(x′, Y )
q(X,Y )

)s
]

(3.20)

= E
[
log

q(X,Y )s∑
x′∈X PX(x′)q(x′, Y )s

]
. (3.21)

By maximizing over the parameter s we obtain the generalized mutual
information for a mismatched decoder using metric q(x, y) [41,59,84],

Igmi(X;Y ) = max
s>0

Igmi
s (X;Y ). (3.22)

The preceding analysis shows that any rate R < Igmi(X;Y ) is achiev-
able, i. e. we can transmit at rate R < Igmi(X;Y ) and have P̄e → 0.

For completeness and symmetry with classical random coding anal-
ysis, we define the generalized cutoff rate as

R0
∆= Eq

r (R = 0) = max
s>0

Eq
0(1, s). (3.23)

For a maximum likelihood decoder, Eq
0(ρ, s) is maximized by letting
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s = 1
1+ρ [39], and we have

E0(ρ)
∆= − log E

(∑
x′

PX(x′)
(
PY |X(Y |x′)
PY |X(Y |X)

) 1
1+ρ

)ρ
 (3.24)

= − log
∫

y

(∑
x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

dy, (3.25)

namely the coded modulation exponent. For uniform inputs,

Ecm
0 (ρ) ∆= − log

∫
y

(
1

2m

∑
x

PY |X(y|x)
1

1+ρ

)1+ρ

dy. (3.26)

Incidentally, the argument in this section proves the achievability of
the rate Ccm

X = Icm(X;Y ) with random codes and uniform inputs, i.
e. there exist coded modulation schemes with exponentially vanishing
error probability for all rates R < Ccm

X .
Later, we will use the following data-processing inequality, which

shows that the generalized Gallager function of any mismatched de-
coder is upperbounded by the Gallager function of a maximum likeli-
hood decoder.

Proposition 3.1 (Data-Processing Inequality [59,77]). For s > 0,
0 ≤ ρ ≤ 1, and a given input distribution we have that

Eq
0(ρ, s) ≤ E0(ρ) (3.27)

The necessary condition for equality to hold is that the metric q(x, y)
is proportional to a power of the channel transition probability,

PY |X(y|x) = c′q(x, y)s′ for all x ∈ X (3.28)

for some constants c′ and s′.

3.2 Bit-Interleaved Coded Modulation

In this section, we study the BICM decoder and determine the general-
ized mutual information and a lower bound to the reliability function.
Special attention is given to the comparison with the classical analysis
of BICM as a set of m independent parallel channels (see Section 2.3).
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3.2.1 Achievable Rates

We start with a brief review of the classical results on the achievable
rates for BICM. Under the assumption of an infinite-length interleaver,
capacity and cutoff rate were studied in [29]. This assumption (see Sec-
tion 2.3) yields a set of m independent parallel binary-input channels,
for which the corresponding mutual information and cutoff rate are the
sum of the corresponding rates of each subchannel, and are given by

I ind(X;Y ) ∆=
m∑

j=1

E

[
log

∑
x′∈X j

B
PY |X(Y |x′)

1
2

∑
x′∈X PY |X(Y |x′)

]
, (3.29)

and

Rind
0

∆= m log 2−
m∑

j=1

log

1 + E


√√√√∑x′∈X j

B̄

PY |X(Y |x′)∑
x′∈X j

B
PY |X(Y |x′)

 , (3.30)

respectively. An underlying assumption behind Eq. (3.30) is that the m
independent channels are used the same number of times. Alternatively,
the parallel channels may be used with probability 1

m , and the cutoff
rate is then m times the cutoff rate of an averaged channel [29],

Rav
0

∆= m

log 2− log

1 +
1
m

m∑
j=1

E


√√√√√
∑

x′∈X j

B̄j

PY |X(Y |x′)∑
x′∈X j

Bj

PY |X(Y |x′)



 .

(3.31)

The expectations are over the joint probability PBj ,Y (b, y) = 1
2Pj(y|b).

From Jensen’s inequality one easily obtains that Rav
0 ≤ Rind

0 .
We will use the following shorthand notation for the BICM capacity,

Cbicm
X

∆= I ind(X;Y ). (3.32)

The following alternative expression [26,76,140] for the BICM mutual
information turns out to be useful,

Cbicm
X =

m∑
j=1

1
2

1∑
b=0

(
Ccm
X − Ccm

X j
b

)
(3.33)
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where Ccm
A is the mutual information for coded modulation over a gen-

eral signal constellation A.
We now relate this BICM capacity with the generalized mutual

information introduced in the previous section.

Theorem 3.2 ( [77]). The generalized mutual information of the
BICM decoder is given by the sum of the generalized mutual informa-
tions of the independent binary-input parallel channel model of BICM,

Igmi(X;Y ) = sup
s>0

m∑
j=1

E

[
log

qj(b, Y )s

1
2

∑1
b′=0 qj(b′, Y )s

]
. (3.34)

There are a number of interesting particular cases of the above theorem.

Corollary 3.1 ( [77]). For the metric in Eq. (2.15),

Igmi(X;Y ) = Cbicm
X . (3.35)

Expression (3.35) coincides with the BICM capacity above, even
though we have lifted the assumption of infinite interleaving. When
the suboptimal metrics (2.17) are used, we have the following.

Corollary 3.2 ( [77]). For the metric in Eq. (2.17),

Igmi(X;Y ) = sup
s>0

m∑
j=1

E

log

(
maxx∈XB

j
p(y|x)

)s
1
2

∑1
b=0

(
max

x′∈X j
b
p(y|x′)

)s
 . (3.36)

The information rates achievable with this suboptimal decoder have
been studied by Szczecinski et al. [112]. The fundamental difference
between their result and the generalized mutual information given in
(3.36) is the optimization over s. Since both expressions are equal when
s = 1, the optimization over s may induce a larger achievable rate.

Figure 3.2 shows the BICM mutual information for some signal
constellations, different binary labeling rules and uniform inputs for



26 Information-Theoretic Foundations

−20 −10 0 10 20 30
0

1

2

3

4

5

snr (dB)

C
b
i
c
m

X
(b

it
s/

ch
a
n
n
el

u
se

)

16−QAM

8−PSK

QPSK

Fig. 3.2 Coded modulation and BICM capacities (in bits per channel use) for multiple
signal constellations with uniform inputs in the AWGN channel. Gray and set partitioning
labeling rules correspond to dashed and dashed-dotted lines respectively. In thick solid lines,
the capacity with Gaussian inputs (3.4); with thin solid lines the CM channel capacity.

the AWGN channel, as a function of snr. For the sake of illustration
simplicity, we have only plotted the information rate for the Gray and
set partitioning binary labeling rules from Figure 2.5. Observe that
binary reflected Gray labeling pays a negligible penalty in information
rate, being close to the coded modulation capacity.

3.2.2 Error Exponents

Evaluation of the generalized Gallager function in Eq. (3.16) for BICM
with a bit metric qj(b, y) yields a function Ebicm

0 (ρ, s) of ρ and s,

Ebicm
0 (ρ, s) ∆= − log E

 1
2m

∑
x′∈X

m∏
j=1

qj(bj(x′), Y )s

qj(bj(X), Y )s

ρ . (3.37)
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Moreover, the data processing inequality for error exponents in Propo-
sition 3.1 shows that the error exponent (and in particular the cutoff
rate) of the BICM decoder is upperbounded by the error exponent (and
the cutoff rate) of the ML decoder, that is Ebicm

0 (ρ, s) ≤ Ecm
0 (ρ).

In their analysis of multilevel coding and successive decoding,
Wachsmann et al. provided the error exponents of BICM modeled as a
set of independent parallel channels [140]. The corresponding Gallager’s
function, which we denote by Eind

0 (ρ), is given by

Eind
0 (ρ) ∆= −

m∑
j=1

log E

[(
1∑

b′=0

PBj (b
′)
Pj(Y |b′)

1
1+ρ

Pj(Y |B)
1

1+ρ

)ρ]
. (3.38)

This quantity is the random coding exponent of the BICM decoder
if the channel output y admits a decomposition into a set of parallel
and independent subchannels. In general, this is not the case, since
all subchannels are affected by the same noise —and possibly fading—
realization, and the parallel-channel model fails to capture the statistics
of the channel.

Figures 3.3(a), 3.3(b) and 3.4 show the error exponents for coded
modulation (solid), BICM with independent parallel channels (dashed),
BICM using metric (2.15) (dash-dotted), and BICM using metric (2.17)
(dotted) for 16-QAM with the Gray labeling in Figure 2.5, Rayleigh
fading and snr = 5, 15,−25 dB, respectively. Dotted lines labeled with
s = 1

1+ρ correspond to the error exponent of BICM using metric (2.17)
letting s = 1

1+ρ . The parallel-channel model gives a larger exponent
than the coded modulation, in agreement with the cutoff rate results
of [29]. In contrast, the mismatched-decoding analysis yields a lower
exponent than coded modulation. As mentioned in the previous section,
both BICM models yield the same capacity.

In most cases, BICM with a max-log metric (2.17) incurs a marginal
loss in the exponent for mid-to-large SNR. In this SNR range, the
optimized exponent and that with s = 1

1+ρ are almost equal. For low
SNR, the parallel-channel model and the mismatched-metric model
with (2.15) have the same exponent, while we observe a larger penalty
when metrics (2.17) are used. As we observe, some penalty is incurred
at low SNR for not optimizing over s. We denote with crosses the
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Fig. 3.3 Error exponents for coded modulation (solid), BICM with independent parallel
channels (dashed), BICM using metric (2.15) (dash-dotted), and BICM using metric (2.17)
(dotted) for 16-QAM with Gray labeling, Rayleigh fading.
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Fig. 3.4 Error exponents for coded modulation (solid), BICM with independent parallel
channels (dashed), BICM using metric (2.15) (dash-dotted), and BICM using metric (2.17)
(dotted) for 16-QAM with Gray labeling, Rayleigh fading and snr = −25 dB. Crosses
correspond to (from right to left) coded modulation, BICM with metric (2.15), BICM with
metric (2.17) and BICM with metric (2.17) and s = 1.

corresponding achievable information rates.
An interesting question is whether the error exponent of the parallel-

channel model is always larger than that of the mismatched-decoding
model. The answer is negative, as illustrated in Figure 3.5, which shows
the error exponents for coded modulation (solid), BICM with inde-
pendent parallel channels (dashed), BICM using metric (2.15) (dash-
dotted), and BICM using metric (2.17) (dotted) for 8-PSK with Gray
labeling in the AWGN channel.

3.3 Comparison with Multilevel Coding

Multilevel codes (MLC) combined with multistage decoding (MSD)
have been proposed [56,140] as an efficient method to attain the channel
capacity by using binary codes. In this section, we compare BICM with
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Fig. 3.5 Error exponents for coded modulation (solid), BICM with independent parallel
channels (dashed), BICM using metric (2.15) (dash-dotted), and BICM using metric (2.17)
(dotted) for 8-PSK with Gray labeling, AWGN and snr = 5 dB.

MLC in terms of error exponents and achievable rates. In particular, we
elaborate on the analogy between MLC and the multiple-access channel
to present a general error exponent analysis of MLC with MSD. The
error exponents of MLC have been studied in a somewhat different way
in [12,13,140].

For BICM, a single binary code C is used to generate a binary code-
word, which is used to select modulation symbols by a binary labeling
function µ. A uniform distribution over the channel input set induces
a uniform distribution over the input bits bj , j = 1, . . . ,m. In MLC,
the input binary code C is the Cartesian product of m binary codes of
length N , one per modulation level, i. e. C = C1 × . . . × Cm, and the
input distribution for the symbol x(b1, . . . , bj) has the form

PX(x) = PB1,...,BM
(b1, . . . , bm) =

m∏
j=1

PBj (bj). (3.39)

Denoting the rate of the j-th level code by Rj , the resulting total rate
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Fig. 3.6 Block diagram of a multi-level encoder.

of the MLC scheme is R =
∑m

j=1Rj . We denote the codewords of Cj
by cj . The block diagram of MLC is shown in Figure 3.6.

The multi-stage decoder operates by decoding the m levels sepa-
rately. The symbol decoding metric is thus of the form

q(x, y) =
m∏

j=1

qj(bj(x), y). (3.40)

A crucial difference with respect to BICM is that the decoders are al-
lowed to pass information from one level to another. Decoding operates
sequentially, starting with code C1, feeding the result to this decoder
to C2, and proceeding across all levels. We have that the j-th decoding
metric of MLC with MSD is given by

qj
(
bj(x) = b, y

)
=

1∣∣∣X 1,...,j
b1,...,bj−1,b

∣∣∣
∑

x′∈X 1,...,j
b1,...,bj−1,b

PY |X(y|x′). (3.41)

Conditioning on the previously decoded levels reduces the number of
symbols remaining at the j-th level, so that only 2m−j symbols remain
at the j-th level in Eq. (3.41). Figure 3.7 depicts the operation of an
MLC/MSD decoder.

The MLC construction is very similar to that of a multiple-access
channel, as noticed by [140]. An extension of Gallager’s random coding
analysis to the multiple-access channel was carried out by Slepian and
Wolf in [108] and Gallager [40], and we now review it for a simple 2-level
case. Generalization to a larger number of levels is straightforward.
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Fig. 3.7 Block diagram of a multi-stage decoder for MLC.

As in our analysis of Section 3.1.2, we denote by P̄e the error prob-
ability averaged over an ensemble of randomly selected codebooks,

P̄e =
1

|C1||C2|

|C1|∑
m1=1

|C2|∑
m2=1

P̄e(m1,m2), (3.42)

where P̄e(m1,m2) denotes the average error probability over the code
ensemble when messages m1 and m2 are chosen by codes C1 and
C2, respectively. Again, the random code construction makes the er-
ror probability independent of the transmitted message and hence
P̄e = P̄e(m1,m2) for any messages m1,m2. If m1,m2 are the selected
messages, then xm1,m2 denotes the sequence of modulation symbols
corresponding to these messages.

For a given received sequence y, the decoders ϕ1 and ϕ2 choose
the messages m̂1, m̂2 with largest metric q(xm1,m2 ,y). Let (1, 1) be the
selected message pair. In order to analyze the MSD decoder, it proves
convenient to separately consider three possible error events,

(1) the decoder for C1 fails (ϕ1(y) 6= 1), but that for C2 is suc-
cessful (ϕ2(y) = 1): the decoded codeword is xm1,1, m1 6= 1;
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(2) the decoder for C2 fails (ϕ2(y) 6= 1), but that for C1 is suc-
cessful (ϕ1(y) = 1): the decoded codeword is x1,m2 , m2 6= 1;

(3) both decoders for C1 and C2 fail (ϕ1(y) 6= 1, ϕ2(y) 6= 1): the
decoded codeword is xm1,m2 , m1 6= 1, m2 6= 1.

We respectively denote the probabilities of these three alternative
events by P(1), P(2), and P(1,2). Since the alternatives are not disjoint,
application of the union bound to the error probability Pr{error|x1,1,y}
for a given choice of transmitted codeword x1,1 yields

Pr{error|x1,1,y} ≤ P(1) + P(2) + P(1,2). (3.43)

We next examine these summands separately. The probability in the
first summand is identical to that of a coded modulation scheme with
|C1| − 1 candidate codewords of the form xm1,1. Observe that the error
probability is not decreased if the decoder has access to a genie giving
the value of c2 [98]. As in the derivation of Eq. (3.12), we obtain that

P(1) ≤ (|C1| − 1)ρ

∑
xm1,1

PX(xm1,m2)
q(xm1,1,y)s

q(x1,1,y)s

ρ

. (3.44)

Following exactly the same steps as in Section 3.1.2 we can express the
average error probability in terms of a per-letter characterization, as

P̄(1) ≤ e−N
“
Eq

0,(1)
(ρ,s)−ρR1

”
, (3.45)

where Eq
0,1(ρ, s) is the corresponding generalized Gallager function,

Eq
0,(1)(ρ, s)

∆= − log E

∑
b′1

PB1(b
′
1)
q(µ(b′1, B2), Y )s

q(µ(B1, B2), Y )s

ρ . (3.46)

Similarly, for the second summand, the probability satisfies

P̄(2) ≤ e−N
“
Eq

0,(2)
(ρ,s)−ρR2

”
, (3.47)

with

Eq
0,(2)(ρ, s)

∆= − log E

∑
b′2

PB2(b
′
2)
q(µ(B1, b

′
2), Y )s

q(µ(B1, B2), Y )s

ρ . (3.48)
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As for the third summand, there are (|C1| − 1)(|C2| − 1) alternative
candidate codewords of the form xm1,m2 , which give the upper bound

P̄(1,2) ≤ e−N
“
Eq

0,(1,2)
(ρ,s)−ρ(R1+R2)

”
, (3.49)

with the corresponding Gallager function,

Eq
0,(1,2)(ρ, s)

∆= − log E

∑
b′1,b′2

PB1(b
′
1)PB2(b

′
2)
q(µ(b′1, b

′
2), Y )s

q(µ(B1, B2), Y )s

ρ .
(3.50)

Summarizing, the overall average error probability is bounded by

P̄e ≤ e−N
“
Eq

0,(1)
(ρ,s)−ρR1

”
+ e−N

“
Eq

0,(2)
(ρ,s)−ρR2

”

+ e−N
“
Eq

0,(1,2)
(ρ,s)−ρ(R1+R2)

”
. (3.51)

For any choice of ρ, s, input distribution and R1, R2 ≥ 0 such that
R1 + R2 = R, we obtain a lower bound to the reliability function of
MLC at rate R. For sufficiently large N , the error probability (3.51) is
dominated by the minimum exponent. In other words,

E(R) ≥ Eq
r (R) ∆= max

R1,R2
R1+R2=R

min
{
Eq

r,(1)(R1) , E
q
r,(2)(R2) , E

q
r,(1,2)(R)

}
(3.52)

where

Eq
r,(1)(R1)

∆= max
0≤ρ≤1

max
s>0

(
Eq

0,(1)(ρ, s)− ρR1

)
(3.53)

Eq
r,(2)(R2)

∆= max
0≤ρ≤1

max
s>0

(
Eq

0,(2)(ρ, s)− ρR2

)
(3.54)

Eq
r,(1,2)(R) ∆= max

0≤ρ≤1
max
s>0

(
Eq

0,(1,2)(ρ, s)− ρR
)
. (3.55)

Since C1, C2 are binary, the exponents Eq
r,(1)(R) and Eq

r,(2)(R) are always
upper bounded by 1. Therefore, the overall exponent of MLC with MSD
is smaller than one.

As we did in Section 3.1.2, analysis of Eq. (3.51) yields achievable
rates. Starting the decoding at level 1, we obtain

R1 < I(B1;Y ) (3.56)

R2 < I(B2;Y |B1). (3.57)
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Fig. 3.8 Rate regions for MLC/MSD and BICM.

Generalization to a larger number of levels gives

Rj < I(Bj ;Y |B1, . . . , Bj−1). (3.58)

The chain rule of mutual information proves that MLC and MSD
achieve the coded modulation capacity [56,140],

∑m
j=1Rj < Icm(X;Y ).

When MLC is decoded with the standard BICM decoder, i. e. without
MSD, then the rates we obtain are

R1 < I(B1;Y ) (3.59)

R2 < I(B2;Y ). (3.60)

Figure 3.8 shows the resulting rate region for MLC. The Figure also
compares with MLC with BICM decoding (i. e. without MSD), showing
the corresponding achievable rates.

While MLC with MSD achieves the coded modulation capacity, it
does not achieve the coded modulation error exponent. This is due to
the MLC (with or without MSD) error exponent always being given
by the minimum of the error exponents of the various levels, which
results in an error exponent smaller than 1. While BICM suffers from
a non-zero, yet small, capacity loss compared to CM and MLC/MSD,
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BICM attains a larger error exponent, whose loss with respect to CM is
small. This loss may be large for an MLC construction. In general, the
decoding complexity of BICM is larger than that of MLC/MSD, since
the codes of MLC are shorter. One such example is a code where only
a few bits out of the m are coded while the rest are left uncoded. In
practice, however, if the decoding complexity grows linearly with the
number of bits in a a codeword, e. g. with LDPC or turbo codes, the
overall complexity of BICM becomes comparable to that of MLC/MSD.

3.4 Mutual Information Analysis

In this section, we focus on AWGN channels with and without fading
and study some properties of the mutual information as a function of
snr. Building on work by Guo, Shamai and Verdú [51], we first provide
a simple expression for the first derivative of the mutual information
with respect to snr. This expression is of interest for the optimization
of power allocation across parallel channels, as discussed by Lozano et
al. [67] in the context of coded modulation systems.

Then, we study the BICM mutual information at low snr, that is in
the wideband regime recently popularised by Verdú [134]. For a given
rate, BICM with Gray labeling loses at most 1.25 dB in received power.

3.4.1 Derivative of Mutual Information

A fundamental relationship between the input-output mutual informa-
tion and the minimum mean-squared error (MMSE) in estimating the
input from the output in additive Gaussian channels was discovered by
Guo, Shamai and Verdú in [51]. It is worth noting that, beyond its own
intrinsic theoretical interest, this relationship has proved instrumental
in optimizing the power allocation for parallel channels with arbitrary
input distributions and in obtaining the minimum bit-energy-to-noise-
spectral-density ratio for reliable communication [67].

For a scalar model Y =
√

snrX + Z, it is shown in [51] that

dC(snr)
d snr

= mmse(snr) (3.61)
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where C(snr) = I(X;Y ) is the mutual information expressed in nats,

mmse(snr) ∆= E
[
|X − X̂|2

]
(3.62)

is the MMSE of estimating the input X from the output Y of the given
Gaussian channel model, and where

X̂
∆= E[X|Y ] (3.63)

is the MMSE estimate of the channel input X given the output Y . For
Gaussian inputs we have that

mmse(snr) =
1

1 + snr

while for general discrete signal constellations X we have that [67]

mmseX (snr) = E
[
|X|2

]
− E

∣∣∣∣∣
∑

x′∈X x
′ e−|

√
snr(X−x′)+Z|2∑

x′∈X e−|
√

snr(X−x′)+Z|2

∣∣∣∣∣
2
 . (3.64)

Figure 3.9 shows the function mmse(snr) for Gaussian inputs and var-
ious coded modulation schemes.

For BICM, obtaining a direct relationship between the BICM ca-
pacity and the MMSE in estimating the coded bits given the out-
put is a challenging problem. However, the combination of Eqs. (3.33)
and (3.61) yields a simple relationship between the first derivative of
the BICM mutual information and the MMSE of coded modulation:

Theorem 3.3 ( [49]). The derivative of the BICM mutual information
is given by

dCbicm
X (snr)
d snr

=
m∑

j=1

1
2

1∑
b=0

(
mmseX (snr)−mmseX j

b
(snr)

)
(3.65)

where mmseA(snr) is the MMSE of an arbitrary input signal constella-
tion A defined in (3.64).

Hence, the derivative of the BICM mutual information with respect to
snr is a linear combination of MMSE functions for coded modulation.
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Fig. 3.9 MMSE for Gaussian inputs (thick solid line), BPSK (dotted line), QPSK (dash-
dotted line), 8-PSK (dashed line) and 16-QAM (solid line).

Figure 3.10 shows an example (16-QAM modulation) of the computa-
tion of the derivative of the BICM mutual information. For comparison,
the values of the MMSE for Gaussian inputs and for coded modulation
and 16-QAM are also shown. At high snr we observe a very good match
between coded modulation and BICM with binary reflected Gray la-
beling (dashed line). As for low snr, we notice a small loss, whose value
is determined analytically from the analysis in the next section.

3.4.2 Wideband Regime

At very low signal-to-noise ratio snr, the energy of a single bit is spread
over many channel degrees of freedom, leading to the wideband regime
recently discussed at length by Verdú [134]. Rather than studying the
exact expression of the channel capacity, one considers a second-order
Taylor series in terms of snr,

C(snr) = c1snr + c2snr2 + o
(
snr2

)
, (3.66)
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Fig. 3.10 Derivative of the mutual information for Gaussian inputs (thick solid line), 16-
QAM coded modulation (solid line), 16-QAM BICM with Gray labeling (dashed line) and
16-QAM BICM with set partitioning labeling (dotted line).

where c1 and c2 depend on the modulation format, the receiver design,
and the fading distribution. The notation o(snr2) indicates that the
remaining terms vanish faster than a function asnr2, for a > 0 and small
snr. Here the capacity may refer to the coded modulation capacity, or
the BICM capacity.

In the following, we determine the coefficients c1 and c2 in the Tay-
lor series (3.66) for generic constellations, and use them to derive the
corresponding results for BICM. Before proceeding along this line, we
note that [134, Theorem 12] covers the effect of fading. The coefficients
c1 and c2 for a general fading distribution are given by

c1 = E
[
|H|2

]
cawgn
1 , c2 = E

[
|H|4

]
cawgn
2 , (3.67)

where the coefficients cawgn
1 and cawgn

2 are in absence of fading. Hence,
even though we focus only on the AWGN channel, all results are valid
for general fading distributions.

Next to the coefficients c1 and c2, Verdú also considered an equiv-
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alent pair of coefficients, the energy per bit to noise power spectral
density ratio at zero snr and the wideband slope [134]. These param-
eters are obtained by transforming Eq. (3.66) into a function of the
Eb
N0

= snr
C log2 e , so that one obtains

C

(
Eb

N0

)
= ζ0

(
Eb

N0
− Eb

N0 lim

)
+ O

((
∆
Eb

N0

)2
)

(3.68)

where ∆Eb
N0

∆= Eb
N0
− Eb

N0 lim
and

ζ0
∆= − c31

c2 log2 2
,

Eb

N0 lim

∆=
log 2
c1

. (3.69)

The notation O(x2) indicates that the remaining terms decay at least
as fast as a function ax2, for a > 0 and small x. The parameter ζ0
is Verdú’s wideband slope in linear scale [134]. We avoid using the
word minimum for Eb

N0 lim
, since there exist communication schemes with

a negative slope ζ0, for which the absolute minimum value of Eb
N0

is
achieved at non-zero rates. In these cases, the expansion at low power
is still given by Eq. (3.68).

For Gaussian inputs, we have c1 = 1 and c2 = −1
2 . Prelov and Verdú

determined c1 and c2 in [94] for proper-complex constellations, previ-
ously introduced by Neeser and Massey in [86]. These constellations
satisfy E[X2] = 0, where E[X2] is a second-order pseudo-moment [86].
We similarly define a pseudo-variance, denoted by σ̂2

X , as

σ̂2
X

∆= E[X2]− E[X]2. (3.70)

Analogously, we define the constellation variance as σ2
X

∆= E
[
|X|2

]
−

|E[X]|2. The coefficients for coded modulation schemes with arbitrary
first and second moments are given by the following result:

Theorem 3.4 ( [76,94]). Consider coded modulation schemes over a
general signal set X used with probabilities PX(x) in the AWGN chan-
nel described by (2.6). Then, the first two coefficients of the Taylor
expansion of the coded modulation capacity C(snr) around snr = 0 are

c1 = σ2
X (3.71)

c2 = −1
2

((
σ2

X

)2 +
∣∣σ̂2

X

∣∣2). (3.72)
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For zero-mean unit-energy signal sets, we obtain the following

Corollary 3.3 ( [76]). Coded modulation schemes over a signal set X
with E[X] = 0 (zero mean) and E[|X|2] = 1 (unit energy) have

c1 = 1, c2 = −1
2

(
1 +

∣∣E[X2]
∣∣2). (3.73)

Alternatively, the quantity c1 can be simply obtained as c1 = mmse(0).
Observe also that Eb

N0 lim
= log 2.

Plotting the mutual information curves as a function of Eb
N0

(shown
in Figure 3.11) reveals the suboptimality of the BICM decoder. In par-
ticular, even binary reflected Gray labeling is shown to be information
lossy at low rates. Based on the expression (3.33), one obtains

Theorem 3.5 ( [76]). The coefficients c1 and c2 of Cbicm
X for a constel-

lation X with zero mean and unit average energy are given by

c1 =
m∑

j=1

1
2

1∑
b=0

∣∣∣E[Xj
b ]
∣∣∣2, (3.74)

c2 =
m∑

j=1

1
4

1∑
b=0

((
σ2

Xj
b

)2
+
∣∣∣σ̂2

Xj
b

∣∣∣2 − 1−
∣∣E[X2]

∣∣2). (3.75)

Table 3.1 reports the numerical values for c1, c2, Eb
N0 lim

, and ζ0 for
various cases, namely QPSK, 8-PSK and 16-QAM with binary reflected
Gray and Set Partitioning (anti-Gray for QPSK) mappings.

In Figure 3.12, the approximation in Eq. (3.68) is compared with the
capacity curves. As expected, a good match for low rates is observed.
We use labels to identify the specific cases: labels 1 and 2 are QPSK,
3 and 4 are 8-PSK and 5 and 6 are 16-QAM. Also shown is the linear
approximation to the capacity around Eb

N0 lim
, given by Eq. (3.68). Two

cases with Nakagami fading (with density in Eq. (2.8)) are also included
in Figure 3.12, which also show good match with the estimate, taking



42 Information-Theoretic Foundations

0 5 10 15 20
0

1

2

3

4

5

Eb

N0

(dB)

C
b
i
c
m

X
(b

it
s/

ch
a
n
n
el

u
se

)

16−QAM

8−PSK

QPSK

Fig. 3.11 Coded modulation and BICM capacities (in bits per channel use) for multiple
signal constellations with uniform inputs in the AWGN channel. Gray and set partitioning
labeling rules correspond to thin dashed and dashed-dotted lines respectively. For reference,
the capacity with Gaussian inputs (3.4) is shown in thick solid lines and the CM channel
capacity with thin solid lines.

into account that E[|H|2] = 1 and E[|H|4] = 1 + 1/mf for Nakagami-
mf fading [95]. An exception is 8-PSK with set-partitioning, where the
large slope limits the validity of the approximation to very low rates.

It seems hard to make general statements for arbitrary labelings
from Theorem 3.5. An important exception is the strictly regular set
partitioning labeling defined by Stierstorfer and Fischer [110], which
has c1 = 1 for 16-QAM and 64-QAM. In constrast, for binary reflected
Gray labeling (see Section 2.3) we have:

Theorem 3.6 ( [76]). ForM -PAM andM2-QAM and binary-reflected
Gray labeling, the coefficient c1 is

c1 =
3 ·M2

4(M2 − 1)
, (3.76)
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Table 3.1 Eb
N0 lim

and wideband slope coefficients c1, c2 for BICM in AWGN.

Modulation and Labeling

QPSK 8-PSK 16-QAM

GR A-GR GR SP GR SP

c1 1.000 0.500 0.854 0.427 0.800 0.500
Eb
N0 lim

(dB) -1.592 1.419 -0.904 2.106 -0.627 1.419

c2 -0.500 0.250 -0.239 0.005 -0.160 -0.310
ζ0 4.163 -1.041 5.410 -29.966 6.660 0.839

and the minimum Eb
N0 lim

is

Eb

N0 lim
=

4(M2 − 1)
3 ·M2

log 2. (3.77)

As M →∞, Eb
N0 lim

approaches 4
3 log 2 ' −0.3424dB. from below.

The results for BPSK, QPSK (2-PAM×2-PAM), and 16-QAM (4-
PAM×4-PAM), as presented in Table 3.1, match with the Theorem.

It is somewhat surprising that the loss incurred by binary reflected
Gray labeling with respect to coded modulation is bounded at low snr.
The loss for large M represents about 1.25 dB with respect to the clas-
sical CM limit, namely Eb

N0 lim
= −1.59 dB. Using a single modulation

for all signal-to-noise ratio values, adjusting the transmission rate by
changing the code rate using a suboptimal non-iterative demodulator,
needs not result in a large loss with respect to optimal schemes, where
both the rate and modulation can change. Another low-complexity so-
lution is to change the mapping only (not the modulation) according
to SNR, switching between Gray and the mappings of [110]. This has
low-implementation complexity as it is implemented digitally.

3.4.2.1 Bandwidth and Power Trade-off

In the previous section we computed the first coefficients of the Taylor
expansion of the CM and BICM capacities around snr = 0. We now



44 Information-Theoretic Foundations

−2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Eb

N0

(dB)

C
b
i
c
m

X
(b

it
s/

ch
a
n
n
el

u
se

)

1

1f 2

3

4
5

6 6f

Fig. 3.12 BICM channel capacity (in bits per channel use). Labels 1 and 2 are QPSK, 3 and
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.

use these coefficients to determine the trade-off between power and
bandwidth in the low-power regime. We will see how to trade off part of
the power loss incurred by BICM against a large bandwidth reduction.

As discussed in Section 2.A, the data rate transmitted across a
waveform Gaussian channel is determined by two physical variables: the
power P , or energy per unit time, and the bandwidth W , or number of
channel uses per unit time. In this case, the signal-to-noise ratio snr is
given by snr = P/(N0W ), where N0 is the noise power spectral density.
Then, the capacity measured in bits per unit time is the natural figure
of merit for a communications system. With only a constraint on snr,
this capacity is given by W log(1+snr). For low snr, we have the Taylor
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series expansion

W log
(

1 +
P

N0W

)
=

P

N0
− P 2

2N2
0W

+ O
(

P 3

N3
0W

2

)
. (3.78)

Similarly, for coded modulation systems with capacity Ccm
X , we have

Ccm
X W = c1

P

N0
+ c2

P 2

N2
0W

+ O

(
P 5/2

N
5/2
0 W 3/2

)
. (3.79)

Following Verdú [134], we consider the following scenario. Let two
alternative transmission systems with respective powers Pi and band-
widths Wi, i = 1, 2, achieve respective capacities per channel use Ci.
The corresponding first- and second-order Taylor series coefficients are
denoted by c11, c21 for the first system, and c12, c22 for the second. A
natural comparison is to fix a power ratio ∆P = P2/P1 and then solve
for the corresponding bandwidth ratio ∆W = W2/W1 so that the data
rate is the same, that is C1W1 = C2W2. For instance, option 1 can be
QPSK and option 2 use of a high-order modulation with BICM.

When the capacities C1 and C2 can be evaluated, the exact trade-off
curve ∆W (∆P ) can be computed. For low power, a good approxima-
tion is obtained by keeping the first two terms in the Taylor series.
Under this approximation, we have the following result.

Theorem 3.7 ( [76]). Around snr1 = 0, and neglecting terms o(snr1),
the capacities in bits per second, C1W1 and C2W2 are equal when the
power and bandwidth expansion ratios ∆P and ∆W are related as

∆W ' c22snr1(∆P )2

c11 + c21snr1 − c12∆P
, (3.80)

for ∆W as a function of ∆P and, if c12 6= 0,

∆P ' c11
c12

+
(
c21
c12
− c22c

2
11

c312∆W

)
snr1, (3.81)

for ∆P as a function of ∆W .

The previous theorem leads to the following derived results.
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Corollary 3.4. For ∆P = 1, we obtain

∆W ' c22snr1
c11 + c21snr1 − c12

, (3.82)

and for the specific case c11 = c12, ∆W ' c22/c21.

As noticed in [134], the loss in bandwidth may be significant when
∆P = 1. But this point is just one of a curve relating ∆P and ∆W .
For instance, with no bandwidth expansion we have

Corollary 3.5. For c11 = c12 = 1, choosing ∆W = 1 gives ∆P '
1 +

(
c21 − c22

)
snr1.

For signal-to-noise ratios below −10 dB, the approximation in Theo-
rem 3.7 seems to be very accurate for “reasonable” power or bandwidth
expansion ratios. A quantitative definition would lead to the problem
of the extent to which the second order approximation to the capacity
is correct, a question on which we do not dwell further.

Figure 3.13 depicts the trade-off for between QPSK and BICM over
16-QAM (with Gray labeling) for two values of signal-to-noise ratio.
The exact result, obtained by using the exact formulas for Ccm

X and
Cbicm
X , is plotted along the result by using Theorem 3.7. As expected

from the values of c1 and c2, use of 16-QAM incurs in a non-negligible
power loss. On the other hand, this loss may be accompanied by a
significant reduction in bandwidth, which might be of interest in some
applications. For signal-to-noise ratios larger than those reported in
the figure, the assumption of low snr loses its validity and the results
derived from the Taylor series are no longer accurate.

3.5 Concluding Remarks and Related Work

In this Chapter, we have reviewed the information-theoretic founda-
tions of BICM and we have compared them with those of coded mod-
ulation. In particular, we have re-developed Gallager’s analysis for the
average error probability of the random coding ensemble for a generic
mismatched decoding metric, of which BICM is a particular case. We
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Fig. 3.13 Trade-off between ∆P and ∆W between QPSK and 16-QAM with Gray labeling.
Exact tradeoff in solid lines, dashed lines for the low-SNR tradeoff.

have shown that the resulting error exponent cannot be larger than that
of coded modulation and that the loss in error exponent with respect to
coded modulation is small for binary reflected Gray labeling. We have
shown that the largest rate achievable by the random coding construc-
tion, i. e. the generalized mutual information, coincides with the BICM
capacity of [29], providing an achievability proof without resorting to
the independent parallel channel model. We have compared the error
exponents of BICM with those of multilevel coding with multi-stage
decoding [56, 140]. We have shown that the error exponent of multi-
level coding cannot be larger than one, while the error exponent of
BICM does not show this restriction, and can hence be larger. Build-
ing upon these considerations, we have analyzed the BICM capacity in
the wideband regime, or equivalently, when the SNR is very low. We
have determined the minimum energy-per-bit-to-noise-power-spectral-
density-ratio for BICM as well as the wideband slope with arbitrary
labeling. We have also shown that, with binary reflected Gray labeling,
the loss in minimum energy per bit to noise power spectral density
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ratio with respect to coded modulation is at most 1.25 dB. We have
also given a simple and general expression for the first derivative of the
BICM capacity with respect to SNR.

A number of works have studied various aspects related to the BICM
capacity and its application. An aspect of particular relevance is the
impact of binary labeling on the BICM capacity. Based on the calcula-
tion of the BICM capacity, Caire et al. conjectured that Gray labeling
maximizes the BICM capacity. As shown in [109], binary reflected Gray
labeling for square QAM constellations maximizes the BICM capacity
for medium-to-large signal-to-noise ratios, while different Gray label-
ings might show a smaller BICM capacity. A range of labeling rules
have been proposed in the literature. However, there has been no at-
tempt to systematically classify and enumerate all labeling rules for a
particular signal constellation. Reference [26] provides an exhaustive
labeling classification for 8-PSK based on bit-wise distance spectra for
the BICM decoding metric.

Determination of the best labeling rule is thus an open problem.
More generally, an analytic determination of the reason why the CM
and BICM capacities (and error exponents) are very close for Gaussian
channels, and whether this closeness extends to more general channels
is also open. In Chapter 6 we review some applications of BICM to
other channels. Also, in Chapter 5 we give an overview of the current
information-theoretic characterization of iterative decoding of BICM
via density evolution and EXIT charts.



4

Error Probability Analysis

In this Chapter, we present several bounds and approximations to the
error probability of BICM. Our presentation incorporates fundamental
traits from [29, 74, 104, 141]. As we mentioned in Chapter 2, special
attention is paid to the union bound and the Gaussian-noise channel
with and without fully-interleaved fading.

We first introduce a general method for estimating the pairwise er-
ror probability of a generic maximum-metric decoder, where the metric
need not necessarily be the likelihood. As we saw in the previous chap-
ter, BICM is a paramount example of such mismatched decoding, and
our analysis is therefore directly applicable. The presentation is built
around the concept of decoding score, a random variable whose positive
tail probability yields the pairwise error probability. Our discussion of
the computation of the pairwise error probability is similar to the anal-
ysis in Sections 5.3 and 5.4 of [39], or to the presentation of Chapters 2
and 3 of [139]. Exact expressions for the pairwise error probability are
difficult to obtain, and we resort to bounds and approximations to es-
timate it. In particular, we will study the Chernoff and Bhattacharyya
bounds, and the saddlepoint and Gaussian approximations, and show
that these are simple to compute in practice. As we shall see, the sad-

49
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dlepoint approximation often yields a good approximation.
Section 4.2 follows the path proposed by Caire et al. in [29], namely,

modeling the BICM channel as a set of parallel binary-input output-
symmetric channels. This analysis leads to a first approximation of the
pairwise error probability, which we denote by PEP1(d), d being the
Hamming distance between the competing and reference codewords of
the underlying binary code C.

We then use the analysis of Yeh et al. [141] to derive general expres-
sions for the error probability using a uniform interleaver, namely, the
average over all possible interleavers, as done in [8, 9] for turbo-codes.
In Section 4.3 we present this general expression, denoted by PEP(d),
and discuss the extent to which it can be accurately approximated by
PEP1(d). We put forward the idea that the operation of BICM with
uniform interleaving is close to that of Berrou’s turbo codes in the fol-
lowing sense. In the context of fading channels, a deep fade affects all
the m bits in the label. Consider now a pairwise error event. As noticed
by Zehavi and Caire et al. [29,142], thanks to the interleaver, BICM is
able to achieve a larger diversity than that of standard coded modu-
lation, since the bits corresponding to bad error events may be spread
over different modulation symbols. We shall argue that these bad error
events remain, but they are subtly weighted by a low error probability,
remaining thus hidden for most practical purposes. We give a quantita-
tive description of this behaviour by first focussing on the simple case
of QPSK modulation with Gray labeling and fully-interleaved fading,
and then extending the results to more general constellations.

Finally, we conclude this chapter with a brief section outlining pos-
sible extensions of the union bound for BICM to the region beyond the
cutoff rate. We chiefly use the results reported in Sason and Shamai’s
monograph on improved bounds beyond the cutoff rate [101].

4.1 Error Probability and the Union Bound

In Chapter 2, we expressed the message error probability as

Pe =
1
|M|

|M|∑
m=1

Pe(m) (4.1)
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where Pe(m) is the probability of message error when message m was
transmitted. As we saw in Chapter 3, obtaining exact expressions for
Pe can be difficult. Instead, we commonly resort to bounds. From the
standard union bound technique, we obtain that

Pe ≤
1
|M|

|M|∑
m=1

∑
m′ 6=m

PEP(xm′ ,xm) (4.2)

where

PEP(xm′ ,xm) ∆=Pr{q(xm′ ,y) > q(xm,y)} (4.3)

is the pairwise error probability, i. e. the probability that the maxi-
mum metric decoder decides in favor of xm′ when xm was the trans-
mitted codeword. In the analysis of BICM we quite often concentrate
on the codewords of the underlying binary code cm ∈ C instead of
the modulated codewords xm ∈ M. Let cm = (c1, . . . , cn) denote the
reference codeword (corresponding to the transmitted message m) and
cm′ = (c′1, . . . , c

′
n) denote the competing codeword (corresponding to

the transmitted message m′). Since there is a one-to-one correspon-
dence with the binary codewords cm and the modulated codewords
xm, with some abuse of notation we write that

Pe ≤
1
|M|

|M|∑
m=1

∑
m′ 6=m

PEP(cm′ , cm) (4.4)

where

PEP(cm′ , cm) ∆=Pr{q(cm′ ,y) > q(cm,y)}. (4.5)

Since the symbol xk is selected as xk = µ(b1(xk), . . . , bm(xk)), we can
write the decoder metric as

q(x,y) =
N∏

k=1

q(xk, yk) (4.6)

=
N∏

k=1

m∏
j=1

qj
(
bj(xk), yk

)
, (4.7)
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and we can define the pairwise score as

Ξpw ∆=
N∑

k=1

m∑
j=1

log
qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
. (4.8)

The pairwise score can be expressed as

Ξpw =
N∑

k=1

Ξs
k =

N∑
k=1

m∑
j=1

Ξb
k,j (4.9)

where

Ξs
k

∆=
m∑

j=1

log
qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
(4.10)

is the k-th symbol score and

Ξb
k,j

∆= log
qj(c′m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
(4.11)

is the bit score corresponding to the j-th bit of the k-th symbol. Clearly,
only the bit indices in which the codewords cm′ and cm differ have a
non-zero bit score. Since some of these bit indices might be modulated
in the same constellation symbol, we have m classes of symbol scores,
each characterized by a different number of wrong bits (that is, the
Hamming weight of the binary labels). Then, we have the following

Proposition 4.1. The pairwise error probability PEP(cm′ , cm) between
a reference codeword cm and the competing codeword cm′ is given by

PEP(cm′ , cm) = Pr
{
Ξpw > 0

}
, (4.12)

where Ξpw is the pairwise decoding score.

These scores are random variables whose density function depends
on all the random elements in the channel, as well as the transmitted
bits, their position in the symbol and the bit pattern. In order to avoid
this dependence, we will use the random coset code method used in [60]
to analyze LDPC codes for the Inter-Symbol Interference (ISI) channel
and in [10] to analyze nonbinary LDPC codes. This method consists of
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adding to every transmitted codeword c ∈ C a random binary word d ∈
{0, 1}n, which is assumed to be known by the receiver. This is equivalent
to scrambling the output of the encoder by a sequence known at the
receiver. Scrambling guarantees that the symbols corresponding to two
m-bit sequences (c1, . . . , cm) and (c′1, . . . , c

′
m) are mapped to all possible

pairs of modulation symbols differing in a given Hamming weight, hence
making the channel symmetric. Clearly, the error probability computed
this way gives an average over all possible scrambling sequences.

Remark 4.1. In [29], the scrambler role was played by randomly choos-
ing between a mapping rule µ and its complement µ̄ with probability
1/2 at every channel use. As here, the choice between µ and µ̄ is known
to the receiver. Scrambling is the natural extension of this random
choice to symbols of Hamming weight larger than 1.

4.1.1 Linear Codes

If the underlying binary code C is linear and the channel is symmetric,
the pairwise error probability depends on the transmitted codeword cm

and the competing codeword cm′ only through their respective Ham-
ming distance d [139]. In this case, we may rewrite (4.4) as

Pe ≤
∑

d

Ad PEP(d), (4.13)

where Ad is the weight enumerator, i. e. the number of codewords of C
with Hamming weight d, and PEP(d) denotes the error probability of
a pairwise error event of weight d. The quantity PEP(d) will be central
in this chapter. In some cases it is possible to obtain a closed-form
expression for PEP(d), whereas in other cases we will need to resort
to further bounds or approximations. Despite its simplicity, the union
bound accurately characterizes the error probability in the region above
the cutoff rate [139].

The bit error probability can be simply bounded by

Pb ≤
∑

d

A′d PEP(d), (4.14)
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where
A′d

∆=
∑

i

i

n
Ai,d, (4.15)

where Ai,d is the input-output weight enumerator, i. e. number of code-
words of C of Hamming weight d generated with information messages
of Hamming weight i.

4.1.2 Cumulant Transforms of Symbol Scores

In this section, we introduce the definition of the cumulant transform
and apply it to the symbol scores. The cumulant transform of the sym-
bol and bit scores, compared to other equivalent representations such
as the characteristic function of the moment generating function, will
show particularly convenient in accurately approximating the pairwise
error probability with the saddlepoint approximation [28,57].

Let U be a random variable. Then, for s ∈ C we define its cumulant
transform as [28,57]

κ(s) ∆= log E
[
esU
]
. (4.16)

The cumulant transform is an equivalent representation of the proba-
bility density function. Whenever needed, the density can be recovered
by an inverse Fourier transform.

The derivatives of the cumulant transform are respectively denoted
by κ′(s), κ′′(s), κ′′′(s), and κ(ν)(s) for ν > 3.

In Eq. (4.9) we expressed the pairwise decoding score as a sum of
non-zero symbol scores, each of them corresponding to a symbol where
the codewods differ in at least 1 bit. Since there are m bits in the binary
label, there are m classes of symbol scores, one for each of the possible
Hamming weigths. Consider a symbol score of weight v, 1 ≤ v ≤ m.

Definition 4.1. The cumulant transform of a symbol score Ξs with
Hamming weight v, denoted by κv(s), is given by

κv(s) = log E
[
es Ξs]

= log

(
1(
m
v

) ∑
j=(j1,...,jv)

1
2v

∑
b∈{0,1}v

E

[∏v
i=1 qji(b̄ji , Y )s∏v
i=1 qji(bji , Y )s

])
, (4.17)
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where j = (j1, . . . , jv) is a sequence of v bit indices, drawn from all the
possible such v-tuples, and Y are the channel outputs with bit v-tuple
b transmitted at positions in j. The remaining expectation in (4.17) is
done according to the probability Pj(y|b),

Pj(y|b) = Pj1,...,jv(y|b1, . . . , bv) =
1

2m−v

∑
x∈X j1,...,jv

b1,...,bv

PY |X(y|x) (4.18)

where X j1,...,jv

b1,...,bv
, defined in Eq. (2.13), is the set of symbols with bit

labels in positions j1, . . . , jv equal to b1, . . . , bv.

A particularly important case of the above definition is v = 1, for
which the symbol score becomes the bit score. The binary labels of the
reference and competing symbols in the symbol score differ only by
a single bit, and all d different bits of the pairwise error between the
reference and competing codewords are mapped onto different modula-
tion symbols. This is the case for interleavers of practical length. As we
will see in the next sections, this will significantly simplify the analysis.

Definition 4.2. The cumulant transform of the bit score corresponding
to a symbol score with a single different bit, denoted by Ξb

1 , is given by

κ1(s) = log E
[
es Ξb

1
]

= log

(
1
m

m∑
j=1

1
2

∑
b∈{0,1}

E
[
qj(b̄, Y )s

qj(b, Y )s

])
, (4.19)

where b̄ = b ⊕ 1 is the binary complement of b. The expectation in
(4.19) is done according to the transition probability Pj(y|b) in (2.16).

In general, obtaining closed-form expressions of the cumulant trans-
forms can be difficult, and numerical methods are needed. A notable
case for which closed-form expressions for κ1(s) exists is BPSK mod-
ulation with coherent detection over the AWGN channel with fully-
interleaved Nakagami-mf fading channel (density given in Eq. (2.8)).
In that case we have that [75],

κ1(s) = −mf log
(

1 +
4snr

mf
(s− s2)

)
. (4.20)
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As mf →∞, we have that κ1(s)→ −4snr(s−s2), which corresponds to
the cumulant transform of a Gaussian random variable of mean −4snr

and variance 8snr, the density of a log-likelihood ratio in this channel
[119]. Another exception, although significantly more complicated than
the above, is BICM over the Gaussian and fully-interleaved channels
with max-log metric. In this case, as shown in [112] and references
therein, the probability density function of Ξb

1 can be computed in
closed-form. As we will see, only the cumulant transform is needed
to accurately approximate the error probability. Moreover, we can use
efficient numerical methods based on Gaussian quadratures to compute
it.

As we shall see in the coming sections, the error events that domi-
nate the error probability for large SNR are those that assign multiple
different bits to the same symbol, i. e. v > 1. For large SNR the curves
change slope accordingly. Fortunately, this effect shows in error proba-
bility values of interest only for short interleaver lengths, and assuming
symbols of weight 1 is sufficient for most practical purposes. Where
short lengths are required, random interleaving can cause performance
degradation due to these effects and an interleaving must be designed
to allocate all different bits in the the smaller distance pairwise errors
to different constellation symbols.

Figure 4.1 shows the computer-simulated density of Ξb
1 for BICM

using the MAP metric, 16-QAM with Gray mapping in the AWGN
and fully-interleaved Rayleigh fading channels, respectively, both with
snr = 10 dB. For the sake of comparison, we also show with dashed
lines the distribution of a Gaussian random variable with distribution
N (−4snreq, 8snreq), where snreq = −κ1(ŝ) is the equivalent signal-to-
noise ratio. This Gaussian approximation is valid in the tail of the
distribution, rather than at the mean as would be the case for the
standard Gaussian approximation (dash-dotted lines) with the same
mean and variance as that of Ξb

1 , i. e. N
(
E[Ξb

1 ],E[(Ξb
1)

2]−E[Ξb
1 ]

2
)
. For

AWGN, the tail of Ξb
1 is close to the Gaussian approximation, and re-

mains similar for Rayleigh fading. Since the tail gives the pairwise error
probability, this Gaussian approximation gives a good approximation to
the latter. This Gaussian approximation, which will be properly intro-
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Fig. 4.1 Simulated density of Ξb
1 for BICM with MAP metric, 16-QAM with Gray map-

ping with snr = 10 dB. The solid lines correspond to the simulated density, dashed lines
correspond to the Gaussian approximation N (−4snreq, 8snreq), with snreq = −κ1(ŝ), and
dash-dotted lines correspond to the Gaussian approximation N

`
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1 ]2
´
.
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duced in the next section, illustrates the benefits of using the cumulant
transform to compute the pairwise error probability.

4.2 Pairwise Error Probability for Infinite Interleaving

In this section, we study the pairwise error probability assuming
infinite-length interleaving [29]. As we saw in the previous chapter,
this channel model does not fully characterize the fundamental limits
of BICM. While the model yields the same capacity, the error expo-
nent is in general different. In this and the following sections, we shall
see that this model characterizes fairly accurately the error probability
for medium-to-large signal-to-noise ratios when the union bound is em-
ployed. However, as shown in Section 4.3, for very large signal-to-noise
ratio this model does not capture the overall error behavior, and more
general techniques must be sought. Infinite-length interleaving implies
that all d different bits in a pairwise error event are mapped onto d dif-
ferent symbols, i. e. there are no symbols with label-Hamming-weight
larger than 1. We will first review expressions, bounds and approxima-
tions to the pairwise error probability, and we will then apply them to
compute the union bound.

4.2.1 Exact Formulas, Bounds, and Approximations

We denote the pairwise error probability for infinite interleaving as
PEP1(d). We first relate it to the pairwise score Ξpw. We denote the
cumulant transform of the pairwise score by

κpw(s) ∆= log E[es Ξpw
]. (4.21)

Under the assumption that bit scores are independent and identically
distributed, we have that

κpw(s) = d κ1(s). (4.22)

Since the pairwise error probability is the tail probability of the pairwise
score, we have that,

PEP1(d) = Pr

{
d∑

i=1

Ξb
i > 0

}
(4.23)
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where the variables Ξb
i are bit scores corresponding to the d different

bits in the pairwise error.
The above pairwise tail probability can be evaluated by complex-

plane integration of the cumulant transform of κpw(s) = dκ1(s), a
method advocated by Biglieri et al. [18, 19]. We have that

Proposition 4.2. The pairwise error probability PEP1(d) is given by

PEP1(d) =
1

2πj

∫ s0+j∞

s0−j∞

1
s

ed κ1(s) ds, (4.24)

where s0 ∈ R belongs to region where the cumulant transform κ1(s) is
well defined.

In [18], the numerical evaluation of the above complex-plane integration
using Gaussian quadrature rules was proposed.

As we next review, the tail probability of the pairwise or the symbol
scores is to a large extent determined by the form of the cumulant
transform around a special value of s, the saddlepoint ŝ.

Definition 4.3. The saddlepoint ŝ is the value of s that makes the first
derivative of the cumulant transform, κ′(s) equal to zero.

An expression often used is the Chernoff bound, which gives the
following upper bound to the pairwise error probability.

Proposition 4.3 (Chernoff Bound). The Chernoff bound to the pair-
wise error probability is

PEP1(d) ≤ edκ1(ŝ), (4.25)

where ŝ, the saddlepoint, is the root of the equation κ′1(s) = 0.

In general, one needs to find the saddlepoint either analytically or nu-
merically. As we shall see in Section 4.2.2, the choice ŝ = 1

2 is optimum
for the MAP BICM metric. We also note that the optimum value of
s for the random coding error exponent at vanishing rate (or equiva-
lently at the cutoff rate) is ŝ = 1

2 (for s = 1/(1 + ρ) and ρ = 1). This
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is not surprising since the error exponent analysis and our pairwise
error probability are closely related. A somewhat looser version of the
Chernoff bound for general metrics is the Bhatthacharyya bound, for
which one replaces ŝ in (4.25) by 1

2 , as if the saddlepoint was ŝ = 1
2 (we

remark that for general metrics and channels ŝ 6= 1
2).

The Chernoff bound gives a true bound and is moreover easy to
compute. It is further known to correctly give the asymptotic expo-
nential decay of the error probability for large d and snr [74, 95]. In
some cases, such as the AWGN or fully interleaved fading channels,
the Chernoff bound is not tight. This looseness can be compensated
for in practice by using the saddlepoint approximation.

Theorem 4.1. The pairwise error probability can be approximated to
first-order by

PEP1(d) '
1√

2πdκ′′1(ŝ) ŝ
ed κ1(ŝ) (4.26)

where κ′′1(s) is the second derivative of κ(s), and ŝ is the saddlepoint.

The saddlepoint approximation may also be seen as an approxima-
tion of the complex-plane integration of Proposition 4.2. Essentially,
the function κ1(s) is approximated by a second-order Taylor expansion
at the saddlepoint, neglecting higher order terms, and the resulting
integral is explicitly computed.

Alternatively, the saddlepoint approximation extends the Chernoff
bound by including a multiplicative coefficient to obtain an expression
of the form α · edκ1(ŝ). Higher-order expansions have a correction factor
α, polynomial in inverse powers of

(
dκ′′1(ŝ)

)−1. For instance, for the
second-order approximation we have

α = 1 +
1

dκ′′1(ŝ)

(
− 1
ŝ2
− κ′′′1 (ŝ)

2ŝκ′′1(ŝ)
+
κ

(4)
1 (ŝ)

8κ′′1(ŝ)
− 15

72

(
κ′′′1 (ŝ)
κ′′1(ŝ)

))2

. (4.27)

In general, and for the purpose of evaluating the error probability of
BICM, the effect of the higher-order correction terms is found to be
negligible and the formula in Eq. (4.26) gives a good approximation.

For the sake of completeness, we also mention two additional ap-
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proximations. First, the Lugannani-Rice formula [68] (see also [78]),

PEP1(d) ' Q
(√
−2dκ1(ŝ)

)
(4.28)

+
1√
2π

edκ1(ŝ)

(
1√

dκ′′1(ŝ)ŝ
− 1√

−2dκ1(ŝ)

)
, (4.29)

Finally, we have a Gaussian approximation

PEP1(d) ' Q
(√
−2dκ(ŝ)

)
. (4.30)

This approximation equals the zero-th order term in the Lugannani-
Rice formula and the error probability of a BPSK AWGN channel with
equivalent signal-to-noise ratio snreq = −κ(ŝ). This approximation was
heuristically introduced in [50], and is precisely the Gaussian approxi-
mation depicted in Figure 4.1.

In the following, we particularize the above results to the MAP and
max-log metrics in Eqs. (2.15) and (2.17) respectively.

4.2.2 MAP Demodulator

In this section, we study the MAP metric, i. e.

qj
(
bj(x) = b, y

)
=
∑

x′∈X j
b

PY |X(y|x′). (4.31)

First, we relate the BICM channel with MAP metric to the family
of binary-input output-symmetric channels. Recall that the standard
definition of BIOS channels starts with the posterior log-likelihood ratio

Λ = log
PC|Y (c = 1|y)
PC|Y (c = 0|y)

. (4.32)

Then, a channel with binary input is said output-symmetric [96] if the
following relation between the densities of the posterior log-likelihood
ratios, seen as function the channel input, holds:

PΛ|C(Λ|c = 1) = PΛ|C(−Λ|c = 0). (4.33)

By construction, bit score and posterior log-likelihood ratio coincide
when the transmitted bit is zero, i. e. Λ = Ξb. Similarly, we have that
Λ = −Ξb when the transmitted bit is one.
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Proposition 4.4. The classical BICM model with infinite interleaving
and MAP metric is a binary-input output-symmetric (BIOS) channel.

In addition, we have the following result.

Proposition 4.5. The saddlepoint is located at ŝ = 1
2 , i. e. κ′1

(
1
2

)
= 0.

The following higher-order derivatives of the cumulant transform verify

κ′′1(ŝ) =
E
[
(Ξb)2eŝΞb]
E
[
eŝΞb

] ≥ 0, κ′′′1 (ŝ) =
E
[
(Ξb)3eŝΞb]
E
[
eŝΞb

] = 0. (4.34)

Proof. See Appendix 4.A.

Using Definition 4.2 and Theorem 4.1 we can write the saddlepoint
approximation to PEP1(d) for BICM with infinite interleaving in the
fully-interleaved AWGN fading channel:

PEP1(d) '
2√

2πdE
[
e

1
2
Ξb(Ξb)2

] (E[e
1
2
Ξb

]
)d+ 1

2 , (4.35)

where Ξb is the bit score. In the fully-interleaved AWGN fading channel,
we have that

Ξb = log
qj
(
b̄,
√

snrhx+ z
)

qj
(
b,
√

snrhx+ z
) (4.36)

= log

∑
x′∈X j

b̄

e−|
√

snrh(x−x′)+z|2∑
x′∈X j

b
e−|

√
snrh(x−x′)+z|2 . (4.37)

The expectation of a generic function f(·) of the bit score Ξb is done
according to

E[f(Ξb)] =
1

m2m

1∑
b=0

m∑
j=1

∑
x∈X j

b

∫∫
f(Ξb) pdH(h)PZ(z) dzdh. (4.38)

This expectation can be easily evaluated by numerical integration using
the appropriate quadrature rules. Unfortunately, there seems to be no
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tractable, simple expression for the final result. The only case in which
(4.35) admits a closed form is the case of binary BPSK modulation
with Nakagami-mf fading for which using (4.20) we obtain [75],

PEP1(d) '
1

2
√
πd snr

(
1 +

snr

mf

)−mf d+ 1
2

. (4.39)

The exact expression of PEP1(d) from Proposition 4.2 or the Cher-
noff bound in Proposition 4.3 admits a form similar to (4.35). In partic-
ular, since in this case ŝ = 1

2 , the Chernoff and Bhattacharyya bounds
coincide. This Bhattacharyya union bound was first proposed in [29].

We next compare the estimate of PEP1(d) with the BICM expur-
gated bound of [29]. The expurgated bound can be seen as the positive
tail probability of the random variable with sample value

log
PY |X(y|x̂)
PY |X(y|x)

, (4.40)

where x is the transmitted symbol and x̂ is its nearest neighbour in X j

b̄
,

i. e., with complementary bit b̄ in label index j. Compared with the
MAP metric there is only one term in each summation, rather than the
full set X j

b . For some metrics and/or labelings, Eq. (4.40) may not be
accurate. For example, for the set-partitioning mapping considered in
[29], the bound was not close to the simulation results. This inaccuracy
was solved in [74] by using the saddlepoint approximation with the full
MAP metric given in (4.35). The inaccuracy of the expurgated bound
was also remarked by Sethuraman [104] and Yeh al. [141] who noticed
that this “bound” is actually not a bound in general. A further point
is discussed in Section 4.3.4, where we analyze the effect of considering
only Hamming weight 1.

We next show some examples to illustrate the accuracy of these
bounds and approximations for convolutional and repeat-accumulate
(RA) codes [32]. In particular, we show the Chernoff/Bhattacharyya
union bound (dash-dotted lines), the saddlepoint approximation (4.35)
union bound (solid lines), the Gaussian approximation union bound
(dashed lines) and the simulations. In the case of RA codes, we use the
uniform interleaver [8,9] and an iterative decoder with 20 decoding iter-
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ations. The assumption of uniform interleaver allows for the analytical
calculation of the weight enumerator coefficients (see [32]).

Figure 4.2 shows the bit error rate as a function of Eb
N0

for the
aforementioned methods with 16-QAM in the AWGN channel with
no fading. In Figure 4.2(a) we use the optimum 64-state and rate-
1/2 convolutional code with Gray and set partitioning mappings and
in Figure 4.2(b) an RA code of rate 1/4 with Gray mapping. As we
observe, the Chernoff/Bhattacharyya bound is loose when compared
with the saddlepoint or Gaussian approximations, which are close to
the actual simulations for large Eb

N0
. We notice that the saddlepoint

and Gaussian approximations are close to each other for the convolu-
tional code. However, for RA codes, the Gaussian approximation yields
a slightly optimistic estimate of the error floor region. As we will see in
the following examples, this effect is more visible in fading channels.

Figure 4.3 shows the estimates of the bit error rate for convolu-
tional and RA codes respectively in a fully-interleaved AWGN channel
with Rayleigh fading. Figure 4.3(a) shows two cases, a rate-2/3, 8-state
code over 8-PSK, and the rate-1/2, 64-state code over 16-QAM both
with Gray mapping (both codes have largest Hamming distance). Fig-
ure 4.3(b) shows the performance of a RA code of rate 1/4 with Gray
mapping and 16-QAM modulation. All approximations are close to the
simulated value, but now only the saddlepoint approximation gives an
accurate estimate of the error probability. As we saw in Section 4.1.2,
and in Figure 4.1(b) to be more precise, the tail of the bit score in the
fully-interleaved Rayleigh fading channel is approximately exponential,
rather than Gaussian, and this shape is not accurately tracked by the
Gaussian approximation. As evidenced by the results of 16-QAM with
the 64-state convolutional code, this effect becomes less apparent for
codes with large minimum distance, since the pairwise score contains
more terms and its tail is closer to a Gaussian. For RA codes, where
the minimum distance is low, we appreciate the differences between
saddlepoint and Gaussian approximations.

In the following section, we discuss in more detail the slope of decay
of the error probability for large snr, by studying the asymptotic be-
havior of the cumulant transform and its second derivative evaluated at
the saddlepoint. This analysis reveals that BICM mimics the behavior
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(b) RA code of rate 1/4 with K = 1024 information bits

Fig. 4.2 Comparison of simulation results (dotted lines and markers), saddlepoint (in solid
lines) and Gaussian approximations (dashed lines), and Chernoff/Bhattacharyya union
bound (in dash-dotted lines) to the bit error rate of BICM with 16-QAM modulation with
Gray and Set Partitioning mapping, in the AWGN channel.
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over 16-QAM modulation with Gray labeling and optimum 8-state
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(b) RA code of rate 1/4 with K = 512 information bits over 16-QAM
modulation with Gray mapping

Fig. 4.3 Comparison of simulation results (dotted lines and markers), saddlepoint (in solid
lines) and Gaussian approximations (dashed lines), and Chernoff union bound (in dash-
dotted lines) to the bit error rate of BICM in the fully-interleaved Rayleigh fading channel.



4.2. Pairwise Error Probability for Infinite Interleaving 67

of binary modulation, preserving the properties of the binary code.

4.2.3 Cumulant transform asymptotic analysis

Inspection of Figures 4.2 and 4.3 suggests that the bounds and approx-
imations considered in the previous section yield the same asymptotic
behavior of the error probability for large snr. Indeed, BICM mimics
the behavior of binary modulation, preserving the properties of the
binary code:

Proposition 4.6 ( [74]). The cumulant transform of the bit scores of
BICM transmitted over the AWGN with no fading and its second
derivative have the following limits for large snr

lim
snr→∞

κ1(ŝ)
snr

= −
d2
X ,min

4
(4.41)

lim
snr→∞

κ′′1(ŝ)
snr

= 2d2
X ,min, (4.42)

where d2
X ,min

∆= minx,x′ |x − x′|2 is the minimum squared Euclidean
distance of the signal constellation X .

For large snr, BICM behaves like a binary modulation with distance
d2
X ,min, regardless of the mapping. This result confirms that BICM

preserves the properties of the underlying binary code C, and that for
large snr the error probability decays exponentially with snr as

PEP1(d) ' K e−
1
4
snr d2

X ,min (4.43)

Here K may depend on the mapping (see for example Figure 4.2(a)),
but the exponent is not affected by it. To illustrate this point, Fig-
ure 4.4 shows −κ(ŝ)

snr (thick lines) and κ′′(ŝ)
snr (thin lines) for 16-QAM

with Gray (solid lines) and set partitioning (dashed lines) mappings in
the AWGN channel. As predicted by Proposition 4.6, the asymptotic
value of −κ(ŝ)

snr is −1
4d

2
X ,min = 0.1 (recall that we consider signal constel-

lations X normalized in energy, and that d2
X ,min = 0.4 for 16-QAM).

In the Gaussian approximation introduced in [50], the quantity −κ(ŝ)
snr

can be interpreted as a scaling in snr due to BICM; the asymptotic
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Fig. 4.4 Cumulant transform limits in the AWGN channel −κ(ŝ)
snr

(thick lines) and
κ′′(ŝ)

snr
(thin lines) for 16-QAM with Gray (solid lines) and set partitioning (dashed lines) mappings.
For fully-interleaved Rayleigh fading channel, in dash-dotted lines κ′′(ŝ) for 16-QAM and
in dotted lines for 8-PSK.

scaling depends only on the signal constellation, but not on the binary
labeling. Figure 4.4 also shows κ′′(ŝ)

snr for the same setup (thin lines).
Again, the limit coincides with (4.42).

In the case of Nakagami-mf fading (density in Eq. (2.8)), we have a
similar result. All curves in Figures 4.3(a) and 4.3(b) show an asymp-
totic slope of decay, which is characterized by the following proposition.

Proposition 4.7 ( [74]). The cumulant transform of BICM transmit-
ted over the AWGN with fully-interleaved Nakagami-mf fading and its
second derivative have the following limits for large snr

lim
snr→∞

κ1(ŝ)
log snr

= −mf (4.44)

lim
snr→∞

κ′′1(ŝ) = 8mf . (4.45)
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The proof of this result is a straightforward extension of the proof
in [74] for Rayleigh fading. The above result does not depend on the
modulation nor the binary labeling, and confirms that BICM indeed
behaves as a binary modulation and thus, the asymptotic performance
depends on the Hamming distance of the the binary code C rather than
on the Euclidean distance. Figure 4.4 also shows κ′′(ŝ) for 16-QAM
(dash-dotted line) and 8-PSK (dotted line), both with Gray labeling in
the Rayleigh channel. As expected, the limit value is 8, which does not
depend on the modulation.

A finer approximation to the exponent of the error probability is
given by the the following result.

Proposition 4.8. The cumulant transform of the BICM bit score for
the AWGN channel with fully-interleaved Nakagami-mf fading behaves
for large snr as

lim
snr→∞

eκ1(ŝ)

snr−mf
= EX,J

[
4mf

d2(x, x̂)

]mf

(4.46)

where x̂ is the closest symbol in the constellation X j

b̄
to x, d2(x, x̂) =

|x− x̂|2 is the Euclidean distance between two symbols and the expec-
tation EX,J [·] is with respect to X uniform over X and J uniform over
the the label bit index j = 1, . . . ,m.

Proof. See Appendix 4.B.

The above expectation over the symbols is proportional to a form
of harmonic distance d2

h,

1
d2

h

=

(
1

m 2m

1∑
b=0

m∑
j=1

∑
x∈X j

b

(
1

d2(x, x′)

)mf
) 1

mf

, (4.47)

where x′ is the closest symbol in the constellation X j

b̄
to x and d2(x, x′)

is the Euclidean distance between two symbols.
The asymptotic results given by Propositions 4.7 and 4.8 can be

combined with the saddlepoint approximation (4.35) to produce a
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heuristic approximation of PEP1(d) for large snr as,

PEP1(d) '
1

2
√
πdmf

(
4mf

d2
hsnr

)dmf

. (4.48)

A similar harmonic distance was used by Caire et al. [29] to approxi-
mate the Chernoff bound for Rician fading.

4.2.4 Numerical Results with Max-Log Metric

In this section, we study the error probability of BICM with the max-
log metric in Eq. (2.17),

qj
(
bj(x) = b, y

)
= max

x′∈X j
b

PY |X(y|x′). (4.49)

As for the MAP metric, the saddlepoint approximation with infinite
interleaving in the fully-interleaved AWGN fading channel is given by

PEP1(d) '
2√

2πdE
[
eŝΞb(Ξb)2

] (E[eŝΞb
]
)d+ 1

2 , (4.50)

where Ξb is the bit score, in turn given by

Ξb = min
x′∈X j

b

|
√

snrh(x− x′) + z|2 − min
x′∈X j

b̄

|
√

snrh(x− x′) + z|2. (4.51)

The saddlepoint ŝ now needs to be found numerically, since in general,
it will be different from that of the MAP metric, i. e. 1

2 . To any extent,
as snr→∞ the saddlepoint approaches 1

2 , since the MAP and the max-
log metrics become indistinguishable. This result builds on the proofs
of Propositions 4.6 and 4.7 [74], where only the dominant term in the
MAP metric is kept for large snr.

For this metric, Sczeszinski et al. [112] have derived closed expres-
sions for the density of the bit score Ξb. This expression allows for the
calculation of the cumulant transform, however, it does not allow for
the direct evaluation of PEP1(d) and numerical methods are needed
to either perform the numerical integration in (4.24) or compute the
saddlepoint, and hence the saddlepoint approximation (4.50).

Figure 4.5 shows the comparison between MAP and max-log metrics
for BICM with an RA code and 16-QAM. As we observe, the perfor-
mance is with the max-log metric is marginally worse than that with
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Fig. 4.5 Comparison of simulation results and saddlepoint approximations on the bit error
rate of BICM with a rate-1/4 RA code with K = 512 information bits, 16-QAM modulation
with Gray mapping, in the fully-interleaved Rayleigh fading channel using MAP (diamonds)
and max-log (circles) metrics. In solid lines, saddlepoint approximation union bound.

the MAP metric. Note that we are using perfectly coherent detection.
It should be remarked, though, that more significant penalties might
be observed for larger constellations, in presence of channel estimation
errors, or in non-coherent detection (see Chapter 6).

4.3 Pairwise Error Probability for Finite Interleaving

4.3.1 Motivation

So far we have assumed, as it was done in [29], that the bit inter-
leaver has infinite length. For this case, all symbol scores have Hamming
weight 1 and are thus bit scores. Moreover, since the channel is mem-
oryless, the bit scores with infinite interleaving are independent. For
finite interleaving, however, some of the d bits in which the two code-
words in the pairwise error event differ belong to the same symbol with
nonzero probability. Therefore, they are affected by the same realiza-
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tion of the channel noise and possibly fading, and are thus statistically
dependent. As we mentioned in Section 4.1, a general characterization
of the error probability requires the whole set of possible symbol scores
Ξs, for all the valid Hamming weights v, 1 ≤ v ≤ min(m, d).

Since the task of determining the exact distribution of the d pairwise
different bits onto the N symbols can be hard, we follow the results
of [141] and compute an average pairwise error probability by averaging
over all possible distributions of d bits onto N symbols, equivalent to
uniform interleaving for turbo-codes [8, 9]. In Section 4.3.2 we present
a general expression for the pairwise error probability, as well as its
corresponding saddlepoint approximation.

In Section 4.3.3 we apply the theory to what is arguably the simplest
case of BICM, QPSK under Nakagami fading. We discuss the extent to
which QPSK can be modeled by two independent BPSK modulations
each with half signal-to-noise ratio. We show that the slope of the
pairwise error probability is reduced at sufficiently high snr due to the
symbol scores of Hamming weight 2. An estimate of the snr at which
this “floor” appears is given. Finally, we extend the main elements of
the QPSK analysis to higher-order modulations in Section 4.3.4, where
we discuss the presence of a floor in the error probabilities and give a
method to estimate the snr at which it appears.

4.3.2 A General Formula for the Pairwise Error Probability

In this section, we closely follow Yeh et al. [141] to give a general
characterization of the error probability. We distinguish the possible
ways of allocating d bits on N modulation symbols, by counting the
number of symbols with weight v, where 0 ≤ v ≤ w? and

w? ∆= min(m, d). (4.52)

Herem is the number of bits in the binary label of a modulation symbol.
Denoting the number of symbols of weight v by Nv, we have that

w?∑
v=0

Nv = N and d =
w?∑
v=1

vNv. (4.53)
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We further denote the symbol pattern by ρN
∆= (N0, . . . , Nw?). For

finite interleaving, every possible pattern corresponds to a (possibly)
different conditional pairwise error probability, denoted by PEP(d, ρN ).
Then, we can write the following union bound

Pe ≤
∑

d

∑
ρN

Ad,ρN
PEP(d, ρN ) (4.54)

where Ad,ρN
is the number of codewords of C of Hamming weight d

that are mapped onto the constellation symbols following patter ρN ,
i. e. mapped onto Nv symbols of Hamming weight v, for 0 ≤ v ≤
w?. In some cases where the exact location of the d different bits is
difficult to obtain, it might be interesting and convenient to study the
average performance over all possible ways of choosing d locations in a
codeword. In this case we have the following union bound

Pe ≤
∑

d

Ad

∑
ρN

P (ρN )PEP(d, ρN ) (4.55)

=
∑

d

AdPEP(d) (4.56)

where P (ρN ) is the probability of a particular pattern ρN and
PEP(d) ∆=

∑
ρN
P (ρN )PEP(d, ρN ) is the average pairwise error prob-

ability over all possible patterns. A counting argument [141] gives the
probability of the pattern ρN as

P (ρN ) ∆= Pr
(
ρN = (N0, . . . , Nw?)

)
(4.57)

=

(
m
1

)N1
(
m
2

)N2 · · ·
(

m
w?

)Nw?(
mN

d

) N !
N0!N1!N2! . . . Nw? !

. (4.58)

In general, the pairwise score depends on the pattern ρN ; ac-
cordingly, we denote the cumulant transform of the symbol score by
κpw(s, ρN ), to make the dependence on ρN explicit. We have that

κpw(s, ρN ) =
w?∑
v=1

Nvκv(s), (4.59)

since the symbol scores are independent. For infinite interleaving, we
have ρ∗N = (N−d, d, 0, . . . , 0), and we therefore recover the result shown
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in the previous section, i. e. κpw(s, ρ∗N ) = dκ1(s). When N → ∞ and
m > 1 the probability that the bit scores are dependent tends to zero,
but does so relatively slowly, as proved by the following result.

Proposition 4.9 ( [73]). The probability that all d bits are indepen-
dent, i. e. the probability of ρN = (N − d, d, 0, . . . ) is

Pind
∆= Pr

(
ρN = (N − d, d, 0, . . . )

)
=
md
(N/m

d

)(
N
d

) . (4.60)

Further, for large N , we have that

Pind ' e−
d(d−1)(m−1)

2N ' 1− d(d− 1)(m− 1)
2N

(4.61)

where the second approximation in (4.61) assumes that N � d.

For BPSK, or m = 1, there is no dependence, as it should be. How-
ever, for m > 1 the probability of having symbol scores independent is
nonzero. As we shall see in the following, this effect will induce a change
in the slope of the error probability. It is important to remark that this
is an average result over the ensemble of all possible interleavers.

The conditional pairwise error probability is of fundamental impor-
tance for this analysis, and we devote the rest of the section to its study.
In particular we have a result analogous to Proposition 4.2 [141].

Proposition 4.10. The conditional pairwise error probability for a par-
ticular pattern ρN can be computed as

PEP(d, ρN ) =
1

2πj

∫ s0+j∞

s0−j∞

1
s

eκpw(s,ρN ) ds (4.62)

where s0 ∈ R belongs to region where the cumulant transforms κv(s)
are well defined.

Sethuraman et al. [104] pointed out that Caire’s union bound for
BICM (which assumes infinite interleaving, that is our PEP1(d)), was
not a true bound. Taking into account all possible patterns ρN solves
this inconsistency and yields a true bound to the average pairwise error
probability with a uniform interleaver.

A looser bound given by the following result.
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Proposition 4.11 (Chernoff Bound). The Chernoff bound to the con-
ditional pairwise error probability is

PEP(d, ρN ) ≤ edκpw(ŝ,ρN ). (4.63)

where ŝ, the saddlepoint, is the root of the equation κ′pw(s, ρN ) = 0.

Again, we can use the saddlepoint approximation to obtain a result
similar to that shown in Theorem 4.1.

Theorem 4.2. The conditional pairwise error probability can be ap-
proximated to first-order by

PEP(d, ρN ) ' 1√
2πκ′′pw(ŝ, ρN )ŝ

eκpw(ŝ,ρN ). (4.64)

The saddlepoint ŝ depends in general on the specific pattern ρN .
In the following, we particularize the above analysis to QPSK with

Gray labeling in the fully-interleaved Nakagami-mf channel. This is
possibly the simplest case of dependency between the bit sub-channels,
with symbol scores of Hamming weight 2.

4.3.3 QPSK with Gray Labeling as BICM

In this section, we analyze QPSK in fully interleaved Nakagami-mf

fading (for the density, see Eq. (2.8)) for finite block lengths. The sad-
dlepoint approximation was evaluated in [73].

Theorem 4.3 ( [73]). The saddlepoint approximation corresponding
to the average pairwise error probability PEP(d) of QPSK with code-
word length N in Nakagami-mf fading is

PEP(d) '
∑

N1,N2

P (ρN )

(
1 + snr

2mf

)−mf N1
(
1 + snr

mf

)−mf N2√
2π
(
N1

snr
1+ snr

2mf

+N2
2snr

1+ snr
mf

) (4.65)
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where

P (ρN ) =
2N1(
2N
d

) N !
(N − d+N2)!(d− 2N2)!N2!

(4.66)

and max(0, d−N) ≤ N2 ≤ bd/2c, N1 + 2N2 = d.

For the AWGN channel, as mf →∞, we have that

PEP(d) '
∑

N1,N2

P (ρN )
e−

snr
2

(N1+2N2)√
2πsnr(N1 + 2N2)

(4.67)

=
e−d snr

2

√
2πdsnr

, (4.68)

the usual exponential approximation to the error probability of BPSK
at half signal-to-noise ratio. In the presence of fading, however, the
symbols of Hamming weight 2 have an important effect. The slope of
the pairwise error probability changes at sufficiently large signal-to-
noise ratio. The approximate signal-to-noise ratio at which the error
probability changes slope, denoted by snrth, was estimated in [73],

snrth =


4m
(

2Ne

8
1
d d

) 1
m

d even

4m(2Ne)
1
m

(
e
2

) 2
m(d−1) (d−1)

d
m(d−1) (d+1)

1
m(d−1)

d
2(d+1)
m(d−1)

d odd.
(4.69)

A coarse approximation to the bit error probability at the threshold
is derived by keeping only the term at minimum distance d and the two
summands with N2 = 0 and N2 = bd2c. We have then

Pb ' 2A′dPEP(d) ' A′d
1√
πmfd

(
snrth
2m

)−mf d

. (4.70)

Figure 4.6 depicts the bit error rate of QPSK with the (5, 7)8 con-
volutional code for n = 40, 200 (N = 20, 100) and mf = 0.5. In all
cases, the saddlepoint approximation to the union bound (solid lines)
is accurate for large SNR. In particular, we observe the change in slope
with respect to the union bound using N2 = max{0, d−N} (the upper
one corresponds to n = 200), i. e. assuming that all bits of the differ-
ent codewords are mapped over different symbols (independent binary
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Fig. 4.6 Bit error rate of the (5, 7)8 convolutional code over QPSK in a fully interleaved
fading channel with mf = 0.5; uniform interleaver of length n = 40, 200 (N = 20, 100).
Diamonds for the simulation, solid lines for the union bound, dashed lines for the union
bound assuming N2 = Nmin

2 = max{0, d−N} (the upper one corresponds to N = 100) and
dotted lines for the union bound for N2 = b d

2
c.

channels). The approximated thresholds (4.69) computed with the min-
imum distance, namely snrth = 22 dB for N = 20 and snrth = 36 dB
for N = 100, are very close to the points where dashed and dotted
lines cross. In the next section we generalize this result to higher order
modulations.

Figure 4.7 depicts the approximate value of Pb (assuming A′d = 1)
at the threshold signal-to-noise ratio for several values of mf and ` as
a function of the minimum Hamming distance d. The error probability
at the crossing rapidly becomes small, at values typically below the
operating point of common communication systems.

4.3.4 High-order Modulations: Asymptotic Analysis

In this section, we closely follow the analysis in [73] for general constel-
lations and mappings, and estimate the signal-to-noise ratio at which
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Fig. 4.7 Bit error probability of QPSK at the threshold signal-to-noise ratio snrth according
to (4.70) as a function of the minimum Hamming distance d for several values of mf and
n. The solid line corresponds to mf = 0.5, n = 100, the dashed line to mf = 0.5, n = 1000,
the dash-dotted to mf = 3, n = 100 and the dotted to mf = 3, n = 1000.

the slope of the error probability changes.
First, and in a similar vein to the asymptotic analysis presented in

Section 4.2.3 for v = 1, for sufficiently large snr, we can approximate
the Chernoff bound to the error probability in the AWGN channel by

eκv(ŝ) ' e−
1
4
d2
m(v)snr, (4.71)

where d2
m(v) is given by

d2
m(v) ∆= min

x∈X

(∑v
i=1 |x− x′i|2

)2
|
∑v

i=1(x− x′i)|
2 , x′i

∆= arg min
x′∈X i

b̄i(x)

|x− x′|2. (4.72)

For v = 1, we recover d2
m(1) = d2

X ,min.
For the fully-interleaved Nakagami-mf fading channel, we have

eκv(ŝ) '

(
d2

h(v)
snr

4mf

)−mf

, (4.73)
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where d2
h(v) is a generalization of the harmonic distance given by

1
d2

h(v)
=

(
1(

m
v

)
2m

∑
b

∑
j

∑
x∈X b

j

(
|
∑v

i=1(x− x′i)|
2

(
∑v

i=1 |x− x′i|2)
2

)mf
) 1

mf

. (4.74)

For a given x, x′i is the i-th symbol in the sequence of v symbols
(x′1, . . . , x

′
v) which have binary label c̄ji at position ji and for which

the ratio |
Pv

i=1(x−x′i)|Pv
i=1 |x−x′i|2

is minimum among all possible such sequences.

For mf = 1, v = 1 we recover the harmonic distance d2
h in Section 4.2.3.

As it happened with the bit score and PEP1(d), Eq. (4.73) may be
in the saddlepoint approximation to obtain a heuristic approximation
to the pairwise error probability for large snr, namely

PEP(d, ρn) ' PEPH(d, ρn) ∆=
1

2
√
πmf

∑
v≥1 nv

m∏
v=1

(
4mf

d2
h(v)

1
snr

)nvmf

.

(4.75)
We use Eq. (4.75) to estimate the threshold SNR. For the sake

of simplicity, consider d ≥ m, that is w? = m in our definitions at
the beginning of this Section. Then, since d =

∑m
v=1Nvv by con-

struction, we can view the pattern ρN = (N0, N1, . . . , Nm) as a (non-
unique) representation of the integer d as a weighted sum of the integers
{0, 1, 2, . . . ,m}. By construction, the sum

∑
v Nv is the number of non-

zero Hamming weight symbols in the candidate codeword. The lowest
value of

∑
v Nv gives the worst (flattest) pairwise error probability in

the presence of fading. As found in [73], a good approximation to the
threshold is given by

snrth ' 4mf

( ∑
ρn:min

P
v nv

P (ρn)
(
d2

h(1)
)d

P (ρ0)
∏

v

(
d2

h(v)
)nv

)− 1
mf (d−

P
v nv)

. (4.76)

For QPSK with Gray mapping, computation of this value of snrth
(d2

h(1) = 2, d2
h(2) = 4) gives a result which is consistent with the result

derived in Section 4.3.3, namely Eq. (4.69), with the minor difference
that we use now the Chernoff bound whereas the saddlepoint approxi-
mation was used in the QPSK case.
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Fig. 4.8 Bit error probability union bounds and bit-error rate simulations of 8-PSK with
the 8-state rate-2/3 convolutional code in a fully-interleaved Rayleigh fading channel. In-
terleaver length N = 30 (circles) and N = 1000 (diamonds). In solid lines, the saddlepoint
approximation union bounds for N = 30, N = 100, N = 1000 and for infinite interleaving,
with PEP1(d). In dashed, dashed-dotted, and dotted lines, the heuristic approximations
with weight v = 1, 2, 3 respectively.

Figure 4.8 shows the error performance of 8-PSK with Rayleigh
fading and Gray labeling; the code is the optimum 8-state rate-2/3
convolutional code, with dmin = 4. Again, an error floor appears due
to the probability of having symbol scores of Hamming weight larger
than 1. The figure depicts simulation results (for interleaver sizes n =
90, 1000) together with the saddlepoint approximations for finite N (for
N = 30, 100, 1000), infinite interleaving (with PEP1(d)), and with the
heuristic approximation PEPH(d, ρn) (only for n = 90 and d = 4).

For 8-PSK with Gray mapping, evaluation of Eq. (4.74) gives
d2

h(1) = 0.7664, d2
h(2) = 1.7175, and d2

h(3) = 2.4278. Table 4.1 gives
the values of P (ρn) for the various patterns ρn. Table 4.1 also gives the
threshold snrth given in Eq. (4.76) for all possible values of

∑
v≥1 nv,
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Table 4.1 Asymptotic analysis for 8-PSK with varying interleaver length n = 3N and
minimum distance d = 4.

Pattern ρn n P (ρn) Threshold Eb
N0

(dB)

(N − 4, 4, 0, 0) n = 90 0.8688 N/A
n = 300 0.9602 N/A
n = 3000 0.9960 N/A

(N − 3, 2, 1, 0) n = 90 0.1287 16.0
n = 300 0.0396 21.5
n = 3000 0.0040 31.6

(N − 2, 0, 2, 0), n = 90 0.0015 20.5
(N − 1, 1, 0, 1) n = 300 0.0002 26.0

n = 3000 2 · 10−6 39.1

not only for the worst case. We observe that the main flattening of the
error probability takes place at high snr. This effect essentially disap-
pears for interleavers of practical length: for n = 100 (resp. n = 1000)
the error probability at the first threshold is about 10−8 (resp. 10−12).
The saddlepoint approximation is remarkably precise; the heuristic ap-
proximation PEPH(dmin, ρn) also gives very good results.

4.4 Bounds and Approximations Above the Cutoff Rate

Spurred by the appearance of turbo-codes [11] and the rediscovery of
LDPC codes [69], there has been renewed interest in the past decade
in the derivation of improved bounds for a region above the cutoff rate.
A comprehensive review can be found in the monograph by Sason and
Shamai [101]. In this section, we briefly discuss such bounds for BICM.

Of the available improved bounds, two are of special importance: the
second Duman-Salehi (DS2) bound and the tangential sphere bound
(TSB). The first bound, valid for general decoding metrics and chan-
nels, is directly applicable to BICM. The TSB is known to be the
tightest bound in binary-input AWGN channels, and will be combined
with the Gaussian approximation introduced in Section 4.2.

The error probability was analyzed in Section 3.1.2 for an ensemble
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of random codes. For a fixed binary code C, we consider the average
over all possible interleavers πn of length n and over all the scrambling
sequences d described in Section 4.1. We denote the joint probability
of the interleaver and the scrambling by P (πn,d). For a fixed message
m (and binary codeword cm), the transmitted codeword xm depends
on the interleaver πn and on the scrambling sequence d. The condi-
tional error probability Pe(m), when message m and codeword cm are
transmitted, can be derived from Eqs. (3.7) and (3.11), to obtain

Pe(m) ≤
∑
πn,d

P (πn,d)
∫

y
PY |X(y|xm)

∑
m′ 6=m

(
q(xm′ ,y)
q(xm,y)

)s
ρ

dy

(4.77)

for 0 ≤ ρ ≤ 1 and s > 0.
The Duman-Salehi bound is derived by introducing a normalized

measure ψ(y) (possibly dependent on the codeword cm), and trans-
forming the integral in Eq. (4.77) as

∫
y
PY |X(y|xm)

ψ(y)
ψ(y)

∑
m′ 6=m

(
q(xm′ ,y)
q(xm,y)

)s
ρ

dy (4.78)

=
∫

y
ψ(y)

∑
m′ 6=m

PY |X(y|xm)
1
ρ

ψ(y)
1
ρ

(
q(xm′ ,y)
q(xm,y)

)s
ρ

dy.

(4.79)

Now, applying Jensen’s inequality we obtain

Pe(m) ≤

∑
m′ 6=m

∑
πn,d

P (πn,d)
∫

y

PY |X(y|xm)
1
ρ

ψ(y)
1
ρ
−1

(
q(xm′ ,y)
q(xm,y)

)s

dy

ρ

.

(4.80)

Next, we consider a decomposition ψ(y) =
∏N

n=1 ψ(yn). We also
assume that the all-zero binary codeword is transmitted, and group
the summands m′ having the same Hamming weight d together. Recall
that Ad denotes the number of codewords with Hamming weight d and
that ρN = (N0, . . . , Nw?), with w? = min(m, d), denotes the pattern
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representing the allocation of d bits onto the N modulation symbols.
The average over all possible patterns is equivalent to the average over
all possible interleavers πn. We thus have

∑
πn,d

P (πn,d)
∫

y

PY |X(y|xm)
1
ρ

ψ(y)
1
ρ
−1

(
q(xm′ ,y)
q(xm,y)

)s

dy =
∑
ρN

P (ρN )
w?∏
v=0

Ps(v)ρN (v),

(4.81)

where Ps(v) is defined as

Ps(v)
∆=

1(
m
v

)
2m

∑
j

∑
b

∑
x∈X b

j

∫
y

PY |X(y|x)
1
ρ

ψ(y)
1
ρ
−1

(
v∏

i=1

qji(b̄ji , y)
qji(bji , y)

)s

dy.

(4.82)

In particular, for v = 0 (for which the metrics q(xm, y) and q(xm′ , y)
coincide) and v = 1 (for which the metrics differ in only 1 bit), we have

Ps(0) =
1

2m

∑
x∈X

∫
y

PY |X(y|x)
1
ρ

ψ(y)
1
ρ
−1

dy (4.83)

Ps(1) =
1

m2m

m∑
j=1

∑
b∈{0,1}

∑
x∈X b

j

∫
y

PY |X(y|x)
1
ρ

ψ(y)
1
ρ
−1

(
qj(b̄, y)
qj(b, y)

)s

dy. (4.84)

Finally, since the computation does not depend on the transmitted
message, we have that the average error probability is bounded as

Pe ≤

(∑
d

Ad

∑
ρN

P (ρN )
w?∏
v=0

Ps(v)ρN (v)

)ρ

, (4.85)

for all possible choices of ρ and ψ. For the specific choice ρ = 1, the
function ψ is inactive, and the functions Ps(v) are simply a Chernoff
bound to the symbol score Ξs of weight v (see Definition 4.1).

As for the tangential sphere bound, the Gaussian approximation to
the bit score discussed in Section 4.2 was used in [50] to give an approx-
imation to the average error probability in the AWGN channel (see also
Eq. (4.30)) . This analysis involves two approximations. First, all the
symbol decoding scores of weight larger than 1 are neglected. Secondly,
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the bit score is assumed to be Gaussian with equivalent signal-to-noise
ratio snreq = −κ1(ŝ) for all values of the score, not only the tail, so
that distances between codewords follow a chi-square distribution. The
resulting approximation is then given by

Pe ≤ Q
(√
−2nκ1(ŝ)

)
+
∫ ∞

−∞

dΞb

√
2π

e−
(Ξb)2

2

(
1− Γ

(
n− 1

2
,
r2

2

))
+
∑

d

Ãd

∫ ∞

−∞

dΞb

√
2π

e−
(Ξb)2

2 Γ
(
n− 2

2
,
r2 − β2

d

2

)(
Q
(
βd

)
−Q(r)

)
,

(4.86)

where n = mN , and we have used that

r
∆=
(√
−2nκ1(ŝ)− Ξb

)
tan θ, (4.87)

βd
∆=
(√
−2nκ1(ŝ)− Ξb

)
tanφ, (4.88)

where tanφ =
√

d
n−d and tan θ is the solution of

∑
d

Ãd

∫ arccos tan φ
tan θ

0
sinn−3 θ dθ =

√
πΓ
(

n−2
2

)
Γ
(

n−1
2

) , (4.89)

and the coefficients Ãd are Ãd = Ad if βd < r and Ãd = 0 otherwise.
Figure 4.9 shows the comparison between the simulation, saddle-

point approximation and the TSB with the Gaussian approximation for
an RA code with 16-QAM with Gray mapping in the fully-interleaved
Rayleigh fading channel. As we observe, the TSB with the Gaussian ap-
proximation yields an underestimation of the error floor, and gives an
estimate of the error probability for low SNR. Unfortunately, validating
the tightness of this approximation at low SNR is difficult, chiefly be-
cause of the use of approximations and of the suboptimality of iterative
decoding compared to maximum-metric decoding.

4.5 Concluding Remarks and Related Work

In this Chapter, we have reviewed the error probability analysis of
BICM. After considering the traditional error probability analysis of
BICM based on the independent parallel channel model [29], we have
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Fig. 4.9 Comparison of simulation results and saddlepoint (solid line) and TSB Gaussian
approximations (dash-dotted line) on the bit error rate of BICM with an RA code of rate
1/4 with K = 512 information bits, 16-QAM modulation with Gray mapping, in the fully-
interleaved AWGN Rayleigh fading channel.

presented a number of bounds and approximations to the error proba-
bility based on a union bound approach. In particular, we have shown
that the saddlepoint approximation yields accurate results and is sim-
ple to compute. In passing, we have also seen why the expurgated
bound proposed in [29] is not a true bound [104]. Next, and based
on [141], we have considered the average over all possible interleavers
(the uniform interleaver from turbo codes [8, 9]), and have shown that
for interleavers of short length, the error probability is dominated by
the symbols with Hamming weight larger than 1. This effect translates
into a reduced rate of decay of the error probability with SNR. We
have then reviewed improved bounds to the error probability like the
Duman-Salehi and the tangential-sphere bound [101]. We have given
the expression of the former for a general decoding metric, while the
latter is an approximate bound based on the Gaussian approximation
of the tail of the decoding score distribution.
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Bounding techniques similar to those presented in this Chapter have
been applied to the determination of the error floor of BICM with
iterative decoding for convolutional codes or turbo-like codes [30, 63,
103,113]. In these analyses, the bit decoding score has access to perfect
extrinsic side information on the values of the decoded bits.

4.A Saddlepoint Location

Since the metric qj(b, y) is proportional to Pj(y|b), we have that

E[esΞb
] =

∫ (
1
2
P 1−s

j (y|0)P s
j (y|1) +

1
2
P 1−s

j (y|1)P s
j (y|0)

)
dy. (4.90)

This quantity is symmetric around s = 1
2 , since it remains unchanged

if we replace s by 1 − s. This also shows that the density of the bit
score is independent of the value of the transmitted bit.

The first derivative of κ1(s), κ′1(s) =
E
[
ΞbesΞb

]
E
[
esΞb
] , is zero when

E
[
ΞbesΞb]

= 0. We concentrate on E
[
ΞbesΞb]

, readily computed as∫
1
2

(
Pj(y|0)

(
Pj(y|1)
Pj(y|0)

)s

− Pj(y|1)
(
Pj(y|1)
Pj(y|0)

)s
)

log
Pj(y|1)
Pj(y|0)

dy,

(4.91)

which is zero at ŝ = 1
2 thanks to the symmetry.

The other derivatives, evaluated at the saddlepoint, are given by

κ′′1(ŝ) =
E
[
(Ξb)2eŝΞb]
E
[
eŝΞb

] , κ′′′1 (ŝ) =
E
[
(Ξb)3eŝΞb]
E
[
eŝΞb

] . (4.92)

We thus find that the second derivative is proportional to

1
2

∫ (
Pj(y|0)

(
Pj(y|1)
Pj(y|0)

)s

+ Pj(y|1)
(
Pj(y|1)
Pj(y|0)

)s
)

log2 Pj(y|1)
Pj(y|0)

dy,

(4.93)

which is positive at s = 1
2 . Also, the third derivative is proportional to

1
2

∫ (
Pj(y|0)

(
Pj(y|1)
Pj(y|0)

)s

− Pj(y|1)
(
Pj(y|1)
Pj(y|0)

)s
)

log3 Pj(y|1)
Pj(y|0)

dy,

(4.94)
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which is zero at s = 1
2 , thanks to the symmetry.

4.B Asymptotic Analysis with Nakagami Fading

We wish to compute the limit `v
∆= limsnr→∞

eκv(s)

snr
−mf

, given by

`v = lim
snr→∞

1
snr−mf

 1
2v
(
m
v

)∑
j,b

E
[∏v

i=1 qji(b̄ji , Y )s∏v
i=1 qji(bji , Y )s

] . (4.95)

As done in [74], only the dominant terms need to be kept in the bit
scores qji(·, y), which allows us to rewrite the expression inside the
expectation as

e−
Pv

i=1 s(snr|H|2|X−X′
i|2+2

√
snr Re(H(X−X′

i)Z
∗)), (4.96)

where x′i is the closest symbol (in Euclidean distance) to the transmit-
ted symbol x differing in the i-th bit label.

We now carry out the expectation over Z. Completing squares, and
using that the formula for the density of Gaussian noise, we have that∫

1
π

e−|z|
2
e−

Pv
i=1 s(snr|H|2|X−X′

i|2+2
√

snr Re(H(X−X′
i)z

∗)) dz =

= e−snr|H|2
“
s

Pv
i=1 |X−X′

i|2−s2|Pv
i=1(X−X′

i)|
2

”
. (4.97)

In turn, the expectation over h of this quantity yields [75]1 +

s v∑
i=1

|X −X ′
i|2 − s2

∣∣∣∣∣
v∑

i=1

(X −X ′
i)

∣∣∣∣∣
2
 snr

mf

−mf

. (4.98)

We next turn back to the limit `v. For large snr, we have that

`v =
m

mf

f

2m
(
m
v

)∑
j,b

∑
x∈X j

b

s v∑
i=1

|x− x′i|2 − s2
∣∣∣∣∣

v∑
i=1

(x− x′i)

∣∣∣∣∣
2
−mf

.

(4.99)

For each summand, the optimizing s is readily computed to be

ŝ =
∑v

i=1 |x− x′i|2

2 |
∑v

i=1(x− x′i)|
2 , (4.100)
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which gives

`v =
1

2m
(
m
v

)∑
j,b

∑
x∈X j

b

(
4mf |

∑v
i=1(x− x′i)|

2

(
∑v

i=1 |x− x′i|2)
2

)mf

. (4.101)

In particular, for v = 1, we have

`1 =
1

m2m

∑
j,b

∑
x∈X j

b

(
4mf

|x− x′1|2

)mf

. (4.102)



5

Iterative Decoding

In this Chapter, we study BICM with iterative decoding (BICM-ID).
Inspired by the advent of turbo-codes and iterative decoding [11],
BICM-ID was originally proposed by Li and Ritcey and ten Brink
[64–66,122] in order to improve the performance of BICM by exchang-
ing messages between the demodulator and the decoder of the underly-
ing binary code. As shown in [64–66,122] and illustrated in Figure 5.1,
BICM-ID can provide some performance advantages using convolu-
tional codes combined with mappings different from Gray. With more
powerful codes, the gains are even more pronounced [120,121].

In BICM-ID, a message-passing decoding algorithm [96] is applied
to the factor graph (FG) [62] representing the BICM scheme and the
channel. In particular, we focus our attention on the Belief Propaga-
tion (BP) message-passing algorithm. The BP algorithm often yields
excellent performance, even when it is not optimal, or if optimality
cannot be shown. We describe a numerical analysis technique, known
as density evolution, that is able to characterize the behavior of the
iterative decoder for asymptotically large block length. Since density
evolution is computationally demanding, we focus on a simpler, yet ac-
curate, approximate technique based on extrinsic information transfer

89
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Fig. 5.1 Bit error rate for BICM-ID in the AWGN channel with the (5, 7)8 convolutional
code, 16-QAM with set partitioning mapping, for n = 20000. Curve labels denote the
iteration number. Upper curve corresponds to iteration 1, decreasing down to iteration 5.
In dashed line, results for Gray mapping.

(EXIT) charts [116, 117, 119]. This technique is particularly useful for
the optimization of BICM-ID schemes.

We also discuss the so-called area theorem that yields a condition
(within the limits of the EXIT approximation) for which a BICM-ID
scheme can approach the corresponding coded modulation capacity.
Due to the shape of the EXIT curves and despite the good performance
shown in Figure 5.1, standard convolutional codes with BICM-ID can-
not achieve vanishing error probability as the block length increases. We
particularize the area theorem to a number of improved constructions
based on LDPC and RA codes and illustrate the impact of the design
parameters (degree distributions). We will finally show how to design
capacity-approaching BICM schemes using curve fitting. Simulations
show that EXIT analysis is highly accurate.
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5.1 Factor Graph Representation and Belief Propagation

In this section, we present the FG representation of BICM. In general,
consider a coding problem where the information message m is repre-
sented in binary form, as a block of K information bits m1, . . . ,mK .
The message is mapped by the encoding function φ onto a codeword
x. Let y denote the channel output. The optimal decoding rule that
minimizes the bit-error probability Pb is the bit-wise MAP rule

m̂i = arg max
b∈{0,1}

Pr{mi = b|y}. (5.1)

We compute this marginal a posteriori probability (APP) Pr{mi = b|y}
starting with the joint APP of all information bits Pr{m|y}, given by

Pr{m|y} =
∑

x∈XN

PY ,X,M(y,x,m)
PY (y)

=
∑

x∈XN

[φ(m) = x]
∏N

k=1 PY |X(yk|xk)
|M| PY (y)

(5.2)

where

[A] =

{
1 if A is true

0 otherwise

denotes the indicator function of the condition A. Since the denomina-
tor is common to all information messages, the marginal APP for the
i-th information bit is given by

Pr{mi = b|y} =
∑
∼mi

Pr{m|y}|mi=b (5.3)

where
∑

∼mi
indicates the summary operator [62] that sums the argu-

ment over the ranges of all variables, with the exception of the variable
mi, which is held to a fixed value. The marginalization (5.3) of the joint
APP is a formidable task, since it requires summing over 2K−1 terms.
For practical values of K this is typically infeasible, unless the problem
has some special structure that can be exploited.

Factor graphs are a general tool to represent a complicated multi-
variate function when this splits into the product of simpler local fac-
tors, each one of which contains only a subset of the variables. Given a
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factorization, the corresponding Factor Graph (FG) is a bipartite graph
with two sets of nodes, the variable nodes V and the function nodes
F . The set of edges E in the FG contains all edges (ϑ, f) for which
the variable ϑ ∈ V is an argument of the factor (function) f ∈ F [62].
We use circles and squares in order to represent variable and function
nodes in the FGs, respectively. As an example, Figure 5.2 shows the
FG of a BICM scheme of rate R = 1, using a rate-1/3 binary convolu-
tional code and an 8-ary modulation (m = 3). On the right side of the
FG we see the convolutional structure of the binary code, with boxes
representing the encoder state equation, black circles representing the
encoder state variables, and white circles representing the encoder in-
put and output variables. On the left, we notice the modulator part,
where white boxes represent the modulation mapping µ (from binary
labels to signal points), taking labels of three bits each and producing
the corresponding signal point. In between, separating the code and
the modulator, we have an interleaver, i. e. a permutation of the coded
bits on the right-hand side to the label bits on the left-hand side. These
connections are included into a big box for the sake of clarity.

A general method for computing or approximating the marginal
APPs consists of applying the BP algorithm to a FG corresponding to
the joint APP. If the FG is a tree, then BP computes the marginal APP
exactly [62]. If the FG contains loops, then the BP algorithm becomes
iterative in nature, and gives rise to a variety of iterative decoding algo-
rithms. These algorithms are distinguished by the underlying FG used
for decoding, by the scheduling of the local computation at the nodes,
and by the approximations used in the computations, that sometimes
are necessary in order to obtain low complexity algorithms. Generally
speaking, the BP algorithm is a message passing algorithm that propa-
gates messages between adjacent nodes in the FG. For any given node,
the message output on a certain edge is a function of all the messages
received on all other edges.

The BP general computation rules are given as follows [62]. Consider
a variable node ϑ, connected to function nodes {f ∈ N (ϑ)}, where
N (ϑ) denotes the set of neighbors of node ϑ in the FG. The variable-
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Fig. 5.2 Factor graph representation of a BICM scheme of rate R = 1. In this case, C is a
binary convolutional code of rate r = 1

3
and m = 3, i. e., 8-PSK or 8-QAM.

to-function message from ϑ to f ∈ N (ϑ) is given by

νϑ→f =
∏

g∈N (ϑ)
g 6=f

νg→v. (5.4)

Messages are functions of the variable node they come from or are sent
to, i. e., both νf→ϑ and νϑ→f are functions of the single variable ϑ.
Consider a function node f , connected to variable nodes {ϑ ∈ N (f)},
where N (f) denotes the set of neighbors of node f in the FG. The
function-to-variable message from f to ϑ ∈ N (f) is given by

νf→ϑ =
∑
∼ϑ

f({η ∈ N (f)})
∏

η∈N (f)
η 6=ϑ

νη→f . (5.5)

where
∑

∼ϑ indicates summation of the argument inside over the ranges
of all variables, with the exception of ϑ.
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We particularize the general BP computation rules at the nodes
to the FG of a BICM scheme as shown in Figure 5.2. In this case,
the code part of the FG is standard, and depending on the structure
of the code, the BP computation can be performed with well-known
methods. For example, if the code is convolutional, we can use the
optimal forward backward (or BCJR) algorithm [7]. We treat in more
detail the computation at the modulator mapping nodes, referred to in
the following as demapper nodes1.

For the FG of the joint APP given in (5.2), all messages are marginal
probabilities, or proportional to marginal probabilities. With some
abuse of notation, let Prdec→dem{bj(x) = b} denote the probability
that the j-th label bit of a symbol x is equal to b ∈ {0, 1}, accord-
ing to the message probability sent by the decoder to the demapper.
Similarly, let Prdem→dec{bj(x) = b} denote the corresponding probabil-
ity according to the message probability sent by the demapper to the
decoder. A straightforward application of (5.5) in this context yields

Prdem→dec{bj(xk) = b} =
∑

x′∈X j
b

PY |X(yk |x′)
m∏

j′=1
j′ 6=j

Prdec→dem{bj′(x′)}

(5.6)
An equivalent formulation of the BP, which is sometimes more con-

venient, uses log-ratios instead of probabilities. In some cases, these
can be log-likelihood ratios (LLRs). In this case, the LLRs propagated
by the BP are the bit scores defined in the previous Chapter. For the
j-th bit of the label of the k-th symbol, from (5.6), we define

Ξdem→dec
m(k−1)+j = log

qj
(
bj(xk) = 1, yk

)
qj
(
bj(xk) = 0, yk

) (5.7)

= log

∑
x′∈X j

1
PY |X(yk|x′)

∏m
j′=1
j′ 6=j

Prdec→dem
{
bj′(x′)

}
∑

x′∈X j
0
PY |X(yk|x′)

∏m
j′=1
j′ 6=j

Prdec→dem
{
bj′(x′)

} (5.8)

This corresponds to the message from the demapper function node k
to the code binary variable node i = m(k − 1) + j. In this Chapter we

1 Demapping indicates the fact that these nodes undo, in a probabilistic soft-output sense,
the mapping µ from the label bits to the modulation symbol.
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Fig. 5.3 Block diagram of BICM-ID.

will consider the analysis of BICM-ID using an infinite interleaver. We
hence drop the superscript b in the bit scores to simplify the notation.
Instead, we have added a superscript to indicate the direction of the
message, i. e., from demapper to decoder or from decoder to demapper.
We denote the vector of bit scores by

Ξdem→dec ∆= (Ξdem→dec
1 , . . . ,Ξdem→dec

n ) (5.9)

and the vector of all bit scores but the i-th by

Ξdem→dec
∼i

∆= (Ξdem→dec
1 , . . . ,Ξdem→dec

i−1 ,Ξdem→dec
i+1 , . . . ,Ξdem→dec

n ).
(5.10)

We further denote the a priori log-messages as

Ξdec→dem
m(k−1)+j = log

Prdec→dem
{
bj(xk) = 1

}
Prdec→dem

{
bj(xk) = 0

} . (5.11)

Similarly, we define the vectors

Ξdec→dem ∆= (Ξdec→dem
1 , . . . ,Ξdec→dem

n ) (5.12)

and the vector of all log a priori messages but the i-th by

Ξdec→dem
∼i

∆= (Ξdec→dem
1 , . . . ,Ξdec→dem

i−1 ,Ξdec→dem
i+1 , . . . ,Ξdec→dem

n ).
(5.13)

Figure 5.3 shows the block diagram of the basic BICM-ID decoder.

5.2 Density Evolution

In this section, we discuss a method to characterize the asymptotic
performance of BICM in the limit of large interleaver size. This method,
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named density evolution, describes how the densities of the messages
passed along the graph evolve through the iterations.

In particular, we consider a random ensemble of BICM schemes
defined by a random interleaver πn, generated with uniform probabil-
ity over the set of permutations of n elements, and a random binary
scrambling sequence d ∈ {0, 1}n generated i.i.d. with uniform prob-
ability. The random interleaver and the random scrambling sequence
were respectively introduced in Sections 4.3 and 4.4, and in Sections 4.1
and 4.4. As already mentioned in Section 4.1, these elements used to
symmetrize the system with respect to the transmitted codewords. In
order to transmit a binary codeword c ∈ C, the BICM encoder produces
c⊕d, interleaves the result and maps the interleaved scrambled binary
codeword over a sequence of modulation symbols. The receiver knows
d, such that the modulo-2 scrambling can be undone at the receiver.

Let us denote the coded bit error probability at iteration ` when
interleaver πn and scrambling sequence d are used by P (`)

c (πn,d). We
wish to compute the averaged coded bit error probability P̄c at iteration
`, given by

P̄ (`)
c

∆=
∑
πn,d

P (πn)P (d)P (`)
c (πn,d), (5.14)

where P (πn) and P (d) respectively denote the probabilities of the in-
terleaver and the scrambling sequence.

For given interleaver and scrambling sequence, the message vec-
tors Ξdem→dec and Ξdec→dem are random vectors, function of the chan-
nel noise and fading and of the transmitted information message. The
BICM-ID decoder behavior can be characterized by studying the joint
probability density of Ξdem→dec (or, equivalently, of Ξdec→dem) as a
function of the decoder iterations. This can be a highly complicated
task due to n being large and to the statistical dependence between the
messages passed along the FG. Moreover, the joint probability density
of the message vector at a given iteration is a function of the (random)
interleaver and of the (random) scrambling sequence. Fortunately, a
powerful set of rather general results come to rescue [22, 60, 96, 97].
As we will state more precisely later, the marginal probability density
of a message sent over a randomly chosen edge in the FG converges
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almost surely to a deterministic probability density that depends on
the BICM ensemble parameters for large block lengths, provided that
the FG is sufficiently local (e.g., the maximum degree of each node is
bounded). The proof of this concentration result for BICM-ID closely
follows the footsteps of analogous proofs for LDPC codes over BIOS
channels [96, 97], for LDPC codes over binary-input ISI channels [60],
and for linear codes in multiple access Gaussian channels [22].

By way of illustration, consider a BICM ensemble based on the
concatenation of a binary convolutional code with a modulation signal
set through an interleaver, whose FG is shown in Figure 5.2. We focus
on a randomly chosen coded symbol ci. Also, we let i = m(k−1)+j such
that the coded symbol i corresponds to the k-th modulation symbol,
in label position j. We wish to compute the limiting density of the
message Ξdem→dec

i , from the demapper node µk to the variable node ci,
at the `-th iteration.

We define the oriented neighborhood N `(µk → ci) of depth 2` as
the subgraph formed by all paths of length 2` starting at node µk and
not containing the edge (µk → ci). As done in [22, 60], we decode the
convolutional code using a windowed BCJR algorithm. This algorithm
produces the extrinsic information output for symbol ci by operating
over a trellis finite window centered around the symbol position i. The
trellis states at the window edges are assumed to be uniformly dis-
tributed. It is well-known that if the window size is much larger than
the code constraint length, then the windowed BCJR approaches the
exact (optimal) BCJR algorithm that operates over the whole trellis.
Figure 5.4 shows an example of oriented neighborhood of depth 4.

In general, the neighbourhood N `(µk → ci) has cycles, or loops, by
which we mean that some node of the FG appears more than once in
N `(µk → ci). As n → ∞, however, one can show that the probability
that the neighborhood N `(µk → ci) is cycle-free for finite ` can be
made arbitrarily close to 1. Averaged over all possible interleavers, the
probability that the neighborhood has cycles is bounded as [22,60]

Pr
{
N `(µk → ci) has cycles

}
≤ α

n
, (5.15)

as n→∞ and for some positive α independent of n. The key element
in the proof is the locality of the FG, both for the code and for the
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Fig. 5.4 An instance of the oriented neighborhood N 2(µ5 → c1) of depth 4 with a trellis
window of size 1 for m = 3.

modulator. Notice that this result is reminiscent of Eq. (4.61) in Chap-
ter 4, which concerned the probability that d bits randomly distributed
over n bits belong to different modulation symbols.

Furthermore, we have then the following concentration theorem [22,
60,96,97]:

Theorem 5.1. Let Z(`)(c, πn,d) denote the number of coded bits in
error at the `-th iteration, for an arbitrary choice of codeword c, in-
terleaver πn, and scrambling sequence d. For arbitrarily small ε > 0,
there exists a positive number β such that

Pr

{∣∣∣∣∣Z(`)(c, πn,d)
n

− P̄ (`)
c

∣∣∣∣∣ ≥ ε
}
≤ e−βε2n. (5.16)

Therefore, for large n, the performance of a given instance of codeword,
interleaver, and scrambling sequence, is close to the average error prob-
ability P̄ (`)

c of a randomly chosen bit.
Under the cycle-free assumption, all messages propagated along the

edges of N `(µk → ci) are statistically independent. Finally, note that
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Fig. 5.5 Density evolution of messages Ξdem→dec and Ξdec→dem with the (5, 7)8 convolu-

tional code with 16-QAM and Gray mapping at Eb
N0

= 3.5 dB. Solid lines correspond to the
first iteration; dashed lines correspond to iteration 5.

the coded bit error probability is simply the tail probability of the
message Ξdec→dem

i , from the variable node ci to the demapper node
µk

2. Density evolution tracks precisely the density of this message.
Note also that by construction, the message Ξdem→dec

i is the the bit
score Ξb introduced in Chapter 4.

A detailed DE algorithm, for arbitrary modulation constellation
and labeling, arbitrary (memoryless stationary) channel and arbitrary
binary convolutional code, can be found in Appendix 5.A.

Figures 5.5 and 5.6 illustrate the density evolution method for the
(5, 7)8 convolutional code, 16-QAM with Gray and set-partitioning
mapping, respectively. Note that the Eb

N0
= 3.5 dB is above the water-

fall, which from Figure 5.1 occurs at approximately Eb
N0

= 3 dB. Figure
5.5 shows that the positive tail of the message densities does not change
much with the iterations, resulting in a nearly equal error probability.
On the other hand, Figure 5.6, illustrates the improvement achieved
with iterative decoding, which reduces the tail of the distribution. No-
tice, however, that there is an irreducible tail, which results in an error

2 This probability corresponds to decisions based on extrinsic information. Usually, decisions
are based on APP information for which the corresponding error probability is given by
the tail of the APP message Ξdec→dem

i + Ξdem→dec
i .
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Fig. 5.6 Density evolution of messages Ξdem→dec and Ξdec→dem with the (5, 7)8 convo-

lutional code with 16-QAM and set-partitioning mapping at Eb
N0

= 3.5 dB. Solid lines
correspond to iterations 1, 10 and 20; dashed lines correspond to iterations 2, 3, 4 and 5.

floor. As opposed to turbo-like and LDPC codes, this error floor occurs
even for infinite interleaving. As shown in [30], this floor matches the
performance with perfect side information on the transmitted bits. The
results match with the error probability simulations shown in Figure
5.1. Note that the densities would not evolve significantly through the
iterations if Eb

N0
< 3 dB.

5.3 EXIT Charts

In the previous section, we have described density evolution as a
method that characterizes the message-passing process exactly in the
limit for infinite interleavers. Density evolution is computationally de-
manding, since the whole density of the messages needs to be tracked.
Unfortunately, density evolution does not yield simple criteria to op-
timize the BICM-ID scheme. However, there are a number of one-
dimensional approximate methods that only track one parameter of
the density. These methods are simpler to compute and yield good and
accurate criteria to design efficient BICM-ID schemes. Among the pos-
sible one-dimensional parameters, the mutual information functional
yields accurate approximations as well as analytical insight into the
design of iteratively decodable systems [6,129].
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Extrinsic information transfer (EXIT) charts are a tool for pre-
dicting the behavior of iterative detection and decoding systems like
BICM-ID, and where first proposed by ten Brink in [116, 117, 119].
EXIT charts are a convenient and accurate single-parameter approxi-
mation of density evolution that plots the mutual information between
bits and their corresponding messages in the iterative decoder. In par-
ticular, let

x
∆=

1
n

n∑
k=1

I(Ck; Ξdec→dem
k ), (5.17)

y
∆=

1
n

n∑
k=1

I(Ck; Ξdem→dec
k ) (5.18)

respectively denote the average mutual information between the coded
bits Ck, k = 1, . . . , n, and the decoder-to-demapper messages Ξdec→dem

k

and the demapper-to-decoder messages Ξdem→dec
k . Note that x and y

respectively correspond to the extrinsic informations at the decoder
(demapper) output (input) and input (output). EXIT charts represent
the extrinsic information as a function of a priori information,

y = exitdem(x), (5.19)

x = exitdec(y), (5.20)

and thus represent the transfer of extrinsic information in the demapper
and decoder blocks. Since we deal with binary variables, the EXIT
charts are represented in the axis [0, 1]×[0, 1]. The fixed point of BICM-
ID, where further decoding iterations do not improve the performance,
is the leftmost intersection of the EXIT curves.

EXIT-chart analysis is based on the simplifying assumption that the
a priori information, i. e., x for y = exitdem(x) and y for x = exitdec(y),
comes from an independent extrinsic channel. Figures 5.7(a) and 5.7(b)
show the EXIT decoding model and extrinsic channels for a priori in-
formation for the demapper and decoder blocks, respectively.

In the original EXIT charts proposed by ten Brink [116, 117, 119],
the extrinsic channel was modeled as a binary-input AWGN channel
with an equivalent SNR given by

snrdem
ap = C−1

bpsk(x) (5.21)
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Fig. 5.7 Extrinsic channel models in BICM-ID.

for the demapper EXIT chart, and

snrdec
ap = C−1

bpsk(y) (5.22)

for the decoder EXIT chart, where Cbpsk(snr) is the capacity curve for
BPSK modulation over the AWGN channel. In this model, the a priori
messages are modeled as normal distributed. In practice, the AWGN
model for the extrinsic channel predicts the convergence behavior of
BICM-ID accurately, although not exactly, since the real messages ex-
changed in the iterative process are not Gaussian. Another particu-
larly interesting type of extrinsic channel is the binary erasure channel
(BEC), for which the EXIT chart analysis is exact.

Different mappings might behave differently in BICM-ID [117]. This
is shown in Figure 5.8(a), where we show the EXIT curves for Gray,
set-partitioning and the optimized maximum squared Euclidean weight
(MSEW) [113] for 16-QAM. In particular, Gray mapping has an almost
flat curve. This implies that not much will be gained through iterations,
since as the input extrinsic information x increases, the output extrinsic
information y virtually stays the same, i. e., when decoding a given la-
bel position, the knowledge of the other positions of the label does not
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Fig. 5.8 (a) EXIT curves for Gray, set partitioning and MSEW are shown at snr = 6 dB
with an AWGN (solid) and a BEC (dashed) extrinsic channel. (b) Exit curves for 4 and 64
states convolutional codes with an AWGN (solid) and a BEC (dashed) extrinsic channel.

help. Instead, set partitioning and MSEW show better EXIT curves.
An important observation is that even with perfect extrinsic side in-
formation (see the point x = 1 in the Figure), the mappings cannot
perfectly recover the bit for which the message is being computed, i.
e., these mappings cannot reach the (x, y) = (1, 1) point in the EXIT
chart. Notice that the AWGN and BEC EXIT curves are close to each
other. Figure 5.8(b) shows the EXIT curves for 4- and 64-state convolu-
tional codes; the more powerful the code becomes, the flatter its EXIT
curve. The differences between BEC and AWGN extrinsic information
are slightly more significant in this case.

Figures 5.9(a) and 5.9(b) show the EXIT chart of a BICM-ID
scheme with a convolutional code, 16-QAM with set partitioning map-
ping, and with AWGN and BEC extrinsic channels respectively. We
also show the simulated trajectory of the information exchange be-
tween demapper and decoder through the iterations as well as the fixed
point (circle). The trajectory matches well the predictions made by the
AWGN EXIT analysis, while it is not as accurate with the BEC EXIT,
which predicts a fixed point not achieved in reality. Note that this
matches with the results of Figure 5.1, where a waterfall is observed at
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Fig. 5.9 EXIT chart and simulated trajectory for BICM-ID with the (5, 7)8 convolutional
code with 16-QAM with set partitioning mapping with snr = 6 dB, and AWGN (a) and BEC
(b) extrinsic information. The normalized BICM capacity 1

m
Cbicm
X is plotted for reference.

Dashed lines correspond to the EXIT curve of the demapper, solid lines correspond to the
EXIT curve of the decoder while circles denote the fixed point.

Eb
N0
≈ 3 dB (snr ≈ 6 dB). This waterfall corresponds to the tunnel of the

EXIT chart being open with a fixed point close to (1, y) point. The iter-
ative process starts at the normalized BICM capacity 1

mCbicm
X and stalls

when approaching the fixed point. Since the mapping cannot reach the
(x, y) = (1, 1) point in the EXIT chart, the iterative decoder will not
converge to vanishing error probability. Although it can significantly
improve the performance, it will therefore not have a threshold [96].
The underlying reason is that the demodulator treats the bits as if
they were uncoded. Figure 5.1 confirms the above discussion, namely
a threshold behavior at low snr together with an irreducible error floor
at large snr.

5.4 The Area Theorem

As discovered by Ashikhmin et al. EXIT charts exhibit a fundamental
property when the extrinsic channel is a BEC [6]: the area under the
EXIT curve with a BEC extrinsic channel is related to the rate of the
iterative decoding element we are plotting the EXIT chart of. Consider
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Fig. 5.10 General decoding model for a given component of the iterative decoding process.

the general decoding model for a given component shown in Figure 5.10
[6], where Ξa and Ξext denote the a priori and extrinsic messages,
respectively. The input of the extrinsic channel is denoted by v =
(v1, . . . , vn), and its associated random vector is denoted by V . Then,

Theorem 5.2 ( [6]). The area under the EXIT curve y(x) of the de-
coding model described in Figure 5.10 with a BEC extrinsic channel
satisfies

A =
∫ 1

0
y(x)dx = 1− 1

n
H(V |Y ) (5.23)

where H(V |Y ) denotes the conditional entropy of the random vector
V given Y .

Figure 5.10 encompasses the decoding models shown in Fig-
ures 5.7(a) and 5.7(b) for the demapper and decoder of BICM-ID,
respectively. In particular, we recover the decoding model of the de-
coder shown in Figure 5.7(b) by having no communication channel
and letting v = x, Ξa = Ξdem→dec and Ξext = Ξdec→dem. Applying
Theorem 5.2 to the decoder extrinsic model yields the following result.

Corollary 5.1 ( [6]). Consider the EXIT curve of the decoder of the bi-
nary code C of length n and rate r in a BICM-ID scheme, x = exitdec(y).
Then, ∫ 1

0
x(y)dy = 1− r (5.24)
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and

Adec =
∫ 1

0
y(x)dx = r. (5.25)

An example of the above result with the (5, 7)8 convolutional code is
shown in Figure 5.11 (left). From Figure 5.10, we also recover the decod-
ing model of the demapper shown in Figure 5.7(a) by letting Encoder
2 be equal to Encoder 1, v = x, Ξa = Ξdec→dem and Ξext = Ξdem→dec.
Applying Theorem 5.2 to the demapper case yields the following result.

Corollary 5.2. Consider the EXIT curve of the demapper in a BICM-
ID scheme, y = exitdem(x). Then,

Adem =
∫ 1

0
y(x)dx =

1
m

Ccm
X . (5.26)

Proof. From Figure 5.7(a), since the encoder is a one-to-one mapping,
we can replace V by X to obtain that [6, p. 2662]

Adem =
∫ 1

0
y(x)dx (5.27)

= 1− 1
n
H(X|Y ) (5.28)

=
1
m

(
m− 1

N
H(X|Y )

)
(5.29)

=
1
m

Ccm
X . (5.30)

An example of the above result with a set partitioning demapper in
the AWGN channel is shown in Figure 5.11 (right).

5.4.1 Code Design Considerations

The practical significance of the area theorem lies in the following ob-
servation. As mentioned earlier, as long as the demapper EXIT curve
is above the code EXIT curve, i. e.,

exitdem(x) > exit−1
dec(x), (5.31)
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Fig. 5.11 Area theorem for the convolutional code (5, 7)8 (left) and for a set partitioning
demapper in an AWGN channel with snr = 6 dB (right).

the decoder improves its performance with iterations eventually yield-
ing vanishing error probability. This implies that as long as Adem >

Adec BICM-ID will improve its performance with iterations. Combin-
ing the results of Corollaries 5.1 and 5.2 we see that this happens if

Ccm
X > rm = R. (5.32)

which is a satisfying result. Furthermore, this result suggests that any
area gap between the two EXIT curves translates in a rate loss with
respect to the capacity Ccm

X [6]. The implications for code design are
clear: one should design codes and mappers so that the EXIT curve
of the code matches (fits) with that of the demapper. This matching
condition was illustrated in [82,83,96] for binary LDPC codes.

For the demapper EXIT curve, it is not difficult to show that

exitdem(x = 1) < 1 (5.33)

for any binary labeling µ and finite snr. As discussed earlier, this implies
that, even with perfect extrinsic side information the demapper is not
able to correctly infer the value of the bit i. e., the demapper EXIT
curve cannot reach the point (1, 1). This is due to the fact that the
demapper treats the bits as if they were uncoded. As (1, 1) cannot be a



108 Iterative Decoding

fixed point, the demapper and code curves will cross at some point and
there is no threshold effect. Also, since the area is fixed, the higher the
point (1, y) is, the lower the point (0, y), i. e., BICM capacity Cbicm

X .

5.5 Improved Schemes

In this section, we discuss some BICM-ID schemes whose demapper
EXIT curve does not treat the bits as uncoded. In particular, we con-
sider LDPC and RA-based constructions and show that significant
gains can be achieved. These constructions use in one way or another
coded mappers, i. e., mappers with memory. The underlying memory
in the mapping will show to be the key to achieve the (1, 1) point. The
following result lies at the heart of improved constructions.

Proposition 5.1 (Mixing property, [6, 120,128]). Suppose that en-
coder 1 in Figure 5.10 consists of the direct product of multiple codes,
i. e., C = C1 × . . .× Cdmax each of length ni, i. e.,

∑dmax
i=1 ni = n. Then,

y(x) =
dmax∑
i=1

ni

n
yi(x) (5.34)

where yi(x) is the EXIT curve of code Ci.

The EXIT curve of a code mixture is the sum of the individual EXIT
curves, appropriately weighted by the length fractions corresponding to
each code. The above result is usually employed to design irregular code
constructions by optimizing the code parameters [96,100,120,121,128].

5.5.1 Standard concatenated codes with BICM-ID

A possibility to improve over the above BICM-ID is to use a powerful
binary code like a turbo code or an LDPC code. The corresponding
block diagram for this scheme is shown in Figure 5.12. The decoding
of this scheme involves message passing between the mapper and inner
code, as well as between the inner and outer codes. This typically results
in 3-dimensional EXIT charts and multiple scheduling algorithms, i. e.,
how decoding iterations of each type are scheduled [25,27,55]. Hence the
design of such schemes based on curve fitting is potentially complicated.
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Fig. 5.12 Block diagram of concatenated codes with BICM-ID.

Although suboptimal, another way of looking at the problem consid-
ers a scheduling that allows the decoder of the powerful code to perform
as many iterations as required, followed by a demapping iteration. In
this case the EXIT curve of the code becomes a step function [111]
and hence, due to the shape of the demapper EXIT curve (see e.g. Fig-
ure 5.9), the BICM-ID scheme would yield vanishing error probability
as long as R < exitdem(x = 0) = Cbicm

X , i. e., the leftmost point of the
demapper EXIT curve.

Since the largest Cbicm
X is achieved for Gray mapping, it seems nat-

ural to design powerful binary codes for Gray mapping. As Gray map-
ping does not improve much its EXIT transfer characteristics through
iterations, we could simplify the scheme —and reduce the decoding
complexity— by not performing iterations at the demapper, e. g. the
BICM decoding described in Chapter 3. This construction can be ad-
vantageous for high rates, where the BICM capacity is close to the
coded modulation capacity. The FG is shown in Figure 5.13.

Our next example is a binary irregular RA codes [58, 100] with
grouping factor a, for which a single-parity-check code of rate a is in-
troduced before the accumulator. In Figure 5.14 we show the results
for grouping factor a = 2, no demapping iterations, and 16-QAM with
Gray mapping. A number of optimization methods are possible and
we here use standard linear programming [100, 120, 121, 127]. Since no
iterations are performed at the demapper, the observation messages
correspond the classical BICM decoder, without extrinsic side infor-
mation. Observe that the simulated error probability in Figure 5.15
(N = 125000 and 100 decoding iterations) matches well the EXIT
analysis predictions, especially the threshold, which the EXIT analysis



110 Iterative Decoding

In
te
rl
e
a
v
e
r

Demapper

nodes

y1

yN

variable

bit nodes
.

.

.

y2

A
c
c
u
m
u
la
to
r

w
it
h
 g
ro
u
p
in
g

.

.

.

R
e
p
e
ti
ti
o
n
 C
o
d
e

In
te
rl
e
a
v
e
r

Fig. 5.13 Regular rate rrep = 1
3

RA BICM-ID factor graph with regular grouping with
factor a = 2 and m = 3. The overall transmission rate is R = 2.

locates at 0.2157 dB from the BICM capacity.

5.5.2 LDPC BICM-ID

Let us first consider the concatenation of an LDPC code with the binary
labeling. The FG of this construction is shown in Figure 5.16 for a
regular (3, 6) LDPC code. In general, we consider irregular ensembles
with left and right degree distributions respectively given by [96]

λ(z) =
∑

i

λiz
i−1 and ρ(z) =

∑
i

ρiz
i−1, (5.35)

where λi (resp. ρi) is the fraction of edges in the LDPC graph connected
to variable (resp. check) nodes of degree i. With this notation, the
average variable and check node degrees are given by

d̄v
∆=

1∫ 1
0 λ(z)dz

and d̄c
∆=

1∫ 1
0 ρ(z)dz

, (5.36)
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Fig. 5.14 EXIT chart fit with an irregular RA code a with BEC (upper left) and AWGN
(upper right) extrinsic channel, for 16-QAM with Gray mapping in the AWGN channel
with snr = 6 dB using a = 2. Binary accumulator; no iterations at the demapper. In dashed
lines the accumulator-demapper curve; in solid lines the irregular repetition code. Codes
are at 0.2157 dB from the BICM capacity.
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Fig. 5.16 Regular (3, 6) LDPC BICM-ID factor graph with m = 3.

respectively. The design rate of this LDPC code ensemble is thus

r = 1− d̄v

d̄c
, (5.37)

and the overall rate of the construction is R = mr. The interest of this
improved BICM-ID construction is the lack of interleaver between the
LDPC and the mapping. The decoding algorithm decodes the variable
node bits from the LDPC directly and passes the messages along to
the check node decoder [121]. The corresponding EXIT area result for
this construction is given in the following.

Corollary 5.3 ( [6]). Consider the joint EXIT curve of the demapper
and LDPC variable nodes y = exitldpc

dem,v(x) in a BICM-ID scheme with
an LDPC code with left and right edge degree distributions given by



5.5. Improved Schemes 113

λ(z) and ρ(z), respectively. Then

Aldpc
dem,v = 1− d̄v

(
1− 1

m
Ccm
X

)
. (5.38)

Furthermore, the area under the check node decoder EXIT curve x =
exitldpc

dec,c(y) is given by ∫ 1

0
x(y)dy =

1
d̄c
. (5.39)

Then we have that

Aldpc
dec,c =

∫ 1

0
y(x)dx = 1− 1

d̄c
. (5.40)

Since we need that the areas Aldpc
dem,v > Aldpc

dec,c to ensure convergence
to vanishing error probability, the above result implies that

Ccm
X > m

(
1− d̄v

d̄c

)
= mr = R (5.41)

where r denotes here the design rate of the LDPC code. That is, again
we recover a matching condition, namely, that the overall design spec-
tral efficiency should be less than the channel capacity.

Bennatan and Burshtein [10] proposed a similar construction based
on non-binary LDPC codes, where the variable nodes belong to FM , fol-
lowed by a mapping over a signal constellation of size M . The messages
passed along the edges of the graph correspond to M -ary variables. The
random coset technique described in Section 4.1 enabled them to con-
sider i.i.d. messages and define density evolution and EXIT charts.

5.5.3 RA BICM-ID

Similarly to the LDPC BICM-ID construction, we can design an im-
proved BICM-ID scheme based on RA codes [93,120,127]. In particular,
we consider the accumulator shown in Figure 5.17 of rate m

m . In order to
design a more powerful code, we incorporate grouping, i. e., introduce
a check node of degree a before the accumulator. As an outer code, we
consider irregular repetition code. We use the same notation to refer
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to the degree distributions of the code: λ(z) denotes the edge degree
distribution of the irregular repetition code while ρ(z) denotes the edge
degree distribution of the accumulators with grouping. Let also

d̄rep
∆=

1∫ 1
0 λ(z)dz

and d̄acc
∆=

1∫ 1
0 ρ(z)dz

, (5.42)

denote the average degrees of the repetition code and accumulator, re-
spectively. The rate of the outer repetition code is rrep = d̄rep. The rate
of the accumulator is racc = md̄acc. The overall rate of the construction
is hence R = md̄rep d̄acc. The overall FG is shown in Figure 5.18 for a
regular repetition code and regular grouping.

Figure 5.19 shows the EXIT curves for the accumulator in Fig-
ure 5.17 with 8-PSK and various grouping factors. The curves not only
reach the (1, 1) point, but also start at the point (0, 0) when a > 1, and
iterative decoding would not start. In order to overcome this problem,
we can introduce a small fraction of bits of degree one [120] or use code
doping [118], i. e., introduce a small fraction of pilot bits known to the
receiver.

Following [6, Example 26], we have the following area property.
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Fig. 5.18 Regular rate rrep = 1
3

RA BICM-ID factor graph with regular grouping with
factor a = 2 and m = 3. The overall transmission rate is R = 2.

Corollary 5.4 ( [6]). Consider the EXIT curve y = exitradem,acc(x) of the
accumulator shown in Figure 5.17 combined with irregular grouping
with edge degree distribution ρ(z). Then

Ara
dem,acc =

1
md̄acc

Ccm
X . (5.43)

Furthermore, the area under the EXIT curve of the outer irregular
repetition code with edge degree distribution λ(z) is given by

Ara
dec,rep = d̄rep. (5.44)

Since we again require the areas Ara
dem,acc > Ara

dec,rep to ensure con-
vergence to vanishing error probability, we have the matching condition

Ccm
X > m d̄accd̄rep = R. (5.45)
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Fig. 5.19 EXIT curves for repetition codes with repetition factors 2, 3, 4, 15 (left) and the
accumulator shown in Figure 5.17 with 8-PSK and grouping factors 1, 2, 3 (right). Solid and
dashed lines correspond to AWGN and BEC extrinsic channels, respectively.

We now show a design example of RA-BICM-ID with 8-PSK. For
simplicity, we consider regular grouping with a = 2, although irregular
grouping would lead to improved codes with a better threshold. We use
a curve-fitting approach to optimize the irregular code distribution and
match it to that corresponding to the accumulator. As in Section 5.5.1,
we optimize the design by using standard linear programming. Fig-
ure 5.20 shows the results of the curve fitting design at snr = 6 dB,
which is close to the capacity for a transmission rate R = 2. Results
with AWGN and BEC extrinsic channels are shown. The rate of the
overall schemes with a BEC extrinsic channel is R = 1.98 while for
AWGN is R = 1.9758, which are respectively at 0.34 dB and 0.36 dB
from capacity. The corresponding error probability simulation is shown
in Figure 5.21. As we observe, the error probability matches well the
EXIT predictions. Also, the code designed with a BEC extrinsic chan-
nel is 0.1 dB away from that designed for the AWGN channel. Hence,
using the BEC as a design channel yields good codes in a similar way
to [92] for LDPC codes.
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Fig. 5.20 EXIT chart fit with an irregular RA code a with BEC (left) and AWGN (right)
extrinsic channel, for 8-PSK with Gray mapping in the AWGN channel with snr = 6 dB.
Grouping factor a = 2 and non-binary accumulator from Figure 5.17. In dashed lines the
accumulator-demapper curve; in solid lines the irregular repetition code.
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Fig. 5.21 Error probability for optimal AWGN code with N = 100000 and 100 decod-
ing iterations. In solid and dashed vertical lines the coded modulation capacity and code
threshold, respectively; actual simulation in dotted line with diamonds.



118 Iterative Decoding

5.6 Concluding Remarks and Related Work

In this Chapter, we have reviewed iterative decoding of BICM. In par-
ticular, we have studied the properties of BICM-ID when the interleaver
length is large. In this case, we have shown that the corresponding
analysis tool to characterize the error probability of BICM-ID is den-
sity evolution, i. e., the characterization of how the density of the bit
scores evolve through the iterations. A more compact and graphical,
yet not exact, method for understanding the behavior of BICM-ID is
EXIT chart analysis. A particularly interesting property of EXIT chart
analysis is the area theorem for BEC extrinsic side information, which
relates the area under the EXIT curve of a given component to the its
rate. We have shown how to particularize this property to BICM-ID,
and we have illustrated how the area property leads to the efficient
design of capacity-approaching BICM-ID schemes. The optimized RA-
BICM-ID codes could be further improved by introducing irregularity
at the accumulator side, and by possibly optimizing the connections
at the accumulator and the constellation mapping. A number of im-
proved BICM-ID code constructions have been proposed in the litera-
ture [93,120,121,127]. Based on the concepts illustrated in this Chapter,
turbo-coded modulation schemes [99] can also be put into the BICM-ID
framework. Furthermore, a number of optimized MLC have also been
proposed [54, 102]. We argue, however, that the optimization process
and decoding is simpler for BICM-ID than for MLC, since there is only
one code to be optimized.

Since the discovery of the improved performance of BICM-ID with
mappings different from Gray, a number of works have focused on find-
ing good mappings under a variety of criteria [26, 103, 113, 125, 131].
Further, multidimensional mappings have been shown to provide per-
formance advantages with BICM-ID [106, 107, 124]. A popular map-
ping design criterion has been to optimize the perfect extrinsic side
information point of the EXIT chart (1, y), in order to make y as
large as possible. Note that, according to the area theorem, larger y

in the (1, y) point, which corresponds to a lower error floor, implies
lower y in the (0, y) point, which implies a larger convergence SNR.
A number of works, using bounding techniques similar to those pre-
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sented in Chapter 4 using a metric with perfect extrinsic side infor-
mation, have predicted the error floor of BICM-ID with convolutional
codes [30,63,103,113].

Recall that the area theorem yields exact results only when the
extrinsic side information comes from a BEC channel, and only ap-
proximate results when the extrinsic channel is an AWGN. In [14], an
MSE-based transfer chart was proposed. Building on the fundamen-
tal relationship between mutual information and MMSE [51], Bhattad
and Narayanan showed that the area property holds exactly for the
MSE-based chart when the extrinsic channel is an AWGN. Although
the analysis that one might obtain in this case is still approximate,
it seems reasonable to assume that it might be more accurate than
the BEC analysis in terms of thresholds. Finally, generalized EXIT
(GEXIT) charts were proposed in [82] as an EXIT chart where the
area property is imposed by definition. GEXIT charts therefore ex-
actly characterize the iterative decoding process. The slight drawback
of GEXIT charts is that computing them is potentially demanding.

In this Chapter, we have only touched upon infinite-length analysis
of BICM-ID. Finite-length analysis of BICM-ID is an open problem
which is of significant interest due to the fact that practical systems,
especially those meant to transmit real-time data, do not usually em-
ploy such large interleavers. Successful finite-length analysis techniques
for LDPC codes, such as finite-length scaling [3,4,96], find BICM-ID as
a natural application. The analysis of the finite-length case, could also
be performed by employing improved bounds to the error probability,
like the Duman-Salehi or the tangential-sphere bound. The tangential-
sphere bound was used in [44] to characterize the error probability of
finite-length binary RA codes with grouping.

5.A Density Evolution Algorithm for BICM-ID

Since the message Ξdem→dec
i is a function of the messages propagated

upwards (from bottom to top) in the oriented neighborhood N `(µk →
ci), it follows that the limiting probability density of Ξdem→dec

i can be
recursively computed as follows. First, initialize the pdf of the messages
Ξdec→dem (we drop the time index for simplicity of notation) to a single
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mass-point at zero. This represents the fact that, at the beginning of
the BICM-ID process, no information is available from the decoder
to the demapper. Then, alternatively, compute the pdf of the messages
Ξdem→dec given the pdf of the messages Ξdec→dem and then compute the
pdf of the messages Ξdec→dem given the pdf of the messages Ξdem→dec

obtained at the previous step until the exit condition is met.
Several criteria for the exit condition are possible and have been con-

sidered in the literature. A common criterion is to exit if the resulting
error probability does not change significantly through the iterations.

Generally, it is much more convenient to work with cumulative dis-
tribution functions rather than with pdfs (we refer to pdfs here since
the algorithm is called density evolution). In fact, the calculation of
the empirical cdf of a data set can easily be accomplished, and also the
sampling from a distribution with given cdf is well-known and simple
to implement.
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Algorithm 1: Density Evolution

Initialization Let P dec→dem,(0)
Ξ (ξ) = δ(ξ) (a single mass-point

at zero) and let the iteration index ` = 1.
Demapper Step Generate a large sample of the random
variable Ξdem→dec,(`) as follows

(1) Generate random scrambling symbols d = (d1, . . . , dm).
(2) Let x = µ(d), where µ is the modulator mapping.
(3) Generate y ∼ PY |X(y|x).
(4) Generate the samples {ξdec→dem,(`−1)

j : j = 1, . . . ,m} by

sampling i.i.d. from the pdf P dec→dem,(`−1)
Ξ (ξ).

(5) Generate a label position j ∈ {1, . . . ,m} with uniform
probability.

(6) Compute the realization of Ξdem→dec as

ξdem→dec,(`) = log

∑
x′∈X j

d̄j

PY |X(y|x′) e
P

j′ 6=j bj′ (x
′)(−1)

dj′ ξ
dec→dem,(`−1)

j′

∑
x′∈X j

dj

PY |X(y|x′) e
P

j′ 6=j bj′ (x
′)(−1)

dj′ ξ
dec→dem,(`−1)

j′

(7) Compute the empirical pdf of the generated set of values
from step (6) and call it P dem→dec,(`)

Ξ (ξ).

Decoder Step Generate a large sample of the random variable
Ξdec→dem,(`) as follows

(1) Generate the samples {ξdem→dec,(`)
i : i = 1, . . . , L} by

sampling i.i.d. from the pdf P dem→dec,(`)
Ξ (ξ), where L is the

length of a sufficiently large trellis section of the code.
(2) Apply the BCJR algorithm to the code trellis with input
{ξdem→dec,(`)

i : i = 1, . . . , L} and compute the corresponding
extrinsic messages {ξdec→dem,(`)

i : i = 1, . . . , L}.
(3) Compute the empirical pdf of the generated set of values

and call it P dec→dem,(`)
Ξ (ξ).

Exit Condition If the exit condition is met, then exit.
Otherwise, let `← `+ 1 and go to the Demapper step.
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Applications

In this Chapter we briefly discuss some applications of BICM to cases
of practical relevance not explicitly included in our presentation. In
particular, we review current work and outline how to extend the re-
sults we presented throughout the monograph to non-coherent detec-
tion, block-fading, multiple-input multiple-output (MIMO) channels
and non-standard channels such as the exponential-noise channel.

6.1 Non-Coherent Demodulation

Orthogonal modulation with non-coherent detection is a practical
choice for situations where the received signal phase cannot be reli-
ably estimated and/or tracked. Important examples include military
communications using fast frequency hopping, airborne communica-
tions with high Doppler shifts due to significant relative motion of the
transmitter and receiver, and high phase noise scenarios, due to the use
of inexpensive or unreliable local oscillators. Common choices of imple-
mentation for the modulator are pulse-position modulation (PPM) or
frequency-shift keying (FSK) [95].

BICM with orthogonal modulation was first studied by Caire et al.

122
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in [29]. The study in [29] included BICM capacity, cutoff rate as well as
error probability considerations. Valenti and Cheng applied BICM-ID
techniques to orthogonal modulation with non-coherent detection with
turbo-codes [132]. In [48], the design of capacity approaching codes
is considered using the improved construction based on RA codes.
Capacity-approaching codes within tenths of dB of capacity were found,
also with suboptimal decoding metrics.

The application of our main results to orthogonal modulation
is straightforward. Symbols x ∈ RM belong now to an orthogo-
nal modulation constellation, i. e., x ∈ X ∆= {e1, . . . , eM}, where
ek = (0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
M−k−1

) is a vector has all zeros except in the k-th

position, where there is a one. The received signal over a fading channel
can still be expressed by (2.6), where now y, z ∈ CM , i. e., they are
vectors of dimension M . The channel transition probability becomes

PY |X,H(y|x, h) =
1
πM

e−‖y−h
√

snr x‖2 . (6.1)

Depending on the knowledge of the channel coefficients at the receiver,
the decoding metric might vary. In particular, for coherent detection the
symbol decoding metric for hypothesis x = ek satisfies q(x = ek, y) ∝
PY |X,H(y|x, h). When no knowledge of the carrier phase is available at
the receiver, then the symbol decoding metric for hypothesis x = ek
with coded modulation becomes [95]

q(x = ek, y) ∝ I0
(
2
√

snr|h|yk

)
(6.2)

where I0(.) is the zero-th order Bessel function of the first kind [1] and
with some abuse of notation we let yk denote the k-th entry of the
received signal vector y. The bit metrics are

qj
(
bj(x) = b, y

)
=
∑

k′∈X j
b

I0
(
2
√

snr|h|yk′
)
. (6.3)

where now X j
b is the set of indices from {0, . . . ,M−1} with bit b in the

j-th position. All general results from the previous chapters can be ap-
plied to orthogonal modulation by properly adapting the metric. Also,
all integrals over y are now M -dimensional integrals. As an example,
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Fig. 6.1 Coded modulation capacity (solid lines), BICM capacity (dash-dotted lines) for
orthogonal modulation (PPM/FSK) with non-coherent detection in the AWGN channel.

Figures 6.1 and 6.2 show the coded modulation and BICM capacities for
the AWGN channel and the fully-interleaved Rayleigh fading channel
with non-coherent detection, respectively. As we observe, the capacity
loss of BICM with respect to coded modulation is somewhat larger
than in the QAM/PSK modulation case with coherent-detection.

Another common choice for systems where the carrier phase cannot
be reliably estimated and/or tracked is differential modulation where
a reference symbol is included. Common choices for practical imple-
mentations in this case include differential PSK or block-differential
PSK [53,88–91].

6.2 Block-Fading

The block-fading channel [16, 87] is a useful channel model for a class
of time- and/or frequency-varying fading channels where the duration
of a block-fading period is determined by the product of the channel
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Fig. 6.2 Coded modulation capacity (solid lines), BICM capacity (dash-dotted lines) for
orthogonal modulation (PPM/FSK) with non-coherent detection in the fully-interleaved
Rayleigh fading channel.

coherence bandwidth and the channel coherence time [95]. Within a
block-fading period, the channel fading gain remains constant. In this
setting, transmission typically extends over multiple block-fading peri-
ods. Frequency-hopping schemes as encountered in the Global System
for Mobile Communication (GSM) and the Enhanced Data GSM Envi-
ronment (EDGE), as well as transmission schemes based on OFDM, can
also conveniently be modeled as block-fading channels. The simplified
model is mathematically tractable, while still capturing the essential
features of the practical transmission schemes over fading channels.

Denoting the number of block per codeword by B, the codeword
transition probability in a block-fading channel can be expressed as

PY |X,H(y|x,h) =
B∏

i=1

N∏
k=1

PYi|Xi,Hi
(yi,k|xi,k, hi), (6.4)

where xi,k, yi,k ∈ C are respectively the transmitted and received sym-
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bols at block i and time k, and hi ∈ C is the channel coefficient corre-
sponding to block i. The symbol transition probability is given by

PYi|Xi,Hi
(yi,k|xi,k, hi) ∝ e−|yi,k−hi

√
snrxi,k| (6.5)

The block-fading channel is equivalent to a set of parallel channels,
each used a fraction 1

B of the time. The block-fading channel is not
information stable [135] and its channel capacity is zero [16, 87]. The
corresponding information-theoretic limit is the outage probability, and
the design of efficient coded modulation schemes for the block-fading
channel is based on approaching the outage probability. In [46] it was
proved that the outage probability for sufficiently large snr behaves as

Pout(snr) = K snr−dsb , (6.6)

where dsb is the slope of the outage probability in a log-log scale and
is given by the Singleton bound [61,70]

dsb
∆= 1 +

⌊
B

(
1− R

m

)⌋
. (6.7)

Hence, the error probability of efficient coded modulation schemes in
the block-fading channel must have slope equal to the Singleton bound.
Furthermore, this diversity is achievable by coded modulation as well
as BICM [46]. As observed in Figure 6.3, the loss in outage probability
due to BICM is marginal. While the outage probability curves with
Gaussian, coded modulation and BICM inputs have the same slope
dsb = 2 when B = 2, we note a change in the slope with coded modula-
tion and BICM for B = 4. This is due to the fact that while Gaussian
inputs yield slope 4, the Singleton bound gives dsb = 3.

In [46] the family of blockwise concatenated codes based on BICM
was introduced. Improved binary codes for the block-fading channel [23,
24] can be combined with blockwise bit interleaving to yield powerful
BICM schemes.

In order to apply our results on error exponents and error probabil-
ity, we need to follow Malkämaki’ and Leib’s approach [70] and derive
the error exponent for a particular channel realization. Then, the error
probability (and not the error exponent) is averaged over the channel
realizations. Similarly, in order to characterize the error probability for
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particular code constructions, we need to calculate the error proba-
bility (or a bound) for each channel realization, and average over the
realizations. Unfortunately, the union bound averaged over the channel
realizations diverges, and improved bounds must be used. A simple, yet
very powerful technique, was proposed by Malkämaki and Leib in [71],
where the average over the fading is performed once the union bound
has been truncated at 1.

6.3 MIMO

Multiple antenna or MIMO channels model transmission systems where
either the transmitter, the receiver or both, have multiple antennas
available for transmission/reception. Multiple antenna transmission has
emerged as a key technology to achieve high spectral and power effi-
ciency in wireless communications ever since the landmark works by
Telatar [115] and Foschini and Gans [37] (see also [126]), which illus-
trate significant advantages from an information theoretic perspective.
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Coded modulation schemes that are able to exploit the available degrees
of freedom in both space and time are named space-time codes [114].
Design criteria based on the worst case PEP were proposed in [45,114]
for quasi-static and fully-interleaved MIMO fading channels.

The design of efficient BICM space-time codes has been studied in
a number of works [17,20,21,42,43,47,52,80,81,85,123]. The design of
BICM for MIMO channels fundamentally depends on the nature of the
channel (quasi-static, block-fading, fully-interleaved) and the number
of antennas available at the transmitter/receiver. An important feature
of the design of BICM for MIMO channels is decoding complexity. In
the case of MIMO, we have a transition probability

PY |X,H(y|x,H) ∝ e−‖y−
√

snrHx‖2 , (6.8)

where y ∈ Cnr is the received signal vector, x ∈ Cnt is the transmitted
signal vector and H ∈ Cnr×nt is the MIMO channel matrix. In this
case, the BICM decoding metric is

qj,t(bj,t(x) = b,y) =
∑

x′∈X j,t
b

e−‖y−
√

snrHx‖2 , (6.9)

where X j,t
b denotes the set of vectors with bit b in the j-th position at

the t-th antenna. In the fully-interleaved MIMO channel, this metric
can be used to characterize the mismatched decoding error exponents,
capacity and error probability. In the quasi-static channel, we would
need to compute the error exponent using the metric (6.9) at every
channel realization, and derive the corresponding error probability as
done in [70] in block-fading channels. Note, however, that the size of
X j,t

b is exponential with the number of transmit antennas, which can
make decoding very complex.

For BICM-ID, similarly to what we discussed in Chapter 5, the a
priori probabilities need to be incorporated in the metric (6.9). Sphere
decoding and linear filtering techniques have been successfully applied
to limit the decoding complexity [20,47,52,136,137]. Figure 6.4 shows
the ergodic capacities for coded modulation and BICM in a MIMO
channel with nt = 2, nr = 2 and Rayleigh fading. A larger penalty,
due to the impact of the BICM decoding metric that treats the bits
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Fig. 6.4 Coded modulation capacity (solid lines), BICM capacity (dash-dotted lines) in
MIMO channel with nt = nr = 2 and independent Rayleigh fading. The channel capacity
(thick solid line) is shown for reference.

corresponding to a given vector symbol as independent, than in single-
antenna channels is apparent. In particular, the BPSK capacities differ.
When the number of antennas grows, the capacity computation be-
comes more complex. As illustrated in [20] sphere decoding techniques
can also be employed to accurately estimate the coded modulation and
BICM capacities.

6.4 Optical Communication: Discrete-Time Poisson Channel

The channel models we have mainly considered so far are variations
of the additive Gaussian noise channel, which provide an accurate
characterization for communication channels operating at radio and
microwave frequencies. For optical frequencies, however, the family
of Poisson channels is commonly considered a more accurate channel
model. In particular, the so-called discrete-time Poisson (DTP) channel
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with pulse-energy modulations (PEM) constitutes a natural counter-
part to the PSK and QAM modulations considered throughout the
monograph [72].

More formally, the input alphabet of the DTP channel is a set of
M non-negative real numbers X = {x1, . . . , xM}, normalized to unit
energy, 1

M

∑M
k=1 xk = 1. The output alphabet is the set of non-negative

integers, Y = {0, 1, 2, . . . }. The output at time n is distributed accord-
ing to a Poisson random variable with mean εsxk + z0, where εs is the
average energy constraint and z0 a background noise component. The
symbol transition probability PY |X(y|x) is thus given by

PY |X(y|x) = e−(εsx+z0) (εsx+ z0)y

y!
(6.10)

and therefore the symbol decoding metric can be written as

q(x, y) = e−εsx(εsx+ z0)y. (6.11)

It is clear that BICM schemes can be used in the DTP channel. In
particular, the bitwise BICM metric can be written as

qj
(
bj(x) = b, y

)
=
∑

x′∈X j
b

e−εsx′(εsx′ + z0)y. (6.12)

Figure 6.5 depicts the CM capacity attained by constellation points
placed at points 6(k−1)2

(2M−1)(M−1) , for k = 1, . . . ,M , as well BICM capac-
ity Cbicm

X for BICM with binary reflected Gray mapping for several
modulations. In all cases, z0 = 0 is considered. This spacing between
constellation points was proved in [33] to minimize the pairwise er-
ror probability in the DTP channel at high signal energy levels. As
it happened in the Gaussian channel, BICM performs close to coded
modulation in the DTP channel when Gray labeling is used [72].

6.5 Additive Exponential Noise Channel

Channels with additive exponential noise (AEN) have been considered
in the context of queueing systems [5], and then in their own right [133]
because their analytical characterization closely follows that of the
Gaussian channel. For instance, the capacity of such channels with
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Fig. 6.5 Coded modulation capacity (solid lines), BICM capacity (dash-dotted lines) for
PEM modulation in the DTP channel. Upper (thick solid line) and lower bounds (thick
dashed line) to the capacity are shown for reference.

average signal-to-noise ratio snr is given by log(1 + snr) [133]. In the
AEN channel, inputs are non-negative real numbers X = {x1, . . . , xM},
xk ≥ 0, with average unit energy, 1

M

∑M
k=1 xk = 1. The output alpha-

bet is the set of non-negative real numbers, Y = [0,∞). The symbol
transition probability PY |X(y|x) is given by

PY |X(y|x) = e−(y−snr x)u(y − snr x), (6.13)

where u(t) is the unit step function. For the symbol decoding metric,
a simple expression can be used, namely

q(x, y) = esnr xu(y − snr x). (6.14)

The bitwise BICM metric can be written as

qj
(
bj(x) = b, y

)
=
∑

x′∈X j
b

esnr x′u(y − snr x′). (6.15)
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Fig. 6.6 Coded modulation capacity (solid lines), BICM capacity (dash-dotted lines) for
PEM modulation in the AEN channel. The channel capacity (thick solid line) is shown for
reference.

Figure 6.6 shows the CM capacity Ccm
X and the BICM capacity Cbicm

X
of uniformly spaced, equiprobable constellation sets placed at locations
2(k−1)
M−1 . Gray mapping is used for BICM. As it happened in the Gaussian

channel, BICM performs rather well in the AEN channel, although the
loss in capacity with respect to Ccm

X is somewhat larger than the one
in the Gaussian channel [72].



7

Conclusions

Coding in the signal space is dictated directly by Shannon capacity for-
mula and suggested by the random coding achievability proof. In early
days of digital communications, modulation and coding were kept sepa-
rated because of complexity. Modulation and demodulation treated the
physical channel, waveform generation, parameter estimation (e.g., fre-
quency, phase and timing) and symbol-by-symbol detection. Error cor-
recting codes were used to undo the errors introduced by the physical
modulation/demodulation process. This paradigm changed radically
with the advent of Coded Modulation. Trellis-coded modulation was a
topic of significant research activities in the 80’s, for approximately a
decade. In the early 90’s, new families of powerful random-like codes,
such as turbo codes, LDPC codes and Repeat-Accumulate codes were
discovered (or re-discovered), along with very efficient low-complexity
Belief Propagation iterative decoding algorithms which allowed un-
precedented performance close to capacity, at least for binary-input
channels. Roughly at the same time, Bit-Interleaved Coded Modula-
tion emerged as a very simple yet powerful tool to concatenate virtu-
ally any binary code to any modulation constellation, with only minor
penalty with respect to the traditional joint modulation and decoding

133
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paradigm. Therefore, BICM and modern powerful codes with itera-
tive decoding were a natural marriage, and today virtually any mod-
ern telecommunication system that seeks high spectral efficiency and
high performance, including DSL, Digital TV and Audio Broadcast-
ing, Wireless LANs, WiMax, and next generation cellular systems use
BICM as the central component of their respective physical layers.

In this monograph, we have presented a comprehensive review of the
foundations of BICM in terms of information-theoretic, error probabil-
ity and iterative decoding analysis. In particular, we have shown that
BICM is a paramount example of mismatched decoding where the de-
coding metric is obtained as the product of bitwise metrics. Using this
decoder, we have presented the derivation of the average error proba-
bility of the random coding ensemble and obtained the resulting error
exponents, generalized mutual information and cutoff rate. We have
shown that the error exponent —and hence the cutoff rate— of the
BICM mismatched decoder is upper bounded by that of coded mod-
ulation and may thus be lower than in the infinite-interleaved model
that was previously proposed and generally accepted for the analysis
of BICM. Nevertheless, for binary reflected Gray mapping in Gaussian
channels the loss in error exponent is small. We have also considered
BICM in the wideband, or low SNR, regime and we have character-
ized the suboptimality of the BICM decoder in terms of minimum bit
energy to noise ratio and wideband slope.

We have reviewed the error probability analysis of BICM with a
generic decoding metric with finite and infinite interleavers and we have
given exact formulas and tight approximations, such as the saddlepoint
approximation. We have seen that a short uniform interleaver results
in a performance loss that in a fading channel translates into a diver-
sity loss. We have also reviewed the application of improved bounds to
BICM, which are central to analyze the performance of modern codes
such as turbo and LDPC codes with BICM, since these typically oper-
ates beyond the cutoff rate and the standard union bound fails to give
meaningful results.

We have reviewed iterative decoding of BICM. In particular, we
have shown that perfect extrinsic information closes the gap between
the error exponents of BICM and that of coded modulation. We have
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reviewed the density evolution analysis of BICM-ID and the application
of the area theorem to BICM. We have finally shown how to design
very powerful BICM-ID structures based on LDPC or RA codes. The
analysis reviewed here is valid for infinitely large block lengths, which is
anyway a meaningful assumption when modern random-like codes are
considered, since the latter yield competitive performance at moderate
to large block length. The analysis of BICM with iterative decoding
and short block lengths remains an open problem.

Overall, this monograph casts BICM in a unified common frame-
work, and we believe it provides analysis and code design tools valuable
for both researchers and system designers.
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[76] A. Martinez, A. Guillén i Fàbregas, G. Caire, and F. Willems, “Bit-interleaved
coded modulation in the wideband regime,” accepted for publication in IEEE
Trans. Inf. Theory, 2008.



References 141
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[129] M. Tüchler, J. Hagenauer, and S. ten Brink, “Measures for Tracing Conver-
gence of Iterative Decoding Algorithms,” in Proc. 4th Intern. ITG Conf. on
Source and Channel Coding, Berlin, Germany, pp. 53–60, Jan. 2002.
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